
LANGUAGE IS A vehicle of thought. Language philosophers
suggest that language has seminal importance in the
transfer of thought between individuals, whether they
embrace the strong linguistic determinism hypothesis or
the more relaxed linguistic relativism. This sentiment was
shared by L. Wittgenstein in 1922; his tractatus argued
that language limits what we can think about and that
philosophy often attempts to say the unsayable. Fifty

years later, mathematician E.W. Di-
jkstra agreed with the same concepts
in the context of programming lan-
guages: The FORTRAN programming
language was no longer an adequate
vehicle of thought for the modern age
because “it wastes our brainpower, is
too risky and therefore too expensive to
use.”12 K.E. Iverson, creator of APL, de-
voted his 1979 Turing Award lecture to
showing that mathematical notation
can be effectively combined “with the
advantages of executability and univer-
sality found in computer languages” to

Scrambled
Features for
Breakfast:
Concepts of
Agile Language
Development

DOI:10.1145/3596217

Describing a framework to support simpler
development of languages best suited to
express the problems and solutions of
each particular domain.

BY WALTER CAZZOLA AND LUCA FAVALLI

50 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

research

https://dx.doi.org/10.1145/3596217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3596217&domain=pdf&date_stamp=2023-10-20

form a “single coherent language,”22
even though some may argue against

 { 1 ≥ ρω : ω ∙ e ← ω [? ρω] ∙ (∇ (ω < e) / e) ,
 ((ω = e) / ω) , ∇ (ω > e) ∕ ω }

being an intelligible implementation
of quicksort. Computer scientists and
well-known essayists such as Paul Gra-
ham18 are convinced that language
philosophy applies to programming
languages. As such, the way we think of
programs and the language that we use
to write them are deeply connected.

For users to be able to speak their

mind, programming languages should
be designed so that they do not get
in the way of their thought. In oth-
er words, programming languages
should be designed to properly express
problems and solutions of a domain:
Domain-specific languages (DSLs) are
programming languages that employ
terms and concepts from a problem
domain. DSLs improve comprehensi-
bility by limiting comprehensiveness,
so domain experts can both validate
specifications written by others and ex-
press new ones themselves. There has

 key insights
 ˽ Domain-specific languages are a powerful

tool to properly convey solutions to the
problems of the several application
domains of complex software systems.

 ˽ Language development carries unique
challenges that must be handled through
proper methodology and tooling.

 ˽ Agile development processes and
language workbenches can play a key
role in easing language development
and asserting the language-oriented
programming paradigm as a valuable
resource for the development of
complex systems.

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 51

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
U

S
T

I
N

 M
E

T
Z

and give other stakeholders a chance
to validate progresses.

From a tooling perspective, we
chose tools that enable mocking, pro-
totyping, and modularization at dif-
ferent levels of granularity. Modular-
ization is a key aspect of agile software
development: Software systems must
evolve according to evolving business
requirements,23 and modularity makes
evolution easier because software
components can be understood and
changed independently of one anoth-
er. Most traditional tools for language
implementation, such as YACC24 or
antlr,31 are not well suited to such de-
velopment; they are designed to pro-
duce optimized parsers for languages
whose grammar is known ahead of
time. Therefore, they do not easily al-
low the developer to introduce new
language constructs in an agile way.

In our approach, modulariza-
tion is twofold: On top of traditional
modules, we also modularize along
the dimension of software features.
Feature-oriented programming32 is a
development style in which objects
are obtained as the composition of
several individual services provided
by features rather than from tradi-
tional object-oriented classes. Fea-
ture-oriented programming aims to
generalize inheritance to achieve a
more granular structure by encourag-
ing the development of independent
and reusable services, since the imple-
mentation of a module can be com-
posed across several features without
them affecting each other. Instead,
complex hierarchies and sub-classes
are discouraged because traditional
modularization techniques may cause
code pertaining to the same feature to
be scattered across several modules.
Feature location—that is, locating the
scattered positions of code pertain-
ing to the same feature—is a common
activity and a daunting problem.33
This problem worsens as the project
evolves, since features must be located
long after their implementation, in a
large, often undocumented code base
by a different, unfamiliar developer.13

Feature-oriented programming in
the context of language development is
supported by language workbenches,17
such as MPS,39 Rascal,2 Racket,14 Never-
lang,36 Melange,11 and Spoofax.40 To
a different extent, each language

been interest in the value provided by
a style of software development that
seeks to describe software systems us-
ing a collection of DSLs. According to
this vision—called language-oriented
programming17—each reasonably-sized
component of a complex software sys-
tem should be thought about, designed,
and developed using a language specifi-
cally created for that purpose.

How feasible is this approach? How
expensive would it be to write each DSL
from scratch? Language development
is not a cost-free activity. To be used
effectively, language development in-
volves creating an entire ecosystem—
that is, a language interpreter or a lan-
guage compiler but also any integrated
development environment (IDE) ser-
vices, such as syntax highlighting and
debuggers.27 Such a problem is inher-
ently complex and ultimately deemed
the language-oriented programming
paradigm unsuccessful. In this work,
we tried to address this problem by
combining proper methodology and
tooling.

