
An Evaluation of Decentralized Group Formation Techniques for
Flying Light Specks

Hamed Alimohammadzadeh, Heather Culbertson, Shahram Ghandeharizadeh
Computer Science Department, University of Southern California

Los Angeles, California, USA
{halimoha,hculbert,shahram}@usc.edu

ABSTRACT
Group formation is fundamental for 3D displays that use Flying
Light Specks, FLSs, to illuminate shapes and provide haptic interac-
tions. An FLS is a drone with light sources that illuminates a shape.
Groups of 𝐺 FLSs may implement reliability techniques to toler-
ate FLS failures, provide kinesthetic haptic feedback in response
to a user’s touch, and facilitate a divide and conquer approach to
challenges such as localizing FLSs to render a shape. This paper
evaluates four decentralized techniques to form groups. An FLS
implements a technique autonomously using asynchronous commu-
nication and without a global clock. We evaluate these techniques
using synthetic point clouds with known optimal solutions and
real point clouds. Obtained results show a technique named Ran-
dom Subset (RS) is superior when constructing small groups (G≤5)
while a different technique named Closest Available Neighbor First
(CANF) is superior when constructing large groups (G≥10).
ACM Reference Format:
HamedAlimohammadzadeh, Heather Culbertson, ShahramGhandeharizadeh.
2023. An Evaluation of Decentralized Group Formation Techniques for
Flying Light Specks . In ACM Multimedia Asia 2023 (MMAsia ’23), De-
cember 06–08, 2023, Tainan, Taiwan. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3595916.3626460

1 INTRODUCTION
A Flying Light Speck (FLS) is a miniature sized drone configured
with light sources, processing, storage, and networking capabilities.
Swarms of cooperating FLSs will illuminate complex 2D and 3D
shapes in a fixed volume, an FLS display [1, 12, 13]. They will
provide a user with encounter-type haptic interactions [21] by
detecting their disposition due to the user’s exerted force (e.g.,
poking). In response, they provide the appropriate behavior (e.g.,
the shape moves away), and exert force back if necessary (e.g.,
emulate surface friction or hardness).

Applications of an FLS display are diverse ranging from enter-
tainment to health care. With entertainment, an FLS display will
illuminate characters of a multi player game such as Minecraft and
Street Fighter, enabling a user to experience them from different
angles. With health care, a physician can examine a patient’s MRI
scans in real time by separating and analyzing the different organs

This work is licensed under a Creative Commons Attribution International
4.0 License.

MMAsia ’23, December 06–08, 2023, Tainan, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0205-1/23/12.
https://doi.org/10.1145/3595916.3626460

Figure 1: Four different point clouds.

(illuminations). The physician will be able to evaluate the softness
of tissue emulated by FLSs using the density readings of a scan.

An illumination is a rendering of a point cloud with an FLS
assigned the coordinates of a point in the point cloud. The illumi-
nation may require a large number (thousands if not millions) of
FLSs. Group formation is important to develop effective divide and
conquer techniques for FLS displays. Its objective is to minimize the
distance between the FLSs that constitute each group. A solution
to this problem may either be centralized or decentralized. This
paper implements and evaluates several known decentralized group
formation techniques [5]. We focus on decentralized techniques
because they enable FLSs to synergize in an online manner. Below,
we describe three use cases of such an algorithm. With each, the
time to identify groups should be minimized.
Three use cases of a decentralized group formation technique:
With a haptic interaction such as poking, groups of FLSs may ex-
ert force at different parts of a fingertip. To illustrate, consider a
physician manipulating an organ (illumination). The location of
physician’s fingertip will be detected by one or more FLSs. The
required stiffness dictates a value for 𝐹 and 𝐺 . Ideally, 𝐹 FLSs in
the form of 𝑛𝐺 groups (each with 𝐺 FLSs) will exert force back,

https://doi.org/10.1145/3595916.3626460
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3595916.3626460
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3595916.3626460&domain=pdf&date_stamp=2024-01-01

MMAsia ’23, December 06–08, 2023, Tainan, Taiwan Hamed Alimohammadzadeh, Heather Culbertson, Shahram Ghandeharizadeh

enabling the physician to experience the stiffness of the tissue. A de-
centralized technique that constructs these groups using the closest
number of FLSs will enable formation of 𝑛𝐺 groups quickly.

Second, with FLS failure handling, one may construct 𝑛𝐺 relia-
bility groups. Each consists of𝐺 +𝐶 FLSs.𝐺 FLSs illuminate a point
cloud.𝐶 FLSs are dark standbys [13]. This is similar to RAID [23] for
mass storage devices. Every time an FLS fails, an available standby
substitutes for its lighting responsibility at its assigned coordinate.
The 𝐺 FLSs must be in close proximity to one another, enabling a
standby to quickly substitute for a failed FLS. This highlights the
importance of minimizing distance between the FLSs in a group.

Finally, relative localization will enable a group of FLSs to po-
sition themselves to illuminate a 2D or 3D multimedia shape. The
relative distance and angle between the FLSs will match those of
the points in a point cloud. There are a many techniques using
different kinds of sensors such as UWB, IMU, optical, and their
hybrids. To illuminate a large point cloud, one may partition it into
groups, each with 𝐺 FLSs. The 𝐺 FLSs in each group may localize
independent of the FLSs in the other groups. Subsequently, the
different groups may localize relative to one another. By reducing
the distance between 𝐺 FLSs in a group, the likelihood of FLSs in
different groups blocking one another is minimized.

