
Programming
Techniques

S.L. Graham, R.L. Rivest
Editors

On the Complexity of
Computing tlae
Measure of U[ai, bi]
Michael L. Fredman
The University of California at San Diego

Bruce Weide
Carnegie-Mellon University

The decision tree complexity of computing the
measure of the union of n (possibly overlapping)
intervals is shown to be ~ (n log n), even if comparisons
between linear functions of the interval endpoints are
allowed. The existence of an ~ (n log n) lower bound to
determine whether any two of n real numbers are within
E of each other is also demonstrated. These problems
provide an excellent opportunity for discussing the
effects of the computational model on the ease of
analysis and on the results produced.

Key Words and Phrases: analysis of algorithms,
combinatorial problems, computational complexity,
computational models, decision tree programs, lower
bounds

CR Categories: 5.25, 5.26, 5.30, 5.39

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

The contribution of M. L. Fredman was supported in part by the
National Science Foundatioh under grant number MCS 76-08543.
That of Bruce Weide was supported in part by a National Science
Foundation Graduate Fellowship. The main theorem of this paper was
proved by the authors independently. They have since combined and
edited their original manuscripts to produce this one.

Authors' addresses: Michael L. Fredman, Computer Science Di-
vision, Department of Applied Physics and Information Science, Uni-
versity of California at San Diego, La Jolla, CA 92093; Bruce Weide,
Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA 15213.
© 1978 ACM 0001-0782/78/0700-0540 $00.75.

540

I. Introduction

Victor Klee [5] has asked whether computing the
measure of the union of n (possibly overlapping) inter-
vals [a~, bi] requires ~2(n log n) steps. 1 He shows that O(n
log n) comparisons are sufficient, and we show this
number to be necessary, even if comparisons between
linear functions of the inputs are allowed.

In Section II, we introduce the decision tree model
with linear comparisons. Section III contains two proofs
that the complexity of computing O[ag, b~] is ~(n log n)
under this model of computation. Part of one proof
establishes the same bound for deciding whether any
two of n real numbers are within • of each other. In
Section IV we give an algorithm for Klee's interval
problem which shows that the bound proved in Section
III is nearly the best possible; i.e., the complexity of the
algorithm is within O(n) of the lower bound. Finally, in
Section V we consider other possible computational
models which might be reasonable for these problems,
and the effects of such alternative models on lower and
upper bounds are discussed.

II. The Decision Tree Model with Linear Tests

A decision tree program with linear comparisons
takes as input a list of real numbers {xi}, which are
considered to be indeterminates. Each internal and ex-
ternal (leaf) node of the tree is labeled with a linear
function of these inputs. The algorithm is executed with
control beginning at the root node. In general, when
control is centered at any internal node, the linear func-
tion labeling that node is evaluated and the result is
compared to zero. If it is greater than zero, control passes
to the left son; otherwise, it passes to the right son. When
control reaches a leaf node the linear function there is
evaluated and put out as the answer. In a decision
problem, where the answer is simply "yes" or "no" rather
than a real number, each leaf node is labeled with "yes"
or "no" rather than with a function. The complexity of
such an algorithm is defined as the depth of the tree,
which is simply the number of comparisons required in
the worst case. 2

III. An ~ (n log n) Lower Bound

For convenience, let us call the problem presented in
[5] the MEASURE problem. Namely, given a list of 2n real
numbers {ai} and {bi} which represent the endpoints of
the n intervals [ai, bi], compute the measure of the union
of these intervals. This section is devoted to proving the
following theorem in two different ways.

1 We say g(n) = O(f(n)) if there is a constant c such that [g(n)l -<
cf(n) for all sufficiently large n. Similarly, g(n) = ~Q~n)) if there is a
constant c > 0 such that Ig(n)l -> cfln) for all sufficiently large n.

2 By pruning the tree if necessary, we may assume without loss of
generality that for each leaf there exists a sequence of inputs which
follows the path through the tree leading to that leaf.

Communications July 1978
of Volume 21
the ACM Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359545.359553&domain=pdf&date_stamp=1978-07-01

Fig. 1. The regions comprising L when n = 2.

Y - X ~ E IN THIS REGION

X - Y ~ E IN THIS REGION

~HEOREM 1. MEASURE is of decision tree complex-
ity ~2(n log n), even if comparisons between linear func-
tions of the inputs are allowed.