From a methodological perspec-
tive, we chose an agile process that has
proven itself to be both productive and
cost-effective: Scrum.a In Scrum, the
product owner splits the work for a com-
plex problem into a product backlog
made of several features to be imple-
mented, each called a product backlog
item. Before each iteration (sprint), the
stakeholders meet in a sprint planning
event to refine the product backlog as
needed and to determine the sprint
goal—that is, the collection of prod-
uct backlog items that must be imple-
mented in this sprint. Each sprint ends
when the selected product backlog
items meet the so-called definition of
done. A product backlog item meets
the definition of done when the sys-
tem passes the validation testing with
regards to user stories created for that
item as well as other quality require-
ments, such as maintainability and
cognitive complexity. The end of each
sprint represents an increment of val-
ue—that is, a working, self-contained
product whose quality does not de-
crease. The process always keeps all the
actors involved at all times: Frequent
releases of incremental versions keep
the motivation of the developers high

a https://www.scrum.org/

LUDWIG WITTGENSTEIN

The limits of
my language
mean the limits
of my world.

52 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

research

workbench makes it possible to com-
ponentize the language implementa-
tion across both its dimensions: the
language-constructs dimension and
the compilation-phases dimension.
Language workbenches foster reuse
of modular language components
and can address problems that arise
when development is faced in an it-
erative, incremental way, such as the
feature-location problem33 and the ex-
pression problem.b

Based on this premise, the mar-
riage between language workbench-
es and agile software development
seems like a promising approach in
theory, since language workbenches
can stem some of the shortcomings of
the agile process. Yet, the application
of such an approach in production
environments is very limited, so we
decided to practice agile language de-
velopment ourselves. To apply Scrum
to language development, we directly
map the most important Scrum con-
cepts to feature-oriented language-
programming concepts. Each prod-
uct backlog item is represented by a
language feature26 expressing the do-
main concepts implemented as part
of the product goal. Therefore, the
language features are developed as
components that are loosely coupled,
replaceable, and isolated, so that
each product backlog item can easily
be traced back to a concrete artifact.
Similarly, each sprint goal is obtained
by extending a DSL obtained as the re-
sult of a preceding sprint with all the
newly developed language features.
According to this approach, DSLs
are developed iteratively. Each sprint
produces a usable increment in which
only a subset of the intended features
is released—that is, each sprint re-
leases a DSL that will be extended in
the subsequent sprints.

Next, we outline the concept and
theory of agile language development
with Scrum and the Neverlang lan-
guage workbench to consider this top-
ic from the right perspective. Then, we
share our experience to offer insights
on problems and solutions regarding
the agile development of program-
ming languages with language work-
benches in an industrial environment.

b As communicated by P. Wadler in the Java ge-
nericity mailing list in November 1998.

plement a restricted DSL, or one may
want to keep the implementation of the
semantics of a given construct while re-
placing its syntax. On the other hand, a
modularization along the dimension of
compilation phases makes it possible
to reuse and substitute parts of the se-
mantics of a language implementation.
For instance, a compiler and an inter-
preter for the same language might
share most of their code, such as the
parser, the development environment,
type checkers, and optimizers.

In summary, different recipes can
share ingredients with one another
and languages can leverage this oppor-
tunity by performing modularization
along both dimensions. To this goal,
a language implementation should
distinguish between static semantic
phases (for example, type checking),
dynamic semantic phases (for exam-
ple, evaluation) and language con-
structs, in such a way that the syntax
of a language can be freely extended
and restricted, and the semantics can
be varied at will with limited changes
to the original recipe.

Arguably, this vision is fully realized
by language workbenches, in which the
dimensions of language implementa-
tion can be expressed through power-
ful abstractions. Racket is an exten-
sible language in which programmers
can use powerful macros to implement
their own DSLs as libraries. MPS is a
language workbench that uses a pro-
jectional editor to visualize abstract
syntax trees in a user-friendly way
through dedicated views; developers
can also implement their own DSLs,
either from scratch or from other pre-
viously implemented languages. Spoo-
fax is a modular language workbench
that focuses on separation of linguistic
concerns—that is, aspects of the pro-
gramming language. These language
work benches are just some of many
examples in which this vision is fully
realized; each language workbench
brings forth its own recipe for language
decomposition and reuse. Our contri-
butions to this research field are the
Neverlang36 language workbench and
a Neverlang-based recipe for language
decomposition.4 In this work, we chose
the Neverlang language workbench
due to its unique approach to modu-
larization, which makes it particularly
suited for use in an agile context. Other

Our experience shows that agile pro-
gramming can be a valuable frame-
work to express the problems of their
development and to reason about their
solutions.

Language Development and
Language Workbenches
A programming language is like a
breakfast: A good one is the first step
toward a nice day. A good breakfast
needs the right ingredients and nutri-
ents. Language features that can be
separately compiled and distributed
are the ingredients of our feature-first
design methodology. This recipe is the
result of a sentiment that has been
widely shared across several research-
ers in the last decades: There was ac-
tive interest in the modularization of
languages into building blocks and
their composition into new interpret-
ers. Language developers came up
with many recipes made of several dif-
ferent ingredients.

