
54

Fingerprinting IoT Devices Using Latent Physical Side-Channels

JUSTIN FENG, UCLA, USA
TIANYI ZHAO, UCLA, USA
SHAMIK SARKAR, UCLA, USA
DOMINIC KONRAD, UCLA, USA
TIMOTHY JACQUES, UCLA, USA
DANIJELA CABRIC, UCLA, USA
NADER SEHATBAKHSH, UCLA, USA

The proliferation of low-end low-power internet-of-things (IoT) devices in “smart” environments necessitates secure iden-
tification and authentication of these devices via low-overhead fingerprinting methods. Previous work typically utilizes
characteristics of the device’s wireless modulation (WiFi, BLE, etc.) in the spectrum, or more recently, electromagnetic emana-
tions from the device’s DRAM to perform fingerprinting. The problem is that many devices, especially low-end IoT/embedded
systems, may not have transmitter modules, DRAM, or other complex components, therefore making fingerprinting infea-
sible or challenging. To address this concern, we utilize electromagnetic emanations derived from the processor’s clock to
fingerprint. We present Digitus, an emanations-based fingerprinting system that can authenticate IoT devices at range. The
advantage of Digitus is that we can authenticate low-power IoT devices using features intrinsic to their normal operation
without the need for additional transmitters and/or other complex components such as DRAM. Our experiments demonstrate
that we achieve ≥ 95% accuracy on average, applicability in a wide range of IoT scenarios (range ≥ 5m, non-line-of-sight,
etc.), as well as support for IoT applications such as finding hidden devices. Digitus represents a low-overhead solution for the
authentication of low-end IoT devices.

CCS Concepts: • Computer systems organization → Embedded hardware; • Security and privacy → Authentication.

Additional Key Words and Phrases: physical side-channels, fingerprinting, internet-of-things

ACM Reference Format:
Justin Feng, Tianyi Zhao, Shamik Sarkar, Dominic Konrad, Timothy Jacques, Danijela Cabric, and Nader Sehatbakhsh. 2023.
Fingerprinting IoT Devices Using Latent Physical Side-Channels. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 2,
Article 54 (June 2023), 26 pages. https://doi.org/10.1145/3596247

1 INTRODUCTION
In the rapidly growing world of IoT and embedded devices, especially low-cost, resource-constrained devices, the
demand for low-overhead secure identification and authentication methods has become increasingly important.
Among various solutions, device fingerprinting has received particular interest due to its advantages including
being external and non-invasive, low-power, and (almost) zero-overhead, making it suitable for detecting and
authenticating low-end and low-power IoT/embedded devices.

Authors’ addresses: Justin Feng, jfeng10@ucla.edu, UCLA, Los Angeles, California, USA; Tianyi Zhao, zhaotianyi@ucla.edu, UCLA, Los
Angeles, California, USA; Shamik Sarkar, shamiksarkar@ucla.edu, UCLA, Los Angeles, California, USA; Dominic Konrad, djkonrad@ucla.edu,
UCLA, Los Angeles, California, USA; Timothy Jacques, tjacques888@ucla.edu, UCLA, Los Angeles, California, USA; Danijela Cabric,
danijela@ee.ucla.edu, UCLA, Los Angeles, California, USA; Nader Sehatbakhsh, nsehat@ee.ucla.edu, UCLA, Los Angeles, California, USA.

© 2023 Copyright held by the owner/author(s).
2474-9567/2023/6-ART54
https://doi.org/10.1145/3596247

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution International 4.0 License.

HTTPS://ORCID.ORG/0009-0003-4723-4808
HTTPS://ORCID.ORG/0009-0001-3413-1792
HTTPS://ORCID.ORG/0000-0001-5083-8352
HTTPS://ORCID.ORG/0009-0003-0418-2438
HTTPS://ORCID.ORG/0009-0003-5253-2818
HTTPS://ORCID.ORG/0000-0002-5967-2683
HTTPS://ORCID.ORG/0000-0001-7181-2258
https://doi.org/10.1145/3596247
https://orcid.org/0009-0003-4723-4808
https://orcid.org/0009-0001-3413-1792
https://orcid.org/0000-0001-5083-8352
https://orcid.org/0009-0003-0418-2438
https://orcid.org/0009-0003-5253-2818
https://orcid.org/0000-0002-5967-2683
https://orcid.org/0000-0001-7181-2258
https://doi.org/10.1145/3596247
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3596247&domain=pdf&date_stamp=2023-06-12

54:2 • Feng et al.

MemScope

RX
DRAM
Clock

Desktop-Grade Device

TX RXDevice

RF Fingerprinting

CPU
Clock RX

Low Power IoT

Our Work

● Receiver classifies conventional RF signals
from the device’s radio.

● Requires existing transmitter or radios with
a specific modulation.

● Requires device to actively transmit.

● Receiver classifies EME from DRAM clock.
● Requires devices with specific DRAM

design which are not available on many IoT
devices.

● Device operates as normal.

✔ Receiver classifies EME from CPU clock.
✔ No need for additional components

including DRAM.
✔ Device operates as normal.

EME

EME

RF

Fig. 1. Fingerprinting devices under various scenarios. Conventional RF fingerprinting methods use various RF modalities,
such as WiFi packets, to fingerprint devices. Recently, Memscope [47] leverages electromagnetic emanations (EME) from the
memory’s clock to fingerprint devices. Our work, Digitus, leverages EMEs from the processor clock for fingerprinting, which
makes it more suitable for low-power resource-constrained IoT devices.

The fingerprinting approaches have been extensively used for authenticating known IoT devices in a network,
while also being used for detecting intruders and malicious (unknown) devices in the same network [30, 35, 48, 52].
More recently, fingerprinting has been also used for privacy protection where a fingerprinting framework is used
to detect hidden devices (e.g., a hidden camera, a network eavesdropper, etc.) in an environment (e.g., home,
office, etc.) [12, 29, 40, 45, 46].

To achieve the above goals for fingerprinting, existing approaches leverage different signal modalities created
by the target devices, including RF signals, electromagnetic radiations, and even magnetic signals [15, 22, 53].
The main shortcoming of the state-of-the-art, however, is the lack of a generic approach that is applicable to
low-end IoT devices with or without radios and/or other complex components such as DRAM, while being robust
against various attacks and operating in a reasonable distance (few meters away). Given the growing popularity of
“smart” environments filled with low-end and low-power IoT and embedded devices, such a generic yet effective
approach is much needed.
To address this pressing need, we propose a new method called Digitus that is suitable for fingerprinting

low-end and resource-constrained IoT and embedded devices. Digitus is a framework that can authenticate
devices at range using latent electromagnetic (EM) emanations radiated from the embedded/IoT devices. The
key idea is to leverage the unique features of the processor’s clock and its various modulations, which are widely
available across a large variety of devices including low-end embedded and IoT systems, to fingerprint devices. To
achieve high accuracy, Digitus employs features engineering and deep neural networks to extract features and
then uses various machine learning classifiers to make a decision.
In comparison with the state-of-the-art, this work offers several advantages, which are described below and

summarized in Fig. 1.

• Support for Low-End IoT and Embedded Devices. While leveraging electromagnetic emanations for
fingerprinting is not new, our approach improves the current state-of-the-art, particularly Memscope [47],
by leveraging only the EM signals and features created in the processor – i.e., unlike state-of-the-art, our
approach uses only the processor and its clock and doesn’t rely on devices having other components like
DRAM, which are not available in low-end IoT devices.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:3

• Fingerprinting at Range. Many existing works in EM fingerprinting are only applicable in near-field
scenarios. This work extends fingerprinting to long-range (≥ 5m) scenarios, which fits a more realistic setup
for “smart” IoT environment scenarios.

• Broad Applicability. Digitus only leverages electromagnetic emanations from the processor, therefore, as
will be shown in Section 7, is applicable to a wide range of IoT devices with and without radios.

• Multi-device Fingerprinting. Digitus improves the state-of-the-art by fingerprinting multiple devices
simultaneously in the presence of other devices and interference. Existing approaches that leverage EM
emanations for fingerprinting are very limited in fingerprinting devices in the presence of other interferences,
including signals from other (similar) devices.
To realize our method, there are several challenges that need to be addressed. First, we need to find features

that can be used to fingerprint various devices. This requires one to discover characteristics in the spectrum that
are unique to each device and consistent over time. Secondly, we need to test Digitus in a wide range of scenarios
to ensure its usefulness in practical scenarios. Third, we need to show that Digitus is robust against adversarial
attacks in order to ensure that devices in our system cannot be spoofed easily. We describe our design in Sections
3 and 4 and present our results in Sections 6 and 7.

Digitus is well-suited for internet-of-things environments1 such as smart homes, offices, hospitals, etc., where
many devices and sensors may operate. These devices may be resource-constrained or low-power, so utilizing
features that are common among them that do not rely on various complex components (e.g., DRAM, radio) is
needed. As a result, Digitus relies on unique features related to the clock that are widely available in many devices
and are reliable and robust for fingerprinting.
Specifically, the contributions in this work are:
• We propose a system that utilizes electromagnetic emanations from IoT processors to enable fingerprinting
of devices that may not have radios or DRAM at range.

• Wedesign and implement Digitus which extracts features fromEM signals and uses various signal processing
andmachine learning techniques to fingerprint devices. Additionally, Digitus can also leverage deep-learning
methods for implicit feature extraction and fingerprinting where needed.

• We evaluate our system on IoT devices in a wide range of scenarios to demonstrate the effectiveness and
robustness of our approach.

• We analyze our system under two different real-world application scenarios and show its reliability and
robustness against various adversaries.

The remainder of this paper is organized as follows. In Section 2, we review the current state-of-the-art and
describe the challenges and needs. Section 3 describes why features from an IoT device’s processor clock are
unique and can be used for fingerprinting. We then present the details of our design in Section 4. The setup
for our evaluations is explained in Section 5, and the main results are presented in Section 6. Two application
scenarios are studied in 7. We briefly discuss future works in Section 8 and review other related works in Section
9, and present our conclusions in Section 10.

2 MOTIVATION: WHY A NEW FINGERPRINTING METHOD IS NEEDED?
The increasing presence of IoT and embedded devices in various settings, especially indoor “smart” environments
such as homes, offices, and factory lines, has raised several security and privacy issues.

