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Approximate queueing models for internal parallel 
processing by individual programs in a 
multiprogrammed system are developed in this paper. 
The solution technique is developed by network 
decomposition. The models are formulated in terms of 
CPU:I/O and I/O:I/O overlap and applied to the 
analysis of these problems. The percentage 
performance improvement from CPU:I/O overlap is 
found to be greatest for systems which are in 
approximate CPU:I/O utilization balance and for low 
degrees of multiprogramming. The percentage 
improvement from I/O:I/O overlap is found to be 
greatest for systems in which the I/O system is more 
utilized than the CPU. 
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1. Introduction 

This paper develops approximate queueing models 
for internal parallel processing by individual programs 
in a multiprogrammed system. The models are formu- 
lated in terms of the familiar CPU:I/O and I/O:I/O 
overlap problems, although they are generally applicable 
to the study of parallel processing. The accuracy and 
validity of the models are carefully analyzed. The models 
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are then used to analyze the performance improvement 
to be expected from implementation of CPU:I/O and 
I/O:I/O overlap in multiprogrammed systems. 

There is rising interest in the application of parallel- 
ism within programs. As mini and microcomputer sys- 
tems become cheaper, there will be a growth of multi- 
programming systems. In these circumstances, increasing 
levels of parallelism may have marked effects on per- 
formance measures. Further applications of parallelism 
may be found in recent database system design. Interest 
has arisen in the design of database systems in which 
complex queries are processed by being broken up into 
simple queries all to be processed in parallel. The most 
significant current application of parallelism is in 
CPU:I/O overlap in data processing applications on 
conventional computer systems. Most major operating 
systems offer the capability for a job to overlap its own 
I/O. These facilities are not commonly used. It is also 
the case that the performance benefits which may be 
derived, and the circumstances under which performance 
improvement may be obtained, are poorly understood. 
The study of parallel processing within individual pro- 
grams has been hindered by the dearth of accurate 
models for processes which execute simultaneously on 
more than one processor. The queueing network model, 
the most widely used computer system modeling tech- 
nology, is almost always formulated with the assumption 
that a program (job) executes serially on the several 
processors (queues, servers) of the model system. These 
models do not allow a program to hold more than one 
processor simultaneously. There have been two previous 
studies which have attempted to generalize network 
models to include parallel processing by an individual 
program within a multiprogrammed system. Peterson 
and Bulgren [18] construct Markov models which are 
applicable to systems including multiple buffering for 
several I /O stations (CPU:I/O overlap). The applicabil- 
ity of these models is limited to small systems because of 
the state space explosion problem. Price [19] develops 
models for multiple buffering of a single file per program 
and for the case where the file set of program shares a 
common pool of buffers. Price also analyzes the effect of 
CPU service-time distribution on the effectiveness of 
multiple buffering. Maekawa and Boyd [17] have 
modeled a number of cases of CPU:I/O overlap. These 
authors investigated the effects of service rate distribu- 
tions and to a limited extent the effect of CPU scheduling 
disciplines. Related papers that treat parallel processing 
of CPU's in multi-CPU systems are [4] and [22]. 

This paper presents models for multiprogrammed 
systems in which programs may either partially or com- 
pletely overlap CPU and I/O processing and where two 
I/O activities may partially or completely overlap among 
themselves and CPU processing. These model systems 
admit of exact solution for a class of systems and of 
inexact, but very accurate, solution for a wider class of 
models. The accuracy and validity of these models have 
been carefully verified by validation against detailed 
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simulations and against actual operation of a multipro- 
grammed computer system. 

The domains of degree of overlap, degree of multi- 
programming, and system resource utilization where- 
CPU:I/O and I/O:I/O overlap produce significant per- 
formance gains are determined. The percentage perform- 
ance improvements are found to be greatest for systems 
which are in approximate CPU:I/O utilization balance 
for CPU:I/O overlap for very low degrees of multipro- 
gramming, and for systems in which the I /O is heavily 
utilized for I/O:I/O overlap. 

The structure of this paper is as follows. In Section 
2, we summarize fundamental concepts in queueing 
network analysis including central server models  (Figure 
1) in local balance, and describe "'Norton's Theorem." In 
Section 3, we present a simple CPU:I/O overlapped 
processing structure for a single program and present a 
model for the analysis of central server networks popu- 
lated by these programs. Section 4 presents a similar 
model for the overlap of two I /O and CPU activities. In 
Sections 6 and 7, we present comparisons between sys- 
tems with and without either CPU:I/O or I /O:I/O 
overlap. 

2. Local Balance and Norton's Theorem 

The model solution techniques developed in this 
paper are based on three fundamental concepts: the 
central server model [1, 5], local balance [2, 6, 9] and 
"Norton's Theorem" [7]. A brief exposition of these 
concepts is included for ease of reading the subsequent 
discussion. 

