L)

Check for
updates

Contextual Associated Triplet Queries
for Panoptic Scene Graph Generation

Jingbin Xu
The University of
Electro-Communications, Tokyo,

Junwen Chen
The University of
Electro-Communications, Tokyo,

Keiji Yanai
The University of
Electro-Communications, Tokyo,

Japan Japan Japan

xu-j@mm.inf.uec.ac.jp

Object
Query

Object
Decoder
Triplet
Query

Transformer Relation
Encoder Decoder

Transformer Triplet
Encoder Decoder

(a) PSGTR

chen-j@mm.inf.uec.ac.jp

Query

Matching
Block

(b) PSGFormer

yanai@cs.uec.ac.jp

Object Relation
Query Query
Subject
Decoder —
Object
Transformer Decoder
Encoder -

SOAG

Relation
MLP Relation

Decoder

(c) CATQ

Figure 1: The comparison of PSG task baseline methods (a), (b), and our method (c). In CATQ we introduce the SOAG module
and Context Fusion block. The red line represents the attention map of cross-attention in the decoder.

ABSTRACT

The Panoptic Scene Graph generation (PSG) task aims to extract the
triplets composed of subject, object, and relation based on panoptic
segmentation. For one-stage methods, PSGTR predicts the subject,
object, and relation by one query. However, the integrated query
is too implicit to simultaneously ascertain pairs of instances and
relations. In PSGFormer, it learns instances and relation queries
separately and establishes matches between subject-relation and
object-relation pairs by employing the relation as an index. Nev-
ertheless, this method could potentially impede the accurate de-
termination of the optimal match. To address the aforementioned
issues, we propose a new one-stage method, Contextual Associated
Triplet Queries (CATQ), which employs three branches to decode
subject, object, and relation features separately. Additionally, we
leverage instance information to guide the relation decoding pro-
cess. Furthermore, we introduce the triplet context fusion block to
enable the extraction of more comprehensive instance pairs and
triplet relations. Our proposed method achieves 34.8 Recall@20
and 20.9 mRecall@20 respectively and surpasses the state-of-the-
art baseline method by 22.5% and 26.0% with half of the training
session.
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1 INTRODUCTION

The Scene Graph Generation (SGG) task [5] aims to generate graph-
structured representations by localizing objects and their pairwise
relationships. The subjects and objects are represented using bound-
ing boxes. However, the utilization of bounding box representation
suffers from two issues. Firstly, the coarse positioning of bounding
boxes can introduce noise, especially when boxes of different cate-
gories are interleaved. Secondly, bounding boxes do not cover stuff
regions such as the background. To address these issues, a novel
variant of the SGG task is proposed, namely Panoptic Scene Graph
generation (PSG) task. For the PSG task, a new dataset, OpenPSG
is introduced. Different from the SGG task, the annotation is a
pixel-level segmentation mask instead of the rigid bounding box.
Similar to the SGG task, the PSG task can be categorized into two
paradigms: one-stage and two-stage methods. Specifically, the two-
stage methods [10, 13, 15, 17] are derived from the SGG task and
are adapted to the PSG task. With the advancements of transformer
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Figure 2: This figure illustrates the overall architecture of the proposed method, CATQ.

encoder-decoder architecture [14] in object detection, transformer-
based detection method DETR [2] is adapted to two kinds of one-
stage PSG task baselines PSGTR [16] and PSGFormer [16].

As shown in Figure 1(a), PSGTR utilizes highly integrated triples,
which are represented by a single type query. Predictions for both
instances and relations are made through this query. However,
this implicit approach incurs instability in the learning process
of each query. For example, the same query may correspond to
different triples at each iteration, which may lead to slow conver-
gence. In Figure 1(b), PSGFormer extends explicit relation modeling
with a query-matching mechanism. It employs a parallel method
to independently learn instance and relation queries. Then, an
instance-relation matching block is used to pair subjects and ob-
jects with relations and then computes the cosine similarity to find
the optimal results. PSGFormer simply matches subject-relation and
object-relation pairs using the relation as an index, thus potentially
hindering the identification of the best match. In this paper, we
focus on improving the architecture of baseline one-stage methods
to achieve higher accuracy and faster training accuracy.

For a more precise division of labor and to increase the predictive
influence of objects on relationships, we propose a new one-stage
method CATQ, which is illustrated in Figure 1(c). In summary, the
contributions of our work are threefold.

e We propose a new one-stage framework for PSG, CATQ,
which leverages contextually associated triplet quires to bet-
ter extract the semantic information in the context.

o We introduce a novel attention operation module to enhance
the global context features with the guide from attention
maps of multiple branches.

o With our proposed triplet query architecture and global fea-
ture enhancement module, our method, CATQ outperforms
baseline methods with large margins and half of the training
schedule.

