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ABSTRACT
Virtual YouTuber (VTuber) live streaming, which renders and streams
a virtual avatar of the real-person streamer on top of the live cam-
era view, has gained significant popularity recently. Despite the
engaging user experience, the intensive and power-consuming com-
putations required by VTuber, such as facial feature extraction and
avatar rendering, pose significant challenges to the constrained
battery life of the mobile device. We develop a power efficient
VTuber live streaming system by offloading the camera view and
the computation-intensive operations from the mobile device to
an edge server, which not only significantly reduces the power
consumption of the mobile device but also enables larger-scale
rendering of multiple avatars that are not feasible in the existing
mobile VTuber systems. Furthermore, to reduce the bandwidth
overhead caused by the camera view offloading, we develop an
adaptive framerate control mechanism to dynamically adjust the
framerate of the offloaded camera view based on the variations of
inter-frame luminance. Our evaluations on the end-to-end VTuber
live streaming system demonstrate significant power savings with
limited bandwidth, latency, and quality overhead.
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1 INTRODUCTION
Virtual YouTuber (VTuber) has become a popular live streaming
application on commercial video streaming platforms, such as
YouTube and Twitch [3]. Different from traditional live streaming
that directly broadcasts the camera view of the streamer, VTuber
streaming renders a virtual avatar that synchronizes with and re-
places the real person streamer in the camera view in real time,
which provides a mix of virtuality and reality experiences to engage
the viewers [18, 29]. Since its emergence in 2010, VTuber has be-
come a unique and important category of video content providers
leading to rapidly growing cultural communities and commercial-
ized industry [29]. The trend has been witnessed by major video
streaming platforms. For example, VTuber content on Twitch in-
creased 467% year-over-year in 2021 [4], and VTuber views on
YouTube grew to over 1.5B views per month by October 2020 [2].

Figure 1 shows a generic workflow of VTuber live streaming.
The real-person streamer’s facial expressions and movements are
captured by a webcam and processed in real time by the VTuber
software to generate the virtual avatar, including face detection,
facial feature extraction, and avatar rendering. The rendered VTu-
ber frames are then pushed to the streaming server and streamed
to remote viewers. During this process, the VTuber software in-
volves sophisticated image/video processing and computer vision
computations, which are typically conducted on powerful desktop
computers to ensure the real time performance. However, it con-
strains VTuber streaming to an indoor environment with physical
access to a desktop computer but little interaction with the physical
world, resulting in non-satisfactory viewing experiences [29].

Figure 1: Generic workflow of VTuber live streaming.

To address this key limitation of deployment, the recent de-
velopments of VTuber software, such as VTube Studio [15], have
supported the mobile mode of VTuber streaming, where the VTu-
ber processing and rendering tasks can be executed in a smart-
phone application. However, the intensive computations required
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by the VTuber software pose significant challenges to the resource-
constrained mobile device. First, the power consumption caused by
the intensive computations would drain the limited battery of the
smartphone at a faster speed, resulting in reduced streaming dura-
tion and thus downgraded VTuber/viewer experiences. Second, the
limited computation resource on the smartphone and the real time
requirement would make it difficult for co-streaming involving mul-
tiple avatars, which is a desired feature of VTuber streaming [29].
For example, VTube Studio only supports a single avatar being
rendered and streamed without the co-streaming feature [15].

We develop a power efficient mobile VTuber live streaming
framework, namely PEV, to address the aforementioned techni-
cal challenges. The main design principle of PEV is to offload the
computation-intensive operations, namely face detection, facial fea-
ture extraction, and avatar rendering, from the resource-constrained
mobile device to a resource-rich edge server for power savings. To
achieve the offloading-based computation, PEV passes the mobile-
end camera view to the edge server for processing and rendering of
the virtual avatar. Furthermore, to reduce the bandwidth consump-
tion between the mobile device and the edge server caused by the
camera view offloading, we develop an adaptive framerate control
algorithm to dynamically adjust the framerate of the camera view
in transmission based on the variations of inter-frame luminance,
which reduces the quality impact on the rendered virtual avatar.