The central server model (Figure 1) is a commonly 
used queueing network representation of multipro- 
grammed computing systems (without CPU:I/O over- 
lap). The CPU and I /O devices are represented explicitly 
as servers (circles in Figure 1) and jobs queue up in 
separate queues for the different servers. There is a fLxed 
number of jobs in the system; this number is referred to 
as the degree of multiprogramming. Main memory is 
treated implicitly in the model by adjusting the degree 
of multiprogramming. A job may be waiting for, or 
receiving service from, one of the servers. When a job 
completes CPU service, it branches to an I /O device 
with a fLxed probability, independent of the state of the 
system. The model is generally used to compute steady- 
state values for performance metrics such as device 
utilization, mean response times and queue length dis- 
tributions. This simplistic representation of complex sys- 
tems has been shown to be useful in several studies of 
real systems; see [3] or [20], for example. Perhaps more 
importantly, the model helps provide insight into the 
relationships between key performance parameters. 

A central server network [5] is in local balance if (1) 
the branching probabilities depend only on the job class 
and I /O device; (2) the service disciplines are either first 
come first serve (FCFS), processor sharing (PS), infinite 
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Fig. 1. The central server model. 
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server (IS), or last come first serve preemptive resume 
(LCFSPR); (3) processors with the FCFS discipline have 
exponential service distributions with a mean independ- 
ent of the job class; (4) processors with PS, IS, or 
LCFSPR disciplines have arbitrary differentiable distri- 
butions [9] which may differ between job classes. If the 
above criteria are met, the network has a steady-state 
solution of the product form [2, 9]. For a thorough 
discussion of systems which satisfy local balance, see 
[9]. Efficient computational procedures exist for product 
form solutions which make locally balanced networks 
easy to analyze [5]. 

One of the consequences of local balance is a theorem 
analogous to Norton's Theorem in electrical circuit the- 
ory [7]. The theorem allows the transformation of a local 
balance central server network into a two-queue network 
containing the original CPU and a "composite I /O" 
which represents all the effects of the I /O subsystem in 
the original model, Figure 2. The CPU steady-state 
thruput, mean wait time, and queue length distribution 
for the two-queue network remain identical to those of 
the original network. The transformation of the I /O 
subsystem into a composite I/O is independent of the 
CPU parameters. Thus a study of the original network 
under a variety of CPU parameters is easily done by 
studying the CPU/composite-I/O network. This attri- 
bute of simple parametric analysis of the CPU will also 
apply to our approximation models. 

The models of this paper use only one job class; i.e. 
all jobs have the same service distributions and branch- 
ing probabilities. Therefore we present a description of 
Norton's Theorem for a single job class. Assume there 
are N identical jobs. The composite I /O service rate at 
any time depends upon the number of jobs in the I /O 
subsystem (or equivalently the composite I /O queue) at 
that time. These composite I/O service rates can be 
determined by analyzing the original network when the 
CPU has been "shorted" (Figure 3). Shorting the CPU 
is accomplished by setting the CPU service time to zero. 
The composite I /O service rate when there are N jobs in 
the composite I/O queue is set to the thruput of the jobs 
through the shorted CPU when there are N jobs in the 
shorted CPU model. The CPU/composite-I/O model 
with the same CPU parameters as in the original model 
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Fig. 2. The CPU/composite-I/O system derived by applying Norton's 
Theorem. 
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Fig. 3. Shorting out the CPU: applying Norton's Theorem. 
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and these queue length dependent composite I /O service 
rates produce CPU statistics identical to those of the 
original model. 

Example. Consider a local balance central server 
network with three identical jobs and two I /O devices. 
Each job has equal probability of going to either I /O 
device. The mean service times for I /O devices 1 and 2 
are 1.0 and 2.0 respectively. With the CPU shorted out 
and n = 1, 2, 3 jobs in the network, the thruput through 
the shorted CPU is 2/3, 6/7, and 14/15 respectively. The 
composite I /O with n jobs in the queue, n = 1, 2, 3, has 
service rates 2/7, 6/7, and 14/15 respectively, in the 
CPU/composite-I/O network. Both the original model 
and the CPU/composite-I/O model give identical equi- 
librium queue length and mean wait time statistics. 

