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I. Introduction 

Victor Klee [5] has asked whether computing the 
measure of  the union of  n (possibly overlapping) inter- 
vals [a~, bi] requires ~2(n log n) steps. 1 He shows that O(n 
log n) comparisons are sufficient, and we show this 
number to be necessary, even if comparisons between 
linear functions of  the inputs are allowed. 

In Section II, we introduce the decision tree model 
with linear comparisons. Section III contains two proofs 
that the complexity of computing O[ag, b~] is ~(n log n) 
under this model of  computation. Part of one proof  
establishes the same bound for deciding whether any 
two of  n real numbers are within • of  each other. In 
Section IV we give an algorithm for Klee's interval 
problem which shows that the bound proved in Section 
III is nearly the best possible; i.e., the complexity of the 
algorithm is within O(n) of  the lower bound. Finally, in 
Section V we consider other possible computational 
models which might be reasonable for these problems, 
and the effects of  such alternative models on lower and 
upper bounds are discussed. 

II. The Decision Tree  Model with Linear Tests 

A decision tree program with linear comparisons 
takes as input a list of  real numbers {xi}, which are 
considered to be indeterminates. Each internal and ex- 
ternal (leaf) node of  the tree is labeled with a linear 
function of  these inputs. The algorithm is executed with 
control beginning at the root node. In general, when 
control is centered at any internal node, the linear func- 
tion labeling that node is evaluated and the result is 
compared to zero. If  it is greater than zero, control passes 
to the left son; otherwise, it passes to the right son. When 
control reaches a leaf node the linear function there is 
evaluated and put out as the answer. In a decision 
problem, where the answer is simply "yes" or "no"  rather 
than a real number, each leaf node is labeled with "yes" 
or "no"  rather than with a function. The complexity of 
such an algorithm is defined as the depth of  the tree, 
which is simply the number of  comparisons required in 
the worst case. 2 

III. An ~ ( n  log n) Lower Bound 

For convenience, let us call the problem presented in 
[5] the MEASURE problem. Namely, given a list of  2n real 
numbers {ai} and {bi} which represent the endpoints of  
the n intervals [ai, bi], compute the measure of  the union 
of  these intervals. This section is devoted to proving the 
following theorem in two different ways. 

1 We say g(n) = O(f(n)) if there is a constant c such that [g(n)l -< 
cf(n) for all sufficiently large n. Similarly, g(n) = ~Q~n)) if there is a 
constant c > 0 such that Ig(n)l -> cfln) for all sufficiently large n. 

2 By pruning the tree if necessary, we may assume without loss of  
generality that for each leaf there exists a sequence of  inputs which 
follows the path through the tree leading to that leaf. 
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Fig. 1. The regions comprising L when n = 2. 

Y - X ~ E IN THIS REGION 

X - Y ~ E IN THIS REGION 

~HEOREM 1. MEASURE is of decision tree complex- 
ity ~2(n log n), even if comparisons between linear func- 
tions of  the inputs are allowed. 

PROOF 1. Let the •-CLOSENESS problem be defined 
as the task of  determining whether any two of n real 
numbers (x i )  are within • of  each other, where • is a 
fixed parameter of  the problem. The proof is based on 
two lemmas" The first will show how an algorithm for 
MEASURE could be used to solve e-CLOSENESS, and the 
second will provide a lower bound on the complexity of  
solving •-CLOSENESS. Together, these facts will enable us 
to establish the lower bound for MEASURE. 

LEMMA 1: If  MEASURE can be solved with T(n) com- 
parisons, then E-CLOSENESS can be solved with 
T(n) + I comparisons. 

PROOF: Given any algorithm for MEASURE which 
operates with T(n) comparisons, an •-CLOSENESS algo- 
rithm is easily constructed. 

(1) With inputs Xl, x2 . . . . .  x~ and parameter • > 0, 
form the intervals [xg, xi + •], for i = l, 2 . . . . .  n. 