1When referring to IoT devices, we refer to embedded systems with or without transmitter modules. The benefit of our approach is that
our system makes no assumptions on the supposed activity or inactivity (or lack of) the transmitter module. This provides more flexibility
towards when our system can fingerprint a device.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:4 • Feng et al.

An important issue that needs to be addressed in such settings is to properly identify the IoT devices in the
environment and to authenticate them (e.g., for sending and receiving commands and/or data) when needed.
Further, accurate identification is also needed to detect unauthorized devices that may interfere with the network.
Another critical concern arising from the prevalence of these computing devices is the presence of an eaves-

dropper, such as a camera, voice recorder, etc., in an environment. These stealthy devices may or may not be
connected to the network, or may not even have a radio. Instead, these devices are designed to stay hidden and
record sensitive information (e.g., voice, video, etc.) internally.

An effective fingerprinting method is one that can successfully and robustly cover both security (authentication)
and privacy concerns. This means that the fingerprinting method should be able to handle various devices with
different communication technologies, and more importantly, should be able to fingerprint devices that don’t have
radios and/or other advanced and high overhead components.
These requirements suggest that conventional RF fingerprinting methods that leverage unique hardware

features of radio for identification are not broadly applicable to smart environments, although they have been
quite successful in accurately fingerprinting devices with radios in various settings [6, 9, 24, 25, 32].
To address this, more recently, methods based on leveraging physical signals, created and radiated from the

device, have been proposed for fingerprinting. The key advantage of these approaches is that they eliminate
the need for radio frequency signals, as any electronic device creates these unintentional physical signals (often
called physical side-channel signals).

For example, in DeMiCPU [15], the authors propose a fingerprinting technique that identifies CPUs via their
magnetic induction signals. One limitation of DeMiCPU is that these signals can only be measured close by with
a magnetic probe (<16mm). Thus, this approach will not be applicable in IoT scenarios where a device will need
to be measured at a greater distance with an antenna.

More recently, Shen et al. proposed Memscope [47], a fingerprinting framework that leverages electromagnetic
signals created by the device’s DRAM memory unit. The key advantage of Memscope [47] over previous methods
is that it is applicable to devices with and without radios and can fingerprint these devices from large distances.
Further, compared to previous methods that leverage physical signals for fingerprinting, Memscope was the first
method that could achieve fingerprinting from far-field (i.e., ≥ 1𝑚).
The major shortcoming of Memscope [47], however, is that it relies on EM signals from the complex DRAM

memory system on the device. While effective in many classes of devices, including laptops and access points, the
applicability of methods like Memscope is put in serious jeopardy when it comes to low-end IoT and embedded
systems (e.g., simple microcontrollers, sensors, etc.) as these devices lack the necessary setup for creating the
desired electromagnetic emanations. Simple IoT and embedded systems often only have a simple low-end
microcontroller with a small internal memory and an external (off-chip) flash memory. They typically don’t
support advanced memory hierarchy technologies nor other techniques such as spread spectrum clocking (CSS)
which is the foundation of Memscope and other methods [55].

These observations motivate the need for designing a system that is holistic and more applicable to various
classes of devices including low-end devices by leveraging the electromagnetic emanations generated by the
systems’ processor for fingerprinting. Unlike DRAM and radio, the processor clock is widely available in any
microcontroller and/or embedded system.

Fig. 2 summarizes the various scenarios and how each method could be applicable. Table 1 compares existing
works in fingerprinting. Overall, Digitus is applicable to a more generic set of devices (with or without radio
and/or DRAM) making it more suitable for heterogeneous scenarios. Compared to other work, however, the
limitation is a lower range. In the next section, we describe how the digital clock can be used for fingerprinting.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:5

Fingerprinting

Module

Fingerprinting

Module

Laptop

RF Fingerprinting: y

Memscope: y

Digitus: y

Transmitter Module

RF Fingerprinting: y

Memscope: y

Digitus: y

IoT Device

RF Fingerprinting: n

Memscope: n

Digitus: y

Fig. 2. A “smart” environment scenario may have many types of devices, such as a device with an RF transmitter module
or access point, a laptop or a high-end IoT device, and a low-end IoT device. Digitus is the only system that satisfies the
constraints of an IoT device with no added hardware.

Table 1. Comparison between Digitus and existing works. RF fingerprinting (devices with transmitter modules), near-field
device fingerprinting, network-based fingerprinting, and fingerprinting of devices with complex memory are the categories.
Note: F.B. = Feature-Based. D.L. = Deep Learning Based. Stat. = Statistically Based.

Approach Range Property Limitation Modality Classifier

RF [6, 9, 24, 32] ~45m TX TX IEEE 802.11 F.B., D.L.,
Imperfections Module Stat.

DeMiCPU [15] 0.02m CPU Near-Field Mag. F.B.Induction

IotFinder [37] ~45m DNS Same IP4, IP6 Stat.Network

Memscope [47] Up to Memory Devices with Memory F.B.30m DRAM Clock
Digitus Up to CPU Limited CPU F.B., D.L.(Our Work) 7.5m Range Clock

3 A PRIMER ON DIGITUS
Electronic devices unintentionally leak information to the outside world via the phenomena called physical
side-channels. These signals can occur in many forms, such as electromagnetic, power, and magnetic side-
channels [16, 39, 55]. In this work, we will be focusing on electromagnetic (EM) side-channels.

Computing devices leak electromagnetic emanations (sometimes called radiations) naturally during operation.
The processing chip on the device and the underlying transistors and capacitors in the circuit experience voltage
(and consequently current) oscillations over time, resulting in emanations, as shown in Fig. 3a. Traditionally, these
emanations have been used to discover encryption keys [18, 56] or other sensitive information [44]. However,
as shown more recently, these emanations can also be leveraged for non-malicious purposes [34, 42], including
fingerprinting [2, 31].
Among various components that could create emanations, the processor’s clock (and its circuitry) creates

signals that can be measured at a distance [10, 41]. Specifically, the processor runs at the frequency of the clock,
which causes switching of logic and circuit components that produces electromagnetic emanations at the clock
frequency. While the usage of emanations (processor or DRAM) for malicious and non-malicious use cases have

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:6 • Feng et al.

V

t

Emanations

Changes in voltage across time result in

electromagnetic emanations from the

processor.

(a)

A1 A2

D1
D2

P1 P2

Dev x =

A = {A1, A2,…}

D = {D1, D2,…}

P = {P1, P2,…}

Dev x’ =

A’ = {A’1, A’2,…}

D’ = {D’1, D’2,…}

P’ = {P’1, P’2,…}
P’1 P’2

A’1 A’2

D’1 D’2

Dev x

Dev x’

(b)

Fig. 3. (a): Electromagnetic emanations from a processor are a direct consequence of the change in voltage and current,
experienced by the hardware over time. (b): Each device has unique clock characteristics, i.e., having different distributions of
various characteristics, such as an envelope of amplitudes (A), duty cycles (D), and periods (P). Given their uniqueness, these
characteristics can be used as features for fingerprinting.

been extensively explored in the past [11, 43, 55], the new observation in this work is that the EM emanations
related to the processor’s clock are unique to each device.
Devices have different clocks with different characteristics, as shown in Fig. 3b. While devices of the same

type may have the same clock frequency, in practice, each device has a different set of clock characteristics due
to manufacturing imperfections. This may be differences in amplitude, duty cycle, as well as period. As a result,
each device exhibits a unique distribution of values for these characteristics that are specific to the device at hand.
Thus, one device’s emanations will be different from another device’s emanations.

Such an approach is fundamentally different from well-established methods in RF fingerprinting. Work has
been done to identify and authenticate wireless devices at range using RF signals [9, 22, 25, 32, 52]. The key insight
is that hardware imperfections within each device’s transmitter module create uniqueness in the transmitted
signal. Digitus, however, is different because it does not rely on additional transmitter modules, as they may not
be available and/or regularly active in many low-end IoT devices. Similarly, phase-locked loops (PLLs) have been
analyzed in fingerprinting [6]. While a valid approach, not all devices have PLLs in either transmission or clock
generation. Additionally, while clock imperfections could be measured, the processing capabilities required to
measure these imperfections at distance would be significant and further information can be derived from EM
emanations beyond a singular clock peak.

This, however, comes at a new and non-trivial challenge. In RF fingerprinting, one can capture a strong signal
that is typically wideband for data analysis with relative ease as it relies on transmitter modules and specific
wireless modulations. Digitus, on the other hand, relies on typically weak signals created by emanations. As
a result, more processing work needs to be done to boost our signal and to extract useful and robust features
especially when it is used at range.

4 DESIGNING THE FINGERPRINTING MODEL
To realize fingerprinting of IoT devices at range via emanations, we design a framework called Digitus to process
data and extract useful information relevant to each device, and classify each signal using a classifier. The overview
is shown in Fig. 4. In this section, we will first present the data collection and preprocessing steps. Then, we will
explain our feature extraction approach. Finally, we will describe the machine learning classification step.

Throughout this section, we use a (small) setup consisting of three identical IoT devices for explaining various
steps and numbers. In the next section, we present our extended setup and its details.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:7

Data
Collection

Pre-
Processing

Feature
Extraction

ML
Classifier Decision

Signal
ID

Mode

Feature
Eng.

Random
Forest

1 2 3 4 5

Deep Neural
Network

Fig. 4. This is an outline of Digitus’s steps. It first collects data and prepares for classification. Digitus can use two alternative
learning-based approaches for its decision-making. The primary approach consists of black arrows and gray numbered boxes.
The alternate learning approach (deep-learning) that Digitus can use is shown using green arrows and the green box. When
using the alternate approach, Digitus does not use the feature extraction and ML classifier boxes labeled as 3 and 4 in the
figure. The final step is to classify the samples to make a decision about the device’s ID and mode (i.e., fingerprinting).

We use three Arduino Uno devices as target devices that need to be fingerprinted, and an Ettus USRP software-
defined radio (SDR) with a conventional indoor VHF/UHF antenna as the receiver, placed about 1 meter away
from the target device.

