
Computer Systems J.P. Hayes
and Architecture Editor

Models for Parallel Processing
Within Programs:
Application to CPU:I/O and
I/O:I/O Overlap
D. Towsley, K.M. Chandy, and J.C. Browne
The University of Texas at Austin

Approximate queueing models for internal parallel
processing by individual programs in a
multiprogrammed system are developed in this paper.
The solution technique is developed by network
decomposition. The models are formulated in terms of
CPU:I/O and I/O:I/O overlap and applied to the
analysis of these problems. The percentage
performance improvement from CPU:I/O overlap is
found to be greatest for systems which are in
approximate CPU:I/O utilization balance and for low
degrees of multiprogramming. The percentage
improvement from I/O:I/O overlap is found to be
greatest for systems in which the I/O system is more
utilized than the CPU.

Key Words and Phrases: multiprogramming,
parallel processing, queueing network models,
multiprocessing of computation and I/O

CR Categories: 4.32, 8.1

1. Introduction

This paper develops approximate queueing models
for internal parallel processing by individual programs
in a multiprogrammed system. The models are formu-
lated in terms of the familiar CPU:I/O and I/O:I/O
overlap problems, although they are generally applicable
to the study of parallel processing. The accuracy and
validity of the models are carefully analyzed. The models

Permission to copy without fee all or part o f this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' address: Dept. of Computer Sciences, The University of
Texas at Austin, Austin, Texas 78712.
© 1978 ACM 0001-0782/78/1000-0821 $00.75

821

are then used to analyze the performance improvement
to be expected from implementation of CPU:I/O and
I/O:I/O overlap in multiprogrammed systems.

There is rising interest in the application of parallel-
ism within programs. As mini and microcomputer sys-
tems become cheaper, there will be a growth of multi-
programming systems. In these circumstances, increasing
levels of parallelism may have marked effects on per-
formance measures. Further applications of parallelism
may be found in recent database system design. Interest
has arisen in the design of database systems in which
complex queries are processed by being broken up into
simple queries all to be processed in parallel. The most
significant current application of parallelism is in
CPU:I/O overlap in data processing applications on
conventional computer systems. Most major operating
systems offer the capability for a job to overlap its own
I/O. These facilities are not commonly used. It is also
the case that the performance benefits which may be
derived, and the circumstances under which performance
improvement may be obtained, are poorly understood.
The study of parallel processing within individual pro-
grams has been hindered by the dearth of accurate
models for processes which execute simultaneously on
more than one processor. The queueing network model,
the most widely used computer system modeling tech-
nology, is almost always formulated with the assumption
that a program (job) executes serially on the several
processors (queues, servers) of the model system. These
models do not allow a program to hold more than one
processor simultaneously. There have been two previous
studies which have attempted to generalize network
models to include parallel processing by an individual
program within a multiprogrammed system. Peterson
and Bulgren [18] construct Markov models which are
applicable to systems including multiple buffering for
several I /O stations (CPU:I/O overlap). The applicabil-
ity of these models is limited to small systems because of
the state space explosion problem. Price [19] develops
models for multiple buffering of a single file per program
and for the case where the file set of program shares a
common pool of buffers. Price also analyzes the effect of
CPU service-time distribution on the effectiveness of
multiple buffering. Maekawa and Boyd [17] have
modeled a number of cases of CPU:I/O overlap. These
authors investigated the effects of service rate distribu-
tions and to a limited extent the effect of CPU scheduling
disciplines. Related papers that treat parallel processing
of CPU's in multi-CPU systems are [4] and [22].

This paper presents models for multiprogrammed
systems in which programs may either partially or com-
pletely overlap CPU and I/O processing and where two
I/O activities may partially or completely overlap among
themselves and CPU processing. These model systems
admit of exact solution for a class of systems and of
inexact, but very accurate, solution for a wider class of
models. The accuracy and validity of these models have
been carefully verified by validation against detailed

Communications October 1978
of Volume 21
the ACM Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359619.359622&domain=pdf&date_stamp=1978-10-01

simulations and against actual operation of a multipro-
grammed computer system.

The domains of degree of overlap, degree of multi-
programming, and system resource utilization where-
CPU:I/O and I/O:I/O overlap produce significant per-
formance gains are determined. The percentage perform-
ance improvements are found to be greatest for systems
which are in approximate CPU:I/O utilization balance
for CPU:I/O overlap for very low degrees of multipro-
gramming, and for systems in which the I /O is heavily
utilized for I/O:I/O overlap.

The structure of this paper is as follows. In Section
2, we summarize fundamental concepts in queueing
network analysis including central server models (Figure
1) in local balance, and describe "'Norton's Theorem." In
Section 3, we present a simple CPU:I/O overlapped
processing structure for a single program and present a
model for the analysis of central server networks popu-
lated by these programs. Section 4 presents a similar
model for the overlap of two I /O and CPU activities. In
Sections 6 and 7, we present comparisons between sys-
tems with and without either CPU:I/O or I /O:I/O
overlap.

2. Local Balance and Norton's Theorem

The model solution techniques developed in this
paper are based on three fundamental concepts: the
central server model [1, 5], local balance [2, 6, 9] and
"Norton's Theorem" [7]. A brief exposition of these
concepts is included for ease of reading the subsequent
discussion.