3. A CPU:I /O Overlap Model 

The assumption normally made in a central server 
network model [5] is that a job alternates between CPU 
and I /O activities. The job may be thought of as repeat- 
ing cycles, where each cycle (Figure 4) consists of two 
tasks: a task requiring use of the CPU followed by one 
requiring use of an I/O. In an overlapped system the 
cycle is more complex: for example (Figure 5), a cycle 
may consist of three tasks, two of which require the use 
of the CPU while the other requires an I/O; furthermore, 
one of the CPU tasks must be completed before the other 
two tasks can be initiated. We model the structure of the 
cycle by a single input, single output precedence graph. 
A cycle consisting of K tasks indexed 1 . . . . .  K is repre- 
sented by a graph with K vertices, where the ith vertex 
represents the ith task. The identity of the processor 
required by each task is written next to the corresponding 
vertex. If  task j cannot be initiated until task i is com- 
pleted, then there must be a directed path from i to j in 
the graph. There is a path from the input point to every 
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Fig. 4. Task precedence graph for nonoverlapped processing. 
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vertex in the graph, and a path from every vertex to the 
output point. It is convenient to introduce fork points 
and probabilistic branch points into the graph. A vertex 
has exactly one edge leading out of it; this edge may 
terminate at another vertex or at a fork, probabilistic 
branch, or output point. Branch points and forks have 
two or more edges leading out of them. Associated with 
each edge leading from a probabilistic branch point is a 
probability and a distinct single input, single output 
subgraph shown in the diagrams in dotted lines. (The 
subgraph may consist of a single edge joining the input 
and output points.) When execution reaches a probabi- 
listic branch point, one and only one of the output edges 
is selected (with the appropriate probability) and the 
subgraph associated with that edge must be processed; 
the subgraphs associated with all the other edges leading 
from the branch point are not processed. All probabilistic 
branch subgraphs have a common output vertex, and a 
common input vertex, viz. the probabilistic branch point. 

After execution reaches a fork point it must proceed 
along each and every one of the edges leading out of the 
fork. We assume that we are given service time distri- 
butions for each task in the cycle and that service times 
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Fig. 6. State transitions of  a single job in the CPU: I /O overlap case. 
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and branching probabilities are independent of the state 
of the system. 

We depart from the sequential cycle structure of the 
usual central server model by allowing a job the capa- 
bility of overlapping some of its CPU activity with I/O 
requests. A reasonable structure is to allow a job to have 
two CPU tasks (Figure 5), one which is not overlapped 
with any I/O (CPU 0 and a second task (CPU2) which 
is overlapped with an I/O request. During CPUa, the job 
partakes only in CPU activity, possibly setting up buffers 
for an impending I/O request. At the end of this task, 
the job initiates both an I/O request and the second 
CPU task, CPU2. The second CPU task and the I/O 
may be processed in parallel. Only upon completion of 
both I/O and CPU2 does the job revert to CPU1 and 
repeat the cycle. 

We assume, for ease of solution, that the service times 
for each task are exponentially distributed. The Marko- 
vian state transition diagram for one job with an over- 
lapped processing structure is found in Figure 6. The 
mean service times for CPU1, CPU2, and I/O are 1//~, 
1//x2, and 1/2, respectively. A job may be in one of the 
following four states: 

(1) CPU1 CPU executes first task (I/O idle) 
(2) CPU2 CPU executes second task (I/O idle) 
(3) I/O I/O executes (CPU idle) 
(4) CPU2-I/O CPU executes second task in parallel 

with I/O execution 

The above model suffers one of the flaws of Price's 
models. It assumes that a job will attempt to overlap all 
its I/O activity with CPU2. A more realistic model 
should allow a mixture of sequential and overlapped 
processing. Let p be the probability that a job, upon 
completion of CPU1, requires overlapped processing of 
CPU2 and I/O. Then, ,b = 1 - p  is the probability that 
a job, upon completion of CPU1, initiates I/O and 
relinquishes the CPU. The process state graph is found 
in Figure 7 and the Markov state transition diagram in 
Figure 8. We will refer to this as CPU:I/O overlapping. 
A model which exhibits overlapping generally does not 
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Fig. 7. A more realistic CPU: I /O  overlap model. 
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Fig. 8. State transitions for a single job with the realistic overlap 
model. 

satisfy local balance, forcing us to resort to approxima- 
tion methods. 

A central server network with one I/O device and 
identical jobs exhibiting CPU:I/O overlapping can be 
solved exactly when the queueing disciplines are all 
FCFS. We can apply a recursive technique similar to 
that of Herzog, Woo, and Chandy [12] to this two-queue 
model. This technique provides CPU utilization U0, 
CPU thruput To, mean CPU queue length ;/, and mean 
CPU wait time fi,. The details of the two-queue analysis 
may be found in [25]. 

A central server network with an arbitrary number 
of I/O devices and identical jobs each with CPU:I/O 
processing can be solved approximately by reducing it to 
a two-queue network via Norton's Theorem and then 
using the above techniques. The details are found in the 
following algorithm. 

Algorithm 
Step 1. Obtain composite I / O  service rates. Consider the given central 

server model. Construct  the shorted CPU model  in which there 
is no overlap, all I /O  times are exponential, and the CPU 
service time is set to zero. This shorted CPU model  satisfies 
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local balance and is easily analyzed. Determine queue depend- 
ent, composite I /O service rates by analyzing the shorted CPU 
model. 

Step 2. Solve the two-queue, CPU/composite-1/O model exactly via 
recursive techniques. The processing structure and CPU param- 
eters are identical to those of  the original model. The compos- 
ite-I/O parameters are specified by Step 1. This completely 
specifies the two-queue model. Analyze this model to deter- 
mine U0, To, ~, fv. 