(2) Find the measure of  U[xi, .xi + 6]. 
(3) If  the answer from part (2) is exactly n•, then no 

two points are within • of each other. If  the answer is 
anything else, then there are two points within • of  each 
other. 

The total number of  comparisons required by this •- 
CLOSENESS algorithm is T(n) + 1. Step (1) uses no 
comparisons, step (2) uses T(n) by hypothesis, and step 
(3) requires just one more comparison. [] 

LEMMA 2. •-CLOSENESS is of  decision-tree com- 
plexity f~(n log n), even if comparisons between linear 
functions of  the inputs are allowed. 

PROOF: The argument is very much like that used in 
[3] to show that f~(n log n) comparisons are required by 
any decision tree program with linear tests to determine 
whether any two of n real numbers are equal. Consider 
the inputs Xl, X 2  . . . . .  Xn. to be the coordinates of  a point 
in n-dimensional Euclidean space E ~. Let the locus of  
points L be the set of  input points for which [xi - x~ I >-- 
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Fig. 2. In this case, the 10 intervals form 3 spans. 
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e, for all i ~ j. Then E-CLOSENESS is equivalent to the 
problem of  determining membership in L. 

The set L is the union of  the disjoint and noncontig- 
uous regions 

L~ = (x~(1) < x~(2) < ... < Xn(n) and 
[xi - x/[ > • for all i # j } .  

where ~r is a permutation of  the integers 1, 2 . . . . .  n. The 
number of such regions is n! because there are n! such 
permutations, each corresponding to a different region 
(see Figure 1 for the case n = 2). 

To see that L = UL~, note first that any point in L 
has every pair of  coordinates differing by at least ¢, so 
any such point belongs to L,  for some permutation ~r of 
the ranks of  the coordinates. Similarly, any point in UL~ 
has [Xi --  Xj[ ~ • for all i ~ j, so such a point is, by 
definition, in L. The regions L.  are clearly disjoint 
because only one permutation can correspond to any 
point with distinct coordinate values. The regions are 
also noncontiguous because every pair of  regions is 
separated by (at least) the hyperplane xi = x/, for some 
pair of  coordinates i a n d j  which are in a different order 
in the two permutations. We have therefore established 
that L consists of  n! disjoint, noncontiguous regions in 
E n" 

Now consider a decision tree algorithm for deciding 
membership in L. At any leaf node, the algorithm must 
answer "yes" or "no" to the question of  whether x~, 
x2, ..., x ,  are the coordinates of a point in L. Let the set 
of  points "accepted" at leaf node k be denoted by Tk 
(i.e., Tk is the set of  points for which all comparisons in 
the tree have identical outcomes and lead to leaf node k, 
for which the algorithm answers "yes"). The leaf nodes 
of  the tree partition E" into disjoint convex regions 
because all comparisons are between linear functions of  
the coordinates of  the input point, so in particular each 
of the accepting sets Tk is convex. 

Let m be the number of accepting leaf nodes, and 
suppose m < n!. Then since L consists of n! disjoint 
regions, some accepting node Tk must accept points in 
two regions, say L, and L B. Choose any points P~ E Tk 
N L~ and / '2  ~ Tk tq L B. By the convexity of  Tk, every 
point on the line PEP2 is in Tk, so for every such point 
the algorithm answers "yes." However, L~ and L,  are 
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disjoint and noncontiguous, so the line P,P2 contains 
points not in L. The algorithm must therefore fail to 
operate correctly if m < n!, so there must be at least n! 
accepting leaf nodes. 