We evaluate the group formation techniques along three dimen-
sions: 1) Speed, how fast a technique computes groups, 2) Quality
of formed groups, the number of groups and the average distance
between the FLSs in a group, and 3) Amount of work performed.
We quantify the first using the response time of a technique. It is
defined from the time a swarm of FLSs starts to execute a tech-
nique until they converge on a solution. With the quality of formed
groups, we focus on the number of constructed groups consisting
of 𝐺 FLSs. We do not consider smaller group sizes as usable, de-
ferring an investigation of this topic to future work, see Section 7.
The work performed by a group is quantified using the network
bandwidth consumed by an FLS and its CPU processing. The latter
is quantified by computing the average number of times an FLS
executes a technique to converge on a solution.

The techniques require an FLS to consume network bandwidth
in a bursty manner. Moreover, while they may require a similar
transmission rate from an FLS, the rate at which they require an
FLS to receive data may be different. Hence, we report the average
transmission rate (Xmt BW) and receive rate (Rec BW) separately.

An ideal technique must provide a response time that meets
the requirements of its target application, maximize the number
of groups consisting of a pre-specified 𝐺 value, minimize the dis-
tance between the FLSs that constitute a group, and minimize the
amount of network bandwidth and processing demanded from the
individual FLSs. The contributions of this paper include:

• A scalable technique to construct synthetic point clouds with
known optimal grouping of FLSs and 𝐺 values. It is used as
a yardstick for the metrics of interest. (Section 2)

• An implementation and evaluation of several known decen-
tralized group formation heuristics: Random Subset (RS) [4,
5], and Variable Neighborhood Search (VNS) [3]. (Section 3.)

• Two new decentralized heuristic, Simple Random, SimpleR,
and Closest Available Neighbor First, CANF. (Sections 3.1.1
and 3.1.4.)

• A discovery protocol to enable an FLS to identify its neigh-
boring FLSs for group formation. (Section 4.)

• An evaluation of the alternative decentralized techniques.
Obtained results show the execution time of these techniques
is in the order of seconds and at times hours with dense point
clouds requiring hundreds of FLSs. This may be too slow for
applications that require interactive response times faster
than 100 milliseconds, e.g., haptics [24]. (Section 5.)

• We open source our software implementations and its data
set at https://github.com/flyinglightspeck/Group-Formation.

We survey related work in Section 6 and offer brief conclusions and
future research directions in Section 7.

2 PROBLEM STATEMENT AND OPTIMALITY
Problem Definition 1. Given 𝐹 FLSs and a required group size

𝐺 , maximize the number of groups consisting of 𝐺 FLSs such that
(1) an FLS participates in exclusively one group and all FLSs agree
on participation in the same group, and (2) the euclidean distance
between the group members is minimized.

The symmetry constraint that all FLSs agree to be a member
of the same group is fundamental. It defines a maximum for the
number of groups: ⌊ 𝐹

𝐺
⌋. A heuristic may produce ceded FLSs. These

FLSs belong to a group with fewer than𝐺 FLSs; potentially a group
with the FLS by itself. The theoretical lower bound on the number
of ceded FLSs is 𝐹%𝐺 . While the grouping problem has a polynomial
time solution with 𝐺=2 [11], it is NP-hard with 𝐺 ≥ 3 [18].
Optimality and Outring: To evaluate the alternative decentral-
ized group formation techniques, we developed Outring, a scalable
technique that constructs swarms of FLSs with well known solu-
tions. With some settings of Outring, the known solution is optimal.
With others, it is one solution out of many possibilities. Outring
works in both 2D and 3D. Below, we describe it in 2D because it is
simpler to visualize.

Outring assumes 𝐹 is a multiple of 𝐺 (𝐹%𝐺=0) and constructs
𝐹
𝐺

groups on the circumference of a main ring with radius R2, see
Figure 2. Each group is a ring with radius R1. The G FLSs that
constitute a group are placed equally apart on the circumference of
its ring. The center of these circles (groups) are equally spaced apart
on the circumference of the main ring. Figure 2 shows the Outring
with 12 FLSs and 4 groups. The identified angle for a group dictates
the location of its G FLSs. The ratio 𝜌 = 𝑅2

𝑅1 dictates how far apart
the groups are on the circumfrance of the main ring. A high value
of 𝜌 , say 100, results in a sparse point cloud with groupings that
are trivial to identify by a human. With this setting of Outring, the
optimal minimum (𝑑𝑚𝑖𝑛) and maximum distance (𝑑𝑚𝑎𝑥) between a
pair of FLSs in a group is:

𝑑𝑚𝑖𝑛 (𝐺) = 𝑅1

√︂
2(1 − 𝑐𝑜𝑠

2𝜋
𝐺

) (1)

𝑑𝑚𝑎𝑥 (𝐺) =
{
2𝑅1, if 𝐺 is even.

𝑅1
√︃
2(1 + 𝑐𝑜𝑠 𝜋

𝐺
), otherwise.

(2)

https://github.com/flyinglightspeck/Group-Formation

An Evaluation of Decentralized Group Formation Techniques for Flying Light Specks MMAsia ’23, December 06–08, 2023, Tainan, Taiwan

Figure 2: An Outring with F=12 FLSs and G=3 FLSs/group.

The average distance,𝑑𝑎𝑣𝑔 , between the FLSs that constitute a group
is:

𝑑𝑎𝑣𝑔 (𝐺) =

4𝑅1
𝐺−1 (

1
2 +∑𝐺

2 −1
𝑖=1 𝑠𝑖𝑛 𝑖𝜋

𝐺
), if 𝐺 is even.