A famed example is the creation of
interpreters using monads.28,35 Monads
are algebraic datatypes with a unit that
wraps a type into a monadic value and
a bind function that can transform mo-
nadic values. Monads are commonly
used in functional programming but
can be generalized to express abstract
syntax trees and to interpret them by
performing transformations over mo-
nadic types. Alternative solutions in-
volve using mixins and traits to enable
a streamlined resolution of feature
reuse problems by separating module
definitions from their connections.9,16
For instance, traits can be used to in-
ject semantics over an abstract syntax
tree deprived of any behavior so that
semantics are completely decoupled
from the abstract data representation.
Therefore, the syntax and semantics of
a language can be separated in differ-
ent modules.

The general sentiment behind all
these approaches to language develop-
ment is the realization that language-
feature reuse can be generalized to
both the constructs (syntax) and the
behavior (semantics) dimensions.
Modularizing along the dimension of
constructs makes it possible for differ-
ent language designs to share parts of
the syntax with other languages. For
instance, some constructs (along with
their semantics) can be excluded to im-

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 53

research

one Neverlang language feature.c In
summary, the Scrum team can trivi-
ally measure the increment of value
in terms of the number of Neverlang
linguistic assets created during each
sprint. Similarly, refactoring a product
backlog item is easy because its code is
not scattered and can be traced back to
a specific Neverlang source file.

Agile Language Development
It is impossible to foresee all the re-
quirements of a project at the begin-
ning. To favor adaptive iterations over
long-term estimations and to prompt-
ly address changes in requirements,
we outlined a development process
for programming languages based on
Scrum, dubbed agile language develop-
ment. The overall agile language devel-
opment process is shown in Figure 1.

Product goal. We discuss the ag-
ile language development process
through the lens of our case study con-
ducted on Tyl,d in which the product
goal was a DSL for the development
of ERP applications commissioned by
the eponymous software company.e
ERP applications are complex soft-
ware suites designed to manage the
many stages of a business, such as
sales, inventory management, ship-
ping, and payment. Our partnership
with Tyl enabled us to put theory into
practice in an industrial production
environment. Tyl is a programming
language designed to flatten the learn-
ing curve of unexperienced program-
mers and domain experts, so they can
be involved in the development of ERP
applications with limited training. Tyl
was designed as a Java-like language
that trades generality for a set of busi-
ness-specific features, such as built-
in datatypes for currencies and an
embedded query language. The DSL
revolves around user interaction with

c Please refer to Vacchi and Cazzola36 for a
complete Neverlang overview. The math-
ematical models behind the modularization
used by Neverlang for the syntax and the se-
mantics are discussed in Cazzola and Vacchi8
and Cazzola et al.5 respectively.

d Visit https://doi.org/10.5281/zenodo.7276536
to further inspect an excerpt of the project
(which was simplified for demonstration pur-
poses), including each of the DSL variants ob-
tained as the result of a sprint goal.

e A small Italian software company dedicated to
enterprise resource planning (ERP), software
development, and integration.

workbenches may reach similar results
but lack some key features, such as
separate compilation, fully exogenous
composition, and native support for
language product lines. In fact, Never-
lang differs from other language work-
benches by explicitly embracing the

feature-oriented programming para-
digm32 and language product lines.26
In Neverlang, language features are
promoted to first-class citizens. This
abstraction fits an agile style of devel-
opment nicely because each product
backlog item can be mapped to exactly

Figure 1. Applying the Scrum framework through an iterative language engineering process.

Select Backlog Items

Planning
Poker

Language Deployer

Language Developers

Language User

Implement
Language
Features

Configure
Language

Variant

Test
Language

Variant

Release
Language

Variant

➎
Update
Backlog

Complete DSL

Second Variant

First Variant

Sprint Goals

Sprint

Product
Backlog

➊

Language Specification Release

Maintenance
➏

➍

➌
➋

Figure 2. Dimensions of the language decomposition: syntactic constructs (differ by pattern)
and compilation phases (differ by color).

P
ro

d
u

ct
io

n
s

Phases

Constructs

parsing

type checking

code generation

Functions
Integers

Variable Declaration
For Loop

54 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

research

forms: Programmers are given default
implementations of standard opera-
tions (such as navigating or saving the
contents of a form), called events. Tyl
can then be used to customize the ef-
fect of these events. As shown in Fig-
ure 1-➊, the Tyl specification was used
to set the product goal and then split
into product backlog items to popu-
late the initial product backlog. Each
product backlog item represents a dif-
ferent language feature to be imple-
mented in Neverlang. Next, the first
sprint started.

Getting started. During each sprint,
the Scrum team sets a language vari-
ant of the product goal as the current
sprint goal and selects the correspond-
ing items from the product backlog
(Figure 1-➋). The sprint goal for the
first sprint was a proof-of-concept lan-
guage for the evaluation of arithmetic
expressions. The Scrum team esti-
mates the effort needed to implement
the selected backlog items through a
planning poker event19 (Figure 1-➌).
As a result of the planning poker event,
the team is split into three roles (Fig-
ure 1-➍). One team member is chosen
as the language user, one team mem-
ber is chosen as the language deployer,
and all remaining team members are
selected as language developers. De-
pending on the size of the Scrum team
and on the duration of each sprint,
some team members may be assigned
more than one role. Once the roles
have been established and until the
end of the sprint, each member be-
haves according to an engineering pro-
cess we outlined in a previous work.4
In this process, decisions are made
iteratively based on what is observed
during development to optimize sepa-
ration of concerns, task parallelism,
and adaptability of the requirements.
More precisely, language develop-
ers are responsible for developing
language features using Neverlang.
The language deployer configures the
available language features into a lan-
guage variant according to the sprint
goal. The language user translates the
user stories reported in each product
backlog item into test cases. Tests are
used to support the creation of lan-
guage features in a test-driven develop-
ment fashion and to verify the validity
of the language implementation be-
fore release.