The total number of  leaf nodes must be at least n!, 
since that many are accepting, so the height of the 
decision tree (and hence the number of comparisons 
along some path) must be at least [log2 n!] = ~2(n log 
n). The worst-case complexity of  E-CLOSENESS is there- 
fore ~2(n log n). A similar argument based on the external 
path length of  the tree (see [6]) shows that E-CLOSENESS 
also requires f~(n log n) comparisons on the average, 
assuming that the inputs (xi) are considered in random 
order. We note that this bound can be used to prove 
similar lower bounds for some nearest-neighbor search 
problems (for example, the problems in [2] and [8]). [] 

Now the main theorem follows immediately. By 
Lemmas 1 and 2, T(n) + 1 = ~2(n log n), where T(n) is 
the time required to solve MEASURE. This implies that 
T(n) = ~(n log n). [] 

PROOF 2: The first proof relies on problem reduc- 
tion, thereby introducing the auxiliary problem C- 
CLOSENESS, which is a decision problem. However, the 
main theorem can be proved directly, as follows. The 
argument is similar to that used in [4]. 

Let Ii denote the interval [i, i + 1], 1 _< i _< n. We 
define a class C consisting of  the n! sequences of  n such 
intervals. For each permutation 7r on (1, 2 . . . . .  n}, the 
interval sequence .11, J2 . . . . .  Jn, where Ji = L,(i~, is included 
in C. Thus, all intervals of a sequence in C have length 
1, and the measure of  the union of  the intervals in any 
such sequence is n. We argue below that no two se- 
quences in C can define the same path through the 
decision tree representing a correct algorithm for MEA- 
SURE. It will then follow that such a tree must have at 
least n! leaf nodes, thereby proving the theorem. 

Suppose that there exist two distinct sequences ./1, 
J2 . . . . .  Jn and JL J~ . . . . .  J" in C which define the same 
path through the tree, and let ~r and rr' be their associated 
permutations. The inputs {ai} and {bi} can be thought 
of as the coordinates of  a point in 2n-dimensional Eu- 
clidean space; let P and P' be the points in this space 
associated with J~, J2 . . . . .  Jn and J~, J~ .. . . .  J ' ,  respectively. 
The liner inequalities along the common path followed 
for the input sequences J,, J2 . . . . .  Jn and J~, J~ . . . . .  J" 
define a convex region of  2n-space to which the interval 
endpoints of both sequences belong. Any point P" on 
the line segment joining P and P' defines a sequence of 
unit-length intervals J~', J~' . . . . .  J" ,  which also follows 
the same path through the tree. Since the output value 
associated with the leaf node at the end of this path is a 
linear function of the endpoints of the intervals, the 
output produced for J~', J~' .... , J "  will be n, because the 
output is n for J1, J2 .... , J~ and for JL J~ . . . . .  J ' .  

However, if we imagine P" sliding continuously along 
the line segment from P to P', the intervals J]', J~' . . . . .  
J"  will shift continuously, and there will be an instant at 
which two previously different intervals J" and J~ r # s, 
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will exactly coincide. (These may be any two intervals r 
and s for which rr(r) - ~r(s) and ,r'(r) - ,r'(s) have 
different signs.) At such an instant, the measure of  the 
union of  J~', J~' .... , J,~' cannot exceed n - 1, contradicting 
the value n produced as output by the hypothetically 
correct tree. This contradiction shows that no two se- 
quences of C can define the same path through the tree, 
which, as explained above, proves the theorem. [] 

IV. More Precise Bounds 

Let T(n) be the minimum complexity among all 
decision tree algorithms which solve MEASURE using 
linear tests. In this section we prove the following result. 

THEOREM 2. For T(n) defined as above, 

n log2 n - 1.443n + O(log n) <_ T(n) 
_< n log2 n + .671n + O(log n) 

PROOF: The lower bound, being the expansion of 
log2 n!, follows immediately from the arguments of Sec- 
tion III. 