PROOF 1. Let the •-CLOSENESS problem be defined
as the task of determining whether any two of n real
numbers (x i) are within • of each other, where • is a
fixed parameter of the problem. The proof is based on
two lemmas" The first will show how an algorithm for
MEASURE could be used to solve e-CLOSENESS, and the
second will provide a lower bound on the complexity of
solving •-CLOSENESS. Together, these facts will enable us
to establish the lower bound for MEASURE.

LEMMA 1: If MEASURE can be solved with T(n) com-
parisons, then E-CLOSENESS can be solved with
T(n) + I comparisons.

PROOF: Given any algorithm for MEASURE which
operates with T(n) comparisons, an •-CLOSENESS algo-
rithm is easily constructed.

(1) With inputs Xl, x2 x~ and parameter • > 0,
form the intervals [xg, xi + •], for i = l, 2 n.

(2) Find the measure of U[xi, .xi + 6].
(3) If the answer from part (2) is exactly n•, then no

two points are within • of each other. If the answer is
anything else, then there are two points within • of each
other.

The total number of comparisons required by this •-
CLOSENESS algorithm is T(n) + 1. Step (1) uses no
comparisons, step (2) uses T(n) by hypothesis, and step
(3) requires just one more comparison. []

LEMMA 2. •-CLOSENESS is of decision-tree com-
plexity f~(n log n), even if comparisons between linear
functions of the inputs are allowed.

PROOF: The argument is very much like that used in
[3] to show that f~(n log n) comparisons are required by
any decision tree program with linear tests to determine
whether any two of n real numbers are equal. Consider
the inputs Xl, X 2 Xn. to be the coordinates of a point
in n-dimensional Euclidean space E ~. Let the locus of
points L be the set of input points for which [xi - x~ I >--

541

Fig. 2. In this case, the 10 intervals form 3 spans.

1
2
3

4

5

6

7

8

9

1 0

~ k
i

- - i
!

I
I

I I
i __d
i I
I I
I i

SPAN l SPAN 2 SPAN 3

e, for all i ~ j. Then E-CLOSENESS is equivalent to the
problem of determining membership in L.

The set L is the union of the disjoint and noncontig-
uous regions

L~ = (x~(1) < x~(2) < ... < Xn(n) and
[xi - x/[> • for all i # j } .

where ~r is a permutation of the integers 1, 2 n. The
number of such regions is n! because there are n! such
permutations, each corresponding to a different region
(see Figure 1 for the case n = 2).

To see that L = UL~, note first that any point in L
has every pair of coordinates differing by at least ¢, so
any such point belongs to L, for some permutation ~r of
the ranks of the coordinates. Similarly, any point in UL~
has [Xi -- Xj[~ • for all i ~ j, so such a point is, by
definition, in L. The regions L. are clearly disjoint
because only one permutation can correspond to any
point with distinct coordinate values. The regions are
also noncontiguous because every pair of regions is
separated by (at least) the hyperplane xi = x/, for some
pair of coordinates i a n d j which are in a different order
in the two permutations. We have therefore established
that L consists of n! disjoint, noncontiguous regions in
E n"

Now consider a decision tree algorithm for deciding
membership in L. At any leaf node, the algorithm must
answer "yes" or "no" to the question of whether x~,
x2, ..., x , are the coordinates of a point in L. Let the set
of points "accepted" at leaf node k be denoted by Tk
(i.e., Tk is the set of points for which all comparisons in
the tree have identical outcomes and lead to leaf node k,
for which the algorithm answers "yes"). The leaf nodes
of the tree partition E" into disjoint convex regions
because all comparisons are between linear functions of
the coordinates of the input point, so in particular each
of the accepting sets Tk is convex.

Let m be the number of accepting leaf nodes, and
suppose m < n!. Then since L consists of n! disjoint
regions, some accepting node Tk must accept points in
two regions, say L, and L B. Choose any points P~ E Tk
N L~ and / '2 ~ Tk tq L B. By the convexity of Tk, every
point on the line PEP2 is in Tk, so for every such point
the algorithm answers "yes." However, L~ and L, are

Communica t ions July 1978
of Volume 2 !
the ACM N u m b e r 7

disjoint and noncontiguous, so the line P,P2 contains
points not in L. The algorithm must therefore fail to
operate correctly if m < n!, so there must be at least n!
accepting leaf nodes.