language implemented in Neverlang is
decomposed along the two dimensions
of syntactic constructs and of compi-
lation phases. Figure 2 shows that Tyl
was decomposed into four constructs
(x axis) and three phases (y axis). The
z axis represents different grammar
productions pertaining to the same
syntactic construct. Each production
is represented by a box, with a differ-
ent color depending on the semantic
dimension—that is, the compilation
phases. For instance, Tyl is divided into
a parsing phase (red), a type-checking
phase (blue), and a code-generation
phase (green).

The implementation of addition ex-
pressions in Tyl shown in Listing 1 mir-
rors this modularization technique.
The code is split into modules, each
containing a reference syntax and

Completing product backlog items.
Using Neverlang, language developers
can implement language features se-
lected as product backlog items for the
current sprint using abstractions that
explicitly model reuse of both syntactic
and semantic dimensions. Compared
to other language development frame-
works, we found Neverlang’s abstrac-
tions to be particularly suited to an agile
development approach, since compo-
nents can be prototyped and then in-
crementally replaced by their final
implementation by composing mod-
ules into new language features. Fig-
ure 2 schematizes the modularization
techniques used in Neverlang, whereas
Listing 1 shows a product backlog item
implemented by a language developer
during the first sprint according to the
modularization depicted in Figure 2: A

Listing 1. Modular addition implementation in Neverlang.

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 55

research

out changes nor code duplication.
Similarly, mocking and prototyping
are cost effective, because mocked
slices can be easily replaced by final
ones once they are available.

Completing a sprint. The develop-
ment process of Neverlang slices is
not linear and the three roles may in-
teract several times before language
features can be considered done. The
definition of done is agreed upon
by the Scrum team and stakehold-
ers before beginning the first sprint
and generally includes conformance
to user stories and quality metrics.4
When the language user declares all
the language features that meet the
definition of done, the sprint goal
has been met and the sprint ends. In
this example, the first sprint ended as
soon as the language was able to parse
well-formed expressions. As shown
in Figure 1-➎, before beginning the
next sprint, the language variant is re-
leased. This differs considerably from
the traditional approach to language
development. Whether the develop-
ment process follows a waterfall or an
iterative model, intermediate prod-
ucts are invalidated upon comple-
tion of the next version. Conversely,
deploying and maintaining several
fully functioning language variants at
the same time provides continuous
validation of the reusability of linguis-
tic assets across several scenarios.
Moreover, there might be scenarios
in which having several language vari-
ants may prove useful, such as the
teaching programming activity.6 Fi-
nally, the product backlog is updated
by removing any completed prod-
uct backlog item and adapted to any
changes to the requirements.

Iterating the process. On each sub-
sequent sprint, different team mem-
bers may (and should) play the roles of
language deployer and language user.
When a sprint goal coincides with the
product goal, the process is complete,
and the complete DSL can be released.
However, the agile development pro-
cess never really ends and can be re-
sumed at any time to maintain and
update the product, as well as for any
post-release change of the require-
ments (Figure 1-➏).

The development of Tyl consisted
of six sprints; the accompanying table
summarizes the product backlog

zero or more roles. In this example,
the reference syntax (red box) de-
clares all the productions of the addi-
tion expression language construct in
Backus-Naur Form. The reference
syntax will be used by Neverlang to
generate a parser. The type-check-
ing role (blue) shows the implemen-
tation of a compilation phase that
performs type checking over addition
expressions written in Tyl, by add-
ing any detected error to a global data
structure called $$Errors. Roles are
implemented in Java, with additional
syntactic sugar for accessing nonter-
minals. Nonterminals are referenced
with an absolute numbering that starts
from 0 and grows left to right and top
to bottom. For instance, the red arrows
in Listing 1 show that 0 is used to refer
to the AddExpr nonterminal in the
first production, 1 to refer to the Term
in the first production, 2 to refer to the
AddExpr nonterminal in the second
production, and so on. Accessing non-
terminals enables the generation and
retrieval of attributes stored in nodes
of the parse tree (such as $1.value in
Listing 1) according to the syntax di-
rected translation technique.1 Similar-
ly, the code-generation role (green
box) implements the semantics to
translate Tyl code into Java according
to the value of the code attributes on
child nodes of the parse tree.

Finally, all these elements are com-
posed together by the slice construct
(black box in Listing 1), in which the
syntactic dimension and all seman-
tic dimensions of a language feature
are listed; dimensions can be imple-
mented in either the same or different
modules. This modularization tech-
nique fits the requirements of agile
development and adapts them to the
scope of language development. In
Neverlang, each product backlog item
is implemented as a slice. There-
fore, if the team must face a change
in the requirements, it suffices to de-
tect the backlog items that need to be
changed, remove the corresponding
slices from the language implemen-
tation, and replace them with the up-
dated slices that conform to the new
requirements. Moreover, the mecha-
nism is flexible enough that parts of
a slice that do not need to be changed
(for instance, the reference syn-
tax) can be reused in new slices with-

ALFRED V. AHO

Computer science
is a science of
abstraction—
creating the right
model for thinking
about a problem
and devising
the appropriate
mechanizable
techniques to
solve it.

