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ABSTRACT

A major problem that a farmer faces, while adopting a new crop
variety in the farm; is the uncertainty associated with its growth.
Farmers working on real farms are not aware of the growth mod-
els, even for the existing crops. Hence, there is a need for more
accessible and intuitive models. This work is a step towards the
realization of another promising model, which is the digital twin
of a crop. A primary requirement of the digital twin is the digital
representation of the crop itself. Extending that notion, the work
discusses the development of 3D assets of crops and their tempo-
ral alignment. It also describes the methodology involved in the
development of a VR framework, which stores the ideal growth of
a crop. This framework could be useful to farmers who want to
confirm the growth of their crops. Furthermore, it also proposes a
quantitative metric to evaluate the VR framework. The consistency
of this proposed metric is further backed by a user study which is
based on a qualitative method.
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1 INTRODUCTION

The new crop varieties that are invented in agricultural laboratories
are generally not adopted directly by the farmers [1]. One of the
reasons for this non-adoption could be the crop growth trajectory
of the new crop, which could be different from any crop they might
have grown in the past. There would be uncertainties associated
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with these new varieties. As a result, the growth models for these
crops would not be readily available.

Furthermore, even the presence of growth models for old crops
like cauliflower [11], peanuts [7], and sweet pepper [8]; are also
of no direct use to the farmers because the farmers work in fields
and generally don’t understand those mathematical models. Hence,
they need something more visual and perceptive than just those
models. This situation calls for the need for virtual reality (VR) in the
agriculture domain. As a prequel to that, there is a need for a digital
representation of a plant. Yu et al. [15] propose a virtual plant and
its related applications in VR, but that work lacks implementation in
the real field. Extending the same to crops, the digital representation
of crops is the first step in the fruition of the digital twin of crops.
This representation could be composed of internal characteristics
and external appearance.

Our research focuses on the external appearance of a crop. We
propose a VR method to enlighten the farmers about how the ideal
crop should look on a daily basis if the appropriate care is provided
to the crop. The idea is to acquire the 3D assets of the new crop
daily in lab conditions via photogrammetry. It is followed by the
alignment of those assets and the model integration in Unity for a
thorough inspection by human eyes in VR. VR has a strong reputa-
tion for making demonstration-related applications very effective,
owing to its concept of immersion and presence [2]. Furthermore,
specific visual effects related to various environmental stimuli can
also be induced on these 3D assets. Some of the possible effects
could be water stress, lack of sunlight, and pest infestation.

In our current work, we developed a prototype VR framework
through which one can navigate the timestamped assets of the crop
to visualize its growth. We also proposed a quantitative metric to
describe the realism of our framework. The metric is based on the
alignment error between the pairs of iterative 3D assets involved
in our case. We also conducted a user study to validate this metric.
The crop selected for our framework was cauliflower. Later, it could
be extended to other crops by following the same steps in Section 3
and consulting the agricultural expert for the growth inputs needed
for the desired crop.

2 RELATED WORKS

To the best of our knowledge, there is not enough literature avail-
able on the 3D assets of real crops. However, the research is already
progressing at the image level. A common theme in agriculture
is the use of Generative Adversarial Networks (GANSs) to create
realistic-looking diseased plant images. Then these synthetic im-
ages are used for the augmentation of existing datasets. Afterward,
various tasks like disease classification, plant labeling, and pheno-
typing. are performed using the augmented data. To name a few,
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work done by Chen et al. [4] focuses on the disease classification
for apples. Nazki et al. [12] have done the disease classification for
the case of tomatoes. Divyanth et al. [6] discuss the identification
of maize from using conditional GANs (cGANS).

Another active sub-field is ‘Tmage to Image Translation’ [13],
where one can induce various simulation effects by converting im-
ages from one domain to another. Xu et al. [14] introduced instance
segmentation to transfer the disease effects on various tomatoes
in a single image. Then, there is LeafGAN [3] which added a seg-
mentation module to the cycleGAN to transfer the disease effect
solely to the plant, keeping the background intact. Furthermore,
Cui et al. [5] have performed even the disease induction across
the cross-species of the plants also; by which, we mean inducing a
disease from a specific crop to some other crop.