4𝑅1
𝐺−1

∑𝐺−1
2

𝑖=1 𝑠𝑖𝑛 𝑖𝜋
𝐺
, otherwise.

(3)

A small setting for 𝜌 (say 1) produces a dense point cloud, causing
the FLSs that constitute different groups to overlap one another.
In these scenarios, Equations 1- 3 are not optimal. They simply
describe a solution out of many.

3 DECENTRALIZED GROUP FORMATION
This section describes several decentralized heuristics to form
groups. An FLS 𝑓𝑖 executes a heuristic by itself upon arriving at the
coordinate assigned to it for illuminating a point [13]. A heuristic
requires the neighbors of 𝑓𝑖 , 𝑁 (𝑓𝑖). This section presents the heuris-
tics assuming 𝑁 (𝑓𝑖) is provided to each 𝑓𝑖 . Section 4 describes how
an FLS 𝑓𝑖 discovers its neighbors. Below, we adapt the decentralized
techniques of [4, 5] to construct groups.

We define Δ(𝑓𝑖 , 𝑓𝑗) as the distance between two FLSs 𝑓𝑖 and 𝑓𝑗 ,
Δ(𝑓𝑖 , 𝑓𝑗) = Δ(𝑓𝑗 , 𝑓𝑖). It may be computed using the 3D coordinates of
the point assigned to each of 𝑓𝑖 and 𝑓𝑗 . Each FLS 𝑓𝑖 maintains a group
𝑅𝑖 consisting of 𝐺 − 1 unique FLSs. The weight of any two FLSs 𝑓𝑝
and 𝑓𝑞 in 𝑅𝑖 is the reciprocal of their distance:𝑤 (𝑓𝑝 , 𝑓𝑞) = 1

Δ(𝑓𝑝 ,𝑓𝑞) .
This definition of weight is symmetric,𝑤 (𝑓𝑝 , 𝑓𝑞) = 𝑤 (𝑓𝑞, 𝑓𝑝). The
objective of the decentralized technique is for an FLS 𝑓𝑖 to compute
set 𝑅𝑖 that maximizes the sum of the weights between any 2 FLS in
its group1:

1This equation assumes the FLS 𝑓𝑖 is added to its group 𝑅𝑖 , increasing its cardinality
to𝐺 .

𝑊𝑖 (𝑅) =
∑︁

(𝑓𝑝 ,𝑓𝑞) ∈𝑅∪{ 𝑓𝑖 }
𝑤 (𝑓𝑝 , 𝑓𝑞) . (4)

We require the decentralized technique to terminate. This means
all FLSs must stop forming new groups after sometime. It is possible
that the decentralized technique terminates with some FLSs not
forming a group of 𝐺 FLSs. For each such ceded FLS 𝑓𝑝 , its group is
either the empty set or consists of a set of FLSs that do not agree
on the same grouping.

A group 𝑅 = {𝑓1, · · · , 𝑓𝐺−1} is proper [5] if and only if for each
neighbor 𝑓𝑗 this set has a higher weight than all other groups found
by that neighbor. If this is true for all FLSs of 𝑅 then the predicate
proper(𝑓𝑖 , 𝑅) returns true. A score for a set 𝑅 and FLS 𝑓𝑖 is defined
as its weight𝑊𝑖 (𝑅) if the set is proper. Otherwise, its score is zero.

𝑆𝑐𝑜𝑟𝑒𝑖 (𝑅) =
{
𝑊𝑖 (𝑅), If proper(𝑓𝑖 , 𝑅𝑖) is true.
0 Otherwise.

(5)

To compute 𝑆𝑐𝑜𝑟𝑒𝑖 (𝑅) of Equation 5, an FLS 𝑓𝑖 exchanges mes-
sages with its neighbors, N(𝑓𝑖). Its message contains its𝑊𝑖 . FLS
𝑓𝑖 gathers this information from the messages transmitted2 by its
neighbors to compute its 𝑆𝑐𝑜𝑟𝑒𝑖 (𝑅).

We define the convergence of a decentralized techniques using
either one of the following two conditions: 1) All FLSs are reporting
the same grouping, 2) The grouping computed by all FLSs does not
change for a fixed amount of time Δ. Δ is set to 2 minutes in our
experiments. If either condition holds true then the FLSs decide the
technique has converged and stop executing the technique.

The formal definition of the first termination condition is as
follows: {∀𝑝 ∈ 𝑅𝑖 : 𝑅𝑝 ∪ {𝑓𝑝 } = 𝑅𝑖 ∪ {𝑓𝑖 } 𝑎𝑛𝑑 |𝑅𝑝 | = |𝑅𝑖 | = 𝐺 − 1}.

A basic decentralized algorithm may require an FLS 𝑓𝑖 to evalu-
ate all

(|𝑁 (𝑓𝑖) |
𝐺−1

)
possible combination of forming a group from its

neighbors 𝑁 (𝑓𝑖) [4, 5]. It maintains the one with the highest score
and sends the new group and its weight to all neighbors. A receiv-
ing neighbor updates its group to include 𝑓𝑖 only if it is included
in 𝑓𝑖 ’s 𝑅𝑖 . This algorithms is shown to be slow when an FLS has
many neighbors [4, 5]. This is a common occurrence with dense
point clouds, e.g., wheels of the Skateboard in Figure 1.c. Heuristics
speed up this basic algorithm.