The central server model (Figure 1) is a commonly
used queueing network representation of multipro-
grammed computing systems (without CPU:I/O over-
lap). The CPU and I /O devices are represented explicitly
as servers (circles in Figure 1) and jobs queue up in
separate queues for the different servers. There is a fLxed
number of jobs in the system; this number is referred to
as the degree of multiprogramming. Main memory is
treated implicitly in the model by adjusting the degree
of multiprogramming. A job may be waiting for, or
receiving service from, one of the servers. When a job
completes CPU service, it branches to an I /O device
with a fLxed probability, independent of the state of the
system. The model is generally used to compute steady-
state values for performance metrics such as device
utilization, mean response times and queue length dis-
tributions. This simplistic representation of complex sys-
tems has been shown to be useful in several studies of
real systems; see [3] or [20], for example. Perhaps more
importantly, the model helps provide insight into the
relationships between key performance parameters.

A central server network [5] is in local balance if (1)
the branching probabilities depend only on the job class
and I /O device; (2) the service disciplines are either first
come first serve (FCFS), processor sharing (PS), infinite

822

Fig. 1. The central server model.

<

I Io
QUEUE I /0 DEVICE

ceu I/O

,-l-l-l@ /

server (IS), or last come first serve preemptive resume
(LCFSPR); (3) processors with the FCFS discipline have
exponential service distributions with a mean independ-
ent of the job class; (4) processors with PS, IS, or
LCFSPR disciplines have arbitrary differentiable distri-
butions [9] which may differ between job classes. If the
above criteria are met, the network has a steady-state
solution of the product form [2, 9]. For a thorough
discussion of systems which satisfy local balance, see
[9]. Efficient computational procedures exist for product
form solutions which make locally balanced networks
easy to analyze [5].

One of the consequences of local balance is a theorem
analogous to Norton's Theorem in electrical circuit the-
ory [7]. The theorem allows the transformation of a local
balance central server network into a two-queue network
containing the original CPU and a "composite I /O"
which represents all the effects of the I /O subsystem in
the original model, Figure 2. The CPU steady-state
thruput, mean wait time, and queue length distribution
for the two-queue network remain identical to those of
the original network. The transformation of the I /O
subsystem into a composite I/O is independent of the
CPU parameters. Thus a study of the original network
under a variety of CPU parameters is easily done by
studying the CPU/composite-I/O network. This attri-
bute of simple parametric analysis of the CPU will also
apply to our approximation models.

The models of this paper use only one job class; i.e.
all jobs have the same service distributions and branch-
ing probabilities. Therefore we present a description of
Norton's Theorem for a single job class. Assume there
are N identical jobs. The composite I /O service rate at
any time depends upon the number of jobs in the I /O
subsystem (or equivalently the composite I /O queue) at
that time. These composite I/O service rates can be
determined by analyzing the original network when the
CPU has been "shorted" (Figure 3). Shorting the CPU
is accomplished by setting the CPU service time to zero.
The composite I /O service rate when there are N jobs in
the composite I/O queue is set to the thruput of the jobs
through the shorted CPU when there are N jobs in the
shorted CPU model. The CPU/composite-I/O model
with the same CPU parameters as in the original model

Communicat ions October 1978
of Volume 21
the ACM Number 10

Fig. 2. The CPU/composite-I/O system derived by applying Norton's
Theorem.

CPU CPU]
QUEUE DEVICE COHPOSITE I/O QUEUE

:-I-I-lO
Fig. 3. Shorting out the CPU: applying Norton's Theorem.

cPo ibl,,\ /

I I/O QUEUE I/0 DEVICE
L. J

and these queue length dependent composite I /O service
rates produce CPU statistics identical to those of the
original model.

Example. Consider a local balance central server
network with three identical jobs and two I /O devices.
Each job has equal probability of going to either I /O
device. The mean service times for I /O devices 1 and 2
are 1.0 and 2.0 respectively. With the CPU shorted out
and n = 1, 2, 3 jobs in the network, the thruput through
the shorted CPU is 2/3, 6/7, and 14/15 respectively. The
composite I /O with n jobs in the queue, n = 1, 2, 3, has
service rates 2/7, 6/7, and 14/15 respectively, in the
CPU/composite-I/O network. Both the original model
and the CPU/composite-I/O model give identical equi-
librium queue length and mean wait time statistics.

3. A CPU:I /O Overlap Model

The assumption normally made in a central server
network model [5] is that a job alternates between CPU
and I /O activities. The job may be thought of as repeat-
ing cycles, where each cycle (Figure 4) consists of two
tasks: a task requiring use of the CPU followed by one
requiring use of an I/O. In an overlapped system the
cycle is more complex: for example (Figure 5), a cycle
may consist of three tasks, two of which require the use
of the CPU while the other requires an I/O; furthermore,
one of the CPU tasks must be completed before the other
two tasks can be initiated. We model the structure of the
cycle by a single input, single output precedence graph.
A cycle consisting of K tasks indexed 1 K is repre-
sented by a graph with K vertices, where the ith vertex
represents the ith task. The identity of the processor
required by each task is written next to the corresponding
vertex. If task j cannot be initiated until task i is com-
pleted, then there must be a directed path from i to j in
the graph. There is a path from the input point to every

82.3

Fig. 4. Task precedence graph for nonoverlapped processing.

INPUT

p
i

cP=.L
TASK

I s K._
cPu 1
TASK

PRECEDES I .,~

.o : •
TASK:k"

[/o/ '- A
TASK

i OUTPUT

T
CYCLE

Fig. 5. Job modelfor CPU-I/Ooverlap.

. uz

(CPU ~ CPU
TASK

POINT !