4.1 Data Collection and Preprocessing
First, we need to collect data from our devices. To receive the emanations at far-field distances, an antenna,
and an SDR are used. Different devices have different clock frequencies. Thus, it is desirable to pick a center
frequency that, when chosen, allows for the capturing of each of the different possible frequencies we may
observe. Additionally, due to the strong harmonic behavior of the clock signal (a rectangular-shaped signal),
multiple harmonics of the same signal could be captured and used in our analysis.
We pick two harmonics separated by a frequency offset equivalent to a scalar multiple of the harmonic

frequency (i.e., the clock frequency) such that Digitus can capture information across two bands. These two bands
do not have to be consecutive harmonics, but one should pick two harmonics where the relative interference is
minimal. For example, in our setup, we picked the 18th and 19th harmonics of the target device (Arduino Uno).
Using more harmonics helps to minimize the potential error one may observe when calculating features, but has
a tradeoff with processing complexity.
Another important design decision is to pick a sufficient bandwidth. On one hand, the bandwidth should be

large enough such that it captures the range of the different clock frequencies as well as the relevant sideband
activity from the different devices. On the other hand, the bandwidth should not be so large as to capture
unwanted signals and increase processing time. For our setup, we use 500kHz of bandwidth.
After raw data is collected over-the-air from a device, we need to prepare the data for feature extraction

(described in Section 4.2). The first step is to slice our collected data (n seconds in length) into smaller independent
time slices for processing. We then compute the periodogram over portions of these slices and average over
multiple windows to obtain a smoothed version of the periodogram, reducing noise.

For our deep-learning module, we compute the spectral density for each of the smaller length time slices and
stack them up to form an image or a spectrogram. We compute two images for the two bands and concatenate
them along the depth dimension.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:8 • Feng et al.

3

287.9 288.0 288.1 288.2 288.3

T
im

e
 (

s
)

Frequency (MHz)

2

1

clk harmonic n

ambient

signal

304.9 304.0 304.1 304.2 304.3

Frequency (MHz)

clk harmonic n+1

sdr noise

~16MHz offset

Fig. 5. Here are spectrograms of two different frequency bands with one device present. The band is sparse. The clock of the
device is noted in each band, with an 16MHz offset denoting the clock harmonic frequency. The surrounding spectrum in
either band is either ambient signal or noise.

4.2 Feature Extraction
4.2.1 Overview. To extract relevant features from the EM emanations created by the device’s processor clock, we
consider both (manual) feature engineering and deep learning methods. When needed, we will compare
the results for both methods and also describe how to choose between the two dynamically.

In the following, we explain our feature engineering method first, by introducing the features we find important
in this problem and the methods for finding them. In Section 4.4, we will then explain our deep learning pipeline.

4.2.2 (Manual) Feature Engineering. The first step for extracting manual features is to distinguish between
relevant signals and any noise and ambient signals, as shown in Fig. 5. To achieve this, we need to first find the
location of the clock in the spectrum. One way we can find the clock in the spectrum is by measuring a device’s
clock signal in a high SNR setting in an offline phase. Once the clock frequency is found, we can reduce our search
space in the spectrum by searching for peaks (energy) around the clock frequencies we found. Another way to
find the clock during the fingerprinting process is to dynamically search for it. This can be done by collecting data
across three or more bands to determine harmonic relations between peaks. The reason we need three or more
harmonics is that we need two or more relations between peaks in order to determine a harmonic relationship
and thus the clock frequency of a device.

In a more complex multi-device scenario, the algorithm is extended to detect and track multiple clocks. Details
will be described in Section 7. Here, we focus on a single device only and use our feature engineering approach
to extract features from the preprocessed EM emanations. We use the following features (shown as F1, F2, etc.):
F1) Clock Harmonic Frequency. The location of the device’s clock harmonic within each band is the first feature
used. This value, if localized correctly, is useful because each device has a unique clock frequency as same-type
devices often have at least 10-100s Hz offset from their pre-defined frequency. Generally, for a given device with
a clock period of 𝑝𝑒𝑟𝑖𝑜𝑑 and a certain harmonic 𝑛, we have 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑛𝑡ℎ 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 =

1
𝑝𝑒𝑟𝑖𝑜𝑑

∗ 𝑛.
Care should be taken for this feature, since an adversary could easily spoof it by creating a static tone at each

frequency. Thus, this feature should not be used alone, but in tandem with other features (more details later).
F2) Clock Width. In addition to each device having a specific clock frequency, each clock has a unique response
in the frequency domain. One characteristic relating to the shape of the peak in frequency is the clock width. The
spike observed at the clock frequency has a particular spread across frequencies related to the phase noise.
For this feature to be valid, a sufficiently sized FFT should be used in relation to the bandwidth. The clock

width will be more accurate when the resolution of the FFT is greater.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:9

F3) Autocorrelation. Autocorrelation is a time-series-based feature that measures the relatedness of one series
with its lagged version in time, as shown in Equation 1, where 𝑠 and 𝑡 refer to two different times, separated by
lag ℎ, and 𝛾 is the sample autocovariance.

𝜌 (𝑠, 𝑡) = 𝛾 (𝑠, 𝑡)√︁
𝛾 (𝑠, 𝑠)𝛾 (𝑡, 𝑡)

, (1)

Autocorrelation is beneficial because it provides a different viewpoint of the device (time domain instead of
frequency domain). To choose the lag, we pick an offset where the autocorrelation for each device is still sufficiently
different from the other devices.

If the bandwidth is large, the autocorrelation computed may include many irrelevant regions of the band. We
apply a bandpass filter around the clock frequency in order to minimize the impact of irrelevant signals.
F4) Strength Ratio Between Clock Harmonics. Each device exhibits a unique frequency response across
harmonics. Due to differences in the clock circuitry and the way the signals are emanated, not all harmonics
exhibit the same signal strength. This feature captures the strength differences between two clock harmonics as
this is unique to each device, with the calculation shown in Equation 2.

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑁𝑅 𝐵𝑎𝑛𝑑 1
𝑆𝑁𝑅 𝐵𝑎𝑛𝑑 2 ∗ 100. (2)

While using the amplitude of a singular clock could be useful, such a value is prone to errors due to different
levels of attenuation or noise. By utilizing the strength ratio between two harmonics, our analysis will generally
be less affected by attenuation and transient noise.
F5) Cyclic Frequency. We apply cyclostationary analysis, a concept typically used in signal processing [26],
to fingerprinting for the purpose of studying higher-order characteristics of the signal. We apply the spectral
coherence function to our data to capture cyclic relationships between different parts of the band. This is important
as within a single band, there will be frequency information relevant to the target device throughout the band.

We loop over a set of cyclic frequencies, 𝛼 (from 𝑎1 to 𝑎2), and obtain the spectral coherence function for each
frequency. The spectral coherence function is computed by calculating the cyclic power spectrum, as shown in
Equation 3, across the data. We utilize Welch’s Method as provided by the Cyclic Spectral Analysis Toolbox [5].
𝑦𝑛 is the next window across 𝑦, and 𝑥𝑛 is the next window across 𝑥 , where 𝑦 and 𝑥 represent the mirror images of
the same signal with center frequency 𝑓 and cyclic frequency of interest 𝛼 . The number of windows to compute
over is defined by 𝑘 .

𝐶𝑦𝑐𝑙𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 =
1
𝑘

𝑘∑︁
𝑛=1

𝑓 𝑓 𝑡 (𝑦𝑛) ∗ 𝑓 𝑓 𝑡 (𝑥𝑛). (3)

We pick the cyclic frequency 𝛼 with the largest magnitude of coherence as a cyclic frequency of interest to our
device, as a large value of coherence demonstrates a greater relevance to our signal.

There are a few reasons why we choose this collection of features but not any other. First, there is a combination
of frequency-domain and time-domain analysis in our features. Features involving the clock (clock harmonic
frequency, clock width, etc.) are in the frequency domain and capture information relevant to the frequency-
domain peaks and the relationship between the peaks. There are other features that are indirectly relevant to the
clock, so a time-domain feature like autocorrelation is used. We utilize cyclostationary analysis to find a feature
that cannot be found by time-domain or frequency-domain analysis alone, such as cyclic frequencies.
Secondly, since we only want to focus on the clock and its relative features, other activities and parameters

including those relevant to phase and/or other components, such as memory, are not included in our model.
Our feature engineering approach described above has several merits. However, for thoroughness, we use a

complementary approach, specifically, a deep learning method that does not need explicit feature extraction. In

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:10 • Feng et al.

Table 2. Mean for the extracted features in three same-type devices used in our setup.

Device Clk Harmonic Freq Autocorr Strength Ratio Clk Harmonics
Device 1 288 MHz + 13.484 kHz -0.568 102.249
Device 2 288 MHz + 17.215 kHz -0.487 128.558
Device 3 288 MHz + 13.835 kHz -0.561 104.497

Table 3. Standard Deviation for the extracted features in three same-type devices used in our setup.

Device Clk Harmonic Freq Autocorr Strength Ratio Clk Harmonics
Device 1 59.442 Hz 0.00139 29.823
Device 2 46.580 Hz 0.00106 95.355
Device 3 81.848 Hz 0.00315 32.306

our deep learning method, we feed the spectrograms corresponding to the two different bands (see the end of
Section 4.1) as input to a neural network. The output of the neural network is the fingerprinting output. The
architecture of the neural network used in our deep learning approach is presented later in this section.

4.3 Feature Robustness
Before explaining the design of Digitus’ classifiers, we present our study on the robustness of the selected features
using various metrics. Features need to be unique to a specific device and consistent over time and different
setups in order to be effective for fingerprinting.

The first metric is time. Features need to be consistent across time and this can be across times of day, across
different days, and across different times of operation. We explore these factors throughout the remainder of this
section. Second, features need to be consistent across different setups and environments. For instance, Digitus
should be able to fingerprint a device in a line-of-sight scenario and a non-line-of-sight scenario. Digitus should
perform well when the board is closer to the receiver or farther away from the receiver. We explore these tests in
our sensitivity analyses in §6.

To demonstrate these features are unique, we apply statistical measures such as mean and standard deviation
to the three devices in our setup (Arduino Unos). We desire for the means of different features for each device to
be separated sufficiently from other devices’ features and that the spread of data we see (measured by standard
deviation) to be sufficiently small. A few of the results are shown in Table 2 and Table 3.

For many features, we see a substantially different mean and standard deviation for each device in relation to
the means and standard deviations of other devices. Some features such as autocorrelation and the clock harmonic
frequency achieve greater separation, whereas others such as the strength ratio between clock harmonics achieve
less separation. This does not mean this feature is not useful, but rather there is more variance observed across
different samples and this feature needs to be utilized with other features. Note that although the autocorrelation
values are negative, the autocorrelation for a specific device is unique and consistent over time.