3.1 Heuristics
Below, we describe Random and several variants of it including
RS [4, 5], Variable Neighborhood Search (VNS) [3, 4], and Closest
Available Neighbor First (CANF). A technique may have a config-
uration parameter. For example, VNS requires the application to
specify the amount of time it spends in its local search.

3.1.1 Simple Random, SimpleR. In its simplest, Random requires
an FLS 𝑓𝑖 to select G-1 FLSs from a fixed number of neighbors,𝑁 (𝑓𝑖).
We term this technique SimpleR. The FLSs in 𝑁 (𝑓𝑖) are sorted in
ascending order of their distance from 𝑓𝑖 with the closest FLS in
the Euclidean space appearing first. For a given group size𝐺 , we
consider the following cardinalities of |𝑁 (𝑓𝑖) |:𝐺 − 1,𝐺 , and 1.5×𝐺 .
Setting |𝑁 (𝑓𝑖) |=𝐺 − 1 requires an FLS to consider only its closest
neighbor in the Eucledian space. An evaluation of the settings using

2These transmissions facilitate discovery of neighboring nodes, see Section 4.

MMAsia ’23, December 06–08, 2023, Tainan, Taiwan Hamed Alimohammadzadeh, Heather Culbertson, Shahram Ghandeharizadeh

the Outring shows |𝑁 (𝑓𝑖) | set to 1.5 ×𝐺 is typically inferior to the
other two settings.

3.1.2 Random Subset, RS. RS [5] is a variant of random. It selects
a random set of FLSs from its known neighboring FLSs (𝑁 (𝑓𝑖)) and
considers all possible 𝐺 − 1 groupings to select the highest scoring
one. SZ is an input parameter that dictates the number of FLSs that
RS must permutate, SZ ≥ 𝐺 − 1. If the number of neighbors known
to an FLS is fewer than SZ then RS returns the empty set, forcing
the framework to wait until there are enough neighbors. An FLS
that receives a message broadcasted by its neighboring FLSs will
add them to its neighbor list. This is useful with sparse point clouds,
enabling RS to form small groups quickly.

Once the neighbor list of an FLS consists of at least SZ FLSs3,
RS selects SZ elements of it randomly, enumerating all possible
combinations of this set with those in the FLS’s current group. It
iterates this enumeration to identify the highest scoring one4.

In our Outring experiments, RS computes the optimal grouping
with small group sizes,𝐺 ≤5.With larger groups (𝐺=15) and a dense
Outring (𝜌=1), RS fails to form even one group. The probability of
an FLS choosing a subset of its neighbors to form a proper group

is low. This probability is
(𝐹−1−(𝐺−1)
𝑆𝑍−(𝐺−1))
(𝐹−1𝑆𝑍)

. With F=90 FLSs and 𝐺=15,

this probability is the astronomically low value of 4.19e-11. In order
for this probability to increase above 0.001 with 𝐺=15, one must
reduce the number of FLSs to fewer than 33.

3.1.3 Variable Neighborhood Search, VNS. VNS [3–5] solves the
heaviest subgraph problem where each subgraph consists of 𝐺 ver-
tices (FLSs). The edge between two vertices 𝑓𝑝 and 𝑓𝑞 denotes the
weight between them, see definition of𝑤 (𝑓𝑝 , 𝑓𝑞). We consider this
heuristic because it has been applied in diverse scenarios including
data mining, operations research, placement of warehouses, knap-
sack and packing, and scheduling. It takes a global approach to
forming groups by identifying a subset of the solution space that is
close to a particular point in the global solution space. Subsequently,
it refines this solution by performing a local search.

VNS defines the d-th neighborhood structure of a certain grouping
𝐶 to consist of all grouping that differ by at most 𝑑 FLSs from 𝐶 . It
consists of two functions, Shake and LocalSearch, that are executed
in turn. The function Shake avoids local optimum. It modifies the
current grouping C by randomly changing a few of its FLSs to
generate a C’ that belongs to the d-th neighborhood structure. The
LocalSearch function improves upon C’ by considering all possible
FLSs known to 𝑓𝑖 , keeping the highest scoring one.

A challenge of VNS is the amount of time allotted for the Shake
and LocalSearch operations. A small amount of time, say 10 millisec-
onds, enables VNS to compute small groups (𝐺=3) with sparse point
clouds (𝜌=100) quickly. However, the same settings with a dense
point cloud (𝜌=1) and large group sizes (𝐺=10) requires more than
an hour of execution time. In this case, allotting a longer amount of
time results in a significantly faster execution time. We evaluated
10, 40, 100, and 1000 milliseconds as the amount of alloted time.

3With the radio range of each FLS set to the entire display, 𝑓𝑖 populates its 𝑁 (𝑓𝑖) with
all FLSs quickly.
4In our implementation, RS computes Score by caching the grouping information
provided by each neighboring FLS. There is no network communication in computing
scores.

In general, 100 milliseconds provides a competitive response time
with high quality groupings.

3.1.4 Closest Available Neighbor First, CANF. CANF explores the
neighborhood of an FLS 𝑓𝑖 to construct a group. It sorts its neigh-
boring FLSs in ascending distance using their assigned coordinates.
It iterates this list starting with the closest FLS 𝑓𝑢 . If 𝑓𝑢 does not
have 𝑓𝑖 as a group member, CANF evaluates each of 𝑓𝑢 ’s group
members as its own. It uses its local 𝑅𝑢 information about 𝑓𝑢 to
construct a group and decide if its grouping is proper and compute
a score. It adds 𝑓𝑢 as a candidate only if it results in a higher score.