. - - A

• OUTPUT

CYCLE

1
vertex in the graph, and a path from every vertex to the
output point. It is convenient to introduce fork points
and probabilistic branch points into the graph. A vertex
has exactly one edge leading out of it; this edge may
terminate at another vertex or at a fork, probabilistic
branch, or output point. Branch points and forks have
two or more edges leading out of them. Associated with
each edge leading from a probabilistic branch point is a
probability and a distinct single input, single output
subgraph shown in the diagrams in dotted lines. (The
subgraph may consist of a single edge joining the input
and output points.) When execution reaches a probabi-
listic branch point, one and only one of the output edges
is selected (with the appropriate probability) and the
subgraph associated with that edge must be processed;
the subgraphs associated with all the other edges leading
from the branch point are not processed. All probabilistic
branch subgraphs have a common output vertex, and a
common input vertex, viz. the probabilistic branch point.

After execution reaches a fork point it must proceed
along each and every one of the edges leading out of the
fork. We assume that we are given service time distri-
butions for each task in the cycle and that service times

Communications October 1978
of Volume 21
the ACM Number 10

Fig. 6. State transitions of a single job in the CPU: I /O overlap case.

u2

and branching probabilities are independent of the state
of the system.

We depart from the sequential cycle structure of the
usual central server model by allowing a job the capa-
bility of overlapping some of its CPU activity with I/O
requests. A reasonable structure is to allow a job to have
two CPU tasks (Figure 5), one which is not overlapped
with any I/O (CPU 0 and a second task (CPU2) which
is overlapped with an I/O request. During CPUa, the job
partakes only in CPU activity, possibly setting up buffers
for an impending I/O request. At the end of this task,
the job initiates both an I/O request and the second
CPU task, CPU2. The second CPU task and the I/O
may be processed in parallel. Only upon completion of
both I/O and CPU2 does the job revert to CPU1 and
repeat the cycle.

We assume, for ease of solution, that the service times
for each task are exponentially distributed. The Marko-
vian state transition diagram for one job with an over-
lapped processing structure is found in Figure 6. The
mean service times for CPU1, CPU2, and I/O are 1//~,
1//x2, and 1/2, respectively. A job may be in one of the
following four states:

(1) CPU1 CPU executes first task (I/O idle)
(2) CPU2 CPU executes second task (I/O idle)
(3) I/O I/O executes (CPU idle)
(4) CPU2-I/O CPU executes second task in parallel

with I/O execution

The above model suffers one of the flaws of Price's
models. It assumes that a job will attempt to overlap all
its I/O activity with CPU2. A more realistic model
should allow a mixture of sequential and overlapped
processing. Let p be the probability that a job, upon
completion of CPU1, requires overlapped processing of
CPU2 and I/O. Then, ,b = 1 - p is the probability that
a job, upon completion of CPU1, initiates I/O and
relinquishes the CPU. The process state graph is found
in Figure 7 and the Markov state transition diagram in
Figure 8. We will refer to this as CPU:I/O overlapping.
A model which exhibits overlapping generally does not

824

Fig. 7. A more realistic CPU: I /O overlap model.

I INPUT

FORK

i/o
TASK

CPU TASK

PROBABILISTIC
BRANCH POINT

TASK

OUTPUT

k

~2

Fig. 8. State transitions for a single job with the realistic overlap
model.

satisfy local balance, forcing us to resort to approxima-
tion methods.

A central server network with one I/O device and
identical jobs exhibiting CPU:I/O overlapping can be
solved exactly when the queueing disciplines are all
FCFS. We can apply a recursive technique similar to
that of Herzog, Woo, and Chandy [12] to this two-queue
model. This technique provides CPU utilization U0,
CPU thruput To, mean CPU queue length ;/, and mean
CPU wait time fi,. The details of the two-queue analysis
may be found in [25].

A central server network with an arbitrary number
of I/O devices and identical jobs each with CPU:I/O
processing can be solved approximately by reducing it to
a two-queue network via Norton's Theorem and then
using the above techniques. The details are found in the
following algorithm.

Algorithm
Step 1. Obtain composite I / O service rates. Consider the given central

server model. Construct the shorted CPU model in which there
is no overlap, all I /O times are exponential, and the CPU
service time is set to zero. This shorted CPU model satisfies

Communicat ions October 1978
of Volume 21
the ACM Number 10

local balance and is easily analyzed. Determine queue depend-
ent, composite I /O service rates by analyzing the shorted CPU
model.

Step 2. Solve the two-queue, CPU/composite-1/O model exactly via
recursive techniques. The processing structure and CPU param-
eters are identical to those of the original model. The compos-
ite-I/O parameters are specified by Step 1. This completely
specifies the two-queue model. Analyze this model to deter-
mine U0, To, ~, fv.

Example. Consider the two I/O models from the first
example. Assume the jobs have processing structures
identical to that in Figure 5 with the means for C P U 1 ,

CPU2 each 1.
Step 1. The composite I /O service rates (from Section 2) when there

are n jobs, n = 1, 2, 3 in the composite I /O queue are 2/3, 6-
7, and 14/15 respectively.

Step 2. We now have a two-queue model. This model is solved using
the techniques presented in [T1] to obtain U0 = 0.8, To = 0.8,
f / = 1.2, and fv = 1.6.

4. An I/O:I/O Overlap Model

We consider jobs which may initiate two consecutive
I/O requests before relinquishing the CPU. We assume
the processing structure illustrated in Figure 9. There are
two CPU tasks subscripted 1 and 2 in this structure. At
the end of CPU1, the job initiates one I/O request and
may start the second CPU task (CPU2). At the end of
CPU2, the job initiates a second I/O request and relin-
quishes the CPU. Only upon completion of all I/O
requests, does the job reenter CPU1 and repeat the cycle.
This is illustrated by the fork and join subgraph in Figure
9. We assume a job initiates two parallel I/O requests
(and enters the subgraph) with probability p. The other
branch in Figure 9 is traversed when the job initiates
only one I/O request. This occurs with probability p =
1 - p. We will refer to this as I/O:I/O overlapping.