We implement PEV in an end-to-end VTuber live streaming sys-
tem and compare it with various modes of state-of-the-art VTuber
systems in terms of power efficiency and bandwidth/latency/quality
overhead. Overall, our results demonstrate that PEV achieves signif-
icant power savings compared to the functionally equivalent base-
line systems with limited overhead. Furthermore, the offloading-
based design enables PEV to support co-streaming with multi-face
rendering without increasing the on-device power consumption.
To summarize, we have made the following contributions:
• To the best of our knowledge, PEV presents the first power effi-
cient VTuber live streaming study in the community.

• The edge offloading-based solution does not only achieve power
savings but also enable new computation-intensive features (e.g.,
multi-avatar) and eliminate the indoor limitation in VTuber
streaming with minimum overhead.

• The proposed inter-frame luminance-based framerate control
mechanism effectively reduces the bandwidth overhead of PEV
while maintaining acceptable rendering quality.

2 BACKGROUND AND RELATEDWORK
2.1 VTuber Avatar Generation
To achieve the desired experiences of virtuality and reality, the
VTuber streaming system requires a sequence of three computation-
intensive tasks to generate the virtual avatar in real time based on
the real-person streamer’s camera view, as illustrated in Figure 1.
Taking the popular commercial software VTube Studio [15] as an
example, the three tasks work as follows. Face Detection locates
the face to be rendered in the input video frames. In VTube Studio,
the OpenSeeFace library [10] is used to process the input video
frames from the webcam, which employs a neural network to detect
faces in the frame and outputs the coordinates of the detected face.
The coordinates are then utilized to crop face images from the

input video frames in the next step. Facial Feature Extraction
employs a neural network that takes cropped face images as input
and outputs the landmarks of the faces representing key facial
points. The landmarks are then transformed into facial features
that describe the facial expression. Rendering renders the virtual
character based on the extracted facial features that drive the facial
movements. Since different people may have different ranges of
motions for facial expressions, the renderer scales the input facial
feature parameters into the virtual character’s range for rendering.
The three tasks involve computation-intensive machine learning or
video processing tasks and are thus not suitable for execution on a
resource-constrainedmobile device, in terms of the power efficiency
and the real time requirement. Therefore, in the design of PEV we
propose an edge offloading-based approach to accommodate the
required computations.

2.2 Related Work
VTuber Live Streaming as an emerging and rapidly growing
streaming application is still in its infancy in terms of research in
the community. Several early research works so far have mainly fo-
cused on understanding the social and technical perspectives of the
VTuber applications and the cultural community [18, 29]. Several
other works focus on developing a specific VTuber [25] or using AI
or computer vision techniques to accomplish character generation
in VTuber streaming [20]. To date, there have not been intensive
studies of the VTuber application in terms of the important stream-
ing optimization topics, such as rate adaptation, live latency, and
power efficiency. Power Efficient Streaming has been widely
studied in the past decade for both 2D and immersive videos. Hans
et al. [19] and Jiang et al. [24] reveal the energy consumption issue
in mobile gaming and immersive video streaming. Many research
works have been devoted to optimizing the power consumption
in traditional 2D video streaming using a variety of hardware and
software approaches [17, 21, 27, 28, 33, 34]. More recently, power
efficient immersive streaming or VR/AR applications have drawn
great attention in the research communities [16, 23, 26, 32]. Among
them, one category of research employs edge offloading to optimize
on-device power consumption due to rendering or deep learning
computations [26, 35]. To date, the power efficiency of VTuber
streaming has not been studied in the community, which, combined
with the computation-intensive avatar generation tasks discussed in
Section 2.1, leaves an important gap in deploying VTuber streaming
applications on mobile devices.