The total number of leaf nodes must be at least n!,
since that many are accepting, so the height of the
decision tree (and hence the number of comparisons
along some path) must be at least [log2 n!] = ~2(n log
n). The worst-case complexity of E-CLOSENESS is there-
fore ~2(n log n). A similar argument based on the external
path length of the tree (see [6]) shows that E-CLOSENESS
also requires f~(n log n) comparisons on the average,
assuming that the inputs (xi) are considered in random
order. We note that this bound can be used to prove
similar lower bounds for some nearest-neighbor search
problems (for example, the problems in [2] and [8]). []

Now the main theorem follows immediately. By
Lemmas 1 and 2, T(n) + 1 = ~2(n log n), where T(n) is
the time required to solve MEASURE. This implies that
T(n) = ~(n log n). []

PROOF 2: The first proof relies on problem reduc-
tion, thereby introducing the auxiliary problem C-
CLOSENESS, which is a decision problem. However, the
main theorem can be proved directly, as follows. The
argument is similar to that used in [4].

Let Ii denote the interval [i, i + 1], 1 _< i _< n. We
define a class C consisting of the n! sequences of n such
intervals. For each permutation 7r on (1, 2 n}, the
interval sequence .11, J2 Jn, where Ji = L,(i~, is included
in C. Thus, all intervals of a sequence in C have length
1, and the measure of the union of the intervals in any
such sequence is n. We argue below that no two se-
quences in C can define the same path through the
decision tree representing a correct algorithm for MEA-
SURE. It will then follow that such a tree must have at
least n! leaf nodes, thereby proving the theorem.

Suppose that there exist two distinct sequences ./1,
J2 Jn and JL J~ J" in C which define the same
path through the tree, and let ~r and rr' be their associated
permutations. The inputs {ai} and {bi} can be thought
of as the coordinates of a point in 2n-dimensional Eu-
clidean space; let P and P' be the points in this space
associated with J~, J2 Jn and J~, J~ J ' , respectively.
The liner inequalities along the common path followed
for the input sequences J,, J2 Jn and J~, J~ J"
define a convex region of 2n-space to which the interval
endpoints of both sequences belong. Any point P" on
the line segment joining P and P' defines a sequence of
unit-length intervals J~', J~' J" , which also follows
the same path through the tree. Since the output value
associated with the leaf node at the end of this path is a
linear function of the endpoints of the intervals, the
output produced for J~', J~' , J " will be n, because the
output is n for J1, J2 , J~ and for JL J~ J ' .

However, if we imagine P" sliding continuously along
the line segment from P to P', the intervals J]', J~'
J" will shift continuously, and there will be an instant at
which two previously different intervals J" and J~ r # s,

542

will exactly coincide. (These may be any two intervals r
and s for which rr(r) - ~r(s) and ,r'(r) - ,r'(s) have
different signs.) At such an instant, the measure of the
union of J~', J~' , J,~' cannot exceed n - 1, contradicting
the value n produced as output by the hypothetically
correct tree. This contradiction shows that no two se-
quences of C can define the same path through the tree,
which, as explained above, proves the theorem. []

IV. More Precise Bounds

Let T(n) be the minimum complexity among all
decision tree algorithms which solve MEASURE using
linear tests. In this section we prove the following result.

THEOREM 2. For T(n) defined as above,

n log2 n - 1.443n + O(log n) <_ T(n)
_< n log2 n + .671n + O(log n)

PROOF: The lower bound, being the expansion of
log2 n!, follows immediately from the arguments of Sec-
tion III.

The following algorithm for MEASURE provides an
upper bound on T(n). As before, the input consists of n
intervals [aM, bi], with ai <-- hi. The endpoints (a~} and
(bi) are given in the arrays A and B, respectively. After
sorting the intervals by left endpoints (keeping the right
endpoints together with their corresponding left end-
points), A [i] contains the ith smallest left endpoint, and
B[i] contains the right endpoint corresponding to A[i].
The left endpoints are then scanned in increasing order,
while the algorithm keeps track of the current "span" of
intervals considered so far (see Figure 2). Whenever a
new interval has its left endpoint greater than the right-
most point of the current span, the total measure is
updated and a new span is started.

begin
(1) sort A in increas ing order, keeping B[i] with A[i];

m e a s u r e := 0;
lef tspan := A[I] ;
r igh t span ~ BI l l ;
for i := 2 until n do