CANF is able to find the optimal solutions in all scenarios. With
small values of 𝐺 , its response time is faster than 40 milliseconds.
A surprising result is its sweet spot with𝐺=5, providing response
times faster than 𝐺=3.

4 AN IMPLEMENTATION
An FLS process consists of two threads, a networking (𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘)
and a handler (𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟) thread. These two threads communicate
using a shared queue. 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 listens on a UDP socket, receives
a message, generates an event in response to the messages, and
inserts the events in the shared queue for processing by 𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟 .
𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟 blocks on the queue for an event. After receiving the event,
it invokes a method to process the event. Subsequently, it inserts an
event in the queue that causes it to execute again. This implements
an infinite while loop. A specific event terminates 𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟 .

Except for CANF, other heuristics require an FLS process to
use its maximum radio range to communicate with all other FLSs.
CANF starts the radio range of an FLS to be one display cell from its
current location. When an FLS does not have enough neighbors to
form a group consisting of G-1 FLSs, it expands its radio range by
a factor of two. This FLS does not expand its radio range again for
a pre-configured interval of time. In our experiments, this interval
is set to 50 milliseconds.

Periodically, an FLS broadcasts the following metadata to all
FLSs in its radio range: its unique identifier 𝑓𝑖 , coordinates, group
and its score, and a monotonically increasing message id. The latter
enables a receiver to detect out of order messages and to discard
them. Messages may arrive out of order due to our use of UDP.

A receiving FLS builds a profile of its neighbors using a hash
table. Its key is its neighbor’s FLS id, 𝑓𝑖 , and its value is the received
metadata. To implement a technique such as SimpleR, an FLS sorts
its neighbors using their coordinates and truncates the list based
on its setting 𝐺 − 1, 𝐺 , or 1.5 ×𝐺 .

Our implementation consists of a primary process and many sec-
ondary processes. These processes execute on a cluster of multi-core
servers. The primary process executes on one server and launches a
secondary process on each server. The servers are identified to the
primary process using a configuration file. Primary and secondary
processes start one or more FLS processes on their servers.

Each secondary process opens an administrative network socket
to the primary process. The primary polls each secondary every
40 milliseconds to detect either of the two convergence conditions
stated in Section 3. Once a termination condition is satisfied, it gen-
erates a message that causes 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 and 𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟 to terminate
(stop generating events in its queue), stops the experiment, and
provides a log file that contains the results.

An Evaluation of Decentralized Group Formation Techniques for Flying Light Specks MMAsia ’23, December 06–08, 2023, Tainan, Taiwan

Table 1: Two sparse Outring point clouds and group sizes, 𝐹=90, 𝜌=100, 1 Amazon AWS instance with 96 physical cores.

Sparse 𝐺=3 𝐺=15
𝜌=100 CANF SimpleR: |𝑁 (𝑓𝑖) |=G VNS (100 msec) RS:𝑆𝑍=G-1 CANF SimpleR: |𝑁 (𝑓𝑖) |=G VNS (100 msec) RS:𝑆𝑍=G-1
RT (Sec) 0.041 0.23 0.64 2.19 0.095 0.30 233.3 262.8
𝑛𝐺 30 30 30 30 6 6 3.875 3.867

Ceded FlSs 0 0 0 0 0 0 31.875 32
Avg Distance 1.73 1.73 1.73 1.73 1.36 1.36 1.36 1.36

Xmt BW (Gbits/Sec) 1.57 0.17 0.0083 0.075 0.3 0.03 0.000040 0.0016
Rec BW (Gbits/Sec) 0.43 7.58 0.22 3.87 1.21 0.97 0.0019 0.0038
of Executions 121 102 16 543 72 23 30 34332

Table 2: Two dense Outring point clouds and group sizes, 𝐹=90, 𝜌=1, 1 Amazon AWS instance with 96 physical cores.

Dense 𝐺=3 𝐺=15
𝜌=1 CANF SimpleR:G VNS (100 msec) RS:𝑆𝑍=G-1 CANF SimpleR:G VNS (100 msec) RS:𝑆𝑍=G-1

RT (Sec) 121.05 120.60 189.88 123 372.65 320.02 4305.54 233.54
𝑛𝐺 26 22 25 25 3.625 1.13 3 0

Ceded FlSs 12 24 15 15 35.625 73.13 45 90
Avg Distance 0.32 0.29 0.32 0.32 0.98 0.77 0.86 1.45

Xmt BW (Gbits/Sec) 0.09 0.12 0.003 0.064 0.003 0.03 0.000015 0.000026
Rec BW (Gbits/Sec) 4.04 3.93 0.05 3.7 0.07 1.54 0.00127 0.00056
of Executions 27,693 36,882 1,710 25,893 2,896 30,363 211 9

5 A COMPARISON
This section compares the alternative heuristics using an Outring
and the Chess point cloud of Figure 1.a. The Outring studies were
conducted using an Amazon AWS instance c6a.metal with 384 Gi-
gabytes of memory and 96 physical cores (192 virtual core). The
clock speed of each core is 3.6 GHz. The Chess point cloud experi-
ments were conducted using a cluster of 16 CloudLab servers, each
with 256 GB of memory, two 32-core 2.8 GHz hyperthreaded CPUs
(model r6525, Clemson data center). With both, each FLS process
runs on a physical core.
Outring. Tables 1 and 2 provide a comparison of different heuristics
with a sparse (𝜌=100) and a dense (𝜌=1) Outring consisting of 90
FLSs (𝐹=90). In general, CANFmaximizes the number of constructed
groups (𝑛𝐺) and computes these groups faster (response times, RT)
than the other techniques. However, it uses more system resources
in the form of network bandwidth, see the average bandwidth
required by each FLS to transmit data.