The following algorithm for MEASURE provides an 
upper bound on T(n). As before, the input consists of  n 
intervals [aM, bi], with ai <-- hi. The endpoints (a~} and 
(bi) are given in the arrays A and B, respectively. After 
sorting the intervals by left endpoints (keeping the right 
endpoints together with their corresponding left end- 
points), A [i] contains the ith smallest left endpoint, and 
B[i] contains the right endpoint corresponding to A[i]. 
The left endpoints are then scanned in increasing order, 
while the algorithm keeps track of  the current "span" of  
intervals considered so far (see Figure 2). Whenever a 
new interval has its left endpoint greater than the right- 
most point of  the current span, the total measure is 
updated and a new span is started. 

begin 
(1) sort  A in increas ing  order,  keeping  B[i] with  A[i]; 

m e a s u r e  := 0; 
lef tspan := A[I] ;  
r igh t span  ~ BI l l ;  
for i := 2 until  n do 

(2) if A[i] <_ r igh t span  
(3) then  r igh t span  := m a x  ( r ightspan,  B[i]) 

e lse  begin 
(4) m e a s u r e  .'= me a su re  + r igh tspan  - leftspan;  

lef tspan := A[i]; 
r igh tspan  := B[i] 

end; 
(5) m e a s u r e  := me a su re  + r igh t span  - leftspan;  

ou tpu t  (measure)  
end 

All comparisons are between linear functions of  the 
inputs. These comparisons occur in the statements num- 
bered (1), (2), and (3). Statement (1) costs at most n 
logz n - 1.329n + O(log n) comparisons if sorting is done 
using the merge-insertion algorithm (see [6], section 5.3.1, 
exercise 15). Statement (2) is encountered exactly n - 1 
times, at a cost of one comparison each time, while 
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statement (3) could be executed at most n - 1 times, 
again at a cost of  a single comparison each time. The 
total number of comparisons used by this algorithm 
therefore satisfies 

T(n)  <_ n log2 n + 0.671n + O(log n), 

completing the proof. We see that T(n)  is determined to 
within 2.114n + O(log n) comparisons in the decision 
tree model with linear tests. [] 

It is of  some interest that the algorithm given in [5] 
is only within a factor of  two of  the lower bound, since 
it involves sorting all 2n endpoints together, while the 
algorithm presented here sorts only the left endpoints. 

V. Remarks About the Model  of  Computation 

The typical (if not altogether realistic) restriction to 
comparisons between linear functions of the inputs is 
used in both proofs to establish the convexity of  the 
regions identified with the leaf nodes of  a decision tree. 
If  this restriction is removed, or the decision tree model 
is abandoned entirely, then bounds are more difficult to 
obtain. 

Jon Bentley and Michael Shamos note that e- 
CLOSENESS can be solved in linear time under a different 
model of  computation: a RAM (Random Access Ma- 
chine) with exact real arithmetic, including division, 
"floor" function I.xJf and unbounded storage. An algo- 
rithm which accomplishes this is due to Yuval [8]. Aho, 
Hopcroft, and Ullman ([1], exercise 2.12) show how to 
avoid initializing unused memory locations, so that even 
though the amount of  storage must be unbounded, this 
does not increase the asymptotic order of  the time re- 
quired by the algorithm. 

The key to the algorithm is the computation of the 
floor function, which is available as a single operation 
on most computers. It is, however, merely a consequence 
of  the radix representation of  numbers on actual digital 
machines which makes this possible. In general, a 
piecewise-linear function like Ix] is a perfectly acceptable 
quantity to compute in our decision tree model of  com- 
putation, so long as a legitimate cost function is applied. 
For  a piecewise-linear function with p pieces, the cost 
should be at least [log2 p] comparisons. The fact that [xJ 
is an "elementary" operation on real computers is a 
happy coincidence. (Note also that even while the floor 
function helps solve E-CLOSENESS, it is not clear how it 
could help solve MEASURE.) 

Similarly, if we are allowed to compute products of  
the inputs, then E-CLOSENESS can be solved with only 
2n - 1 comparisons, as follows. For any collection of  
nonoverlapping intervals [ai, bi], a number z will not fall 
inside any of these intervals if and only if 

I I  (ai - z ) .  (bi - z )  > 0 
i 

:~ [xJ is the greatest integer less than or equal to x. 
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since an odd number of  terms in the product will be 
negative if and only if z lies inside one of  the intervals. 
Solving e-CLOSENESS for the inputs {xi} is equivalent to 
asking whether the intervals [xi, xi  + e] are nonoverlap- 
ping. Assuming that the xi are distinct and that the first 
k intervals are nonoverlapping, the first k + 1 intervals 
will be nonoverlapping if and only if both Xk+l and 
Xk+l + e do not fall inside any of  the first k intervals. 
(Since all intervals under consideration have length E, it 
is impossible for the k + lth interval to contain one of  
the other intervals.) 