Example. Consider the two I/O models from the first 
example. Assume the jobs have processing structures 
identical to that in Figure 5 with the means for C P U 1 ,  

CPU2 each 1. 
Step 1. The composite I /O service rates (from Section 2) when there 

are n jobs, n = 1, 2, 3 in the composite I /O queue are 2/3, 6- 
7, and 14/15 respectively. 

Step 2. We now have a two-queue model. This model is solved using 
the techniques presented in [T1] to obtain U0 = 0.8, To = 0.8, 
f / =  1.2, and fv = 1.6. 

4. An I/O:I/O Overlap Model 

We consider jobs which may initiate two consecutive 
I/O requests before relinquishing the CPU. We assume 
the processing structure illustrated in Figure 9. There are 
two CPU tasks subscripted 1 and 2 in this structure. At 
the end of CPU1, the job initiates one I/O request and 
may start the second CPU task (CPU2). At the end of 
CPU2, the job initiates a second I/O request and relin- 
quishes the CPU. Only upon completion of all I/O 
requests, does the job reenter CPU1 and repeat the cycle. 
This is illustrated by the fork and join subgraph in Figure 
9. We assume a job initiates two parallel I/O requests 
(and enters the subgraph) with probability p. The other 
branch in Figure 9 is traversed when the job initiates 
only one I/O request. This occurs with probability p = 
1 - p. We will refer to this as I/O:I/O overlapping. 

If the times for each task are exponential, the behav- 
ior of the job is governed by a Markov process. The 
Markov state transition diagram for the job running 
alone is illustrated in Figure 10. In this case the mean 
service times for CPU1, CPU2, and I/O a r e  1 /~1,  1//.t2, 

and 1/~ respectively. The state space includes: three no- 
overlap states (CPU1, CPU2, I/O), the state in which the 
job is processing two I/O requests (2 I/O), and the state 
in which the job is processing CPU2 and I/O 
(CPU2-I/O). 

A central server network with one I/O device and in 
which all jobs have the same precedence graph can be 
solved exactly when the CPU queueing discipline is 
FCFS and the I/O discipline is PS. The solution tech- 
nique is similar to that of Herzog, Chandy, and Woo [12] 
and may be found in [25]. 

A central server network with an arbitrary number 
of I/O devices, customers with identical I/O:I/O proc- 
essing and all FCFS queueing disciplines may be solved 
approximately. The technique is similar to that of the 
algorithm in Section 3 and consists of using Norton's 
Theorem to reduce the network to a two-queue network, 
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Fig. 9. Model o f a j o b  with I / O : I / O  overlap. 
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Fig. 10. State transitions of  a single job with I/O: I /O overlap. 

where the PS discipline is used by the composite-I/O. 
The resulting two-queue network is solved using algo- 
rithms in [25] to determine U0, To, ~, and fv for the CPU. 

5. Validation of  Overlapped Process ing  Mode l s  

To validate the queueing model we compared the 
performance measures predicted by the model with those 
obtained from simulation and from measurements made 
on a real system running a synthetic job load. We shall 
discuss the simulator now and the measurements later. 
We wrote a simulator to model arbitrary central server 
networks with CPU:I/O or I/O:I/O overlap, using the 
simulation lang,age Aspol [11]. 

We compared the CPU utilization, mean queue 
length, and mean wait time for the analytic and simula- 
tion models. These comparisons are couched in terms of 
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two parameters: error tolerance z and level of confidence 
p. These parameters are defined later. We first deter- 
mined values U0, q0, and Wo for the utilization, mean 
queue length, and mean wait time respectively, obtained 
from the queueing model. 

We then made several independent runs of the sim- 
ulator. We initially experimented with the length of  each 
run to ensure that the runs were long enough to yield 
credible results. Results from Smith [24] and Lavenberg 
[15] on the statistics of Markovian processes allow us to 
assume that the point estimates for the performance 
metrics obtained from the simulation have the t-distri- 
bution [16]. The parameters of  this distribution are com- 
puted from the point estimates obtained from the inde- 
pendent runs. From this distribution we computed the 
probability P,(z) that the point estimate for the CPU 
utilization for any given run will lie in the interval 
[Uo/(I + z), U1/(I - z)] where z is the tolerance; in our 
experiments, z was usually set to 0.05. We also computed 
pq(g), the probability that the point estimate for mean 
CPU queue length for any given run will lie in the 
interval [q0/(l + Nz), qo/(l - Nz)] where N is the degree 
of multiprogramming (i.e. the job population). We also 
computed p,,(z), the probability that the mean wait time 
obtained from a simulation run will be in the interval 
[ W0/(l + Toz), Wo/(l - T0z)] where To is the mean cycle 
time obtained from the analytic model. Define p(z) = 
min[p,,(z), pq(Z), p~,,(z)]. We postulate the hypothesis that 
the analytic model is within tolerance z = 0.05 of  the 
simulation model with probability p(z) >_ 0.90. This 
definition of  tolerance was motivated by a similar defi- 
nition in a paper by Chandy et al. [8]. 