We examine the effects of long-term usage on two devices of different types over the course of one month
while being powered on the entire time. We measure the clock frequency and the temperature throughout the
day (morning, afternoon, and evening) in order to capture day-to-day variations in clock drift and temperature.
In addition to these two devices we test over a month, we also test the remaining devices for a single week for
completeness in order to compare.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:11

Table 4. Standard deviations of clock frequency and temperature over a month for two devices (one of each type), as well as
over a week for the remaining devices. The devices are stable relative to drifts seen in our measurements.

One Month One Week
Device Clock Frequency Temperature Clock Frequency Temperature

Device Type A 58.2 Hz 0.52 ◦C 42.8 Hz 0.46 ◦C
Device Type B 116 Hz 0.50 ◦C 142 Hz 0.55 ◦C

Fig. 6. This figure shows the normal distribution of measured center clock frequencies measured for Dev1, Dev2, and Dev3
across our set of measurements. Dev1 and Dev3 are close to each other in frequency, whereas Dev2 is at the opposite end of
the band. The right side is a zoomed-in version of Dev1 and Dev 3. The expected frequency drift of ∼200Hz fits within the
normal distribution of each device’s clock frequency.

Table 4 shows the standard deviation of clock frequency and temperature for both device types across one
week and one month. We see that the clock frequency and temperature are both relatively stable when the device
is plugged in for an extended time period. Additionally, there was a negligible change in clock frequency from
the first day to the last day. We further examine the effects of long-term usage in Section 6.

To demonstrate the clock frequency measurements for each device are separated in the spectrum, we measure
the center clock frequency of each device repeatedly to obtain a distribution of each device’s clock. The reason
we obtain a distribution is due to each clock’s tendency to drift over time. Fig. 6 showcases the clock frequency
distributions for three devices, with the graph on the right side being a zoomed-in version of the dotted region on
the left side. For Dev 1 (Device Type A, one month), the expected drift of clock frequency (∼200Hz) is within the
normal distribution of observed clock frequencies during our measurements. This is true for the other devices in
our experiments as well.

4.4 Machine Learning Models for Classification and Feature Extraction
The last step in Digitus is to classify the device and make decisions about its ID and mode. The ID reveals which
device this is, where the numbers could be anything between 0 to N, where N represents all the devices seen
during the training. Alternatively, the device may not be part of the training set (e.g., a new device that is added
to the set). This is explored in Section 7. The other output of the classifier is the device’s mode (e.g., whether it is
transmitting or idle). We will also explain why this would be needed in Section 7.
To achieve the best accuracy, we implement seven different classifiers: Logistic Regression, Support-Vector

Machine, K-Nearest Neighbors, Decision Tree, Extra Trees, Random Forest, and (deep) Neural Network. Among the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:12 • Feng et al.

ReLU

Conv 2D (64, 7, 7)

BatchNorm+ReLU

Input (400x313x2)

ResBlock, N=64

MaxPool 2D

Conv 2D (N, 3, 3)

BatchNorm+ReLU

Input

Add

Conv 2D (N, 3, 3)

BatchNorm
(+Downsample)ResBlock, N=128

ResBlock, N=256

ResBlock, N=512

AveragePool 2D

Dense (100)

A ResBlock of
N filters

Model Overview

Output block 1 Output block L…

BatchNorm+ReLU

Input

Softmax

Dropout (0.3)

Dense (2)

Structure of an
output block

Fig. 7. The architecture of the neural network used in Digitus. The input is the pre-processed EM signals (not the features).
The number of output blocks, L, varies according to the task and will be specified for different experiments in Section 7.

non-neural network models, Random Forest (max depth = 15 and the number of trees = 100) performs the best
and is used throughout the evaluations in the next sections.
We will also compare the performance of the Random Forest classifier with our customized (deep) neural

network classifier in Section 7.
The architecture of the neural network that we use in Digitus is shown in Fig. 7. We use a convolutional

neural network (CNN) architecture as the input to the neural network is an image and CNNs are known to
work well with images by exploiting their spatial correlation. We use a ResNet-like architecture to train a deep
model without overfitting. For pre-processing of the input to our deep learning approach, we use n = 0.5 seconds
(capture length of an example) from a single band, and we take 400 points FFT on the smaller time slices. Then
for each of two consecutive smaller time slices, we retain the maximum value per FFT bin. This way, we end
up with 313 smaller time slices (our sampling rate is 500 kHz) and we get the input of our neural network to be
400 × 313 × 2. The last dimension, i.e., 2, is due to the use of two bands. (Note that the deep learning module
takes the preprocessed samples as the input and not the features explained before.)

For each test, to minimize overfitting, wemake sure to obtain data across different times, days, and environments
to diversify our training set. We also use grid search on data separate from the test data to tune each model’s
hyperparameters to the best of our ability.
It is important to highlight that we envision the classifier (i.e., ML or deep learning) being implemented on a

gateway where one device controls and monitors all devices in a room/space. As a result, the target devices (i.e.,
devices that are to be fingerprinted) won’t be impacted by the choice of the classifier as it is external to each.

5 EVALUATION SETUP
To test our feature-based fingerprinting approach, we design a wide range of experiments to gauge performance.
Fingerprinting needs to be tested in several different setups and environments in order to showcase the robustness
of our features.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:13

Device

Receiver

(a)

(I) (II) (III) (IV) (V)

(b)

Fig. 8. (a) This is the baseline test experimental setup. The distance between the device and the receiver is 1m. (b) These are
the devices used in Digitus. Columns (I) and (V) are used in the baseline test and sensitivity analyses. Columns (I-IV) are
used in the intra-device test.

The various measurements are conducted inside a lab room in a building within a metropolitan area with a
high chance of interference. No adjustments or optimizations are made to increase the signal strength of the
device being tested in order to realistically demonstrate the feasibility of our approach.
The basic setup is shown in Fig. 8a. The device under test is attached to a tripod. The receiver’s antenna is

attached to a moveable cart placed away from the test device. This setup allows for easy reconfiguration for
different experiments. The antenna used is a COTS VHF/UHF indoor TV antenna [4], which is connected to a
USRP B205mini-i software-defined radio [7].

The devices we use are two commonly usedmicrocontrollers: Arduino Uno [51] and STM 32 [1].We specifically
choose these devices since they don’t have radios and/or DRAM; thus, none of the existing methods would
be able to fingerprint them from range (i.e., a meter away or more). The collection of boards utilized in the
experiments is shown in Fig. 8b. Both types of devices have a 16MHz clock on board. No changes were made to
the hardware for each device.

Each device is measured in both an “idle” state where the board is in power-saving mode (i.e., it is on but does
not actively execute any instructions) as well as an “active” state where the board is running a program.
For our data collection, we use 288MHz and 304MHz as harmonic frequencies, with a bandwidth of 500kHz.

288MHz and 304MHz are derived based on the base clock frequency of 16MHz (18th and 19th harmonic, respec-
tively) as well as the relative strength of the clock and minimal ambient signal in these bands. 500kHz bandwidth
is experimentally determined as sufficient bandwidth to capture the relevant signals.

6 RESULTS
The goal of this section is to demonstrate the robustness of Digitus in different realistic scenarios 2. We hope to
answer these basic questions:
(1) Baseline Test. Are emanations created by a device’s processor clock indeed unique and useful across multiple

similar (same type) and different devices?
(2) Temporal Consistency. Is Digitus stable across time? By measuring fingerprints at different times of the

day, we should be able to showcase each device’s stability across different measurements as well as robustness
to changes in the channel.

2The code and data for this section are available online (See Section 10).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:14 • Feng et al.

(a) (b)

Fig. 9. Comparison of the F1 score (a) and test accuracy (b) for 6 different feature-based classifiers (Logistic Regression,
Support-Vector Machine, K-Nearest Neighbors, Decision Tree, Extra Trees, and Random Forest) on the baseline test (3x
Arduino Unos, 3x STM 32’s, distance of 1m). Random Forest has the highest F1 score and test accuracy.

(3) Clock Drift and Temperature Effects. Clock drift and temperature are prominent factors that affect the
operation of a device. In this section, we demonstrate the effects of clock drift and temperature on Digitus.

(4) Spatial Consistency. Is Digitus stable across different setups? Digitus should work at longer distances
(i.e., attenuation) and even in non-line-of-sight scenarios. In this way, we hope to demonstrate Digitus’s
applicability to real-world scenarios.

(5) Scalability Within Device. Is Digitus applicable to a larger set of same-type devices? In a fingerprint dataset,
there may be multiples of the same-type devices (we call it an intra-device test). By testing ten versions of the
same device (Arduino Uno) in one set, we hope to show that Digitus can distinguish between all of them.

(6) Spoofing Resistance. In order for Digitus to provide reliable authentication, we need to demonstrate
resistance to spoofing. Adversaries may try to mimic the fingerprints of the devices. Thus, we use our best
judgment to spoof our devices and see how our model performs.
The following tests are independent of each other (the percentages in Table 5 are not additive). However,

these experiments overlap in coverage. For example, the Attenuation and Non-Line-of-Sight measurements
both measure reduced signal strength. Thus, we would expect the worst-case test accuracy to be around the
worst-performing scenario outside of spoofing (Attenuation 7.5m has a test accuracy of 89.6%).

We also provide the deep learning results alongside the feature-based results. Additionally, we will discuss the
two approaches further in Section 8.

6.1 Baseline Test
For the baseline test, we test three Arduino Unos and three STM 32s. The three Arduinos come from the same
shipment, as well as the STM 32s. The distance between each device and the receiver is 1m. The goal of this test is
to analyze whether the features from the processor’s clock are indeed unique and useful.
A total of five rounds of data are taken. Three rounds of data are from one day (one in the morning, one at

noon, and one in the afternoon), whereas the other two rounds are from separate days separated by more than
one month from the former rounds. For each round, we make sure to turn on our devices sufficiently long enough
to stabilize and be within the distribution found in Fig. 6. We combine all these rounds of data and divide into a
train-test split. For the baseline test, we use feature engineering (see Section 4.2) and six different classifiers.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:15

Table 5. Baseline Test experimental metrics as well as sensitivity experiments beyond the baseline test (temporal, long-term,
temperature, attenuation 3m, attenuation 7.5m, non-line-of-sight, intra-device, and spoofing). Test accuracy is displayed for
both our feature-based and deep learning models for each scenario.

