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Abstract

In recent years, deep learning models have revolutionized computer
vision, enabling diverse applications. However, these models are
computationally expensive, and leveraging them for video analyt-
ics involves low-level imperative programming. To address these
efficiency and usability challenges, the database community has de-
veloped video database management systems (VDBMSs). However,
existing VDBMSs lack extensibility and composability and do not
support holistic system optimizations, limiting their practical appli-
cation. In response to these issues, we present our vision for EVA, a
VDBMS that allows for extensible support of user-defined functions
and employs a Cascades-style query optimizer. Additionally, we
leverage Ray’s distributed execution to enhance scalability and per-
formance and explore hardware-specific optimizations to facilitate
runtime optimizations. We discuss the architecture and design of
EVA, our achievements thus far, and our research roadmap.
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1 INTRODUCTION

Advances in computer vision [11, 32] over the last decade has led
to high interest among domain scientists and industry practitioners
in leveraging vision models in their applications. However, there
are efficiency and usability challenges associated with deploying
vision pipelines in practice [20]. First, from a resource efficiency
standpoint, these deep learning models are highly expensive to
run on every frame of the video due to their depth (i.e., number
of neural network layers). Second, from a usability standpoint, the
domain scientist must do low-level imperative programming across

DEEM ’23, June 18, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0204-4/23/06.
https://doi.org/10.1145/3595360.3595858

many libraries (e.g., PyTorch [28], OpenCV [5], and Pandas [26])
to leverage these vision models. To tackle these efficiency and
usability challenges, database researchers have proposed several
video database management systems (VDBMSs) [4, 9, 20, 22, 24, 34].
These systems improve usability by supporting declarative SQL-like
queries over videos.
VDBMSs have applications across several domains, including movie
analysis, monitor wildlife behavior [12, 19], monitor traffic [41],
analyze retail store performance [36]. For example, a movie analyst
may issue the following query to study the emotion palette of actors
in a movie dataset [23]:

/* Movie Analysis */
SELECT EmotionClassification(Crop(data , bbox))
FROM MOVIE CROSS APPLY

UNNEST(FaceDetection(data)) AS Face(bbox , conf)
WHERE id < 1000 AND conf > 0.8;

Listing 1: Illustrative EVAQL query

Here, the query invokes user-defined functions (UDFs) that wrap
around vision models [29]. It first retrieves the bounding boxes
of all the faces present in the initial 1000 frames of the MOVIE
video using the FaceDetection UDF [35]. It filters out the faces
for which the FaceDetection model has lower confidence (< 0.8).
Next, it identifies the emotion of each confidently-detected face
using EmotionClassification UDF.
Prior Work. To efficiently process such queries, the state-of-the-
art (SoTA) VDBMSs use a suite of database-inspired optimizations.
For instance, PP [24] trains a lightweight model to quickly filter
out irrelevant frames (e.g., frames that are not likely to contain
a person), and only runs the heavyweight models on a subset of
frames that pass through the filter model. It reduces the query
processing time and improves resource efficiency by reducing the
number of invocations of the heavyweight oracle models.
What do Existing Systems Lack?

1 Extensibility and Composability: They do not allow users to
define their own user-defined functions (UDFs) for vision models,
and lack the ability of compose UDFs to accomplish complex tasks
(Listing 1). Furthermore, these VDBMSs mainly focus on queries
over detected video objects and do not support richer vision queries
like action localization [37].
2 Holistic System Optimizations: Prior systems primarily focus
on optimizing each query in isolation, even though workloads have
significant overlapping computation (e.g., redundant inference us-
ing a vision model over the same frame across queries) [40]. They
often use lightweight proxy models to accelerate query execution.
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Figure 1: Architecture of EVA