If the times for each task are exponential, the behav-
ior of the job is governed by a Markov process. The
Markov state transition diagram for the job running
alone is illustrated in Figure 10. In this case the mean
service times for CPU1, CPU2, and I/O a r e 1 /~1, 1//.t2,

and 1/~ respectively. The state space includes: three no-
overlap states (CPU1, CPU2, I/O), the state in which the
job is processing two I/O requests (2 I/O), and the state
in which the job is processing CPU2 and I/O
(CPU2-I/O).

A central server network with one I/O device and in
which all jobs have the same precedence graph can be
solved exactly when the CPU queueing discipline is
FCFS and the I/O discipline is PS. The solution tech-
nique is similar to that of Herzog, Chandy, and Woo [12]
and may be found in [25].

A central server network with an arbitrary number
of I/O devices, customers with identical I/O:I/O proc-
essing and all FCFS queueing disciplines may be solved
approximately. The technique is similar to that of the
algorithm in Section 3 and consists of using Norton's
Theorem to reduce the network to a two-queue network,

825

Fig. 9. Model o f a j o b with I / O : I / O overlap.

mm, iNPUT

CPU TASK

PROBABILISTIC BRANCH POINT

r

cPU(
TASK

I/O

TASK

i/o !
TASK

POIN' t. L 1

OUTPUT

BRANCHES JOIN

Fig. 10. State transitions of a single job with I/O: I /O overlap.

where the PS discipline is used by the composite-I/O.
The resulting two-queue network is solved using algo-
rithms in [25] to determine U0, To, ~, and fv for the CPU.

5. Validation of Overlapped Process ing Mode l s

To validate the queueing model we compared the
performance measures predicted by the model with those
obtained from simulation and from measurements made
on a real system running a synthetic job load. We shall
discuss the simulator now and the measurements later.
We wrote a simulator to model arbitrary central server
networks with CPU:I/O or I/O:I/O overlap, using the
simulation lang,age Aspol [11].

We compared the CPU utilization, mean queue
length, and mean wait time for the analytic and simula-
tion models. These comparisons are couched in terms of

Communications October 1978
of Volume 21
the ACM Number 10

two parameters: error tolerance z and level of confidence
p. These parameters are defined later. We first deter-
mined values U0, q0, and Wo for the utilization, mean
queue length, and mean wait time respectively, obtained
from the queueing model.

We then made several independent runs of the sim-
ulator. We initially experimented with the length of each
run to ensure that the runs were long enough to yield
credible results. Results from Smith [24] and Lavenberg
[15] on the statistics of Markovian processes allow us to
assume that the point estimates for the performance
metrics obtained from the simulation have the t-distri-
bution [16]. The parameters of this distribution are com-
puted from the point estimates obtained from the inde-
pendent runs. From this distribution we computed the
probability P,(z) that the point estimate for the CPU
utilization for any given run will lie in the interval
[Uo/(I + z), U1/(I - z)] where z is the tolerance; in our
experiments, z was usually set to 0.05. We also computed
pq(g), the probability that the point estimate for mean
CPU queue length for any given run will lie in the
interval [q0/(l + Nz), qo/(l - Nz)] where N is the degree
of multiprogramming (i.e. the job population). We also
computed p,,(z), the probability that the mean wait time
obtained from a simulation run will be in the interval
[W0/(l + Toz), Wo/(l - T0z)] where To is the mean cycle
time obtained from the analytic model. Define p(z) =
min[p,,(z), pq(Z), p~,,(z)]. We postulate the hypothesis that
the analytic model is within tolerance z = 0.05 of the
simulation model with probability p(z) >_ 0.90. This
definition of tolerance was motivated by a similar defi-
nition in a paper by Chandy et al. [8].

We ran 36 CPU:I /O overlapped processing models
to test the hypothesis. In general these models were fairly
well balanced, though several were either strongly CPU-
bound or I /O-bound. Most models were constructed to
show strong overlap patterns. For z = 0.05, the hypoth-
esis fit all the models with p(z) >_ 0.90. A nonoverlap
(Sauer-Chandy) model [21], for the same hypothesis, fit
only 16 of the 36 models with p(0.05) _> 0.90.

The nonoverlap model was parameterized in the
following way. The mean and coefficient of variation for
the CPU service time requirements for each I /O request
were calculated from the overlap model CPU time re-
quirements and used to construct a multiexponential
stage CPU service time distribution for the
Sauer-Chandy nonoverlap model. All other parameters
were set equal to those for the overlap model. Table I
presents some results for three models.

We also ran 60 I /O: I /O overlapped processing
models. Again, most were well balanced, but some were
either strongly CPU or I /O bound. Most were con-
structed to show strong overlap behavior. For z = 0.05,
the hypothesis fits all but one model with p _> 0.90. For
z = 0.06, the hypothesis fits the deviant model with p
_> 0.90. The nonoverlapped model, for the same hypoth-
esis, fit only 13 of the 60 cases with p _> 0.90. Table II
presents results for three models.

Table I. CPU: 1/O overlap.