We ran 36 CPU:I /O overlapped processing models 
to test the hypothesis. In general these models were fairly 
well balanced, though several were either strongly CPU- 
bound or I /O-bound.  Most models were constructed to 
show strong overlap patterns. For z = 0.05, the hypoth- 
esis fit all the models with p(z) >_ 0.90. A nonoverlap 
(Sauer-Chandy) model [21], for the same hypothesis, fit 
only 16 of  the 36 models with p(0.05) _> 0.90. 

The nonoverlap model was parameterized in the 
following way. The mean and coefficient of  variation for 
the CPU service time requirements for each I /O request 
were calculated from the overlap model CPU time re- 
quirements and used to construct a multiexponential 
stage CPU service time distribution for the 
Sauer-Chandy nonoverlap model. All other parameters 
were set equal to those for the overlap model. Table I 
presents some results for three models. 

We also ran 60 I /O: I /O  overlapped processing 
models. Again, most were well balanced, but some were 
either strongly CPU or I /O bound. Most were con- 
structed to show strong overlap behavior. For z = 0.05, 
the hypothesis fits all but one model with p _> 0.90. For 
z = 0.06, the hypothesis fits the deviant model with p 
_> 0.90. The nonoverlapped model, for the same hypoth- 
esis, fit only 13 of  the 60 cases with p _> 0.90. Table II 
presents results for three models. 

Table I. CPU: 1/O overlap. 

Number of Customers 2 4 8 

CPU utilization (approximation model) 
(simulation model) 
(nonoverlap model) 

CPU mean queue length (approximatxon 
model) 

(simulation model) 
CPU mean wait time (ms) (approximation 

model) 
(simulation model) 

CPUa mean service (ms) 
CPU2 mean service (ms) 
Probability of overlap 
I /O 1 mean service (ms) 
Branching probability 
I /O 2 mean service (ms) 
Branching probability 
I /O 3 mean service (ms) 
Branching probability 
I /O 4 mean service (ms) 
Branching probability 

0.54 0.74 0.90 
0.52 0.73 0.93 
0.46 0.68 0.88 
0.78 1.67 3.84 

0.72 1.57 3.94 
14.60 22.70 42.60 

13.60 
0.00 

10.00 
1.00 
6.00 
0.10 
7.50 
0.10 
1.50 
0.50 
2.00 
0.30 

21.30 43.00 

Table II. I /O:I/O overlap. 

Number of Customers 2 4 8 

CPU utilization (approximation model) 0.470 
(simulation model) 0.460 
(nonoverlap model) 0.400 

CPU mean queue length (approximation 0.600 
model) 

(simulation model) 0.590 
CPU mean wait time (ms) (approxima- 12.800 

tion model) 
(simulation model) 12.700 

CPU1 mean service (ms) 10.000 
CPU2 mean service (ms) 0.000 
Probability of overlap 1.000 
I /O 1 mean service (ms) 30.000 
Branching probability 0.125 
I/O 2 mean service (ms) 30.000 
Branching probability 0.125 
I /O 3 mean service (ms) 15.000 
Branching probability 0.250 
I /O 4 mean service (ms) 8.000 
Branching probability 0.500 

0.67 0.85 
0.67 0.86 
0.59 0.76 
1.29 2.99 

1.29 3.01 
19.10 35.00 

18.30 35.50 

We ran six synthetic job mixes on a CDC 6400 
configuration for further validation of  the overlapped 
processing models. The configuration consisted of  a 
CDC 6400 mainframe with 65,536 60-bit-words of  main 
memory, seven peripheral processors, and two CDC 808 
disk drives with associated controllers and channels. The 
job mixes were designed to fit entirely into main memory, 
allowing us to model the system as a simple two-I /O 
central server network with a constant level of  multipro- 
gramming. The I /O's  had FCFS disciplines and the 
CPU had a round robin discipline with a t'Lxed quantum 
of 16 ms. We approximated the CPU scheduler as FCFS 
in our analysis. 

We ran three job mixes for each model, composed of  
1, 2, or 4 identical synthetic programs. The level of  
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Table III. Job Mix Parameters. 