So, they do not support holistic optimization for more complex
queries, both during query optimization and execution. These limi-
tations significantly constrain the adoption of VDBMSs in practical
applications. Raven [27] optimizes ML and relational pipelines with
cross-query optimization. Gandhi et al. [16] utilizes tensor abstrac-
tion for trainable pipelines in AI and relational workloads. We plan
to support the training pipeline in the future.
Our Vision. To overcome existing limitations, we’re developing
an innovative VDBMS that’s specifically designed for exploratory
video analytics - EVA. EVA provides extensible support for UDFs(§
3.1), allowing users to define bespoke UDFs based on their require-
ments and compose them with existing UDFs and operators to
construct complex queries. For example, the FaceDetection and
EmotionClassification models can be used to construct an emo-
tion detection query. Additionally, UDFs can import third-party
Python packages and execute arbitrary logic, which makes it easy
for EVA to support new features in the future.
To optimize query plans, EVA contains a Cascades-style query op-
timizer (§ 3.2) that leverages different forms of derived models and
data structures. Like relational DBMSs, EVA estimates the cost of
query plans by profiling operator costs and estimating predicate
selectivity. It goes further by optimizing for query accuracy (§ 4.2).
Moreover, EVA’s distributed Execution Engine powered by Ray
(§ 3.3) provides additional scalability and performance. We’re also
exploring hardware-specific optimizations and drawing inspira-
tion from the adaptive query processing literature [13] to facilitate
runtime optimizations (§ 4.3).

2 ARCHITECTURE of EVA

The architecture of the EVA VDBMS is shown in Fig. 1. We first
present the query language that the Parser supports. We then
describe the internals of the other three components.
2.1 EVA Query Language (EVAQL)

EVA’s parser supports a query language tailored for exploratory
video analytics, called EVAQL. The queries in this section all con-
cern a movie dataset. EVA stores all the videos of this dataset in
the following table:

MOVIE_DATA(
ID SERIAL INTEGER , VIDEO_ID INTEGER ,
VIDEO_FRAME_ID INTEGER , VIDEO_NAME TEXT (30),
DATA NDARRAY UINT8(3, ANYDIM , ANYDIM));

Listing 2: Schema of the movie dataset

Loading Data. EVA supports loading both videos and semi-structured
data. The following query depicts how the user loads videos in EVA:

/* Loading a video into the table */
LOAD VIDEO 'movies /*.mp4' INTO MOVIE_DATA;

EVA automatically creates a table called MOVIE_DATA with fol-
lowing columns: (1) id, (2) data, (3) video_id, (4) video_frame_id,

and (5) video_name. They denote the frame identifier, the contents
of the frame, and the video to which that frame belongs to.
EVAQL supports queries for loading structured data (e.g., CSVs) for
populating the metadata of videos (e.g., bounding boxes of faces
in a frame). Similar to traditional DBMSs, the user must explicitly
define the schema before loading the CSV file:

/* Defining the schema and loading a CSV file */
CREATE TABLE IF NOT EXISTS MOVIE_METADATA (

ID SERIAL INTEGER , VIDEO_ID INTEGER ,
VIDEO_FRAME_ID INTEGER , VIDEO_NAME TEXT (30),
FACE_BBOXES NDARRAY FLOAT32 (4));

LOAD CSV 'movie.csv' INTO MOVIE_METADATA;

User-Defined Functions. EVAQL is tailored for supporting user-
defined functions (UDFs). UDFs allow users to extend the VDBMS
to support the requirements of their applications. In EVA, UDFs are
often wrappers around deep learning models. For example, a face
detection UDF takes a frame as input and returns the bounding
boxes of the faces detected in the frame as output. Internally, it
wraps around a FaceDetection PyTorch model [35].
EVAQL supports arbitrary UDFs that take a variety of inputs (e.g.,
videometa-data or raw frames etc.) and generate a variety of outputs
(e.g., labels, bounding boxes, video frames, etc.). The following
command registers a FaceDetection UDF in EVA:

/* Registering a User-Defined Function */
CREATE UDF IF NOT EXISTS FaceDetector
TYPE FaceDetection
IMPL '/udfs/face_detector.py'
PROPERTIES ('ACCURACY '='HIGH');