Feature-Based Deep Learning
Experiment Test Accuracy Test Accuracy
Baseline Test 95.1% 97.5%
Temporal Test 91.5% 94.6%
Long-Term Test 96.3% 95.6%
Temperature 90.2% 91.2%

Attenuation (3m) 99.4% 93.9%
Attenuation (7.5m) 89.6% 80.1%
Non-Line-of-Sight 92.7% 94.8%

Intra-Device 96.1% 97.0%
Spoofing HackRF 96.3% 88.1%
Spoofing USRP 80.5% 87.2%

Spoofing (w/ training) 96.0% 97.2%

Results are shown in Fig. 9, which shows the F1 scores and test accuracies achieved for these classifiers. The
best test accuracy achieved is 95.1% from the Random Forest classifier. To provide more insight, in Fig. 10a, we
depict the confusion matrix for the Random Forest classifier. We see that the classifier has the most difficulty
with stm1 and stm3 devices. This makes sense as stm1 and stm3’s features are visually similar to each other. This
test demonstrates that the features are unique and useful and fingerprints measured are consistent across different
times of day and across various devices.

6.2 Temporal Test
We further test our features’ temporal consistency. For this test, we analyze the same three Arduino Unos and
three STM 32s as before. Using the data from the baseline test in 6.1 as the training set, we obtain another set of
data from a completely separate day as the test set to see how our model performs (i.e., unlike the first test, the
training set does not contain any samples from this new day/measurement). Note that, this is in contrast with
the state-of-the-art. To the best of our knowledge, while Memscope [47] conducted measurements across a
month to test temporal consistency, they did not attempt to completely separate rounds of data for test purposes.
We, however, argue that this should have been considered since it is a more realistic (training happens in a
completely different time frame), but harder problem.
For the feature-based method, for this test and all further experiments (including sensitivity analyses and

applications), we use the baseline test as training data and use the data collected for the given experiment as the
test set in order to demonstrate Digitus’ ability to generalize.

In Table 5, we see that the test accuracy is 91.5%. While the test accuracy has decreased from the baseline test,
our model is still able to maintain a reasonable level of accuracy, thus showing its ability to generalize to new data
recorded at a completely different time.

6.3 Long-Term Study
For the long-term study, we classify the two devices that were tested over a month in Section 4. The two devices
picked were representative of the distribution of devices (Arduino 1 and STM 1). We collect data at the beginning,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:16 • Feng et al.

ard1 ard2 ard3 stm1

Predicted

stm2 stm3

ard1

ard2

ard3

stm1

stm2

stm3

A
c
tu
a
l

23 0 0 0 0 0

0 22 0 0 0 0

0 0 31 0 0 0

0 0 0 15 0 6

0 0 0 0 30 0

0 0 0 1 0 16

(a) (b)

Fig. 10. (a) Confusion matrix for a random forest classifier with data from 3 Arduino Unos and 3 STM 32s, with a distance of
1m. The numbers represent the number of examples per bin. (b) Confusion matrix for a random forest classifier with data
from ten Arduino Unos, with a distance of 1m.

middle, and end of the month. The goal of this test is to see the effect of clock drift from long-term usages on
Digitus.

In Table 5, the test accuracy for the long-term study is 96.3%. Additionally, there is no decrease in accuracy when
comparing the model’s test accuracy on data from the end of the month compared to data from the beginning of
the month. This demonstrates our model’s robustness to clock drift seen in long-term usages.

6.4 Temperature Effects
For the temperature test, we expose our devices to cold and hot environmental temperatures (~10 degrees Celsius
delta from room temperature in both directions) to examine the effect of temperature deviations on classification
accuracy. By measuring the internal temperature of each device, we see the environmental temperature change
induces a 5-10 degrees Celsius internal temperature change in the positive and negative direction for each device.
In addition, this temperature difference causes clock drift to the system as well. In this way, we evaluate Digitus’s
robustness towards realistic temperature changes in the surrounding environment as well as further amounts of
clock drift, which are all forms of temporal variation.
In Table 5, the resulting test accuracy is 90.2% (with similar results when hot and cold data are separate test

sets), demonstrating that our model can withstand temperature variations and further clock drift changes.

6.5 Attenuation Test
For the attenuation test, we test the same three Arduino Unos and three STM 32s, but at two new distances
on a different day: 3m and 7.5m (recall that the training set is still the baseline test setup). The 7.5m setup is
the maximum distance possible in the lab. The setup is shown in Fig. 11a and Fig. 11b. The goal of this test is

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:17

RXRX

RXRX

2.25m

2m

7.5m

3m

a) Attenuation, 3m

b) Attenuation, 7.5m c) Non-Line-of-Sight

RXRX

Fig. 11. (a): This is the attenuation test where the device is 3m away from the receiver. (b): This is the attenuation test where
the device is 7.5m away from the receiver. (c): This is the non-line-of-sight test, where the device and receiver are separated
by a point-to-point distance of around 3m.

to demonstrate the system’s robustness to longer distances and increased levels of attenuation, even when the
model is trained on a different setup (i.e., 1m and different days).
In Table 5, we see that at 3m, the test accuracy is 99.4%, whereas, at 7.5m, the test accuracy is 89.6%. This

demonstrates that the model performs comparatively better at closer distances, but still maintains reasonable
performance even as the device is farther away, a scenario one would find in a “smart room” IoT scenario as devices
may find themselves in different positions in a room. Note that the accuracy at 3m is actually greater than at 1m.
This indicates the uncertain effect of the channel and signal propagation paths on the strength of the emanations.
A general rule of thumb, however, is the strength of the emanations will decrease as distance and/or attenuation
levels increase.

6.6 Non-Line-of-Sight
We further examine the spatial consistency of Digitus by using the same three Arduino Unos and three STM 32s
as before but this time in a non-line-of-sight (NLOS) setting. The point-to-point distance between the device and
the receiver is 3m, and the sides of the triangle are 2.25m and 2m, as shown in Fig. 11c.

In Table 5, the test accuracy is 92.7%. Similar to the attenuation test, we see that Digitus maintains reasonable
performance even under changes of setup and environment. In a real-world scenario, boards may not be directly
facing the receiver or may be separated by a wall. Thus, it is important that we can maintain accuracy when
these scenarios arise.

6.7 Intra-Device Test
For the intra-device (i.e., same-type devices) test, we evaluate ten Arduino Unos. The first three Arduino Unos are
the same as the previous tests. Arduinos 4-6 come from another separate shipment. Arduino 7 is an individual
board and did not come with any other Arduino Unos. Arduino 8 is from a different manufacturer. Arduinos 9-10
are from another separate shipment.

The distance between the device and the receiver is 1m. We collect two rounds of data on separate days and try
two combinations of training and test sets using the two rounds of data. We compute our metrics as the average
of the two combinations. The goal of this test is to scale up the number of boards, specifically of the same device
type, to see if the system can distinguish between types well.
In Table 5, the test accuracy is 96.1%. Additionally, the confusion matrix in Fig. 10b shows that the model is

able to distinguish between the different Arduinos, with slight difficulty with Arduino 4. These results show that
Digitus scales up with more devices of the same type.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:18 • Feng et al.

6.8 Device Spoofing
To model a spoofing attack and demonstrate spoofing resistance, we attempt to spoof our devices in the baseline
test using our best judgment and effort and analyze how Digitus performs against these spoofed samples. The
idea is that an adversary may try to mimic the fingerprints/signals of a known device. Thus, in order for Digitus
to provide reliable authentication, we need to demonstrate resistance to spoofing.

To implement the attack, we use two software-defined radios: HackRF [17] and a USRP B205mini-i [7]. We use
them to create RF signals similar to the expected EM emanations. The aim is to create frequency spikes at the
clock frequencies of each board, as well as match the SNR and other characteristics as accurately as possible. The
spoofing measurements were taken on completely separate days and times from the training data and had some
feature variation. We repeat the experiment using both radios.
To enable detection of spoofing, we add the notion of classification confidence to Digitus, where a threshold,

T, is used to identify a device, otherwise, it will be labeled as “unknown” or spoofed. We experimentally set the
threshold to optimize the relationship between false positives and false negatives. We find via the validation set
that 𝑇 = 85% provides a good balance between fingerprinting accuracy and spoofing detection.

In Table 5, we see the test accuracies for thresholding on the HackRF data (96.3%) and thresholding on the USRP
data (80.5%). This demonstrates that Digitus can adequately handle spoofing and performs differently depending on
the quality of the spoofer. We also conduct an experiment where we split the spoofed samples (both HackRF and
USRP) into a train and test split, where we add an additional class called “other”. This results in a test accuracy of
96.0%, showing the value of training on spoofed samples to prepare our model for potential spoofers.

6.9 Performance of Deep Learning Approach
Along with our feature-based machine learning method, we also evaluate our deep learning approach for each
of the experiments in Table 5. We observe that, in general, the performances for both of our approaches are
comparable. However, for the attenuation experiments, the deep learning approach is slightly inferior to the
feature-based method. We believe this is due to the fact that the signals collected in the attenuation experiments
have a much lower signal-to-noise ratio. This affects the deep learning approach as it has difficulty differentiating
between targeted signals and environmental interference and noise.

7 APPLICATIONS AND USECASES

7.1 Room Monitoring with Hidden Device Detection
The first scenario presented and evaluated here is leveraging Digitus to ensure privacy. Particularly, Digitus
can be used to identify devices that are not part of the authorized list of devices that could operate in a room.
Examples are “hidden” devices in a room such as a camera, voice recorder, etc. where they may or may not have
a radio and their goal is to eavesdrop and/or steal private information.
While such detection capabilities has been explored in prior work [12, 14, 29, 40, 45, 46], the key advantage

of our approach compared to the state-of-the-art is that we can detect a wider range of devices including tiny
embedded devices that don’t have radios and/or DRAM.
We outline the experimental setup in Fig. 12. In this experiment, we assume there are multiple authorized

devices already present in the room (two devices in our experiment). A third device (i.e., the hidden device) not in
the training set is activated in the room in idle mode (within the red dashed box in the figure, the target device).
We test a total of five different configurations of the devices physically in the room to provide a more extensive
evaluation. We then repeat the experiment this time with the third device in the training set (i.e., authorized).
The first scenario is called open set while the second is closed set.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:19

RXRX RXRX RXRX RXRX RXRX

7.5m

3m

1m

a) Setup 1 b) Setup 2 c) Setup 3 d) Setup 4 e) Setup 5

1m

1m

Legend:

: board direction

: target device

Fig. 12. This figure shows five different setups for the hidden device test and the determining device state test. The target
device is surrounded by a red dashed box. The direction of the board in relation to the receiver is shown by the blue arrows
(a horizontal blue arrow means the board is facing perpendicular to the receiver). There are three distances: 1m, 3m, and
7.5m. Additionally, in Setup 4 and Setup 5, the devices at the same distance are separated by 1m.