Level of 
Multiprogram- Mean 1 

ming (ms) 

CPU 

Mean 2 Probability of 
(ms) Overlap 

CPU: I / 0  

1/0 1 I / 0  2 

Branching Mean Branching Mean 
Probability (ms) Probability (ms) 

1 8.0 26.6 1.00 
2 8.0 26.2 1.00 
4 8.0 25.7 1.00 

1.0 46.1 0 . 0  - -  

0.5 42.0 0.5 43.5 
0.5 43.9 0.5 37.6 

Level of 
Multiprogram- 

ming 

CPU 

Mean 1 Mean 2 Probability of 
(ms) (ms) Overlap 

I/O: I/O 

l/O 1 I / 0  2 

Branching Mean Branching Mean 
Probability (ms) Probability (ms) 

l 78.6 9.0 1.00 
2 67.5 9.0 1.00 
4 67.6 9.0 1.00 

0.5 35.2 0.5 35.8 
0.5 39.9 0.5 39.6 
0.5 38.0 0.5 45.8 

multiprogramming 4 was chosen as being typical. The 
levels 1 and 2 were chosen to show maximum effects of  
overlap. The programs were written in Fortran and the 
CDC assembly language Compass using a local I /O 
software package, IOP [10]. lOP allows the user the 
option of  nonoverlapped I /O  or CPU:I /O overlap. We 
wrote two synthetic programs, one for each model, with 
the probability of  overlap set to 1. The CPU:I /O over- 
lapped program was written so the time for CPU2 was 
approximately exponential, and so that CPU1 repre- 
sented the time necessary for IOP to set up the actual 
I /O transfer (a constant 8 ms). The I /O: I /O  overlapped 
program was written so that CPU1 was nearly exponen- 
tial, and so that CPU2 was the time to set up a data 
transfer (a constant 9 ms). In both programs, I /O con- 
sisted of  transferring 512 60-bit words either from or to 
the disk. Each I /O request consisted of  a seek, rotational 
delay, and the actual data transfer. The seek time and 
rotational delay were each uniformly distributed and the 
transfer time was constant. The I /O: I /O overlap pro- 
gram was written so that the two I /O  requests were to 
separate disks. The nonoverlapped models were pa- 
rameterized in the same way as for the simulation vali- 
dations. The exact parameter values for the models were 
obtained from event trace data and are found in Table 
III. 

The results from the overlap and nonoverlap models 
with parameters from Table III are found in Table IV. 
The results from the overlap model are remarkably good 
considering the various service distribution and service 
discipline approximations. In most cases, the tolerance 
for each performance measure was 0.05 forp  ___ 0.90. The 
CPU mean wait time predictions for I /O : I /O  overlap 
were within a tolerance of  0.10. The nonoverlap model 
predicted a performance measure more accurately than 
the overlap model in only one case: the CPU mean wait 
time was the only parameter predicted more accurately for 

8 2 7  

Table IV. Comparison of trace and model statistics. 

Level of Trace 
Multiprogram- Approxima- Measure- 

ruing tion Model ments 
Nonover- 

lapped Model 

CPU:I/O Model 

CPU Util. 

0.57 0.57 
0.87 0.91 
0.97 1.00 

Mean CPU Queue Length 

0.45 
0.75 
0.92 

1 0.57 0.57 0.45 
2 1.43 * 1.06 
4 3.14 3.18 2.60 

Mean CPU Wait Time 

1 34.6 34.6 34.6 
2 57.0 * 51.6 
4 109.0 108.5 104.6 

I/O:I/O Model 

CPU Util. 

1 0.67 0.72 
2 0.85 0.89 
4 0.96 0.99 

Mean CPU Queue Length 

1 0.67 0.72 
2 1.31 1.25 
4 2.93 2.72 

Mean CPU Wait Time 

1 087.6 087.6 
2 117.8 107.8 
4 234.0 211.0 

* Unobtainable due to garbage on tape. 

0.50 
0.68 
0.86 

0.50 
1.08 

2.42 

087.6 
120.2 
218.0 
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I /O:I /O overlap with a level of multiprogramming of 4. 
In all the other cases, the nonoverlap model predicted 
performance measures much less accurately than the 
overhtp model. For example, the utilizations predicted 
by the nonoverlap model ranged from 7 to 22 percent 
lower than the measured ones. 

Tile evaluation algorithms were coded as Fortran 
routines and run on a CDC 6600. The CPU:I/O overlap 
models executed in less than 20 ms. and the I /O: I /O 
overlap models, for levels of multiprogramming less than 
8, in less than 200 ms. 

6. Comparison of Central Server Networks With 
and Without CPU:I/O Overlap 

We consider a central server system with four I /O 
devices and where all servers have FCFS discipline. The 
I /O devices are identical and are selected with equal 
probability. We compare two systems identical in all 
respects, except that one has overlapping and the other 
does not. We are interested in the percentage improve- 
ment in CPU utilization which CPU:I/O overlapped 
processing provides. We want to look at the effects on 
this improvement that varying the level ofmultiprogram- 
ming N, the probability of overlap p, and relative CPU 
and I /O processing speeds may have. We define to = ?~/ 
/~ as the parameter denoting the relative CPU and I /O 
processing speeds. Here 1//z is the mean CPU time 
between two I /O requests and 1/~ is the mean I /O time. 