TYPE specifies the logical model type of theUDF (e.g., FaceDetection
or ObjectDetection). IMPL specifies the path to the Python file
containing the implementation of the UDF. Internally, EVA uses
importlib for creating an importing UDF objects from the file
[14]. The user can specify other metadata like the accuracy in
PROPERTIES. EVA uses these properties to accelerate queries. For
example, if the overall query accuracy requirement is moderate (e.g.,
0.8× the oracle model), EVA uses faster (but less accurate) models
of the same model type to accelerate the query. After registering
the UDF, it can be executed on a video as shown in Listing 1.
Interfaces. EVA currently supports EVAQL queries from both a
command line interface and Jupyter notebooks. We seek to support
a Pythonic dataframe API in the future.
2.2 Query Optimizer

EVA’s Optimizer is based on the Cascades framework [17]. It ap-
plies a series of rules for rewriting the query and then performs
cost-based optimization to generate a physical query plan . The
Optimizer in a VDBMS differs from that in a relational DBMS in
two ways. First, it must focus on minimizing query processing time
while meeting the accuracy constraint (which often does not exist
in a typical relational DBMS). Second, it is expensive to derive sta-
tistics from videos a priori as that involves running expensive deep
learning models. So, while processing an ad-hoc query, the Opti-
mizer runs vision models on a subset of frames to guide important
optimization decisions (e.g., whether the query plan will meet the
accuracy constraint or how should the predicates invoking vision
models be ordered [22, 31, 40]).
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Figure 2: Illustrative UDF Optimization Rules – (a) UDF transformation rule that extracts the UDF from the predicate and converts to an APPLY operator,
(b) UDF filtering rule that introduces a proxy UDF model for quickly filtering out irrelevant frames before executing UDF, and (c) UDF reordering rule that
reorders UDFs based on their inference cost and availability of materialized results from prior queries.

2.3 Execution Engine

The Execution Engine is responsible for evaluating the query plan
generated by the Optimizer. While executing the plan, it leverages
heterogeneous computational units (e.g., CPUs and GPUs). EVA
leverages DL frameworks like PyTorch [28] for model inference.
In an earlier prototype of EVA [40], the Execution Engine did
not support distributed query execution. We have recently added
support for distributed query execution (§ 3.3) using Ray [25].
2.4 Storage Engine

Lastly, the Storage Engine is responsible for managing the videos.
In an earlier prototype of EVA [40], the Storage Engine orga-
nized the videos as a sequence of decoded frames, similar to SoTA
VDBMSs [20]. However, this approach not only significantly in-
creases the storage footprint of EVA on larger datasets but also
does not provide any significant reduction in query execution time.
We have subsequently redesigned the Storage Engine to man-
age videos in a compressed format. The Storage Engine manages
structured data (e.g., bounding boxes of faces) on disk using the
Parquet format [1]. It uses Arrow [30] as an in-memory columnar
format for data that is being read or written using on-disk Parquet
files.

3 PROGRESS

We are implementing EVA as a Python package with Apache Li-
cense [2] based on a client-server architecture [2]. We have made
progress on enhancing the extensibility of EVA, and the efficacy of
the Optimizer and the Execution Engine.
3.1 Extensibility - Importing UDFs

EVA allows users to import their own UDFs in two ways. Users can
either import their own implemented UDFs (i.e., from source) or
from popular third party platform (e.g., HuggingFace [39], PyTorch).
UDF from Source.