Contrary to the earlier works, our work focuses on the modelling
and alignment of 3D temporal assets of the crops. The temporal
dimension is a key aspect to consider for the progress to be made
toward the digital twin of crops.

3 METHODOLOGY

The framework developed in our work had four aspects namely the
Cultivation, Photogrammetry, Alignment of 3D crop assets & Model
Integration. We cultivated the cauliflower crop in our laboratory
itself. Along with that, we also carried out the photogrammetry
process. These two steps involved giving specific daily input to the
crop and capturing photographs from different camera poses. After
gathering all the 3D assets, the next step was to align all of them
so as to visualize the crop growth. Finally, we imported the aligned
assets in the Unity and created scripts to navigate the assets in VR.
The corresponding flowchart is shown in Figure 1.

Cultivation

Model
Integration

Crop Asset
Alignment

Photogrammetry

Figure 1: The Overall Process

3.1 Cultivation

We brought a cauliflower sapling from a nearby field. Then we
transplanted it into a pot with an appropriate amount of cocopeat
soil as prescribed by the gardeners. Considering the climatic condi-
tions, we provided it with 100 watts of LED exposure for about 8
hours daily. We watered the crop on alternative days with the apt
amount to keep the soil wet at an optimum level and avoid leaching.
The grown plant can be seen in the Figure 2.

3.2 Photogrammetry

Our photogrammetry setup had a tripod, a turntable, and a white
backdrop cloth. We used this setup to capture photographs of the
crop from different poses. To reduce measurement errors, we cut out
a circle shape from a white chart to cover the turntable. Then, we
marked 24 points on the boundary at equal angles. We also traced
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(a) Day 10 (b) Day 11 (c) Day 12
Figure 2: Cauliflower Growth from Day 10 to Day 12 after

the transplantation to the pot

the boundary of the pot at the center of the cutout, to always keep
it in the same position. It can be seen in Figure 3b. We also placed
3 tape marks on the floor to keep the tripod position fixed for the
entire experiment. The tripod legs were given two full extensions.
The entire setup can be seen in Figure 3a. Some of the example
images taken from this setup can be seen in Figure 2. Furthermore,
we associated different levels with different heights of the camera.
The height was increased by rotating the center column crank of
the tripod by the angles as shown in Table 1.

(b) Turntable Cover

(a) Setup

Figure 3: 3a shows the tripod, turntable, and white cloth. 3b
is the schematic of chart paper placed on turntable

Table 1: Tripod Height Adjustment w.r.t Knob Rotation

Height Level ~ Knob Rotation
Level 0 o
Level 1 +37 from Level 0
Level 2 +37 from Level 1
Level 3 +37 from Level 2
Level 4 +27 from Level 3

We used the ‘Redmi Note 8 Pro’ smartphone camera to capture
the photographs. For each level, we clicked 24 photographs. The 24
markers on the turntable helped to vary the poses and to capture
the crop from all directions. Overall, 120 photographs were given
as input to the MeshroomCL [9] software.

The MeshroomCL runs a pipeline that outputs a 3D textured
mesh using all the captured photographs. The pipeline [9] runs
Structure from Motion (SfM) and Multi View Stereo (MVS) for the
3D dense reconstruction of the mesh. The SfM stage estimates the
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camera poses and reconstructs the environment. The MVS stage
uses that information to reconstruct the 3D shape in the images
and outputs a dense mesh as shown in Figure 4. Afterward, the
Mesh Filtering stage and Texturing stage run. The output of the
pipeline consists of an obj file along with several texture files.

e =

MULTIVIEW STEREO STAGE

Figure 4: Multi View Stereo(MVS) Stage of MeshroomCL (3D
Dense Reconstruction Using 120 Images)