Number of Customers 2 4 8

CPU utilization (approximation model)
(simulation model)
(nonoverlap model)

CPU mean queue length (approximatxon
model)

(simulation model)
CPU mean wait time (ms) (approximation

model)
(simulation model)

CPUa mean service (ms)
CPU2 mean service (ms)
Probability of overlap
I /O 1 mean service (ms)
Branching probability
I /O 2 mean service (ms)
Branching probability
I /O 3 mean service (ms)
Branching probability
I /O 4 mean service (ms)
Branching probability

0.54 0.74 0.90
0.52 0.73 0.93
0.46 0.68 0.88
0.78 1.67 3.84

0.72 1.57 3.94
14.60 22.70 42.60

13.60
0.00

10.00
1.00
6.00
0.10
7.50
0.10
1.50
0.50
2.00
0.30

21.30 43.00

Table II. I /O:I/O overlap.

Number of Customers 2 4 8

CPU utilization (approximation model) 0.470
(simulation model) 0.460
(nonoverlap model) 0.400

CPU mean queue length (approximation 0.600
model)

(simulation model) 0.590
CPU mean wait time (ms) (approxima- 12.800

tion model)
(simulation model) 12.700

CPU1 mean service (ms) 10.000
CPU2 mean service (ms) 0.000
Probability of overlap 1.000
I /O 1 mean service (ms) 30.000
Branching probability 0.125
I/O 2 mean service (ms) 30.000
Branching probability 0.125
I /O 3 mean service (ms) 15.000
Branching probability 0.250
I /O 4 mean service (ms) 8.000
Branching probability 0.500

0.67 0.85
0.67 0.86
0.59 0.76
1.29 2.99

1.29 3.01
19.10 35.00

18.30 35.50

We ran six synthetic job mixes on a CDC 6400
configuration for further validation of the overlapped
processing models. The configuration consisted of a
CDC 6400 mainframe with 65,536 60-bit-words of main
memory, seven peripheral processors, and two CDC 808
disk drives with associated controllers and channels. The
job mixes were designed to fit entirely into main memory,
allowing us to model the system as a simple two-I /O
central server network with a constant level of multipro-
gramming. The I /O's had FCFS disciplines and the
CPU had a round robin discipline with a t'Lxed quantum
of 16 ms. We approximated the CPU scheduler as FCFS
in our analysis.

We ran three job mixes for each model, composed of
1, 2, or 4 identical synthetic programs. The level of

826 Communications October 1978
of Volume 21
the ACM Number 10

Table III. Job Mix Parameters.

Level of
Multiprogram- Mean 1

ming (ms)

CPU

Mean 2 Probability of
(ms) Overlap

CPU: I / 0

1/0 1 I / 0 2

Branching Mean Branching Mean
Probability (ms) Probability (ms)

1 8.0 26.6 1.00
2 8.0 26.2 1.00
4 8.0 25.7 1.00

1.0 46.1 0 . 0 - -

0.5 42.0 0.5 43.5
0.5 43.9 0.5 37.6

Level of
Multiprogram-

ming

CPU

Mean 1 Mean 2 Probability of
(ms) (ms) Overlap

I/O: I/O

l/O 1 I / 0 2

Branching Mean Branching Mean
Probability (ms) Probability (ms)

l 78.6 9.0 1.00
2 67.5 9.0 1.00
4 67.6 9.0 1.00

0.5 35.2 0.5 35.8
0.5 39.9 0.5 39.6
0.5 38.0 0.5 45.8

multiprogramming 4 was chosen as being typical. The
levels 1 and 2 were chosen to show maximum effects of
overlap. The programs were written in Fortran and the
CDC assembly language Compass using a local I /O
software package, IOP [10]. lOP allows the user the
option of nonoverlapped I /O or CPU:I /O overlap. We
wrote two synthetic programs, one for each model, with
the probability of overlap set to 1. The CPU:I /O over-
lapped program was written so the time for CPU2 was
approximately exponential, and so that CPU1 repre-
sented the time necessary for IOP to set up the actual
I /O transfer (a constant 8 ms). The I /O: I /O overlapped
program was written so that CPU1 was nearly exponen-
tial, and so that CPU2 was the time to set up a data
transfer (a constant 9 ms). In both programs, I /O con-
sisted of transferring 512 60-bit words either from or to
the disk. Each I /O request consisted of a seek, rotational
delay, and the actual data transfer. The seek time and
rotational delay were each uniformly distributed and the
transfer time was constant. The I /O: I /O overlap pro-
gram was written so that the two I /O requests were to
separate disks. The nonoverlapped models were pa-
rameterized in the same way as for the simulation vali-
dations. The exact parameter values for the models were
obtained from event trace data and are found in Table
III.

The results from the overlap and nonoverlap models
with parameters from Table III are found in Table IV.
The results from the overlap model are remarkably good
considering the various service distribution and service
discipline approximations. In most cases, the tolerance
for each performance measure was 0.05 forp ___ 0.90. The
CPU mean wait time predictions for I /O : I /O overlap
were within a tolerance of 0.10. The nonoverlap model
predicted a performance measure more accurately than
the overlap model in only one case: the CPU mean wait
time was the only parameter predicted more accurately for

8 2 7

Table IV. Comparison of trace and model statistics.

Level of Trace
Multiprogram- Approxima- Measure-

ruing tion Model ments
Nonover-

lapped Model

CPU:I/O Model

CPU Util.

0.57 0.57
0.87 0.91
0.97 1.00

Mean CPU Queue Length

0.45
0.75
0.92

1 0.57 0.57 0.45
2 1.43 * 1.06
4 3.14 3.18 2.60

Mean CPU Wait Time

1 34.6 34.6 34.6
2 57.0 * 51.6
4 109.0 108.5 104.6

I/O:I/O Model

CPU Util.

1 0.67 0.72
2 0.85 0.89
4 0.96 0.99

Mean CPU Queue Length

1 0.67 0.72
2 1.31 1.25
4 2.93 2.72

Mean CPU Wait Time

1 087.6 087.6
2 117.8 107.8
4 234.0 211.0

* Unobtainable due to garbage on tape.