Table 6. This table shows results for the various applications and usecases: hidden devices and device state. For each
experiment, we provide a description of the test as well as the feature-based (FB) test accuracy and the deep learning (DL) test
accuracy. Closed set refers to a scenario where the target device was seen in the training set, while open set is the opposite.

Experiment Description FB Test Accuracy DL Test Accuracy

Hidden Devices Closed Set 99.0% 98.9%
Open Set 66.0% 84.0%

Device State Singular Device 72.1% 92.5%
Multiple Devices, Target Device 80.0% ≥99.9%

The goal for Digitus is to detect the presence of a new device AND to correctly identify (1) the target device as
outside the set in the first scenario (true positive) OR (2) the target device as inside (i.e., authorized) in the second
scenario (true negative). In both cases, two in-set (authorized) devices are present in the room.
We test seven combinations of devices across ten Arduinos. Arduinos 1 and 2 are always in the set, in the

background of the room in idle mode. We obtain captures of each of Arduinos 4-10 as the target device. For our
testing data, we take one of Arduinos 4-10 as out-of-the-set whereas the remaining Arduinos are deemed in the
set. The training and validation data consist of only the devices in the set. We then repeat the experiment, this
time while having all the devices in the training set in order to test true negatives.
Using our feature engineering method and a Random Forest classifier, we evaluate the accuracy of Digitus

for this use case. The first step is to extend the algorithm described in Section 4.2 to extract multiple clocks and
features. To achieve that, we utilize the same clock search, except we search for multiple clocks.

Once features are extracted, Digitus uses a Random Forest classifier to fingerprint devices. We use the validation
data to select a threshold, where the threshold is defined as the lowest prediction probability of a correct prediction.
When testing, any prediction that has a probability less than this threshold is deemed an outlier (i.e., a hidden
device). We obtain an average accuracy of 83.0% (true positive of 66% and true negative of 99%) across all seven

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:20 • Feng et al.

Ard 4 Ard 5 Ard 6 Ard 7 Ard 8 Ard 9 Ard 10

Outlier device

0.0

0.2

1.0

0.8

0.6

0.4A
c
c
u
ra

c
y

Deep Learning

Feature-Based

(a) Hidden Device

1 4
Test capture

0.0

0.2

1.0

0.8

0.6

0.4A
c
c
u

ra
c
y

Deep Learning

Feature-Based

2 3

(b) Device State

Fig. 13. (a) This plot shows the outlier (hidden) detection rate on different Arduinos with the two approaches of Digitus,
where the dashed lines show the average for each. (b) This plot shows state classification accuracy across different captures
(data set) with the two approaches of Digitus.

combinations of devices. Looking deeper into the individual test accuracies, we obtain 100% or near 100% test
accuracies for Arduino 5, 6, and 8, but around 62% test accuracies for Arduino 4 and 9. A possible explanation
for this varying performance is that Arduino 4 and 9’s fingerprints appear more alike to existing fingerprints,
whereas Arduino 5, 6, and 8 have more distinct fingerprints.

While the handcrafted features can achieve high accuracy in the true negative classification task, they encounter
challenges in detecting unseen devices or outliers. Hence, for this task, we test Digitus with our deep learning
model that can extract potentially more complicated yet subtle features from the signals without manual effort.

For the evaluation of the deep learning approach, we use the same sets of training and testing data, and also the
same strategy to determine the threshold for rejecting an outlier device as done for the feature-based approach.
As the model will learn from 7 and 6 known (authenticated) devices, for closed set and open set tasks, respectively,
we have correspondingly 𝐿 = 7 and 𝐿 = 6 outputs from the model (refer to Fig. 7). Each output 𝑜𝑖 predicts whether
the input signal corresponds to device 𝑖 or not. Then, for the decision, the model declares the device label to be 𝑗

if the prediction confidence of 𝑜 𝑗 is maximum among all the outputs.
The deep learning approach obtains an average accuracy of 91.5% (true positive of 84.0% and true negative of

98.9%) across all seven combinations of devices. It can be observed that while the deep learning approach yields a
true negative rate comparable to the feature-based approach, it improves the true positive rate (outlier detection
rate) significantly comparable to the feature-based approach. A more detailed result is shown in Fig. 13 (a).

7.2 Determining Device State for Fingerprinting Transmitters
Another important application of Digitus is to determine a device’s state or mode. There are a few interesting
use cases for this. For instance, one may like to identify if a target device is actively completing a task whereas
the other devices are idle in order to authenticate the target device. The other is to leverage EM emanations for
fingerprinting devices with radios. The key idea is that the existing infrastructure for Digitus can be reused even
for devices with radios and eliminate the need for an additional RF fingerprinting module. RF fingerprinting
methods are often dependent on the characteristics of the RF signals (e.g., signaling protocol, modulation type,
etc.) that are being transmitted. Digitus is a robust alternative to such RF fingerprinting approaches by virtue of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:21

being agnostic to the RF signals. For this test, we assume that the Arduino devices are using a LoRA module
connected via I2C as the radio (Semtech SX1262 [50]).
To study this, first, we hope to demonstrate Digitus’s ability to identify a singular device’s state (i.e., idle vs.

transmit/program) without the presence of other devices in the room. Using the data from Section 6.7, we attempt
to identify both the device ID and the device state. We test four combinations of data and take an average for the
test accuracy. For our feature-based approach, we obtain an average of 72.1% test accuracy (across both device
ID and device state), with a standard deviation of 5.4%. For the deep learning approach, we have 𝐿 = 7 + 2 = 9
outputs, where each output corresponds to a device ID (Ard 4-10) or a device state (idle or program), with a total
of 9 output labels. Then, for the decision, the model selects two outputs, one for the device label and one for the
state label. The model declares the device label to be 𝑗 if it has the maximum confidence in the output among all
the device outputs and the state 𝑘 that has the maximum output confidence among all the state outputs. With the
deep learning approach, we obtain an average accuracy of 92.5% with a standard deviation of 3.4%, when both ID
and state are classified correctly. A more detailed result is shown in Fig. 13 (b).
A reason why deep learning could perform better than feature-based is that features for idle compared to

program may look similar in a feature-based approach. In contrast, a deep learning approach could learn useful
characteristics from different parts of the spectrum that our feature-based model cannot capture.

Next, we test the case where multiple devices are in the room at the same time. We utilize the experimental
setup shown in Fig. 12. Arduino 1 and 2 are in the background in idle mode, and Arduino 3 is always the test
device in transmit/program mode. Digitus needs to correctly identify the state of Arduino 3 with the presence
of the interferences from Arduino 1 and 2. For training, we use the individual captures from Arduino 1 (idle), 2
(idle), and 3 (idle and program). Moreover, we augment our training dataset with one capture in the presence of
real interfered signals for all the setups shown in Fig. 12. Then, we test on another unseen capture for the same
setups in Fig. 12.
In this task, Digitus can correctly identify the state of the target device 80% and ≥ 99.9% of the time with the

feature-based approach and the deep learning approach, respectively. In this case, the deep learning model has
𝐿 = 2 outputs, corresponding to the idle and program states of Arduino 3, and the model will select the state with
the higher confidence in the output.

We observe that our feature-based model often mispredicts the target device to be in idle mode. This is because
the difference in features between idle and program for a specific device is small, whereas the deep learning model
can learn those differences more accurately. For the surrounding idle devices, we note that the feature-based
model has more trouble with the device that is further away from the receiver, which makes sense as the signal
will be more attenuated. Generally speaking, our model is able to succeed in determining the device state of
various devices that are together in the same room.

8 DISCUSSIONS

8.1 Feature-Based Versus Deep Learning
In Section 7, we demonstrate the usefulness of a feature-based approach as well as the merits of a deep learning
approach. Feature-based is suitable for situations where we desire to fingerprint the device type, such as the results
in Section 6 as well as closed set problems. Deep learning can thrive in scenarios where more complex information
in the band is needed to separate between classifications, such as in open set problems or classification between
device states. Consequently, the decision on which one to use is made dynamically based on the application. The
computational resources available also need to be considered. If computational resources are available, such as in
the cloud, deep learning may be a better option considering the training time and the complexity of the model. In
scenarios where resources are limited and computation may need to be closer to the edge, feature-based may
be better. We summarize the differences between feature-based compared to deep learning in Table 7. Despite

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:22 • Feng et al.

Table 7. Comparison between Feature-based (F.B.) and Deep Learning (D.L.) approaches. There exists a tradeoff between
these two approaches that need to be considered when selecting the approach; however, both methods are viable options
due to their similar performance in our different test cases.

Metric F.B. D.L. Notes

Input Length 5 s 0.5 s Deep Learning has more flexibility in terms of input length
compared to feature-based.

Model Complexity ↓ ↑ Feature-based is more efficient in terms of training and model
size.

Environment Sensitivity ↓ ↑ Feature-based is better suited to handle environmental changes.
Deep learning requires more training data and/or retraining.

Simple Task ↑ ↑ Both approaches perform comparably in the tasks shown in
Section 6.

Complex Task ↔ ↑ In more complex tasks, Deep Learning may perform better due
to an ability to learn more complex information.

these differences, we believe that feature-based and deep-learning approaches are both viable options due to
their comparable performance in many scenarios.
Future work could involve adding increasingly complex features to the feature-based approach or further

systematizing the interaction between feature-based and deep learning.

8.2 Authentication Protocol
For Digitus to be effective, an authentication protocol needs to be in place. One potential method is for a device
to signal they are ready to be authenticated by running a particular program. This assumption holds because the
majority of devices should be in an idle state most of the time in an IoT scenario. In Section 7, we demonstrated
Digitus’ ability to identify a target device’s ID and its program state in the presence of other, idle devices. In this
way, the receiver can see the device is ready to be authenticated and the receiver can begin the fingerprinting
process. If two or more devices are active at the same time, we can attempt to fingerprint all of them at once or
can authenticate via a round-robin access protocol, an implementation left to future work.