With a sparse Outring (𝜌=100) and small group size (𝐺=3), all
heuristics find the optimal solution, computing 30 groups (𝐹=90

𝐺=3)
with no ceded FLSs. The same is not true with a dense Outring
(𝜌=1). While the optimal solution is not known for this synthetically
generated point cloud, the heuristic that maximizes the number
of groups (𝑛𝐺) with competitive response time (RT) and average
distance between FLSs that constitute a group is superior. CANF
qualifies these requirements. A limitation of CANF is its higher
bandwidth requirement than the other techniques.

All techniques become slower with a larger group size, 𝐺 = 15.
CANF and SimpleR provide the fastest response times with the
sparse Outring (𝜌=100), see Table 1. They compute almost twice
as many groups when compared with VNS and RS. The distance
between FLSs in a group is the optimal value. CANF is twice as fast

as SimpleR. However, its average transmission bandwidth for each
FLS is also twice as high. A dense Outring (𝜌=1) slows down all
heuristics considerably, see Table 2. CANF continues to maximize
the number of found groups (𝑛𝐺). However, it fails to construct six
groups. At the same time, it is an order of magnitude faster than
VNS. SimpleR and RS are faster than CANF. However, they fail to
construct a single group in many experiments.
Chess Point Cloud. Table 3 compares the performance of the
alternative techniques with a small (𝐺=3) and a large (𝐺=20) group
size using the Chess piece of Figure 1.a.

With 𝐺=3, RS is the superior technique. It provides the fastest
response time while maximizing the number of groups. This trend
does not hold true across all shapes. With the Skateboard, CANF is
the fastest technique (4x faster than RS) and provides the highest
number of groups. In most cases, CANF requires a higher network
bandwidth. It is as high as 41 Gbits/sec with the Race car.

With 𝐺=20, CANF maximizes the number of groups. However,
it is 20x slower than SimpleR:G that computes some groups. Even
though RS is the fastest technique, it fails to construct a single
group. SimpleR:G requires the highest amount of bandwidth. These
trends hold across different shapes in Figure 1.

Figure 3 shows the number of bytes transmitted and received by
each FLS using RS and CANF as a function of time. The required
bandwidth is bursty as a function of time.Most of the network traffic
is driven by the 20% probability that requires an FLS to execute a
heuristic even though there is no change in the neighbors or the
discovered groups. The rate at which data is received is different
because CANF expands its radio range incrementally while RS
requires an FLS to use its maximum radio range.

The results of Table 3 motivate a hybrid heuristic using both RS
and CANF. See Section 7.

MMAsia ’23, December 06–08, 2023, Tainan, Taiwan Hamed Alimohammadzadeh, Heather Culbertson, Shahram Ghandeharizadeh

Table 3: A comparison of the alternative decentralized techniques using the Chess piece point cloud requiring 454 FLSs.

G=3 G=20
CANF SimpleR:𝐺 VNS (100 msec) RS:SZ=G-1 CANF SimpleR:𝐺 VNS (100 msec) RS:SZ=G-1

RT (Sec) 51.23 126.7 204.2 36.43 4,574 200.25 99,153 166.33
nG 151 122 151 151 21 17.13 9 0

Ceded FLSs 1 88 1 1 34 111.5 274 454
Avg Distance 5.77 4.8 5.59 5.47 13.13 9.9 9.24 36.24

Xmt BW (Gbits/Sec) 0.39 0.45 0.014 0.46 0.003 0.07 0.000005 0.0000016
Rec BW (Gbits/Sec) 21.2 10.13 0.49 14.13 0.13 2.56 0.0026 0.0002206
of Executions 9,529 37,392 1,419 8,419 6,801 9,477 279 11

Figure 3: Bytes transmitted and received by one FLS, G=3.

6 RELATEDWORK
The concept of FLS displays and illuminations is presented in [1,
12, 13]. Use of a reliability group with one or more standby FLSs to
tolerate FLS failures is described in [13]. It quantifies the benefits of
a reliability group assuming they are already constructed. It does not
describe how FLSs may form groups. It may use the decentralized
algorithms described in this study to form groups.

Forming groups is a multi-disciplinary research topic. Its roots
in graph theory date back to 1947 [27]. The challenge is termed
matching [15] or weighted matching [10], H-packing [8, 9, 14], H-
matching [7, 17], H-partition [18, 19], k-subgraph [3], k-clique [4, 5],
clustering [2, 6, 20] among others. There are subtle and yet funda-
mental differences between the alternative studies. For example,
in the context of peer-to-peer networks, a protocol may allow a
node to serve as a preferred neighbor for any number of other
nodes [16, 26] without requiring those nodes to reciprocate the
neighbor relationship. This is different than our problem that re-
quires an FLS to be a member of one group and all FLSs in the group
to agree to be a part of the group.

A comparison of VNS [3], RS [4], and a basic exhaustive search
using a simultation study is presented in [4, 5]. This study uses a
simple complete graph where each node has every other node as a
neighbor with a random value between (0,1) as the weight of the
edge. One conclusion of this study is that RS and VNS are superior
to the basic exhaustive search by maximizing the number of groups.
It also concludes that RS is slightly faster than VNS and favors RS

for its simplicity. Our evaluation is different in that we use real
point clouds with a real implementation. We compare the different
heuristics with group sizes as large as 20 (G≤20). Our results are
consistent with those of [4, 5] for small group sizes (G≤5). However,
we find RS may compute very few groups with large group sizes,
G≥10. VNS computes more groups and is significantly slower than
RS. Another novelty of our study is the introduction of SimpleR
and CANF. Obtained results show both are superior to the other
techniques with large group sizes, G≥10.