3.3 Alignment of Crop Assets

The meshes outputted by the photogrammetry are not aligned even
if the physical setup remains fixed because the actual crop grows
and as a result, the geometry of the mesh changes daily. To resolve
that, we did pairwise aligning of the assets. The already aligned
(n- 1)”‘ day asset was considered as the reference for the nth day
asset. In other words, we aligned the second-day asset with respect
to the first-day asset, the third-day with respect to the second-day,
and so on. The Iterative Closest Point (ICP) algorithm was used
which needed 4 initial points from both assets for each alignment
process. It aligned the second asset about these 4 selected points
ensuring that the distance between all other corresponding points
of the two assets was minimal.

Those 4 points must not vary in time for the assets to be aligned.
Hence, we selected 4 points on the visible soil surface near the
bottom of the shoot system of the crop. There is a scope to improve
the process of selection of these points, which could be dealt with
in future work. The asset alignment that we got was sufficiently
accurate for the human eye to perceive the crop pot as a static
entity as per our requirement. Furthermore, we proposed an error
metric to evaluate this alignment in a quantitative way which can
be found in the Section 4.

3.4 Model Integration

The last step was the integration. All the assets were collected
and imported to Unity software. They were already aligned among
themselves, as the alignment step was already done earlier. Hence,
they were all added as meshes under a single parent ‘GameObject’.
Now this parent object was aligned in the unity scene. Our logic
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was to activate the corresponding mesh on button clicks. To achieve
that, two C# scripts were attached to the HTC Vive Controllers
(left and right) that changed a static variable responsible for the
activation of the corresponding mesh.

4 EVALUATING THE FRAMEWORK

The validation of VR frameworks is usually done at a qualitative
level. It considers several concepts like presence, immersion, and a
typology of fidelity [10]. However, a reliable quantitative measure
is still not proposed yet. We believe that this numerical measure
should be specific to each framework.

As in our framework, the alignment of the 3D assets is a promi-
nent component because it controls the realism of the crop growth
depiction. So, we propose an error metric that calculates the aver-
age alignment error (‘AAE’). A lower ‘AAE’ implies better overall
asset alignment and higher realism. But prior to that, some terms
that are used later have been explained below.

4.1 Representative Point of a 3D Asset

The property that this point must have is that it should be static over
time. Hence, no point on the crop could be the representative point
of a 3D asset because the crop grows. Therefore, our focus shifts to
the static part which is the pot having a frustum geometry. This
point could be any point on our pot provided it doesn’t move while
we switch the asset in our framework. Considering all this, it makes
sense to consider the center of the upper circle of our geometry
as the representative point. However, finding the 3D coordinate of
that point is difficult because the triangular mesh of each of our 3D
assets has about 0.4 million vertices on average in our case. Our
approach to finding that point is as follows:-

e We reduce the original mesh (say A) to a new mesh (say A’)
ie. A—> A
— First, we remove the vertices that are associated with the

crop and the lower pot portions from the asset.

— Then we remove the remaining vertices to get two arcs
on the upper circular periphery as in Figure 5. This can
be done easily with visual inspection.

These arcs should ensure that at least one diameter of that

periphery passes through them, so they could be a little

longer than the ones shown in Figure 5.

e We find a pair of vertices that have the maximum distance
between them in the mesh A’, which would be equal to
the length of any diameter of the upper periphery circle.
We processed the mesh A’ using the OpenMesh library in
Python and outputted a pair of vertices.

e We calculate the centroid of those two vertices, which would
also be the center of the diameter passing through those
vertices. This point is considered the representative point of
the 3D asset.