0.50
0.68
0.86

0.50
1.08

2.42

087.6
120.2
218.0

Communications October 1978
of Volume 21
the ACM Number 10

I /O:I /O overlap with a level of multiprogramming of 4.
In all the other cases, the nonoverlap model predicted
performance measures much less accurately than the
overhtp model. For example, the utilizations predicted
by the nonoverlap model ranged from 7 to 22 percent
lower than the measured ones.

Tile evaluation algorithms were coded as Fortran
routines and run on a CDC 6600. The CPU:I/O overlap
models executed in less than 20 ms. and the I /O: I /O
overlap models, for levels of multiprogramming less than
8, in less than 200 ms.

6. Comparison of Central Server Networks With
and Without CPU:I/O Overlap

We consider a central server system with four I /O
devices and where all servers have FCFS discipline. The
I /O devices are identical and are selected with equal
probability. We compare two systems identical in all
respects, except that one has overlapping and the other
does not. We are interested in the percentage improve-
ment in CPU utilization which CPU:I/O overlapped
processing provides. We want to look at the effects on
this improvement that varying the level ofmultiprogram-
ming N, the probability of overlap p, and relative CPU
and I /O processing speeds may have. We define to = ?~/
/~ as the parameter denoting the relative CPU and I /O
processing speeds. Here 1//z is the mean CPU time
between two I /O requests and 1/~ is the mean I /O time.

Figure 11 presents the improvement in CPU utiliza-
tion for p = 1.0 and levels of multiprogramming 2
through 5 as the parameter p is varied. Here all compu-
tation takes place in CPU2. Improvement is greatest
when the system is well balanced (neither CPU nor I /O
bound). The magnitude of improvement is sensitive to
the level of multiprogramming and is negligible for high
levels (N > 4). Figure 12 presents the improvement for
a lower level of overlap, p = 2/3. For this case, improve-
ment is also greatest when the system is well balanced
and has a low level of multiprogramming (N < 3). For
all values of N and to the improvement is significantly
lower than in the case of full overlap. Figure 13 presents
the improvement for levels of multiprogramming 2
through 5 as the parameter p is varied. For this case p
= 0.3. For all levels of multiprogramming, the improve-
ment curves are nearly linear functions ofp. As the level
of multiprogramming goes down, the improvement goes
up and the curve becomes more sensitive to changes in
p.

These curves may be readily explained. Overlapping
is helpful only when it allows a device to be utilized
which would not be utilized without overlapping. Con-
sider a state in a nonoverlapped case where there is a job
getting CPU service but no jobs waiting for or receiving
service from an I /O device, say I /O device i. If overlap-
ping were allowed in this state, then it is possible that
the job receiving CPU service could be simultaneously

828

Fig. 11. Percentage improvement in CPU utilization due to CPU: I / 0
overlap forp = 1.0.

PERf/311/~

20-

15.

10.

5.

0

N=2

,5 1.0 1,5 2.0 ~-~

Fig. 12. Percentage increase in CPU utilization due to CPU: I /O
overlap for p = 2/3.

~ENT~C~

N=2

N=3

1,0 1.5 Lop

Fig. 13. Percentage increase in CPU utilization due to CPU: I /O
overlap fo rp = 0.3.
~ENTAC, IE

10 J j N = 3

tl - 4

5 N=5

0 a
.5 1,0

P

processed on I /O device i, thus achieving higher overall
processing rates. Now consider a state in a nonover-
lapped case where there is a job receiving CPU service
and a different job receiving service from I /O i. If
overlapping between the CPU and I /O were permitted,
it would not improve overall processing rates in this
state. As the level of multiprogramming increases, the

Communications October 1978
of Volume 21
the ACM Number 10

fraction of time that the system spends in states where
overlapping is advantageous decreases. Hence increased
multiprogramming levels result in lower percentage im-
provement due to overlapping.

Now consider what happens when the system be-
comes increasingly I/O bound, and in particular consider
the limiting case where the mean CPU service time is
reduced to zero. In this case, the central server model is
equivalent to one with a shorted CPU (Figure 3) and the
thruput of this system is controlled by the I/O's. Allow-
ing CPU:I/O overlap in the model of Figure 3 will not
improve performance. A similar argument can be given
to show that overlap will not improve performance if the
system is CPU bound. Thus, the curves obtained from
analysis mesh with our intuitive expectations.

The above figures indicate that only in special cases
might overlapping CPU and I/O activities greatly in-
crease performance. A system would have to be well
balanced and with a low level of multiprogramming,
possibly due to central memory limitations.

7. Comparison of Systems With and Without I /0 : I /0
Overlap

We consider a central server system with six I/O
devices and all FCFS disciplines. The I/O devices have
exponentially distributed service times with identical
means and are selected with equal probability. We com-
pare two systems which are identical in all respects
except that one system has overlapping while the other
does not. We are interested in the improvement which
occurs by overlapping two I/O requests. We also want
to study the effects of varying the level of multiprogram-
ruing N, the probability of overlap p, and the relative
CPU and I/O speeds p. We make the assumption that
no computation occurs during CPU2, so that overlap
benefits accrue exclusively from I/O:I/O overlap.

Figure 14 presents the relative improvement in CPU
utilization forp = 1.0 over a range of levels of multipro-
gramming and values of p. The relative improvement
tends to be greater for low values of p (when the system
is I/O-bound) and for lower values of the level of
multiprogramming. Figure 15 presents relative improve-
ment curves for p = 2/3. The relative improvement is
considerably less than for p = 1.0 which suggests that
the value ofp is critical. Figure 16 presents the relative
improvement in CPU utilization for p = 0.3 as p is
varied. Asp increases, the relative improvement becomes
more sensitive to changes inp. This is in marked contrast
to the CPU:I/O overlap example. For high values of p,
the level of multiprogramming is a less significant factor,
unlike the CPU:I/O overlap example.