7 CONCLUSIONS AND FUTURE RESEARCH
This study evaluates four decentralized techniques to form groups
of size 𝐺 . These include SimpleR, RS [4], VNS [3, 4], and CANF.
Obtained results show RS is superior to the others with small values
of𝐺 (≤ 5). With large group sizes (≥ 10), either CANF or SimpleR:G
are superior depending on whether the objective is to maximize the
number of groups or compute some groups quickly. This motivates
a hybrid technique that uses the appropriate technique given a
desired number of groups, 𝑛𝐺 . It is a short term research direction.

The topology of a point cloud dictates the response time of a
technique with different values of 𝐺 . Generally, a technique be-
comes slower with larger point clouds and group sizes, i.e., higher
values of𝐺 . However, this is not true always. A point cloud such as
the Skateboard of Figure 1.c may consist of more than 2x (4x) points
than the Dragon (Chess piece). Yet, a technique such as CANF exe-
cutes 10x (7x) faster with the Skateboard than the Dragon (Chess
piece). Similarly, we observed CANF with 𝐺=5 to be faster than
with 𝐺=3 using both the Outring and the Race car of Figure 1.d. Fi-
nally, we observed network packet loss as high as 10% has minimal
impact on the performance of CANF.

In many cases, a heuristic forms different sized groups. An inter-
esting research direction is to form groups of larger size incremen-
tally. An example is a haptic interaction that exerts an increasing
amount of force on the user as they press further into a virtual
object [25]. The display may use the smaller FLS groups to exert a
small amount of force while larger groups join in waves to increase
the amount of exerted force.

ACKNOWLEDGMENTS
This research was supported in part by the NSF grant IIS-2232382.
We gratefully acknowledge CloudBank [22] and CloudLab [28]
for the use of their resources to enable all experimental results
presented in this paper.

An Evaluation of Decentralized Group Formation Techniques for Flying Light Specks MMAsia ’23, December 06–08, 2023, Tainan, Taiwan

REFERENCES
[1] Hamed Alimohammadzadeh, Daryon Mehraban, and Shahram Ghandeharizadeh.

2023. Modeling Illumination Data with Flying Light Specks. In ACM Multimedia
Systems (Vancouver, Canada) (MMSys ’23). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3587819.3592544

[2] David Arthur and Sergei Vassilvitskii. 2007. K-Means++: The Advantages of
Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (NewOrleans, Louisiana) (SODA ’07). Society for Industrial
and Applied Mathematics, USA, 1027–1035.

[3] Jack Brimberg, NenadMladenović, Dragan Urošević, and Eric Ngai. 2009. Variable
Neighborhood Search for the Heaviest k-Subgraph. Computers & Operations
Research 36, 11 (2009), 2885–2891. https://doi.org/10.1016/j.cor.2008.12.020

[4] Anna Chmielowiec and Maarten van Steen. 2010. Optimal Decentralized Forma-
tion of k-Member Partnerships. In IEEE International Conference on Self-Adaptive
and Self-Organizing Systems. 154–163. https://doi.org/10.1109/SASO.2010.14

[5] Anna Chmielowiec, Spyros Voulgaris, andMaarten van Steen. 2014. Decentralized
Group Formation. Journal of Internet Services and Applications 5, 1 (2014). https:
//doi.org/10.1186/s13174-014-0012-2

[6] Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam
Narayanan. 2022. Improved Approximations for Euclidean K-Means and k-
Median, via Nested Quasi-Independent Sets. In Proceedings of the 54th An-
nual ACM SIGACT Symposium on Theory of Computing (Rome, Italy) (STOC
2022). Association for Computing Machinery, New York, NY, USA, 1621–1628.
https://doi.org/10.1145/3519935.3520011

[7] P. Crescenzi and V. Kann. 1997. Approximation on the web: A compendium of
NP optimization problems. In Randomization and Approximation Techniques in
Computer Science, José Rolim (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
111–118.

[8] Andrzej Czygrinow and Michal Hańćkowiak. 2007. Distributed Approximations
for Packing in Unit-Disk Graphs. In Distributed Computing - 21st International
Symposium, DISC 2007, Proceedings (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics)). Springer Verlag, 152–164. https://doi.org/10.1007/978-3-540-75142-7_14
21st International Symposium on Distributed Computing, DISC 2007 ; Conference
date: 24-09-2007 Through 26-09-2007.

[9] Andrzej Czygrinow, Michal Hańckowiak, and Wojciech Wawrzyniak. 2008.
Distributed Packing in Planar Graphs. In Proceedings of the Twentieth Annual
Symposium on Parallelism in Algorithms and Architectures (Munich, Germany)
(SPAA ’08). Association for Computing Machinery, New York, NY, USA, 55–61.
https://doi.org/10.1145/1378533.1378541

[10] Avis David. 1983. A Survey of Heuristics for the Weighted Matching Problem.
Networks 13 (1983), 475–493.

[11] Harold N. Gabow. 1990. Data Structures for Weighted Matching and Nearest
Common Ancestors with Linking. In Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms (San Francisco, California, USA) (SODA ’90).
Society for Industrial and Applied Mathematics, USA, 434–443.