(2) if A[i] <_ r igh t span
(3) then r igh t span := m a x (r ightspan, B[i])

e lse begin
(4) m e a s u r e .'= me a su re + r igh tspan - leftspan;

lef tspan := A[i];
r igh tspan := B[i]

end;
(5) m e a s u r e := me a su re + r igh t span - leftspan;

ou tpu t (measure)
end

All comparisons are between linear functions of the
inputs. These comparisons occur in the statements num-
bered (1), (2), and (3). Statement (1) costs at most n
logz n - 1.329n + O(log n) comparisons if sorting is done
using the merge-insertion algorithm (see [6], section 5.3.1,
exercise 15). Statement (2) is encountered exactly n - 1
times, at a cost of one comparison each time, while

C o m m u n i c a t i o n s July 1978
of V o lume 21
the ACM N u m b e r 7

statement (3) could be executed at most n - 1 times,
again at a cost of a single comparison each time. The
total number of comparisons used by this algorithm
therefore satisfies

T(n) <_ n log2 n + 0.671n + O(log n),

completing the proof. We see that T(n) is determined to
within 2.114n + O(log n) comparisons in the decision
tree model with linear tests. []

It is of some interest that the algorithm given in [5]
is only within a factor of two of the lower bound, since
it involves sorting all 2n endpoints together, while the
algorithm presented here sorts only the left endpoints.

V. Remarks About the Model of Computation

The typical (if not altogether realistic) restriction to
comparisons between linear functions of the inputs is
used in both proofs to establish the convexity of the
regions identified with the leaf nodes of a decision tree.
If this restriction is removed, or the decision tree model
is abandoned entirely, then bounds are more difficult to
obtain.

Jon Bentley and Michael Shamos note that e-
CLOSENESS can be solved in linear time under a different
model of computation: a RAM (Random Access Ma-
chine) with exact real arithmetic, including division,
"floor" function I.xJf and unbounded storage. An algo-
rithm which accomplishes this is due to Yuval [8]. Aho,
Hopcroft, and Ullman ([1], exercise 2.12) show how to
avoid initializing unused memory locations, so that even
though the amount of storage must be unbounded, this
does not increase the asymptotic order of the time re-
quired by the algorithm.

The key to the algorithm is the computation of the
floor function, which is available as a single operation
on most computers. It is, however, merely a consequence
of the radix representation of numbers on actual digital
machines which makes this possible. In general, a
piecewise-linear function like Ix] is a perfectly acceptable
quantity to compute in our decision tree model of com-
putation, so long as a legitimate cost function is applied.
For a piecewise-linear function with p pieces, the cost
should be at least [log2 p] comparisons. The fact that [xJ
is an "elementary" operation on real computers is a
happy coincidence. (Note also that even while the floor
function helps solve E-CLOSENESS, it is not clear how it
could help solve MEASURE.)

Similarly, if we are allowed to compute products of
the inputs, then E-CLOSENESS can be solved with only
2n - 1 comparisons, as follows. For any collection of
nonoverlapping intervals [ai, bi], a number z will not fall
inside any of these intervals if and only if

I I (ai - z) . (bi - z) > 0
i

:~ [xJ is the greatest integer less than or equal to x.

543

since an odd number of terms in the product will be
negative if and only if z lies inside one of the intervals.
Solving e-CLOSENESS for the inputs {xi} is equivalent to
asking whether the intervals [xi, xi + e] are nonoverlap-
ping. Assuming that the xi are distinct and that the first
k intervals are nonoverlapping, the first k + 1 intervals
will be nonoverlapping if and only if both Xk+l and
Xk+l + e do not fall inside any of the first k intervals.
(Since all intervals under consideration have length E, it
is impossible for the k + lth interval to contain one of
the other intervals.)

The following program uses these ideas to decide e-
CLOSENESS using only 2n -- 1 comparisons. The first step
of the program, which tests whether any of the xi are
equal, also illustrates how the element uniqueness prob-
lem can be solved using only one comparison if products
may be computed and compared. If two of the xi are
within e of each other, the program outputs "yes"; oth-
erwise, it outputs "no."
begin

if I]i</(xi - x /) = 0 then output ("yes");
forj := 1 until n d o y i ~ xj + E;
J ~ 2;
while j < n

and 1]i~4 (x i - x j) . O~i - x /) >_ 0
and lqi<j (xl - YA (Y, - YA --> 0 do j .'= j + 1;

ifj _< n then output ("yes") else output ("no")
end

On the other hand, a lower bound of n - 1 compar-
isons can be demonstrated for e-CLOSENESS if compari-
sons between meromorphic functions 4 of the inputs are
allowed. This result is a special consequence of a general
theorem due to Rabin [7].