3 PROPOSED APPROACH: PEV
3.1 System Overview
We develop a power efficient mobile VTuber live streaming frame-
work, namely PEV, which employs edge offloading to reduce the
computational load on the mobile device. Figure 2 illustrates the
overall design of the proposed PEV framework, which consists of a
client component and a server component. The client component
is intended to be a lightweight smartphone at the streamer’s end
with minimum computation load for power efficiency. It captures
the streamer’s face with the camera, sends the camera stream to
the server, and displays the server-rendered virtual character. The
server component is composed of a content server and a rendering
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server. The content server acts as a content and communication hub
to connect the client and the rendering server, as well as distribute
the rendered VTuber live stream to the remote viewers. The ren-
dering server is in charge of the computation-intensive tasks for
virtual avatar generation based on the camera stream.

Figure 2: Workflow of the proposed PEV System.

As shown in Figure 2, the overall workflow of the PEV system
is as follows. The smartphone captures the streamer’s live video
using the camera and delivers the camera stream to the content
server using a real time communication protocol (e.g., SRT [11]).
Upon receiving the camera stream, the content server relays it to
the rendering server in real time for further processing. The ren-
dering server conducts the avatar generation operations based on
the incoming camera view, including face detection, facial feature
extraction, and rendering. Once rendered, the rendering server re-
turns the virtual avatar to the content server, which then streams
it back to the smartphone of the streamer through the established
real time communication channel, as well as broadcasts the video
to the remote viewers in real time (e.g., using RTMP [1]). Following
this workflow, the streamer is able to have the virtual avatar frames
generated and displayed on the smartphone in real time during the
VTuber streaming without requiring power-consuming computa-
tion on the mobile device. Also, the remote viewers can view the
VTuber stream and interact with the streamer in real time.

3.2 Adaptive Camera Framerate Control
A key challenge in the proposed offloading-based solution is that
the client must deliver the camera stream to the server, which con-
sumes a significantly higher amount of network bandwidth than
the original mobile-only VTuber streaming. While the rendering
server requires a high-quality camera stream to accomplish the
avatar generation computations accurately, we observe that there
are plenty of inter-frame redundancies in the camera view, as the
motion of the streamer is typically limited in most VTuber stream-
ing scenarios. Following this thought, we design a client-server
collaborative framerate control mechanism to determine and con-
figure the optimal framerate for the camera stream, which reduces
bandwidth consumption between the client and server while main-
taining an acceptable viewing quality for the generated avatar. It is
worth noting that determining the optimal framerate by itself may
involve power consuming computations, which we deploy on the
server to avoid compromising the power savings at the client.

As the client delivers the camera stream to the rendering server,
the server maintains a moving window of frames (e.g., a 1-second
segment) for analysis and prediction of the target framerate for
the next segment and inform the client accordingly. To determine
the target framerate, we measure the temporal information (TI)
metric [22] of the frames in the moving window, which represents
the average inter-frame difference between consecutive frames, as
described in Equation (1), where 𝐹𝑛 (𝑖, 𝑗) is the pixel at location
(𝑖, 𝑗) in frame 𝑛.

𝑇 𝐼 =𝑚𝑎𝑥𝑡𝑖𝑚𝑒 {𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 [𝐹𝑛 (𝑖, 𝑗) − 𝐹𝑛−1 (𝑖, 𝑗)]} (1)

Generally speaking, a lower TI value indicates higher similarity
between consecutive frames, and thus a higher chance of skipping
one of the frames to save bandwidth without significantly impact-
ing the rendering and viewing quality. Following this thought, we
define a TI threshold, namely𝑇 𝐼𝑡ℎ , to represent the upper bound of
TI value, below which the frame can be skipped to reduce the fram-
erate. Considering a moving window of 𝑁 frames and the original
framerate is 𝑓 , the target framerate can be measured by the number
of frames in the past 𝑁 frames where TI is no less than 𝑇𝑡ℎ :

𝐹𝑅 =
𝑓

𝑁

𝑁∑︁
𝑖=𝑛−𝑁+1

{
1 𝑖 𝑓 𝑇 𝐼𝑖 ≥ 𝑇 𝐼𝑡ℎ
0 𝑒𝑙𝑠𝑒

(2)