[12] Shahram Ghandeharizadeh. 2021. Holodeck: Immersive 3D Displays Using
Swarms of Flying Light Specks. In ACM Multimedia Asia (Gold Coast, Australia).
https://doi.org/10.1145/3469877.3493698

[13] Shahram Ghandeharizadeh. 2022. Display of 3D Illuminations using Flying
Light Specks. In ACM Multimedia (Lisboa, Portugal) (MM ’22). Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3503161.
3548250

[14] P. Hell, S. Klein, L. T. Nogueira, and F. Protti. 2005. Packing r-Cliques in Weighted
Chordal Graphs. Annals of Operations Research 138, 1 (2005), 179–187. https:
//doi.org/10.1007/s10479-005-2452-3

[15] Edmonds Jack. 1965. Paths, Trees, and Flowers. Canada Journal of Math. 17
(1965), 449–467.

[16] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. 2009. T-Man: Gossip-
Based Fast Overlay Topology Construction. Comput. Netw. 53, 13 (aug 2009),
2321–2339. https://doi.org/10.1016/j.comnet.2009.03.013

[17] Viggo Kann. 1994. Maximum Bounded H-Matching is Max SNP-Complete. Inf.
Process. Lett. 49, 6 (mar 1994), 309–318. https://doi.org/10.1016/0020-0190(94)
90105-8

[18] David G. Kirkpatrick and Pavol Hell. 1978. On the Completeness of a Generalized
Matching Problem. In Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing (San Diego, California, USA) (STOC ’78). Association for Computing
Machinery, New York, NY, USA, 240–245. https://doi.org/10.1145/800133.804353

[19] Dušan Knop. 2020. Partitioning Graphs into Induced Subgraphs. Discrete Applied
Mathematics 272 (2020), 31–42. https://doi.org/10.1016/j.dam.2019.01.010 15th
Cologne–Twente Workshop on Graphs and Combinatorial Optimization (CTW
2017).

[20] S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Infor-
mation Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/TIT.1982.1056489

[21] Victor Rodrigo Mercado, Maud Marchal, and Anatole Lecuyer. 2021. Haptics
On-Demand: A Survey on Encountered-Type Haptic Displays. IEEE Transactions
on Haptics 14, 3 (2021), 449–464.

[22] Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande,
Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone, Amanda Tan, Katherine
Yelick, Eric Van Dusen, and James Mitchell. 2021. CloudBank: Managed Services
to Simplify Cloud Access for Computer Science Research and Education. In
Practice and Experience in Advanced Research Computing (Boston, MA, USA)
(PEARC ’21). Association for Computing Machinery, New York, NY, USA, Article
45, 4 pages. https://doi.org/10.1145/3437359.3465586

[23] David A. Patterson, Garth Gibson, and Randy H. Katz. 1988. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD
International Conference onManagement of Data (Chicago, Illinois, USA) (SIGMOD
’88). Association for Computing Machinery, New York, NY, USA, 109–116. https:
//doi.org/10.1145/50202.50214

[24] Markus Rank, Zhuanghua Shi, Hermann J. Müller, and Sandra Hirche. 2010. The
Influence of Different Haptic Environments on Time Delay Discrimination in
Force Feedback. In Haptics: Generating and Perceiving Tangible Sensations, Astrid
M. L. Kappers, Jan B. F. van Erp, Wouter M. Bergmann Tiest, and Frans C. T.
van der Helm (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 205–212.

[25] Kenneth Salisbury, Francois Conti, and Federico Barbagli. 2004. Haptic Rendering:
Introductory Concepts. IEEE Computer Graphics and Applications 24, 2 (2004),
24–32.

[26] S. Voulgaris. 2006. Epidemic-Based Self-Organization in Peer-to-Peer Systems.
Ph. D. Dissertation. Vrije Universiteit Amsterdam. Naam instelling promotie: VU
Vrije Universiteit Naam instelling onderzoek: ETH.

[27] TutteW. 1947. The Factorization of Linear Graphs. Journal of LondonMathematics
Society 22 (1947), 107–11.

[28] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2002. An Integrated
Experimental Environment for Distributed Systems and Networks. SIGOPS Oper.
Syst. Rev. 36, SI, 255–270. https://doi.org/10.1145/844128.844152

https://doi.org/10.1145/3587819.3592544
https://doi.org/10.1016/j.cor.2008.12.020
https://doi.org/10.1109/SASO.2010.14
https://doi.org/10.1186/s13174-014-0012-2
https://doi.org/10.1186/s13174-014-0012-2
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1007/978-3-540-75142-7_14
https://doi.org/10.1145/1378533.1378541
https://doi.org/10.1145/3469877.3493698
https://doi.org/10.1145/3503161.3548250
https://doi.org/10.1145/3503161.3548250
https://doi.org/10.1007/s10479-005-2452-3
https://doi.org/10.1007/s10479-005-2452-3
https://doi.org/10.1016/j.comnet.2009.03.013
https://doi.org/10.1016/0020-0190(94)90105-8
https://doi.org/10.1016/0020-0190(94)90105-8
https://doi.org/10.1145/800133.804353
https://doi.org/10.1016/j.dam.2019.01.010
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/3437359.3465586
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/844128.844152

	Abstract
	1 Introduction
	2 Problem Statement and Optimality
	3 Decentralized Group Formation
	3.1 Heuristics

	4 An Implementation
	5 A Comparison
	6 Related Work
	7 Conclusions and Future Research
	Acknowledgments
	References