# Configuring an UDF with decorators
class ImageClassificationUDF:

@setup(cachable=True , batchable=True ,
udf_type="ImageClassification")

def setup(self): # prepare the UDF
@forward(
input_signatures =[ PyTorchTensor(

type=NdArrayType.FLOAT32 ,
dimensions =(1 ,3 ,540 ,960))],

output_signatures =[ PandasDataframe(
columns =["label"],
column_types =[ NdArrayType.STR

])]
)
def forward(self): # do inference

EVA supports defining UDFs using function decorators in Python.
This allows users to migrate their existing deep learning models to
EVA with a few lines of Python code. Users define the input and
output formats of their models and configuration options through
the decorator-based syntax. In Listing 3.1, the @setup decorator
specifies the configuration options for the UDF. The user specifies
the properties – whether EVA can cache results of UDF, does the
UDF support batch mode execution, etc.. The @forward decorator
specifies the input and output types/dimensions for the UDF.
UDF from HuggingFace. Recently,HuggingFace [39] has gained
popularity amongst the deep learning community for their support
of various models across multiple data modalities (e.g., text, audio,
video, etc.). EVA supports HuggingFace tasks and models right
out of the box. Users define tasks or specify models using EVA’s
declarative language:

/* Registering an ObjectDetectorModel */
CREATE UDF MyObjectDetector TYPE HuggingFace
PROPERTIES ('task'='object-detection ',

'model '='facebook/detr-resnet-50')

Here, the user adds UDF that performs object-detection using
the model facebook/detr-resnet-50.
3.2 Query Optimizer - Reuse of Inference Results

UDFs are often the most expensive operators in VDBMS queries. To
accelerate such queries, EVA materializes the results of UDFs and
reuses them while processing subsequent queries in exploratory
video analytics [40]. Reusing results of UDFs in VDBMSs differs
from the query plan matching algorithms in traditional DBMSs [3]
that focus on expensive join operators. In contrast, in VDBMSs,
UDFs frequently occur in predicates and projection lists.
EVA’s optimizer supports novel general-purpose rewrite rules that
are not present in SoTA VDBMSs. For example, to identify reuse op-
portunities, the Optimizer uses an UDF-centric rewrite rule (Fig. 2
(a)) that extracts the UDF from the predicate/projection expression
and rewrites it using the CROSS APPLY operator [15]. The resulting
query plan makes it feasible to explore rules like: (1) materializing
and reusing results of the UDFs [40], (2) adding derived models
(Fig. 2 (b)) [20, 21], (3) UDF reordering (Fig. 2 (c)), (4) UDF de-
duplication, and (5) introducing a video sampling operator before
the UDF. Here, UDF de-duplication refers to avoiding redundant
computation of a UDF that occurs multiple times in a single query.
For example, if both the UDFs in the left hand side query tree in
Fig. 2(c) are identical, we merge them into a single apply operator.
3.3 Execution Engine - Integrating Ray

Our primary objective in integrating Ray into EVA is to support
distributed query execution. We seek to initially support intra-
query parallelism [18]. Consider a query that involves running
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Figure 3: Illustration of Exchange Operator — This query retrieves the
emotions of all the faces detected in the video.

the FaceDetection on a movie video with 13 K frames using a
server with two GPUs. With a single GPU, it takes 402 s to pro-
cess the query. Using Ray, EVA automatically splits the video into
two partitions and uses both GPUs for model inference, reducing
the query processing time to 209 s. Besides data-level parallelism,
EVA also supports parallel processing of complex query predicates.
For example, to evaluate: “UDF1(a) < 10 AND UDF2(b) > 20”, the
VDBMS may either evaluate the two atomic predicates in parallel,
or perform canonical predicate reordering and short-circuit the
predicate evaluation.
Exchange Operator. The Optimizer uses the exchange opera-
tor [6] to encapsulate the degree of parallelism (dop) in the query
plan. The exchange operator splits the plan into two stages and con-
figures the parallelism of the lower stage. Consider the query plan
shown in Fig. 3. First, as specified by the lower exchange operator,
two processes will run the FaceDetection UDF on the video. Then,
the upper exchange operator indicates that a single process should
run the EmotionClassification UDF on the bounding boxes of the
detected faces. To leverage Ray, the Optimizer in EVA transforms
the query plan into Ray actors and chains them via Ray queues.