The following program uses these ideas to decide e- 
CLOSENESS using only 2n -- 1 comparisons. The first step 
of  the program, which tests whether any of  the xi are 
equal, also illustrates how the element uniqueness prob- 
lem can be solved using only one comparison if products 
may be computed and compared. If  two of  the xi are 
within e of  each other, the program outputs "yes"; oth- 
erwise, it outputs "no." 
begin 

if I]i</(xi - x / )  = 0 then output ("yes"); 
forj := 1 until n d o y  i ~ xj + E; 
J ~  2; 
while j < n 

and 1]i~4 (x i  - x j ) .  O~i - x / )  >_ 0 
and lqi<j (xl - YA (Y, - YA --> 0 do j .'= j + 1; 

ifj _< n then output ("yes") else output ("no") 
end 

On the other hand, a lower bound of  n - 1 compar- 
isons can be demonstrated for e-CLOSENESS if compari- 
sons between meromorphic functions 4 of  the inputs are 
allowed. This result is a special consequence of a general 
theorem due to Rabin [7]. 

If tests between meromorphic functions are allowed 
for the MEASURE problem, it is still not apparent how 
they can be used to reduce the number of  comparisons 
below f~(n log n). However, the best lower bound we can 
demonstrate in this model is only f~(n). 

THEOREM 3: Let T*(n) denote the minimum com- 
plexity of  any decision tree algorithm for MEASURE in 
which all comparisons are between meromorphic func- 
tions of  the inputs. Then T*(n) _> 2n + O(log n). 

PROOF. A decision tree algorithm solving MEASURE 
must have as many leaf nodes as there are distinct 
meromorphic functions required to express the measure 
of  the union of  n intervals. As a consequence of  a basic 
result of  complex variable theory, if a meromorphic 
function agrees with a linear function in any neighbor- 
hood, then the two functions are identical everywhere. 
Therefore, the number of  leaf nodes must be at least as 
large as the number of  distinct linear functions which 
can express the measure of  a union of  n intervals. The 
set of  such functions is given by 

( ~ ,  b j  - ~ ak[ J and K are nonempty 
j ~ J  k E K  

subsets of  (1, 2 ...... n) with I JI = I KI) 

4 A meromorphic function flxb x2 . . . . .  x . )  is defined here as the 
quotient of two power series in x~, x2 . . . . .  x., each of which is 
convergent for all values of its arguments, and for which the denomi- 
nator is not identically zero. 
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The number  o f  such functions is (~ )  - 1, and the 
theorem follows upon  evaluating log2((~ n) - 1). [ ]  

In each of  these cases, reducing the number  o f  com- 
parisons has introduced O(n 2) arithmetic operations for 
comput ing  the nonl inear  functions. In  general, however,  
the tradeoffs involved between comparisons and arith- 
metics are not well understood.  It is usually much  easier 
to prove lower bounds  on the number  o f  comparisons 
than on the n u m b e r  o f  arithmetic operations, especially 
if the compar isons  must  be between linear functions o f  
the inputs. The  place where this becomes impor tant  in 
our  lower bound  proofs is, o f  course, in guaranteeing the 
convexity o f  the sets at the leaf nodes o f  the decision 
tree. 
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an order  of computation which takes less than 25 
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average). 
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1. Introduction 

Consider  the evaluat ion o f  the product  o f  n matrices 

M = M I × M 2 x  ..- x M n  

where Mi is a ki-1 x ki matrix with each k~ _> 1. Our  
main  tool is the associativity o f  matrix multiplication. 
The  order  in which the matrices are multiplied does not 
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