A second potential method is to authenticate a device while it is sending data to the gateway. As the device will
unintentionally emanate during transmission, the most efficient use of fingerprinting would be to authenticate
the device during the transmission of data and bypass the need for the device to run an authentication program. In
this way, the target device would be active for less time, increasing efficiency. We leave the actual implementation
to future work.

Embedded IoT devices may be inactive for large periods of times or in low-power states. To obtain the fingerprint
of a device in these scenarios, Digitus periodically scans expected frequency ranges of various device clocks to
obtain the fingerprint of the device when the device is "on". Once this fingerprint is obtained, Digitus can handle
scenarios where the device is off (the device cannot transmit in the off state, thus there is no need to fingerprint),
as well as the "on" state (the fingerprint had been collected already). Additionally, in Section 6, we demonstrate
Digitus’s ability to classify devices in sleep mode.

8.3 Program-Agnostic Fingerprinting
To be more generic, Digitus needs to be effective when different types of programs are active on different devices.
We attempted to capture some of those differences with our “program” and “idle” states and Digitus was able
to accurately classify each device’s mode (especially when using deep learning). In future work, we need to be
able to handle different programs. Each device may have different tasks and our fingerprinting system should

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:23

successfully authenticate the device no matter which state it is in. Additionally, it is possible that while we are
fingerprinting, the target device may even switch between states (either between different programs or between
program and idle). We need to guarantee that our system can handle these transitions as the fingerprinter cannot
control the device state. Thus, a more robust analysis of the effect of different programs and the relationship
between states should be studied.

9 RELATED WORK
Fingerprinting Near Field.Much existing work focuses on fingerprinting devices via their side-channels at
near-field ranges [2, 53]. In EM-ID [53], the authors utilize a near-field antenna to measure emanations in order
to replace RFID. A cosine similarity function is used to identify devices. Additional machine learning techniques
can also be used to fingerprint. For example, sparse bayesian linear regression can be used to identify both the
device and the software on the device at near-field ranges [31]. Feature-based approaches have been developed to
identify devices such as laptops, phones, and USB flash drives [15, 23]. A neural network based industrial control
flow monitoring system called Zeus has also been developed using near-field emanations [19].
Compared to existing work, Digitus is beneficial because we are able to extend the authentication range.

Fingerprinting RF Devices at Range. Fingerprinting RF devices with transmitter modules is a well known field.
Many works attempt to identify devices within wireless networks using unique characteristics of the transmitted
signal caused by transmitter module imperfections [9, 22, 25, 32, 52]. An approach has been developed to handle
changes in the region of interest as well as fingerprinting automation [54]. The impact of channel [3] as well
as differences in modulation [20] on identification is also important. Work has also been done on features for
RF devices. Features such as modulation offset and I/Q offset can be used [36]. For ZigBee devices, work has
been done to select features using multiple discriminant analysis [8]. A framework of choosing features per
authentication device has also been developed [38].
Compared to existing work, Digitus is wireless modulation agnostic and transmitter module independent.

Authentication and Security Applications. One application of authentication is hidden device detection. In
EarFisher [46], the authors distinguish eavesdroppers from legitimate devices by listening to the natural emissions
from device memory accesses. In Ghostbuster, it is shown that even passive receivers that are eavesdropping can
be identified via RF signal leakage [12]. Hidden device detection can also be done via observation of packet flow
and network traffic [14, 29, 40, 45]. Hidden device detection calls into consideration the question of open set versus
closed set, and work has been done to detect devices not in the set such as malicious devices [21, 35].Work has been
done to generally secure a collection of IoT devices on a network from malicious adversaries [13, 30, 33, 48, 49].
Authencation can also happen between two devices utilizing the ambient electromagnetic signals in the room, as
shown in AEROKEY [27]. In an adversarial setting, DroneTrace was developed in order to track and identify
malicious drones [28]. Millimeter wave signals are utilized to pierce the drone case.

Compared to existing work, our work can be applied to offline IoT devices without active stimulation of the devices
nor radio (packet transmission) and/or memory activities.

10 CONCLUSIONS
Digitus is a fingerprinting system that utilizes emanations from the processor’s clock to characterize IoT devices
and authenticate at range. This system removes the reliance on transmitter modules, the specific wireless
modulation in the spectrum, and the need for complex memory, approaches utilized in previous work. We
demonstrate through various sensitivity analyses the applicability of Digitus in a wide range of IoT scenarios.
Additionally, we show Digitus’s applicability to several IoT applications such as hidden device detection. Digitus
is a new authentication method that can provide a low-overhead solution for many low-power IoT devices in the
rapidly growing world of IoT.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:24 • Feng et al.

ACKNOWLEDGEMENTS
We thank the reviewers for their comments and guidance on this work. This work has been supported, in part,
by NSF grant 2211301 and IARPA grant PO-IARPA 2021-21062400004. The views and findings in this paper are
those of the authors and do not necessarily reflect the views of NSF and IARPA.

REFERENCES
[1] STM 32. [n. d.]. https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html. Accessed: 2022-11.
[2] Mosabbah Mushir Ahmed, David Hely, Etienne Perret, Nicolas Barbot, Romain Siragusa, Maxime Bernier, and Fredric Garet. 2018.

Authentication of microcontroller board using non-invasive em emission technique. In 2018 IEEE 3rd International Verification and
Security Workshop (IVSW). IEEE, 25–30.

[3] Amani Al-Shawabka, Francesco Restuccia, Salvatore D’Oro, Tong Jian, Bruno Costa Rendon, Nasim Soltani, Jennifer Dy, Stratis Ioannidis,
Kaushik Chowdhury, and Tommaso Melodia. 2020. Exposing the fingerprint: Dissecting the impact of the wireless channel on radio
fingerprinting. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 646–655.

[4] Indoor TV Antenna. [n. d.]. https://www.amazon.com/dp/B01FUB4ZG8?psc=1&ref=ppx_yo2ov_dt_b_product_details. Accessed:
2022-11.

[5] Jerome Antoni. [n. d.]. https://www.mathworks.com/matlabcentral/fileexchange/48909-cyclic-spectral-analysis/. Accessed: 2022-11.
[6] Mahzad Azarmehr, Ankit Mehta, and Rashid Rashidzadeh. 2017. Wireless device identification using oscillator control voltage as RF

fingerprint. In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 1–4.
[7] USPR B205mini-i. [n. d.]. https://www.ettus.com/all-products/usrp-b205mini-i/. Accessed: 2022-11.
[8] Trevor J Bihl, Kenneth W Bauer, and Michael A Temple. 2016. Feature selection for RF fingerprinting with multiple discriminant analysis

and using ZigBee device emissions. IEEE Transactions on Information Forensics and Security 11, 8 (2016), 1862–1874.
[9] Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh. 2008. Wireless device identification with radiometric signatures. In

Proceedings of the 14th ACM international conference on Mobile computing and networking. 116–127.
[10] Robert Callan, Alenka Zajić, and Milos Prvulovic. 2015. FASE: Finding amplitude-modulated side-channel emanations. In 2015 ACM/IEEE

42nd Annual International Symposium on Computer Architecture (ISCA). IEEE, 592–603.
[11] Giovanni Camurati, Aurélien Francillon, and François-Xavier Standaert. [n. d.]. Understanding screaming channels: From a detailed

analysis to improved attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems ([n. d.]).
[12] Anadi Chaman, Jiaming Wang, Jiachen Sun, Haitham Hassanieh, and Romit Roy Choudhury. 2018. Ghostbuster: Detecting the presence

of hidden eavesdroppers. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. 337–351.
[13] Batyr Charyyev and Mehmet Hadi Gunes. 2020. Locality-sensitive iot network traffic fingerprinting for device identification. IEEE

Internet of Things Journal 8, 3 (2020), 1272–1281.
[14] Yushi Cheng, Xiaoyu Ji, Tianyang Lu, and Wenyuan Xu. 2018. Dewicam: Detecting hidden wireless cameras via smartphones. In

Proceedings of the 2018 on Asia Conference on Computer and Communications Security. 1–13.
[15] Yushi Cheng, Xiaoyu Ji, Juchuan Zhang, Wenyuan Xu, and Yi-Chao Chen. 2019. Demicpu: Device fingerprinting with magnetic signals

radiated by cpu. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 1149–1170.
[16] Shane S Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sorber, Wenyuan Xu, and Kevin Fu. 2013. {WattsUpDoc}:

Power Side Channels to Nonintrusively Discover Untargeted Malware on Embedded Medical Devices. In 2013 USENIX Workshop on
Health Information Technologies (HealthTech 13).

[17] Great Scott Gadgets. [n. d.]. https://greatscottgadgets.com/hackrf/. Accessed: 2022-11.
[18] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. 2015. Stealing keys from PCs using a radio: Cheap electromagnetic

attacks on windowed exponentiation. In International workshop on cryptographic hardware and embedded systems. Springer, 207–228.
[19] Yi Han, Sriharsha Etigowni, Hua Liu, Saman Zonouz, and Athina Petropulu. 2017. Watch me, but don’t touch me! contactless control

flow monitoring via electromagnetic emanations. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 1095–1108.

[20] Samer Hanna, Chris Dick, and Danijela Cabric. 2021. Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation
Classification. IEEE Journal on Selected Areas in Communications 40, 1 (2021), 82–96.

[21] Samer Hanna, Samurdhi Karunaratne, and Danijela Cabric. 2020. Open set wireless transmitter authorization: Deep learning approaches
and dataset considerations. IEEE Transactions on Cognitive Communications and Networking 7, 1 (2020), 59–72.

[22] Samer S Hanna and Danijela Cabric. 2019. Deep learning based transmitter identification using power amplifier nonlinearity. In 2019
International Conference on Computing, Networking and Communications (ICNC). IEEE, 674–680.