To calculate the TI threshold, we apply a pre-set percentage on
the range of TI measurements in the moving window, which is
configurable to achieve various levels of framerate control:

𝑇 𝐼𝑡ℎ =𝑚𝑖𝑛(𝐹𝑛−𝑁+1, · · · , 𝐹𝑛)
+(𝑚𝑎𝑥 (𝐹𝑛−𝑁+1, · · · , 𝐹𝑛) −𝑚𝑖𝑛(𝐹𝑛−𝑁+1, · · · , 𝐹𝑛)) ∗ 𝑎 (3)

where 𝑎 is the pre-set percentage,𝑚𝑖𝑛(𝐹𝑛−𝑁+1, · · · , 𝐹𝑛) and
𝑚𝑎𝑥 (𝐹𝑛−𝑁+1, · · · , 𝐹𝑛) are the minimal and maximal TI measure-
ments in the past 𝑁 frames, respectively. Algorithm 1 presents the
detailed procedure for calculating the target framerate based on
the moving window of frames and the TI threshold.

Algorithm 1 Calculation of target framerate.
1: Input: 𝐹𝑛 , the frame received from the client
2: Output: 𝐹𝑅, the target framerate
3: 𝑁 = 30 ⊲ Size of moving window
4: 𝑏𝑢𝑓 = 𝐹𝐼𝐹𝑂_𝑄𝑢𝑒𝑢𝑒 (𝑁 ) ⊲ Moving window
5: while not end of stream do
6: 𝑇 𝐼𝑛 = 𝑇 𝐼 (𝐹𝑛, 𝐹𝑛−1)
7: 𝑏𝑢𝑓 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑇 𝐼𝑛−𝑁 )
8: 𝑏𝑢𝑓 .𝑎𝑑𝑑 (𝑇 𝐼𝑛)
9: 𝑇 𝐼𝑡ℎ =𝑚𝑖𝑛(𝑏𝑢𝑓 ) + (𝑚𝑎𝑥 (𝑏𝑢𝑓 ) −𝑚𝑖𝑛(𝑏𝑢𝑓 )) ∗ 𝑎
10: 𝐹𝑅 =

∑𝑁
𝑖=𝑛−𝑁+1𝑇 𝐼𝑖 |𝑇 𝐼𝑖 ≥ 𝑇 𝐼𝑡ℎ

11: end while

4 SYSTEM IMPLEMENTATION
Figure 3 shows the system implementation of the proposed PEV
system, including the detailed technical component of the mobile
device, the content server, and the rendering server.
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Figure 3: System architecture of the proposed PEV system.

4.1 Mobile Device
4.1.1 Broadcaster. The broadcaster is responsible for capturing
and transmitting the camera view to the rendering server. To ac-
complish this task, we utilize FFmpeg as the low-level library to
send the camera view to the rendering server via the SRT proto-
col [11]. The camera view is encoded in H.264 without B frames
to minimize delay. Following the typical workflow of using a web-
cam, the camera view is transmitted at a resolution of 720p and a
framerate of 30 fps. Also, we deploy a framerate configuration unit
in the broadcaster, which dynamically adjusts the framerate of the
camera stream to the target framerate recommended by the server.

4.1.2 Player. The player is responsible for managing and display-
ing the rendered view on the streamer’s mobile device.We adopt the
lightweight Larix Player [7] for this purpose, as it enables seamless
playback of SRT streaming on a mobile device. Once the rendered
view is received from the content server, the player displays it im-
mediately without additional buffering that could introduce delays.
This ensures a smooth and uninterrupted viewing experience.

4.2 Rendering Server
4.2.1 Pre-processing. The pre-processing unit serves as the first
point of contact for the received camera stream, which identifies the
locations of multiple faces by utilizing the OpenSeeFace library [10].
It then selects one face at a time to transmit to the avatar rendering
software via a virtual camera created by v4l2loopback [14].