56 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

research

items completed and/or refactored
on each sprint, as well as each DSL
variant released when the respective
sprint goal was reached. As discussed
so far, the first sprint resulted in a
proof-of-concept release. Similarly,
the sprint goal for the second sprint
was a proof-of-concept language that
extended the first release with vari-
ables and control flow structures. The
releases from the third on were more
feature-rich and began including ERP
domain-specific concepts. The six
sprints can be logically split into three
groups: proof of concept (sprints #1
and #2), code structure (sprints #3
and #4), and domain-specific features
(sprints #5 and #6). The modular
implementation allows for iterative
evolution through the gradual intro-
duction of new and updated features
via the implementation of new Nev-
erlang slices. On each sprint, the do-
main-analysis phase was performed
with the help of the domain experts
from Tyl. The sprint goals for sprints
#3 and #4 focused on code structure:
New slices were added and some exist-
ing components were replaced to sup-
port functions and their namespaces.
Sprint #3 (Function Libraries) intro-
duces constructs for function defini-
tion and invocation; a new function
table component tracks the scope so
that the function-check compilation
phase could validate function identifi-
ers. This phase is considered orthogo-

a DSL such as the one exemplified in
Listing 2 to express events allowed for
a smoother development experience
by reducing the boilerplate code and
replacing any API with a domain-spe-
cific syntax. Instead of directly inter-
acting with the properties of a context
object, developers can interact with
these properties using simple assign-
ments. For instance, the developer can
write this.fields.username.value
instead of ctx.getField("fields").
getField("username").getValue()
on line 5 of Listing 2, with the added
benefit of performing a sanity check,
whereas the corresponding Java code
would fail at runtime. In fact, the lan-
guage variant released for this sprint

nal to all others and was implemented
separately. Finally, we swapped the
mocked symbol table slice used for the
proof-of-concept with a scope-aware
implementation to reach the new
sprint goal. Sprint #4 was devoted to
support Forms and Events. In Tyl, a pro-
totype describes the factory behavior
of a form through a set of events. An ex-
ample for such an event written in Tyl
is shown in Listing 2. The framework
(developed in parallel by a separate
Scrum team) routes and dispatches
events in response to user interaction.
Using events written in Java was a via-
ble solution, although the domain ex-
perts considered Java too verbose and
obscure for non-programmers. Using

Sprints of the agile development process of Tyl.

Sprint Goal Total Backlog Items New Backlog Items Updated Backlog Items Key Features Compilation Phases

1 Calculator 10
2
(mostly off-the-shelf
components)

Arithmetic Expressions
Basic Types

Translation
Basic Type Checking

2 Control Flow 18 8 1
Variables
Control Flow
Symbol Table

Basic Type Checking
Code Generation

3 Function Libraries 31 13 6

Function Definition
Invocation and Library
Definition
Function Table
Updated Symbol Table
(with Local Scope)

Basic Type Checking
Function Check
Code Generation

4
Forms and
Events 39 8 4

Form
Event
Field
Property Definition

Extended Type Checking
Function Check
Code Generation

5
Business-Specific
Types 44 5 7

Date/Time
Currency
Fixed-Point, and so on

Extended Type Checking v2
Function Check
Code Generation

6 Query DSL 49
5 + support code
(SQL-like DSL select,
update, and so on.)

10
(all nullable operations)

Nullable types
Null-safe expression

DB Schema Checking
Extended Type Checking v3
Function Check
Code Generation

Listing 2. Programmable events in Tyl.

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 57

research

datatypes are native. For instance,
“2014.02.01 - 2014.01.01” should
evaluate to 31 days. The compiler
also performs type checking and auto-
mated conversions whenever types are
compatible for the given operation.
After Sprint #6, the product goal was
met and Tyl was ready to be released.
On each sprint, some Neverlang slices
had to be replaced by new ones to
keep up with the agile introduction of
new language features, but the asso-
ciated effort was reasonable because
it was easy to detect the affected lan-
guage components and replace them
with updated ones without affecting
the implementation of other compo-
nents.

Facing challenges. The original
specification of the Tyl DSL made
some bold assumptions and design
decisions. For instance, it was decided
to remove any null references alto-
gether to prevent unexpected crashes
and vulnerabilities. During the sprint
planning event for Sprint #6, the
product backlog items selected for the
sprint goal included a SQL-like DSL to
be embedded in Tyl, inspired by LINQ,
JOOQ and QueryDSL. This is when we
realized a language that interacts with
databases cannot simply ship without
null values and language specifica-
tion of the Tyl DSL had to be updated
accordingly. A traditional waterfall
model would not support such a sud-
den change of direction at such a late
stage of development (the very last
sprint before the final release). Con-
versely, an agile development process
allowed for a progressive replacement
of all the involved components while
verifying that the rest of the imple-
mentation would not regress. The
product backlog items needed for the
introduction of null values were add-
ed to the product backlog and then
selected as part of the following sprint
goal. Inspired by modern program-
ming languages such as Kotlin, the
new user stories were written so that
null values must be handled in a safe
way. All type were kept non-nullable
by default but were supported by the
introduction of nullable types: should
the programmers interact with data
from an external source, they can ex-
plicitly declare it to be null-unsafe (see
Listing 3). The newly introduced prod-
uct backlog items included constructs

introduced a new extended type-check-
ing compilation phase and all Never-
lang slices needed for its implemen-
tation. This version validates a form
implementation against its prototype:
The compiler would raise an error
whenever a programmer tries to im-
plement an undeclared event. The last

two sprints focused on the introduc-
tion of the business-oriented features.
Most notably, Sprint #5 introduced
built-in types to represent date/time
values, currencies, and in general, all
of the types that are deemed useful in
business-oriented applications. Arith-
metic operations between the new