2 RELATED WORK

One-stage Scene Graph Generation. SGTR [8] stands as the
pioneering one-stage Scene Graph Generation method that adopts
a transformer architecture. Analogous to PSGFormer, SGTR also
disentangles the decoding of instances and relations. However,
in contrast to PSGFormer, SGTR places its emphasis on relation-
ship prediction by leveraging ample object context information. To

achieve this, SGTR introduces two types of object decoders. The
first decoder solely relies on image features for decoding, while the
second decoder employs iterative decoding in conjunction with re-
lation prediction. This approach ensures that relations are predicted
within a rich object context. RelTR [4] introduces a methodology
where the embedding of triples is coupled with the subject and
object embeddings. These coupled embeddings are then decoded
using a combination of coupled and decoupled attention modules.
Finally, the triplets are directly predicted utilizing the triplet embed-
ding. This approach introduces object pairs contextual information
into the triplet query during the pairing and decoupling procedure.

In the SGTR and RelTR, decoding instances and relations are
executed distinctly. Inspired by the multi-branch design of SGG
approaches, our method adopts a three-decoder architecture with
triplet queries to better extract features of specific targets.

3 METHOD

The architecture of CATQ is shown in Figure 2, we adopt a separat-
ing instance decoding strategy to enable more expressive decoding
for the subject and object instance in a triplet. This separation al-
lows the subject and object to focus on distinct instances as much
as possible. To leverage the contextual information from instances
during relation prediction, we introduce a Subject-Object Atten-
tion Guide(SOAG) module, which extracts the visual information
from entities and utilizes it to guide the learning process of relation
queries. Lastly, we incorporate a context fusion module to enrich
the completely separated triple queries with additional contextual
information.

3.1 Image Encoding

Following the DETR [2] encoding process, we employ a transformer
encoder with a CNN backbone as the feature extractor to obtain
global visual features from the input images. Given an input image
X € REXWX3 the CNN backbone is employed to extract an image

feature map f € REKs X%X37  This feature map is subsequently
tokenized by flattening and feed into the transformer encoder to
produce the global visual feature V' € RT*D , where T and D are
the numbers of image tokens and channel dimension.
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Figure 3: This figure illustrates the architecture of the SOAG module. The subject and object parameters are learnable weights

and are used to balance the attention of different attention maps.

3.2 Triple Decoder

We divide the decoding process into three branches corresponding
to the decoding of each element of the triplet. As for the inputs,
we utilize the global visual features V obtained from the encoder
as the source input for both the subject and object branches. Ad-
ditionally, we employ completely independent learnable queries
0 € RNa*D 45 the embedding input for both the subject and ob-
ject branches. The embedding input of the relation branch remains
the same as that of the instance branches. The source input for the
relation branch is obtained from the SOAG module discussed in Sec-
tion 3.3. The outputs of the three branches, 05, 09, OR € RNa*D
correspond to the embeddings of the subject, object, and relation,
respectively.

3.3 Subject-Object Attention Guide (SOAG)

In CATQ, the source inputs for two instance branches are directly
from the feature extractor, while the relation branch uses a refined
source input. This disparity arises from our intention to facilitate
the learning of relations, wherein we aim to guide the relation
acquisition using object-specific information as prior knowledge.
This strategy avoids spending attention on unnecessary objects
during the relation decoding. Hence, we introduce the Subject-
Object Attention Guide (SOAG) module, the architecture of SOAG
is in Figure 3. The Guided feature Vj; is calculated as:

Vg = LN(MI™* o V) 1)

MY = o(Norm(MaxPooling ({Mg"%*, MJ"**}))) (2)

Ng
M =% M 0w k e {s,0} 3)

i=1
where the attention maps M;, M, € RNa*T are derived from the
cross-attention of the subject and object decoder in the last layer.

Ws and W, are learnable parameters initialized to shape RNa.

Firstly, we calculate the Hadamard product (o) on each attention
map M;; with a learnable parameter Wki and then add the Ny at-
tention maps together to get M™®*, M7%% € RT. Then, we stack
M and M*** and apply max pooling on the result matrix to

obtain the instance maximum attention M{"y**. After normalization
and activation, we calculate the Hadamard product between the
instance maximum attention M{g** and the global visual feature
matrix V. Finally, the result is passed through a LayerNorm oper-
ation [1], to obtain the output relation guide feature, denoted as
Vy. This output serves as the refined source input for the relation
decoder.

3.4 Context Fusion Block

For the architecture of multiple interrelated decoders, recent stud-
ies [6], [3], [18] have found that the use of an attention-based
embedding fusion method can effectively improve the performance
of the final prediction heads. Inspired by [6], we incorporate a con-
text fusion module that effectively adds contextual relationships to
each embedding from the triple decoder.