4.2.2 Renderer Software. The renderer software plays a crucial
role in rendering the virtual avatar based on the streamer’s face
transmitted by the pre-processing unit. We adopt the commercial
virtual character renderer VTube Studio [15] to accomplish this task.
However, it is worth noting that other renderer software capable
of retrieving the streamer’s view from the webcam device can also
be used. The renderer software executes the face detection, facial
feature extraction, and rendering steps described in Section 2.1.

4.2.3 Server Broadcaster. We employ Open Broadcaster Software
(OBS) [9] as the server side broadcaster, which supports multiple
codecs and protocols. It streams the generated virtual avatar to the
content server through the SRT protocol by recording the renderer
window displaying the virtual character. This approach enables the
compatibility with other renderer software, while still maintaining

seamless integration with the rest of the system. Additionally, by
using a webcam as input and capturing the window as output, we
are able to leverage the capabilities of OBSwhile keeping the system
lightweight and flexible.

4.2.4 Server Configuration Unit. The server configuration unit fol-
lows the framerate control algorithm described in Section 3.2 to
calculate the target framerate based on the moving window of
existing frames received from the client. The determined target
framerate is returned to the client configuration unit (as part of the
client broadcaster) to configure the framerate.

4.3 Content Server
The content server plays a crucial role in managing SRT sessions
between the mobile device and the rendering server, facilitating
connection requests and coordinating data transfer responsibilities.
This is made possible through the use of the Simple Realtime Server
(SRS) [12] that supports a variety of streaming protocols. With SRS,
the content server also transcodes the streaming output from the
rendering server to other popular protocols like RTMP, enabling
seamless distribution of the video stream to the remote viewers.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
5.1.1 Hardware Setup. We implemented the PEV system as illus-
trated in Figure 3. We use a Pixel 3 smartphone as the mobile device,
which is equipped with a 1.6 & 2.5 GHz processor, 4 GB of RAM, and
a 2915 mAh battery. The rendering server is deployed on a gaming
laptop with an Intel i7-11800H processor and NVIDIA GeForce RTX
3070 GPU. The content server is hosted on a virtual machine with 8
cores of Intel Core i9-10980XE CPU at 3.00GHz and 16 GB memory
assigned running on a workstation serving for Kubernetes. The
input videos are captured from the front camera of the smartphone
at 720p resolution. For each test case, the input video is captured
live with similar background, motion, and duration (∼120 seconds).

5.1.2 Test Cases. We evaluate and compare PEV with baseline
systems based on VTube Studio [15].
• VTS-Local deploys and performs all the VTuber streaming on
the mobile device, which is implemented using VTube Studio
without the PC streaming feature.

• VTS-Stream conducts face detection and facial feature extraction
on the mobile device and renders the virtual character on the
rendering server, which is implemented by enabling the stream-
ing mode of VTube Studio. Since the rendered avatar is only
presented on the rendering server, it requires both the mobile
device and the rendering server in proximity of the streamer.

• VTS-Stream-Play complements VTS-Stream with the playback
feature that streams and presents the rendered avatar view to
the streamer in real time.

• PEV deploys our proposed offloading-based approach without
framerate control, which has bi-directional video streams be-
tween the mobile device and the server for offloading the virtual
avatar rendering task.

• PEV-FC deploys the framerate control mechanism to PEV to
reduce the bandwidth consumption caused by offloading.
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Table 1: Comparisons of functionality, power consumption, latency, and bandwidth between PEV and the baseline systems.

VTS-Local VTS-Stream VTS-Stream-Play PEV PEV-FC (𝑎=0.7)

Functionality
Outdoor Streaming N/A ✓ ✓ ✓ ✓

Presenter Feedback View N/A N/A ✓ ✓ ✓
Multi-Face N/A N/A N/A ✓ ✓

Measurement
Avg. Power (W) 4.18 3.92 4.52 3.53 3.55
Avg. Latency (s) 0.56±0.06 0.61±0.03 1.06±0.06 1.57±0.06 1.62±0.08

Bandwidth (Mbps) 0 0.50 2.80 4.97 3.34

Table 1 compares the functionalities of the 5 systems for outdoor
streaming, presenter feedback view, and multi-face features. PEV
and PEV-FC support all the features given their offloading design.