Spoofax40 decouples syntax and semantics. The same semantic strategies can be reused
across several language features by desugaring different concrete syntaxes into the
same abstract syntax by means of rewrite rules.

MontiCore25 languages can be iteratively extended via syntax and semantics
redefinition. Sub-languages can be prototyped through embeddings.

LISA20 can combine and iteratively extend languages by means of multiple inheritance
and aspect-like constructs.

Silver37 decouples syntax and semantics using attributes, so that the semantics are
executed over an AST rather than a parse tree, thus removing any coupling between
semantics and any irrelevant details such as terminals.

CBS30 provides an extensive library of off-the-shelf language-specification components
for fast prototyping of new languages.

Meta-Programming System (MPS)39 supports concurrent views of the same AST so that
programmers with different expertise can collaborate.

Melange10 uses aspects to allow language extension both in the dimension of language
constructs and of semantic phases.

Racket permits programmers to iteratively add languages to a codebase so that extra-
linguistic mechanisms are turned into linguistic constructs.14

Rascal2 modules can import, extend, and merge other modules with semantics that can
be reused via a pattern-based dispatch mechanism.

a This is not exhaustive. For a full comparative survey on language workbenches, please see
Iung et al.21 and Vasudevan and Tratt.38

Overview of Agile Support
in Language Workbenchesa

Listing 3. Handling nullable types in Tyl.

58 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

research

for the support of native null-aware
arithmetic and the safe propagation
of null values without throwing ex-
ceptions. This is where a language
workbench that promotes language
features to first-class citizens shines:
Neverlang slices that did not conform
to the new requirements could be
easily detected based on the product
backlog items completed during the
preceding sprints. These slices could
then be replaced by alternative imple-
mentations without affecting other
slices due to their code not being
tangled. Effectively, we could steer the
language implementation in a differ-
ent direction at a very late stage of the
development.

Additional development challenges
arose from the requirement of en-
forcing implicit conversions between
business-critical, non-conventional
datatypes such as timestamps, cur-
rencies, and units of measurement.
Adding new datatypes in the context
of agile development of programming
languages involves resolving the well-
known expression (or extensibility)
problem, which is now a classic prob-
lem in programming languages. In
fact, each sprint may introduce new
datatypes that were not originally fore-
seen. Each new datatype represents a
new data variant and requires the in-
troduction of new operations.

Both new data variants and new op-
erations may affect pre-existing ones.
In our context, a new datatype must
be supported by operations to perform
type checking and type promotion
against pre-existing datatypes. Solving
the expression problem in our context
means supporting the introduction
of new datatypes and any additional
type-checking and type-promotion
semantics without affecting existing
Neverlang slices. The Neverlang mod-
ularization technique3,4 was capable
of solving the expression problem be-
cause new type-checking semantics
and type conversions can be imple-
mented in the roles of a new module
and compiled separately by leveraging
a technique called restraint semantic
dispatch.7 Tyl developers smoothly in-
troduced business-specific datatypes
and the ability to define custom new
types based on existing ones through
a code-generation tool and JSON tem-
plates. Each new type implements any

needed roles and can automatically be
plugged-in, converted and promoted
to other existing types without chang-
ing their code.

A Perspective on Agile
Language Development
How easy is it to adopt an agile language
development process? What are its ben-
efits and drawbacks? How does it com-
pare to traditional language develop-
ment? In other words, what is the lesson
we learned from this experience?

In our experience, agile language
development is a process that is easy to
pick up and start practicing. It provides
smaller, incremental goals as well as
constant feedback to the development
team and stakeholders. However, the
actual application of agile language
development still has its fair share of
challenges, including how to deal with
the complex inter-relations between
language features traditionally imple-
mented as part of a monolithic compil-
er or interpreter. Tackling such prob-
lems requires adequate tools, giving
developers the ability to realize the fea-
tures that constitute a language variant
in isolation. In a sense, agile language
development is possible only if the lan-
guage development framework sup-
ports a modularization technique that
supports modules and features as dis-
tinct entities with low coupling, so that
language features can be replaced with
limited impact on the rest.

All language workbenches can em-
power such a development style, al-
though different approaches to modu-
larization may fit the agile development
process better. So, agile language devel-
opment is not only a matter of method-
ology and tooling, but also a matter of
design. It requires developers to care-
fully design each language feature and
for the language workbench to have the
ability to compose language features
in a strictly exogenous way,29 so that all
language features are unaware of the
language they will be part of. Instead,
any gap between the semantics of in-
compatible language features is filled
by the language deployer at configura-
tion time using only glue code that is
external to the implementation itself.
Such a development style is like the in-
famous monkey-patching technique
often used by JavaScript browser plug-
ins. However, Neverlang slices improve

TONY HOARE

I call it my
billion-dollar
mistake. It was
the invention of
the null reference
in 1965.