This above example indicates that high level of over-
lap is required (p > 0.6) before overlappin~ substantially
affects CPU utilization. Overlapping of I/O requests is
effective for systems in which jobs spend most of their
time in I/O and in which the individual I/O devices are

Fig. 14. Percentage improvement in CPU utilization for system with
1 / 0 : 1 / 0 overlap, p = 1.0.

PenCENTAOE

15.

10 rl = 2

5

,5 1,0 1,5 2 , 0
P

Fig. 15. Percentage improvement in CPU utilization for system with
1/O: 1/O processing, p = 2/3.

N = 5

i I 15 i i i i P - - ~..,
• 1 . 0 1 . 5 2 . 0

Fig. 16. CPU utilization improvement using CPU: I /O overlap for p
= 0.3.
PERt231T~d~

2 .4 6 8 1.0 p

relatively underutilized. Database systems could possibly
fall in the above category. In this case, as in the
CPU:I/O overlap case, increasing levels of multipro-
gramming result in reduced percentage improvement
due to overlap.

The curves for I/O:I/O overlap may also be readily
explained. An I/O-bound system (p ~ 0) can be modeled

829 Communications October 1978
of Volume 21
the ACM Number 10

(approximately) by a shorted CPU, central server model
(Figu:re 3). I/O:I/O overlap allows more I/O devices to
be siraultaneously utilized in this shorted CPU system
thus increasing thruput. The percentage improvement in
the to = 0 case depends upon the utilizations of the I/O
devices which in turn depends upon the degree of mul-
tiprogramming and the number of I/O devices: if the
degree of multiprogramming is high compared to the
number of devices, then I/O device utilizations will be
high and improvements due to I/O:I/O overlap will be
small (for the same reasons as for the CPU:I/O overlap
case). Note that for the p = 0 case (Figure 3), I/O:I/O
overlap results in positive and usually substantial im-
provement in thruput whereas CPU:I/O overlap results
in no improvement i n thruput.

A CPU-bound system (p ~ oo) can be modeled
approximately by a central server model with I/O's
shorted out. In this case, I/O:I/O overlap does not
improve thruput since thruput is completely controlled
by the CPU service rate. Note that the percentage im-
provement deriving from overlapping decreases with p
for low degrees of multiprogramming (N = 2), whereas
it first increases and then decreases for high degrees of
multiprogramming (N = 5). Since there are six disks, it
follows in the N = 2 case that even if all the jobs spent
all their time in the I/O subsystem, and even if the I/O's
were overlapped, the disks would still.not be saturated.
Thus, the more time jobs spend in the I/O subsystem
(i.e. the smaller the value of p), the greater the increase
in I/O utilization derivable from overlapping. In the
N = 5 case, if all the jobs spent all their time in the I/O
subsystem, the disks would be heavily utilized even
without overlapping. Overlapping cannot increase the
already high utilization in this case. However, as p
increases from a value of zero (0), the amount of time
that jobs spend in the I/O subsystem decreases, and
hence disk utilization decreases, in the nonoverlapped
case, allowing for a significant increase in utilization
from overlapping. Once again, analytic results agree with
intuitive expectations.

8. Conclusions

We have presented solution techniques for the anal-
ysis of central server systems in which programs may
exhibit CPU:I/O or I/O:I/O overlap. These techniques
are compatible with other techniques used to include the
effects of memory [3], passive resources [13, 14], nonex-
ponential service time distributions [21], and multiple
CPU's [22]; all these techniques use two-stage hierarchic
models based on the use of Norton's Theorem followed
by recursive analysis of Markov models of two-queue
systems. These models were validated by running syn-
thetic job mixes on a CDC 6400.

We used these models to consider the improvements
obtained by overlapping CPU:I/O or I/O:I/O activities.
CPU:I/O overlap appears to be of limited benefit, pri-

marily because appreciable improvement occurs only for
low levels of multiprogramming and high levels of over-
lap (p ~ 1). The benefits of overlapping several I/O
requests are greater and less sensitive to the level of
multiprogramming. However, high levels of overlap are
still necessary. A critical parameter appears to be the
number of I/O devices and their relative utilization. In
either case, the designer of a system can resort to the
models to determine whether the benefits will outweigh
the costs.

It is also worth noting that the functional dependen-
cies between "percentage improvement in thruput deriv-
ing from parallelism" and key system parameters are
similar in the CPU:I/O overlap and I/O:I/O overlap
cases treated here and the CPU:CPU overlap cases
treated elsewhere [4, 23].