If tests between meromorphic functions are allowed
for the MEASURE problem, it is still not apparent how
they can be used to reduce the number of comparisons
below f~(n log n). However, the best lower bound we can
demonstrate in this model is only f~(n).

THEOREM 3: Let T*(n) denote the minimum com-
plexity of any decision tree algorithm for MEASURE in
which all comparisons are between meromorphic func-
tions of the inputs. Then T*(n) _> 2n + O(log n).

PROOF. A decision tree algorithm solving MEASURE
must have as many leaf nodes as there are distinct
meromorphic functions required to express the measure
of the union of n intervals. As a consequence of a basic
result of complex variable theory, if a meromorphic
function agrees with a linear function in any neighbor-
hood, then the two functions are identical everywhere.
Therefore, the number of leaf nodes must be at least as
large as the number of distinct linear functions which
can express the measure of a union of n intervals. The
set of such functions is given by

(~ , b j - ~ ak[J and K are nonempty
j ~ J k E K

subsets of (1, 2 n) with I JI = I KI)

4 A meromorphic function flxb x2 x .) is defined here as the
quotient of two power series in x~, x2 x., each of which is
convergent for all values of its arguments, and for which the denomi-
nator is not identically zero.

Communications July 1978
of Volume 21
the ACM Number 7

The number o f such functions is (~) - 1, and the
theorem follows upon evaluating log2((~ n) - 1). []

In each of these cases, reducing the number o f com-
parisons has introduced O(n 2) arithmetic operations for
comput ing the nonl inear functions. In general, however,
the tradeoffs involved between comparisons and arith-
metics are not well understood. It is usually much easier
to prove lower bounds on the number o f comparisons
than on the n u m b e r o f arithmetic operations, especially
if the compar isons must be between linear functions o f
the inputs. The place where this becomes impor tant in
our lower bound proofs is, o f course, in guaranteeing the
convexity o f the sets at the leaf nodes o f the decision
tree.

Acknowledgments. The authors would like to thank
Jon Bentley and Michael Shamos for sharing their in-
sights.

Received May 1977; revised November 1977

References
I. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.,
1974.
2. Bentley, J.L. Divide and conquer algorithms for closest point
problems in multidimensional space. Rep. No. TR-76-103, U. of
North Carolina, Chapel Hill, N.C., Dec. 1976.
3. Dobkin, D., and Lipton, R. On the complexity of computations
under varying sets of primitives. Comp. Sci. Tech. Rep. No. 42, Yale
U., New Haven, Conn., 1975.
4. Fredman, M.L. On computing the length of longest increasing
subsequences. Discrete Math. 11 (1975), 29-35.
5. Klee, V. Can the measure of U[ai, bi] be computed in less than
O(n log n) steps? Amer. Math. Monthly 84, 4 (April 1977), 284-285.
6. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
7. Rabin, M.O. Proving simultaneous positivity of linear forms. J.
Comptr. Syst. ScL 6, 6 (Dec. 1972), 639-650.
8. Yuval, G. Finding nearest neighbours. Inform. Proe. Letters 5, 3
(Aug. 1976), 63-65.

544

Programming
Techniques

S. U Graham, R. L. Rivest,
Editors

An O(n) Algorithm for
Determining a Near-
Optimal Computation
Order of Matrix Chain
Products
F r a n c i s Y . C h i n
U n i v e r s i t y o f A l b e r t a

This paper discusses the computation of matrix
chain products of the form M 1 X M 2 X "" X Mn where
M ? s are matrices. The order in which the matr ices are
computed affects the number of operations. A sufficient
condition about the association of the matr ices in the
optimal order is presented. An O (n) algorithm to find
an order of computation which takes less than 25
percent longer than the optimal time Topt is also
presented. In most cases, the algorithm yields the
optimal order or an order which takes only a few
percent longer than Topt (less than 1 percent on the
average).

Key Words and Phrases: approximate algorithm,
heuristic algorithm, matrix multiplication, matrix chain
product

CR Categories: 5.14

1. Introduction

Consider the evaluat ion o f the product o f n matrices

M = M I × M 2 x ..- x M n

where Mi is a ki-1 x ki matrix with each k~ _> 1. Our
main tool is the associativity o f matrix multiplication.
The order in which the matrices are multiplied does not

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of.the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This research was supported in part by a Canadian National
Research Council Grant.

Author's address: Department of Computing Science, University
of Alberta, Edmonton, Alberta, Canada.
© 1978 ACM 0001-0782/78/0700-0544 $00.75

Communications July 1978
of Volume 21
the ACM Number 7