[23] Omar Adel Ibrahim, Savio Sciancalepore, Gabriele Oligeri, and Roberto Di Pietro. 2020. MAGNETO: Fingerprinting USB Flash Drives
via Unintentional Magnetic Emissions. ACM Transactions on Embedded Computing Systems (TECS) 20, 1 (2020), 1–26.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.amazon.com/dp/B01FUB4ZG8?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://www.mathworks.com/matlabcentral/fileexchange/48909-cyclic-spectral-analysis/
https://www.ettus.com/all-products/usrp-b205mini-i/
https://greatscottgadgets.com/hackrf/

Fingerprinting IoT Devices Using Latent Physical Side-Channels • 54:25

[24] Tong Jian, Yifan Gong, Zheng Zhan, Runbin Shi, Nasim Soltani, Zifeng Wang, Jennifer Dy, Kaushik Chowdhury, Yanzhi Wang, and
Stratis Ioannidis. 2021. Radio frequency fingerprinting on the edge. IEEE Transactions on Mobile Computing 21, 11 (2021), 4078–4093.

[25] Tong Jian, Bruno Costa Rendon, Emmanuel Ojuba, Nasim Soltani, Zifeng Wang, Kunal Sankhe, Andrey Gritsenko, Jennifer Dy, Kaushik
Chowdhury, and Stratis Ioannidis. 2020. Deep learning for RF fingerprinting: A massive experimental study. IEEE Internet of Things
Magazine 3, 1 (2020), 50–57.

[26] Kyouwoong Kim, Ihsan A Akbar, Kyung K Bae, Jung-Sun Um, Chad M Spooner, and Jeffrey H Reed. 2007. Cyclostationary approaches
to signal detection and classification in cognitive radio. In 2007 2nd ieee international symposium on new frontiers in dynamic spectrum
access networks. IEEE, 212–215.

[27] Kyuin Lee, Yucheng Yang, Omkar Prabhune, Aishwarya Lekshmi Chithra, Jack West, Kassem Fawaz, Neil Klingensmith, Suman Banerjee,
and Younghyun Kim. 2022. AEROKEY: Using Ambient Electromagnetic Radiation for Secure and Usable Wireless Device Authentication.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 1 (2022), 1–29.

[28] Zhengxiong Li, Baicheng Chen, Xingyu Chen, Chenhan Xu, Yuyang Chen, Feng Lin, Changzhi Li, Karthik Dantu, Kui Ren, and Wenyao
Xu. 2022. Reliable Digital Forensics in the Air: Exploring an RF-based Drone Identification System. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 1–25.

[29] Tian Liu, Ziyu Liu, Jun Huang, Rui Tan, and Zhen Tan. 2018. Detecting wireless spy cameras via stimulating and probing. In Proceedings
of the 16th Annual International Conference on Mobile Systems, Applications, and Services. 243–255.

[30] Eman Maali, David Boyle, and Hamed Haddadi. 2020. Towards identifying IoT traffic anomalies on the home gateway. In Proceedings of
the 18th Conference on Embedded Networked Sensor Systems. 735–736.

[31] Laura J Mariano, Alexander Aubuchon, Troy Lau, Onur Ozdemir, Tomo Lazovich, and John Coakley. 2019. Classification of elec-
tronic devices and software processes via unintentional electronic emissions with neural decoding algorithms. IEEE Transactions on
Electromagnetic Compatibility 62, 2 (2019), 470–477.

[32] Kevin Merchant, Shauna Revay, George Stantchev, and Bryan Nousain. 2018. Deep learning for RF device fingerprinting in cognitive
communication networks. IEEE Journal of Selected Topics in Signal Processing 12, 1 (2018), 160–167.

[33] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza Sadeghi, and Sasu Tarkoma. 2017. Iot sentinel: Automated
device-type identification for security enforcement in iot. In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2177–2184.

[34] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos Prvulovic. 2017. Eddie: Em-based detection of deviations in
program execution. In Proceedings of the 44th Annual International Symposium on Computer Architecture. 333–346.

[35] Jorge Ortiz, Catherine Crawford, and Franck Le. 2019. DeviceMien: network device behavior modeling for identifying unknown IoT
devices. In Proceedings of the International Conference on Internet of Things Design and Implementation. 106–117.

[36] Linning Peng, Aiqun Hu, Junqing Zhang, Yu Jiang, Jiabao Yu, and Yan Yan. 2018. Design of a hybrid RF fingerprint extraction and device
classification scheme. IEEE Internet of Things Journal 6, 1 (2018), 349–360.

[37] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Antonakakis. 2020. Iotfinder: Efficient large-scale identification of iot
devices via passive dns traffic analysis. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 474–489.

[38] Donald Reising, Joseph Cancelleri, T Daniel Loveless, Farah Kandah, and Anthony Skjellum. 2020. Radio identity verification-based IoT
security using RF-DNA fingerprints and SVM. IEEE Internet of Things Journal 8, 10 (2020), 8356–8371.

[39] Ulrich Rührmair, Xiaolin Xu, Jan Sölter, Ahmed Mahmoud, Mehrdad Majzoobi, Farinaz Koushanfar, and Wayne Burleson. 2014. Efficient
power and timing side channels for physical unclonable functions. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 476–492.

[40] Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun, Hamed Haddadi, Daniel J Dubois, David Choffnes, Georgios Smaragdakis,
and Anja Feldmann. 2020. A haystack full of needles: Scalable detection of iot devices in the wild. In Proceedings of the ACM Internet
Measurement Conference. 87–100.

[41] Seun Sangodoyin, Frank T Werner, Baki B Yilmaz, Chia-Lin Cheng, Elvan M Ugurlu, Nader Sehatbakhsh, Milos Prvulović, and Alenka
Zajic. 2020. Side-channel propagation measurements and modeling for hardware security in iot devices. IEEE Transactions on Antennas
and Propagation 69, 6 (2020), 3470–3484.

[42] Nader Sehatbakhsh, Monjur Alam, Alireza Nazari, Alenka Zajic, and Milos Prvulovic. 2018. Syndrome: Spectral analysis for anomaly
detection on medical iot and embedded devices. In 2018 IEEE international symposium on hardware oriented security and trust (HOST).
IEEE, 1–8.

[43] Nader Sehatbakhsh, Alireza Nazari, Monjur Alam, Frank Werner, Yuanda Zhu, Alenka Zajic, and Milos Prvulovic. 2019. REMOTE:
Robust external malware detection framework by using electromagnetic signals. IEEE Trans. Comput. 69, 3 (2019), 312–326.

[44] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic. 2020. A new side-channel vulnerability on modern
computers by exploiting electromagnetic emanations from the power management unit. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA).

[45] Rahul Anand Sharma, Elahe Soltanaghaei, Anthony Rowe, and Vyas Sekar. 2022. Lumos: Identifying and Localizing Diverse Hidden
{IoT} Devices in an Unfamiliar Environment. In 31st USENIX Security Symposium (USENIX Security 22). 1095–1112.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

54:26 • Feng et al.

[46] Cheng Shen and Jun Huang. 2021. {EarFisher}: Detecting Wireless Eavesdroppers by Stimulating and Sensing Memory {EMR}. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21). 873–886.

[47] Cheng Shen, Jun Huang, Guangyu Sun, and Jingshu Chen. 2022. Electromagnetic Fingerprinting of Memory Heartbeats: System and
Applications. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 3 (2022), 1–23.

[48] Akash Deep Singh, Luis Garcia, Joseph Noor, and Mani Srivastava. 2021. I Always Feel Like Somebody’s Sensing Me! A Framework to
Detect, Identify, and Localize Clandestine Wireless Sensors. In 30th USENIX Security Symposium (USENIX Security 21). 1829–1846.

[49] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford, Chamith Wijenayake, Arun Vishwanath, and Vijay
Sivaraman. 2018. Classifying IoT devices in smart environments using network traffic characteristics. IEEE Transactions on Mobile
Computing 18, 8 (2018), 1745–1759.

[50] Semtech SX1262. [n. d.]. https://www.semtech.com/products/wireless-rf/lora-core/sx1262mb2cas/. Accessed: 2022-07.
[51] Arduino Uno. [n. d.]. https://docs.arduino.cc/hardware/uno-rev3/. Accessed: 2022-11.
[52] Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. 2015. Device fingerprinting in wireless networks: Challenges and opportunities. IEEE

Communications Surveys & Tutorials 18, 1 (2015), 94–104.
[53] Chouchang Yang and Alanson P Sample. 2016. EM-ID: Tag-less identification of electrical devices via electromagnetic emissions. In 2016

IEEE International Conference on RFID (RFID). IEEE, 1–8.
[54] Jiabao Yu, Aiqun Hu, Guyue Li, and Linning Peng. 2019. A robust RF fingerprinting approach using multisampling convolutional neural

network. IEEE Internet of Things Journal 6, 4 (2019), 6786–6799.
[55] Zihao Zhan, Zhenkai Zhang, and Xenofon Koutsoukos. 2020. Bitjabber: The world’s fastest electromagnetic covert channel. In 2020 IEEE

International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 35–45.
[56] Mark Zhao and G Edward Suh. 2018. FPGA-based remote power side-channel attacks. In 2018 IEEE Symposium on Security and Privacy

(SP). IEEE, 229–244.

APPENDICES

A CODE
The link below contains the feature extraction code and the Random Forest classifier used in Digitus.
https://github.com/ssysarch/digitus

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 54. Publication date: June 2023.

https://www.semtech.com/products/wireless-rf/lora-core/sx1262mb2cas/
https://docs.arduino.cc/hardware/uno-rev3/
https://github.com/ssysarch/digitus

	Abstract
	1 Introduction
	2 Motivation: Why a new fingerprinting method is needed?
	3 A Primer on Digitus
	4 Designing the Fingerprinting Model
	4.1 Data Collection and Preprocessing
	4.2 Feature Extraction
	4.3 Feature Robustness
	4.4 Machine Learning Models for Classification and Feature Extraction

	5 Evaluation Setup
	6 Results
	6.1 Baseline Test
	6.2 Temporal Test
	6.3 Long-Term Study
	6.4 Temperature Effects
	6.5 Attenuation Test
	6.6 Non-Line-of-Sight
	6.7 Intra-Device Test
	6.8 Device Spoofing
	6.9 Performance of Deep Learning Approach

	7 Applications and Usecases
	7.1 Room Monitoring with Hidden Device Detection
	7.2 Determining Device State for Fingerprinting Transmitters

	8 Discussions
	8.1 Feature-Based Versus Deep Learning
	8.2 Authentication Protocol
	8.3 Program-Agnostic Fingerprinting

	9 Related Work
	10 Conclusions
	References
	A Code