4 ROADMAP

We next describe our ongoing work and open questions in imple-
menting EVA. We seek to continue improving the usability of EVA,
and also the efficacy of the Optimizer and the Execution Engine.
4.1 Extensibility - Enhancing Querying Capability

Action Queries. In our prior work in Zeus [8], we emphasized
the need to improve the querying capabilities of VDBMSs to encom-
pass action queries. Zeus assumes the availability of a vision model
explicitly trained for the target action (e.g., a person riding a motor-
cycle). However, in real-world applications the action may rarely
occur in the dataset, leading to insufficient true positive examples
(i.e., class imbalance) during training. In addition, the number of
ad-hoc combinations of objects and their interactions that form the
actions is exponential. To overcome these challenges, we seek to
pursue a more practical approach in EVA. We are investigating tech-
niques to break ad-hoc actions into a collection of spatio-temporal
predicates over the bounding boxes and the trajectories of objects
across a sequence of frames [10, 33].
Similarity Search. Tomeet the needs of real-world applications [38],
we seek to support object re-identification and similarity search
queries in EVA. Consider a query that retrieves all the frames in
a movie that contain a target actor. Efficiently searching for the
specific actor using a target image requires the use of computa-
tionally expensive object re-identification models. We are currently
investigating the integration of incremental search techniques into
EVA’s Optimizer to accelerate re-identification queries.

4.2 QueryOptimizer - Accuracy-GuidedOptimization

As in relational DBMSs, the VDBMS’s Optimizer estimates the
query plan’s cost by profiling the cost of the operators and esti-
mating the selectivity of predicates. However, there are two key
differences. First, deep learning models are not always accurate.
So, unlike relational DBMSs, VDBMSs cannot guarantee accurate
results. This gives the Optimizer an opportunity to jointly opti-
mize the query plan for both runtime performance and accuracy
constraints.
Second, the Optimizer must not treat an UDF as a black box. In-
stead, it should exploit the semanticproperties of UDFs. For example,
the Optimizer in EVA has the flexibility to pick a suitable physi-
cal model for processing a logical vision task, as long as it meets
the query’s accuracy constraint. In our prior work [7], we showed
how the Optimizer may dynamically pick different models for pro-
cessing video chunks of varying complexity. We are investigating
how to extend the Cascades-style Optimizer in EVA to jointly op-
timize for query execution cost and query accuracy. We seek to
support complex model pipelines – proxy models, model cascades,
and model ensembles.
4.3 Execution Engine - GPU-aware Optimization

Resource utilization. As EVA extensively uses GPUs for query
processing, it is critical to optimize query execution on GPUs. The
Optimizer needs to insert the exchange operator and tune the
degree-of-parallelism (DOP) parameter. The optimal DOP value
depends on the model execution cost, the overall query, and the
underlying data. We are investigating how to optimize this critical
parameter to better leverage GPUs. Concretely, given the number of
GPUs and their computational capabilities, EVAmust decide where
to inject the exchange operators in the query plan, and what is the
suitable degree of parallelism for each operator. To achieve this,
the Optimizer first generates a statically optimized plan. Later, it
leverages the adaptive Execution Engine by adjusting the pipeline
dynamically during execution to reduce overall processing time.
Minimize data transfer cost. In queries with multiple UDFs, the
same input frames may be transferred to the GPU multiple times
(from the CPU) during query execution. Second, EVA only has CPU
implementations of certain operators like join, predicate filtering,
and cropping. That results in data transfer between CPU and GPU
between different operators (e.g., 10-GB additional data movement
for the query shown in Listing 1. To minimize this cost, we seek
to investigate two optimizations: (1) lazy eviction and (2) operator
fusion. First, with lazy eviction, the Execution Engine caches the
frames on GPU if they are required by later operators in the query
pipeline. Second, with operator fusion, we plan to add GPU-centric
implementations of general-purpose operators (e.g., join and image
cropping) to reduce data movement overhead.

5 CONCLUSION

In this paper, we present our vision, current progress, and road map
for future improvements on EVA, focusing on querying capability,
query optimization, and query execution. We hope that EVA will
enable a broader set of application developers to leverage recent
advances in vision for analysing unstructured data.
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