5.2 Power Evaluation
We use the Monsoon Power Monitor [6] to measure the power
consumption of the mobile device and conduct post-processing to
remove outliers in the power traces that are off by over 3x standard
deviations from the mean value, as shown in Table 1. Our proposed
PEV and PEV-FC systems can save 0.99 W and 0.97 W of power
compared to the functionally equivalent baseline VTS-Stream-Play.
Furthermore, Figure 4 presents the boxplot of power distribution
based on raw power traces without post-processing over a 120-
second period.

Figure 4: Distribution of power consumption.

Furthermore, Table 2 shows the power results of PEV when
processing multiple faces. Since VTube Studio does not support
multi-face rendering, none of the aforementioned baseline sys-
tems can accomplish this task; therefore, we compare with the
OpenSeeFace library [10], where we conduct face detection on 10%
of the input frames and feature extraction on every frame, consid-
ering that the face position does not change significantly over a
short period of time. We observe that the power consumption of
PEV does not depend on the number of faces by offloading the com-
putation workload to the server. The OpenSeeFace library, on the
other hand, shows a correlation between the number of faces and

Table 2: Average power consumption and framerate evalua-
tions with multiple faces using OpenSeeFace (OSF ) and PEV.

Test Case
Avg.

Power (W)
Framerate

(FPS)
Power per
Frame (W)

OSF PEV OSF PEV OSF PEV

1 Face 6.63 3.53 28.34 30 0.23 0.12
2 Faces 7.03 3.57 21.97 30 0.32 0.12
3 Faces 6.27 3.54 18.30 30 0.34 0.12

power consumption, since each face results in power-consuming
computations on the mobile device. The results show that the power
consumption increased from 6.63 W for 1 face to 7.03 W for 2 faces.
The power drop (6.27W) in the 3-face case is caused by the decrease
in framerate due to the intensive computation. Under the varying
framerates, the per-frame power consumption would be a more
accurate power efficiency metric, which increases significantly with
OpenSeeFace (0.23-0.34 W) and stays constant with PEV (0.12 W).

5.3 Overhead Evaluation
5.3.1 Latency. We measure the latency between significant facial
or body movements (e.g., eye opening) of the streamer and the
corresponding virtual character movements using a timer and tak-
ing the average of 10 measurements, as shown in Table 1. The
value with ± after the average latency is the standard deviation of
the measurements to represent the uncertainty caused by manual
operations of starting/stopping timers. VTS-Local has the lowest
latency at 0.56 seconds, followed by VTS-Stream at 0.61 seconds; in
both cases, the camera view is processed locally on-device. VTS-
Stream-Play has a higher latency of 1.06 seconds, as it offloads the
facial features to the server for processing and streams the rendered
avatar view back to the client. PEV and PEV-FC have 1.57 and 1.62
seconds of latency, respectively. In comparison to VTS-Stream-Play,
all the 3 cases involve bi-directional traffic between the mobile
device and the rendering server to support the presenter view fea-
ture; however, PEV and PEV-FC offload the camera stream to the
rendering server, which requires higher latency than just offloading
the facial features. The latency can be improved by optimizing the
communication protocol [13], which is out of scope for this paper.

5.3.2 Bandwidth. To evaluate the bandwidth consumption, we
employ Android bug reports [5], which provide a comprehensive
snapshot of the system state for each application. As shown in
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Figure 5: Quality evaluations of PEV-FC under different configurations of 𝑎 in Algorithm 1.

(a) 𝑎 = 0.0 (b) 𝑎 = 0.7 (c) Diff. (a) & (b)

Figure 6: Rendered viewswith andwithout framerate control.