The number of vertices was reduced from about 0.4 million on
average for the original meshes to just about 1800 on average for the
final meshes (= 99.5% reduction). The sole purpose of this reduction
was to reduce the computations that were required for the last two
steps.
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Reducing the Numben
of Vertices in the
Mesh from 437,049
to 94,031

Further Reduction in

the number of vertices
from 94,031 to just 1,730.
As we are certain that some
diameter will pass from
these two 3D arcs

Figure 5: Removing unnecessary vertices from the 3D asset

4.2 Average Alignment Error

First of all, we define the align error (‘AE’) of two aligned meshes
as the Euclidean distance between their representative points. Then
the entire alignment process was done in an iterative pairwise
manner as in Section 3.3. The final ‘AAE’ for the entire scenario is
attained after taking the arithmetic mean of all the AEs. The total
number of alignment steps is (N — 1), where N is the number of
timestamped assets. The final calculations involved are as follows:

e Find the representative point of each 3D asset as Rep; for

the i*" asset.
o Find the alignment error for each consecutive pair

AE (i41,1) = ||Repi+1 — Repill2 (1)
o Find the average of all the AEs to get the final error.
AAE= ' AE(u1;/(N=1) @®
1<i<N

This metric considers the relative spatial alignment of the temporal
assets. A lower AAE is highly desirable for more realism in our VR
framework.

5 CALCULATIONS AND RESULTS

We had 13 assets representing the growth of the cauliflower for 13
consecutive days. The representative points of all these 13 assets
were calculated as mentioned above. Then the alignment errors
(AEs) were also calculated for the consecutive pairs. These val-
ues are contained in Table 2. Using these AEs, the final AAE was
computed as 0.0656, which quantifies the realism of our framework.

6 USER STUDY

We also performed a user study to confirm whether the proposed
quantitative metric was consistent with the qualitative metric or
not. For the qualitative metric, a rating was given by each user from
1 (Very Bad) to 5 (Very Good). This rating was considered for each
asset transition where an ‘asset transition’ implies swapping any
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day’s asset to the next day’s asset. The users were asked to give
ratings based on the change in the pot’s characteristics namely its
position, orientation, and size. It means the higher the change in
the pot characteristics, the lower the rating. We had 17 users in this
study. Each user was invited into our lab and given the HTC Vive
Headset to experience our VR framework. The ratings for all 12
transitions were collected. Since the ratings and the error metric
would follow an opposite trend; for a comparative observation, the
average ratings for each transition were converted to normalized
inverse average ratings (‘NIAvgRatings’).

NIAvg Rating(iy1;) = (5 — Rating(jyq,5))/5 3)

where Rating(;,1 ;) is the average of the ratings given by all users
for the transition i*” to (i+1)*" asset. The calculated ‘NIAvgRatings’
can be found in Table 2. Furthermore, the Pearson Correlation Co-
efficient was also calculated between the two quantities as 0.7564.
The value implies that there is a strong correlation between the
quantitative metric and the NIAvgRatings given by the user study.

Table 2: AEs and NIAvgRatings between the consecutive pairs

‘ Between AE  NIAvgRating
land2  0.0198 0.2000
2and3  0.0234 0.3750
3and4  0.1670 0.5250
4and5  0.1308 0.4625
5and 6  0.0539 0.3250
6and7  0.0287 0.2250
7and8  0.0555 0.2875
8and 9  0.0840 0.2625
9and 10  0.0520 0.1375

10 and 11 0.0685 0.2750
11and 12 0.0648 0.2750
12and 13  0.0393 0.2750

7 CONCLUSION & FUTURE SCOPE

In this research, we have developed a novel digital twin framework
that is useful to farmers. This framework can be used to create
growth models of crops using VR technology. We have also pro-
posed an evaluation metric for our VR framework and validated
it with a user study. In the future, we want to automate the devel-
opment process completely so that growth models of new crops
can be added with minimal effort. Furthermore, we also aim to
increase the number of assets per crop and animate the transitions
between them. Afterward, we intend to simulate various effects of
the change in abiotic (water, sunlight, and temperature) and biotic
(pests) factors on the crop in this framework.
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