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 59

research

21. Iung, A. et al. Systematic mapping study on domain-
specific language development tools. Empirical
Software Engineering 25, 5 (Sept. 2020), 4205–4249.

22. Iverson, K.E. Notation as a tool of thought.
Communications of the ACM 23, 8 (Aug. 1980),
444–465.

23. Jayatilleke, S. and Lai, R. A systematic review of
requirements change management. Information and
Sofware Technology 93, (Jan. 2018), 163–185.

24. Johnson, S.C. YACC: Yet another compiler-compiler.
Technical Report, (CS-TR-32), Bell Laboratories, Hill,
NJ, USA (July 1975).

25. Krahn, H., Rumpe, B., and Völkel, S. MontiCore: A
framework for compositional development of domain
specific languages. Intern. J. on Software Tools for
Technology Transfer 12, 5 (Sept. 2010), 353–372.

26. Kühn, T. and Cazzola, W. Apples and oranges:
Comparing top-down and bottom-up language product
lines. In Proceedings of the 20th Intern. Software
Product Line Conf., R. Rabiser and B. Xie (Eds.), ACM
(Sept. 2016), 50–59.

27. Kühn, T., Cazzola, W., Giampietro, N.P., and Poggi, M.
Piggyback IDE support for language product lines. In
Proceedings of the 23rd Intern. Software Product Line
Conf., ACM (Sept. 2019), 131–142.

28. Liang, S., Hudak, P., and Jones, M. Monad transformers
and modular interpreters. In Proceedings of the 22nd
ACM Symp. on Principles of Programming Languages,
R.K. Cytron and P. Lee (Eds.), ACM (Jan. 1995),
333–343.

29. Méndez-Acuña, D. et al. Leveraging software product
lines engineering in the development of external DSLs:
A systematic literature review. Computer Languages,
Systems & Structures 46 (Nov. 2016), 206–235.

30. Mosses, P.D. Software meta-language engineering
and CBS. J. of Computer Languages 50 (Feb. 2019),
39–48.

31. Parr, T.J. and Quong, R.W. ANTLR: A predicated-LL(k)
parser generator. Software—Practice and Experience
25, 7 (July 1995), 789–810.

32. Prehofer, C. Feature-oriented programming: A fresh
look at objects. In Proceedings of the 11th European
Conf. on Object-Oriented Programming, M. Akşit and S.
Matsuoka (Eds.), Springer (June 1997), 419–443.

33. Rubin, J. and Chechik, M. A survey of feature location
techniques. Domain Engineering: Product Lines,
Languages and Conceptual Models, I. Reinhartz-
Berger, A. Sturm, T. Clark, S. Cohen, and J. Bettin,
(Eds.), Springer (2013), 29–58.

34. Saffer, D. Designing for Interaction: Creating Innovative
Applications and Devices. New Riders (2010).

35. Steele, G.L. Building interpreters by composing
monads. In Proceedings of the 21st Symp. on Principles
of Programming Languages, H-J. Boehm, B. Lang, and
D. Yellin (Eds.), ACM (Jan. 1994), 472–492.

36. Vacchi E. and Cazzola, W. Neverlang: A framework for
feature-oriented language development. Computer
Languages, Systems & Structures 43, 3 (Oct. 2015),
1–40.

37. Van Wyk, E. et al. Silver: An extensible attribute
grammar system. Electronic Notes in Theoretical
Computer Science 203, 2 (Apr. 2008), 103–116.

38. Vasudevan, N. and Tratt, L. Comparative study of
DSL tools. Electronic Notes in Theoretical Computer
Science 264, 5 (July 2011), 103–121.

39. Völter, M. and Pech, V. Language modularity with the
MPS Language Workbench. In Proceedings of the 34th
Intern. Conf. on Software Engineering, IEEE (June
2012), 1449–1450.

40. Wachsmuth, G.H., Konat, G.D.P, and Visser, E.
Language design with the Spoofax Language
Workbench. IEEE Software 31, 5 (2014), 35–43.

Walter Cazzola (cazzola@di.unimi.it) is a professor at
the Università degli Studi di Milano, Computer Science
Department, Milan, Italy.

Luca Favalli is a post-doctoral fellow Università degli
Studi di Milano, Computer Science, Milan, Italy.

Copyright held by author(s)/owner(s).

on the limitation of monkey patches
by not breaking modular boundaries:
Slices can accommodate the composi-
tion between Neverlang modules, but
they can never access their implemen-
tation. Moreover, Neverlang slices can
never cause any problems associated
to a dependency to a monkey-patched
module: Neither slices nor modules can
depend on another slice, therefore each
patch is always local to a specific lan-
guage feature. Were the same modules
to be used in a different slice, the patch
would not propagate.