Figure 11 presents the improvement in CPU utiliza- 
tion for p = 1.0 and levels of multiprogramming 2 
through 5 as the parameter p is varied. Here all compu- 
tation takes place in CPU2. Improvement is greatest 
when the system is well balanced (neither CPU nor I /O 
bound). The magnitude of improvement is sensitive to 
the level of multiprogramming and is negligible for high 
levels (N > 4). Figure 12 presents the improvement for 
a lower level of overlap, p = 2/3. For this case, improve- 
ment is also greatest when the system is well balanced 
and has a low level of multiprogramming (N < 3). For 
all values of N and to the improvement is significantly 
lower than in the case of full overlap. Figure 13 presents 
the improvement for levels of multiprogramming 2 
through 5 as the parameter p is varied. For this case p 
= 0.3. For all levels of multiprogramming, the improve- 
ment curves are nearly linear functions ofp. As the level 
of multiprogramming goes down, the improvement goes 
up and the curve becomes more sensitive to changes in 
p. 

These curves may be readily explained. Overlapping 
is helpful only when it allows a device to be utilized 
which would not be utilized without overlapping. Con- 
sider a state in a nonoverlapped case where there is a job 
getting CPU service but no jobs waiting for or receiving 
service from an I /O device, say I /O device i. If  overlap- 
ping were allowed in this state, then it is possible that 
the job receiving CPU service could be simultaneously 
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Fig. 11. Percentage improvement in CPU utilization due to CPU: I / 0  
overlap forp  = 1.0. 
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Fig. 12. Percentage increase in CPU utilization due to CPU: I /O 
overlap for p = 2/3. 
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processed on I /O device i, thus achieving higher overall 
processing rates. Now consider a state in a nonover- 
lapped case where there is a job receiving CPU service 
and a different job receiving service from I /O i. If  
overlapping between the CPU and I /O were permitted, 
it would not improve overall processing rates in this 
state. As the level of multiprogramming increases, the 
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fraction of time that the system spends in states where 
overlapping is advantageous decreases. Hence increased 
multiprogramming levels result in lower percentage im- 
provement due to overlapping. 

Now consider what happens when the system be- 
comes increasingly I/O bound, and in particular consider 
the limiting case where the mean CPU service time is 
reduced to zero. In this case, the central server model is 
equivalent to one with a shorted CPU (Figure 3) and the 
thruput of this system is controlled by the I/O's. Allow- 
ing CPU:I/O overlap in the model of Figure 3 will not 
improve performance. A similar argument can be given 
to show that overlap will not improve performance if the 
system is CPU bound. Thus, the curves obtained from 
analysis mesh with our intuitive expectations. 

The above figures indicate that only in special cases 
might overlapping CPU and I/O activities greatly in- 
crease performance. A system would have to be well 
balanced and with a low level of multiprogramming, 
possibly due to central memory limitations. 

7. Comparison of Systems With and Without I /0 : I /0  
Overlap 

We consider a central server system with six I/O 
devices and all FCFS disciplines. The I/O devices have 
exponentially distributed service times with identical 
means and are selected with equal probability. We com- 
pare two systems which are identical in all respects 
except that one system has overlapping while the other 
does not. We are interested in the improvement which 
occurs by overlapping two I/O requests. We also want 
to study the effects of varying the level of multiprogram- 
ruing N, the probability of overlap p, and the relative 
CPU and I/O speeds p. We make the assumption that 
no computation occurs during CPU2, so that overlap 
benefits accrue exclusively from I/O:I/O overlap. 

Figure 14 presents the relative improvement in CPU 
utilization forp = 1.0 over a range of levels of multipro- 
gramming and values of p. The relative improvement 
tends to be greater for low values of p (when the system 
is I/O-bound) and for lower values of the level of 
multiprogramming. Figure 15 presents relative improve- 
ment curves for p = 2/3. The relative improvement is 
considerably less than for p = 1.0 which suggests that 
the value ofp  is critical. Figure 16 presents the relative 
improvement in CPU utilization for p = 0.3 as p is 
varied. Asp increases, the relative improvement becomes 
more sensitive to changes inp. This is in marked contrast 
to the CPU:I/O overlap example. For high values of p, 
the level of multiprogramming is a less significant factor, 
unlike the CPU:I/O overlap example. 

This above example indicates that high level of over- 
lap is required (p > 0.6) before overlappin~ substantially 
affects CPU utilization. Overlapping of I/O requests is 
effective for systems in which jobs spend most of their 
time in I/O and in which the individual I/O devices are 

Fig. 14. Percentage improvement in CPU utilization for system with 
1 / 0 : 1 / 0  overlap, p = 1.0. 
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Fig. 15. Percentage improvement in CPU utilization for system with 
1/O: 1/O processing, p = 2/3. 
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Fig. 16. CPU utilization improvement using CPU: I /O overlap for p 
= 0.3. 
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relatively underutilized. Database systems could possibly 
fall in the above category. In this case, as in the 
CPU:I/O overlap case, increasing levels of multipro- 
gramming result in reduced percentage improvement 
due to overlap. 