Received January 1977; revised January 1978

References
1. Baskett, F. Mathematical models of multiprogrammed computer
systems. TSN-17, Comput. Ctr., U. of Texas at Austin, 1971.
2. Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios-Gomez, F.
Open, closed, and mixed networks of queues with different classes of
customers. J. A CM 22, 2 (April 1975), 248-260.
3. Brown, R.M., Browne, J.C., and Chandy, K.M. Memory
management and response time. Comm. A CM 20, 3 (March 1977),
153-165.
4. Browne, J.C., Chandy, K.M., Hogarth, J. and Lee, C. The effect
on throughput in multi-processing in a multi-programming
environment. IEEE Trans. Comptrs. 22 (1973), 728.
5. Buzen, J. Queueing network models of multiprogramming. Ph.D.
Th., Div. Eng. and Appl. Physics, Harvard U., Cambridge, Mass.,
June 1971.
6. Chandy, K.M. The analysis and solutions for general queueing
networks. Proc. Sixth Annual Princeton Conf. on Inform. Sci.,
Princeton U., Princeton, N.J., 1972, pp. 224-228.
7. Chandy, K.M., Herzog, U., and Woo, L. Parametric analysis of
queueing network models. IBM J. Res. and Develop. 19, 1 (Jan.
1975), 36-42.
8. Chandy, K.M., Herzog, U., and Woo, L. Approximate analysis of
general queueing networks. IBM J. Res. and Develop. 19, 1 (Jan.
1975), 43-49.
9. Chandy, K.M., Howard, J.H., and Towsley, D. Product form and
local balance in queueing networks. J. A CM 24, 2 (April 1977),
250-263.
10. Computation Center. User's Manual. Computat. Ctr., U. of
Texas at Austin, 1974.
11. Control Data Corp. A Simulation Process-Oriented Language
(ASPOL) Reference Manual. Publ. 17314200, Control Data Corp.,
Minneapolis, Minn., 1972.
12. Herzog, U., Woo, L., and Chandy, K.M. Solution of queueing
problems by a recursive technique. IB M J. Res. and Develop. 19, 3
(May 1975), 295-300.
13. Keller, T.W. Models of Computer Systems with Passive
Resources. Ph.D. Th., Dept. Comptr. Sci., U. of Texas at Austin,
1976.
14. Keller, T.W. Central server models with peripheral processors. In
Computer Performance, M. Reiser and K.M. Chandy, Eds., North-
Holland Pub. Co., Amsterdam, 1977. "
15. Lavenberg, S.S. Efficient estimation via simulation of workrates
in closed queueing networks. IBM Res. Rep. RJ1390, IBM T. J.
Watson Res. Ctr., Yorktown Heights, N.Y., 1974.
16. Mood, A. M., and Graybill, F.A. Introduction to the Theory of
Statistics. McGraw-Hill, New York, 1963.
17. Maekawa, M., and Boyd, D.L. Two Models of Task Overlap with
Jobs of Multiprocessing Multiprogramming Systems. Proc. 1976 Int.
Conf. on Parallel Processing, Detroit, Aug. 1976, pp. 83-91.

830 Communications October 1978
of Volume 21
the ACM Number 10

18. Peterson, M., and Bulgren, W. Studies in Markov models of
computer systems. Proc. 1975 ACM Annual Conf., Minneapolis,
Minn., pp. 102-107.
19. Price, T.G. Models of multiprogrammed computer systems with
I/O buffering. Proc. Fourth Texas Conf. on Comptng. Syst., U. of
Texas at Austin, 1975.
20. Rose, C.A, Validation of a queueing model with classes of
customers. Proc. Int. Symp. on Comptr. Performance Modeling,
Measurement and Evaluation, Harvard U., Cambridge, Mass., March
1976, 318-325.
21. Sauer, C.H., and Chandy, K.M. Approximate analysis of central
server models. I B M J. Res. and Develop. 19, 1, (Jan. 1975), pp.
301-313.
22. Sauer, C.H., and Chandy, K.M. Parametric modeling of multi-
miniprocessor systems. IBM Res. Rep. RC5978, IBM T.J. Watson
Res. Ctr., Yorktown Heights, N.Y., 1976.
23. Shedler, G.S. A cyclic queue model of a paging machine. IBM
Res. Rep. RC2814, IBM T.J. Watson Res. Ctr., Yorktown Heights,
N.Y., 1970.
24. Smith, W.L. Renewal theory and its ramifications. J. Royal
Statist. Soc. B20 (1958), 243-302.
25. Towsley, D. Local Balance Models of Computer Systems. Ph.D.
Th., Dept. Comptr. Sci., U. of Texas at Austin, 1975.

P r o g r a m m i n g
Techniques

S.L. G r a h a m , R.L. Rives t
Edi tors

Jump Search!ng: A
Fast Sequential Search
Technique
Ben Shneiderman
University of Maryland

When sequential file structures must be used and
binary searching is not feasible, jump searching
becomes an appealing alternative. This paper explores
variants of the classic jump searching scheme where the
optimum jump size is the square root of the number of
records. Multiple level and variable size jump strategies
are explored, appropriate applications are discussed
and performance is evaluated.

Key Words and Phrases: jump searching, sequential
files, file management, search strategies, database
structures, index searching

CR Categories: 3.74, 4.34

831

I. Introduction

Locat ing a record with a given target key, or deter-
min ing its absence f rom a file, is a centra l p r o b l e m in
file managemen t . F o r sequent ia l ly o rgan ized files which
are sor ted by a single key field, K n u t h [4] descr ibes a
var ie ty o f useful a lgor i thms. I f s torage has been a l loca ted
cont iguously , b ina ry searching can be used to p roduce
very good per formance . In t e rpo la t ion or curve fi t t ing
techniques based on l inear or h igher degree po lynomia l s
[10] have seen l imi ted use because o f the high cost o f
compu ta t i on and uneven per fo rmance . Sequent ia l
searching is s imple to p r o g r a m but is costly, when com-
pa red to b ina ry searching. I f records are p laced in a
r a n d o m access m e m o r y and l inked toge ther wi th explici t
pointers , the b ina ry tree search techn ique or its var iants
[7] are preferred.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: Dept. of Information Systems Management,
University of Maryland, College Park, MD 20742.
© 1978 ACM 0001-0782/78/1000-0831 $00.75

Communications October 1978
of Volume 21
the ACM Number 10