To summarize, the repeatability of
our experience and the applicability of
agile language development are limit-
ed with regards to the capability of the
language workbench to exogenously
compose language features using only
glue code. Moreover, developers must
be given the ability to determine if
their language-feature implementa-
tion is truly modular—during each
sprint and in real time. Although find-
ing an objective solution to this prob-
lem may be a complex task, the de-
veloper can be supported by defining
the software metrics that best suit the
language workbench and their respec-
tive target values, such as cohesion,
coupling, complexity, and maintain-
ability metrics.4 Achieving a true mod-
ular structure is a key factor: Reuse of
off-the-shelf components is a staple of
agile development, either for prototyp-
ing, mocking, or for actual implemen-
tations and is supported in different
ways by several language workbench-
es. For instance, Xtext provides a ge-
neric expression language (Xbase) that
can be imported as a library by other
languages, whereas MPS provides an
extensible BaseLanguage. Racket is
entirely designed around the concept
of extending the language by creating
extra-linguistic mechanisms and turn-
ing them into linguistic constructs15 to
support faster problem solving. As it is
often the case in the context of software
development, agile language develop-
ment is not a silver bullet and cannot
undo the inherent complexity of soft-
ware systems,34 but it can provide a
framework to reason about complex
systems in terms of their application
domains and the tools to easily develop
the languages that are best suited to ex-
press the problems and the solutions
of each particular domain without reli-

ance on long-term timelines and hard-
to-maintain documents.

Acknowledgments
The authors thank D. Zonca, E. Vacchi,
and the other staff of Tyl for their help
and feedback in the various sprints.
They also thank the anonymous re-
viewers for their valuable comments
and suggestions, which greatly im-
proved the presentation of our work.
This work is partially supported by
the Italian Ministry of University and
Research (MUR) project “T-LADIES”
(PRIN 2020TL3X8X).

References
1. Aho, A.V., Lam, M.S., Sethi, R., and Ullman, J.D.

Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Boston, MA, USA, 2nd ed. (2006).

2. Basten, B. et al. Modular language implementation
in Rascal—Experience report. Science of Computer
Programming 114 (Dec. 2015), 7–19.

3. Bertolotti, F., Cazzola, W., and Favalli, L. On the
granularity of linguistic reuse. J. Systems and Software
(April 2023).

4. Cazzola, W. and Favalli, L. Towards a recipe for
language decomposition: Quality assessment
of language product lines. Empirical Software
Engineering 27, 4 (Apr. 2022).

5. Cazzola, W., Giannini, P., and Shaqiri, A. Formal
attributes traceability in modular language development
frameworks. Electronic Notes in Theoretical
Computer Science 322 (Apr. 2016), 119–134.

6. Cazzola, W. and Olivares, D.M. Gradually learning
programming supported by a growable programming
language. IEEE Transactions on Emerging Topics in
Computing 4, 3 (Sept. 2016), 404–415.

7. Cazzola, W. and Shaqiri, A. Modularity and optimization
in synergy. In Proceedings of the 15th Intern. Conf. on
Modularity, D. Bator (Ed.), ACM (March 2016), 70–81.

8. Cazzola, W. and Vacchi, E. On the incremental growth
and shrinkage of LR Goto-Graphs. Acta Informatica
51, 7 (Oct. 2014), 419–447.

9. Cazzola, W. and Vacchi, E. Language components for
modular DSLs using traits. Computer Languages,
Systems & Structures 45 (Apr. 2016), 16–34.

10. Combemale, B., Barais, O., and Wortmann, A.
Language engineering with the GEMOC Studio.
In Proceedings of the Intern. Conf. on Software
Architecture Workshop, IEEE (Apr. 2017), 189–191.

11. Degueule, T. et al.Melange: A meta-language for
modular and reusable development of DSLs. In
Proceedings of the 8th Intern. Conf. on Software
Language Engineering, ACM (Oct. 2015), 25–36.

12. Dijkstra, E.W. The humble programmer. Communications
of the ACM 15, 10 (Oct. 1972), 859–866.

13. Dit, B. et al. Feature location in source code: A
taxonomy and survey. J. of Software: Evolution and
Process 25, 1 (Jan. 2013), 53–95.

14. Felleisen, M. et al. A programmable programming
language. Communications of the ACM 61, 3 (March
2018), 62–71.

15. Felleisen, M. et al. The Racket Manifesto. In Proceedings
of the 1st Summit on Advances in Programming
Languages and Informatics 32, S. Krishnamurthi and
G. Morrisett, (Eds.), May 2015, 113–128.

16. Findler, R.B. and Flatt, M. Modular object-oriented
programming with units and mixins. In Proceedings
of the 3rd Intern. Conf. on Functional Programming,
M. Felleisen, P. Hudak, and C. Queinnec, (Eds.), ACM
(Sept. 1998), 94–104.

17. Fowler., M. Language workbenches: The killer-app
for domain specific languages? Martin.Fowler.com
(May 2005).

18. Graham, P. Beating the averages. http://www.
paulgraham.com/avg.html, (Apr. 2003).

19. Grenning, J. Planning poker or how to avoid analysis
paralysis while release planning. Hawthorn Woods:
Renaissance Software Consulting 3, (Aug. 2002), 22–23.

20. Henriques, P.R. et al. Automatic generation of
language-based tools using the LISA system. IEEE
Proceedings—Software 152, 2 (Apr. 2005), 54–69.

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
scrambled-features-breakfast

60 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

research

http://www.paulgraham.com/avg.html
http://www.paulgraham.com/avg.html
http://www.paulgraham.com/avg.html