The curves for I/O:I/O overlap may also be readily 
explained. An I/O-bound system (p ~ 0) can be modeled 
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(approximately) by a shorted CPU, central server model 
(Figu:re 3). I/O:I/O overlap allows more I/O devices to 
be siraultaneously utilized in this shorted CPU system 
thus increasing thruput. The percentage improvement in 
the to = 0 case depends upon the utilizations of the I/O 
devices which in turn depends upon the degree of mul- 
tiprogramming and the number of I/O devices: if the 
degree of multiprogramming is high compared to the 
number of devices, then I/O device utilizations will be 
high and improvements due to I/O:I/O overlap will be 
small (for the same reasons as for the CPU:I/O overlap 
case). Note that for the p = 0 case (Figure 3), I/O:I/O 
overlap results in positive and usually substantial im- 
provement in thruput whereas CPU:I/O overlap results 
in no improvement i n thruput. 

A CPU-bound system (p ~ oo) can be modeled 
approximately by a central server model with I/O's 
shorted out. In this case, I/O:I/O overlap does not 
improve thruput since thruput is completely controlled 
by the CPU service rate. Note that the percentage im- 
provement deriving from overlapping decreases with p 
for low degrees of multiprogramming (N = 2), whereas 
it first increases and then decreases for high degrees of 
multiprogramming (N = 5). Since there are six disks, it 
follows in the N = 2 case that even if all the jobs spent 
all their time in the I/O subsystem, and even if the I/O's 
were overlapped, the disks would still.not be saturated. 
Thus, the more time jobs spend in the I/O subsystem 
(i.e. the smaller the value of p), the greater the increase 
in I/O utilization derivable from overlapping. In the 
N = 5 case, if all the jobs spent all their time in the I/O 
subsystem, the disks would be heavily utilized even 
without overlapping. Overlapping cannot increase the 
already high utilization in this case. However, as p 
increases from a value of zero (0), the amount of time 
that jobs spend in the I/O subsystem decreases, and 
hence disk utilization decreases, in the nonoverlapped 
case, allowing for a significant increase in utilization 
from overlapping. Once again, analytic results agree with 
intuitive expectations. 

8. Conclusions 

We have presented solution techniques for the anal- 
ysis of central server systems in which programs may 
exhibit CPU:I/O or I/O:I/O overlap. These techniques 
are compatible with other techniques used to include the 
effects of memory [3], passive resources [13, 14], nonex- 
ponential service time distributions [21], and multiple 
CPU's [22]; all these techniques use two-stage hierarchic 
models based on the use of Norton's Theorem followed 
by recursive analysis of Markov models of two-queue 
systems. These models were validated by running syn- 
thetic job mixes on a CDC 6400. 

We used these models to consider the improvements 
obtained by overlapping CPU:I/O or I/O:I/O activities. 
CPU:I/O overlap appears to be of limited benefit, pri- 

marily because appreciable improvement occurs only for 
low levels of multiprogramming and high levels of over- 
lap (p ~ 1). The benefits of overlapping several I/O 
requests are greater and less sensitive to the level of 
multiprogramming. However, high levels of overlap are 
still necessary. A critical parameter appears to be the 
number of I/O devices and their relative utilization. In 
either case, the designer of a system can resort to the 
models to determine whether the benefits will outweigh 
the costs. 

It is also worth noting that the functional dependen- 
cies between "percentage improvement in thruput deriv- 
ing from parallelism" and key system parameters are 
similar in the CPU:I/O overlap and I/O:I/O overlap 
cases treated here and the CPU:CPU overlap cases 
treated elsewhere [4, 23]. 
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Jump Search!ng: A 
Fast Sequential Search 
Technique 
Ben Shneiderman 
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When sequential file structures must be used and 
binary searching is not feasible, jump searching 
becomes an appealing alternative. This paper explores 
variants of the classic jump searching scheme where the 
optimum jump size is the square root of the number of 
records. Multiple level and variable size jump strategies 
are explored, appropriate applications are discussed 
and performance is evaluated. 
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I. Introduction 

Locat ing  a record  with  a given target  key,  or  deter-  
min ing  its absence f rom a file, is a centra l  p r o b l e m  in 
file managemen t .  F o r  sequent ia l ly  o rgan ized  files which  
are sor ted by  a single key  field, K n u t h  [4] descr ibes  a 
var ie ty  o f  useful  a lgor i thms.  I f  s torage has  been  a l loca ted  
cont iguously ,  b ina ry  searching can  be used to p roduce  
very good  per formance .  In t e rpo la t ion  or  curve fi t t ing 
techniques  based  on l inear  or  h igher  degree  po lynomia l s  
[10] have seen l imi ted  use because  o f  the high cost o f  
compu ta t i on  and  uneven  per fo rmance .  Sequent ia l  
searching is s imple  to p r o g r a m  but  is costly, when  com-  
pa red  to b ina ry  searching.  I f  records  are p laced  in a 
r a n d o m  access m e m o r y  and  l inked  toge ther  wi th  explici t  
pointers ,  the b ina ry  tree search techn ique  or  its var iants  
[7] are preferred.  
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