The outputs of the three branches can be considered as unary
relations, where each relation only contains its specific information
and lacks contextual information. Above this, we can also define the
pairwise and ternary relations, enabling contextual relationships
between elements within triples. Specifically, the unary embedding
is defined as:

funary = {0%,0°, 0%} )

the pairwise embedding is calculated as:

frairwise = {MLP([Q%;0°1), MLP([Q®; OR]), MLP([Q%; OF])}

®)

the ternary embedding is initialized as:
frernary = MLP([Q®:Q%: Q1) (©)
RSqu XD

Then the self-attention is applied to funary, fpairwise €

respectively, resulting in the generation of fynary and fpairwise-

funary = SelfAttn(funary),]foairwise = SfflfAttn(fpairwise) (7

Subsequently, we apply the result of cross-attention between ﬁmary

and fiernary € RNg*xD through cross-attention with fnairwises re-
sulting in the generation of feonzex:-

fcontext = CrOSSAttn(CrOSSAttn(ﬁmary,ﬁ‘ernary)»f;)airwise) (8)
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Method ‘ Backbone ‘ Recall@20  Recall@50 Recall@100 ‘ mRecall@20 mRecall@50 mRecall@100 PQ
Two-stage
IMP [15] ResNet-50 16.5 18.2 18.6 6.5 7.1 7.2 40.2
MOTIES [17] ResNet-50 20.0 21.7 22.0 9.1 9.6 9.7 40.2
VCTree [13] ResNet-50 20.6 22.1 22.5 9.7 10.2 10.2 40.2
GPSNet [10] ResNet-50 17.8 19.6 20.1 7.0 7.5 7.7 40.2
One-stage
PSGTR' [16] ResNet-50 28.4 34.4 36.3 16.6 20.8 22.1 13.9
PSGFormer’ [16] | ResNet-50 18.0 19.6 20.1 14.8 17.0 17.6 36.8
CATQ ResNet-50 34.8 39.7 40.3 20.9 24.9 25.2 35.9

Table 1: A comparison between CATQ and PSG baseline methods on the OpenPSG dataset. T denotes the model fine-tuned with

60 epochs.

Next, we compute the cross-attention between the global visual
feature V and feontext-

ﬁontext = CrOSSAttn(V: fcontext) (9)

After obtaining the fcomext with visual information, we add this
context information to the output of each branch like Eq.10.

lef)ntext = MLP(feontext Qk), k € {S,0,R} (10)

3.5 Training and Inference

During the training process, we extend the Hungarian matching
technique used in DETR [2] for the triplet matching. The matching
cost between the ground-truth triplets and the predicted triplets
is determined by considering both segment matching, denoted as
3¢9, and class matching, denoted as Hels,

Cn(TiGi) = ), H+

clse{S,0}

Z H: (11)

sege{S,0,R}

Here, 7 represents the predicted triplets, while G represents the
ground truth triplets. After the matching process, the final loss is
computed by applying the Focal loss [9] for class labels and the
DICE loss [12] for segmentation.

4 EXPERIMENTS

4.1 Dataset

We conducted the experiments on the OpenPSG dataset, which
has a total of 48,749 labeled images including 2,177 test images
and 46,572 training images with panoptic segmentation and scene
graph annotation. The object categories comprise 80 thing classes
and 53 stuff classes. The relation categories comprise 56 classes.

4.2 Implementation Details

The weights of the subject and object decoder are initialized from
DETR pre-trained on the MS-COCO dataset. The AdamW [11]
optimizer is used with a learning rate of 10~% and a weight decay
of 1074, The training is performed on 8 NVIDIA A6000 GPUs, with
a batch size of 8 (1 image per GPU).

SOAG Recall@20 Recall@100
v 34.75 40.26 20.87 25.19
- 33.44 38.89 20.23 24.20

Table 2: Ablation comparison of the SOAG module.

mRecall@20 mRecall@100

4.3 Comparison to State-of-the-Arts

Table 1 presents a comprehensive comparison of our method with
the current PSG approaches on the OpenPSG dataset. We adopt
Recall@K and mean Recall@K (mRecall@K) as our primary evalua-
tion metrics and PQ [7] is used as the evaluation metric for panoptic
segmentation. Our method achieves remarkable performance, sur-
passing the best-performing PSGTR model by 22.5% in terms of
Recall@20 and 26.0% in terms of mRecall@20. Additionally, our
proposed method achieves convergence in just 30 epochs.

4.4 Ablation Studies

Contributions of SOAG In Table 2, we compare the presence
and absence of the SOAG module. It clearly indicates that the inclu-
sion of the SOAG module leads to improved performance compared
to its absence, i.e.+4% in R@100 and +4% in mR@100. This finding
provides evidence supporting the effectiveness of the SOAG module
in improving the performance of the relation prediction task.

5 CONCLUSION

In this paper, we propose a novel one-stage approach for Panoptic
Scene Graph generation. We separate the triple branches used to
explicitly learn the elements of the triplets. To enhance relation
learning, we incorporate an attention guidance module called SOAG,
which leverages object-specific visual attention to guide relation
prediction. Furthermore, we integrate a context fusion module to
incorporate contextual information into the three parallel queries
that have been comprehensively learned in the subtask. The exper-
imental results presented in this study showcase the remarkable
performance of our proposed method on the OpenPSG dataset.
Acknowledgments: This work was supported by JSPS KAKENHI
Grant Numbers, 21H05812, 22H00540, 22H00548, and 22K19808.
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