Table 1, VTS-Local consumes no bandwidth because all the compu-
tations are conducted locally on-device. VTS-Stream requires only
0.50 Mbps to send face features extracted on-device to the rendering
server. The facial features are transmitted in plaintext JSON format
using the TCP protocol, resulting in reduced bandwidth usage at
the expense of increased power consumption on the mobile device.
In addition, VTS-Stream does not support playback of the rendered
avatar view on the mobile devices and thus saves the bandwidth
for streaming back the rendered view. VTS-Stream-Play shares the
similar streaming functionality and workflowwith PEV and PEV-FC,
and its bandwidth consumption hits 2.80 Mbps. PEV requires 4.97
Mbps for the bi-directional video streaming (i.e., offloading and
playback) using the SRT protocol. PEV-FC (𝑎=0.7) achieves signifi-
cantly lower bandwidth consumption (3.34 W) compared to PEV
thanks to the framerate control mechanism.

To further evaluate the framerate reduction mechanism adopted
in PEV-FC, we set the parameter 𝑎 in Algorithm 1 to different ratios
and measure the framerate, power consumption, and the resulting
latency and bandwidth overhead. In this experiment, we use a 120-
second pre-recorded video with a bitrate of 2.11 Mbps to measure
the framerate and bandwidth consumption, and the live videos to
measure power and latency. Table 3 shows the evaluation results,
where PEV-FC keeps the trend that a higher 𝑎 value (i.e., lower
framerate) achieves reduced bandwidth with a slight increase in
latency. Also, the power consumption is independent of the 𝑎 values.

5.3.3 Quality. To evaluate the rendering quality of the proposed
PEV system, we use the pre-recorded video in the bandwidth evalu-
ation to feed the renderer and calculate four quality metrics, includ-
ing PSNR, VMAF [8], MS-SSIM [31], and SVQM [30], with the 30

Table 3: Framerate, power consumption, latency and band-
width evaluations of PEV-FC under different configurations
of 𝑎 in Algorithm 1.

𝑎
Avg.

Framerate (FPS)
Avg.

Power (W)
Avg.

Latency (s)
Bandwidth
(Mbps)

0.0 30.0 3.53 1.57±0.06 4.97
0.1 26.4 3.55 1.58±0.05 4.62
0.2 23.4 3.55 1.59±0.05 4.37
0.3 20.5 3.55 1.57±0.05 4.14
0.4 18.2 3.55 1.57±0.06 3.97
0.5 15.6 3.55 1.64±0.06 3.73
0.6 13.2 3.55 1.64±0.06 3.56
0.7 10.4 3.55 1.62±0.08 3.34
0.8 8.8 3.55 1.67±0.11 3.17
0.9 6.2 3.55 1.80±0.12 2.93
1.0 3.6 3.55 1.88±0.27 2.77

FPS video (without framerate reduction) as the reference. Figure 5
shows the quality results under various 𝑎 values for framerate re-
duction, and Figure 6 shows the visual demonstration of rendered
avatar view for Frame #170 with (𝑎=0.7) and without (𝑎=0) fram-
erate control, together with the delta between the two views. The
quantitative and visual results indicate acceptable quality impact
posed by the framerate reduction mechanism.

6 CONCLUSION
We have developed a power efficient VTuber live streaming system,
namely 𝑃𝐸𝑉 , to address the power consumption challenge in the
emerging streaming application. 𝑃𝐸𝑉 achieves significant power
savings by offloading computation-intensive face detection, facial
feature extraction, and rendering operations to the server, while
dynamically adjusting the framerate of the offloaded camera stream
to control the bandwidth overhead. We evaluated the power, la-
tency, bandwidth, and quality of PEV on an end-to-end VTuber live
streaming system, in comparison with baseline VTuber streaming
systems. Our evaluation demonstrates significant power savings
and limited overhead achieved by PEV. The repository of the project
is at https://github.com/hwsel/PEV.
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