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Personal data collected from today’s wearable sensors contain a rich amount of information that can reveal a user’s identity. 
Differential privacy (DP) is a well-known technique for protecting the privacy of the sensor data being sent to community 
sensing applications while preserving its statistical properties. However, differential privacy algorithms are computationally 
expensive, requiring user-level random noise generation which incurs high overheads on wearables with constrained hardware 
resources. In this paper, we propose SeRaNDiP - which utilizes the inherent random noise existing in wearable sensors for 
distributed differential privacy. We show how various hardware configuration parameters available in wearable sensors can 
enable different amounts of inherent sensor noise and ensure distributed differential privacy guarantee for various community 
sensing applications with varying sizes of populations. Our evaluations of SeRaNDiP on five wearable sensors that are widely 
used in today’s commercial wearables - MPU-9250 accelerometer, ADXL345 accelerometer, BMP 388 barometer, MLP 3115A2 
barometer, and MLX90632 body temperature sensor show a 1.4X-1.8X computation/communication speedup and 1.2X-1.5X 
energy savings against state-of-the-art DP implementation. To the best of our knowledge, SeRaNDiP is the first framework to 
leverage the inherent random sensor noise for differential privacy preservation in community sensing without any hardware 
modification.

CCS Concepts: • Computer systems organization → Embedded systems; • Security and privacy → Human and societal 
aspects of security and privacy ; • Human-centered computing → Ubiquitous and mobile computing.
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1 INTRODUCTION
Today’s smartphones and wearables contain an impressive array of sensors such as accelerometer, microphone, 
GPS, and barometer providing information about the user’s activities and surroundings. Collecting people’s 
surrounding information and activities via sensors in smartphones and wearables is typically referred to as 
participatory sensing or crowd sensing. Users’ health status (heart rate, SpO2, blood pressure, etc.) and activities 
(daily step counts, calories etc.) can be measured by wearable devices. This has led to governments around the 
world promoting the health and well-being of their citizens by introducing incentive-based community-sensing 
programs through monitoring user activities. 10,000 Steps Australia, National Step Challenge Singapore are
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some examples of popular community sensing programs where movement (accelerometer) and heart rate (PPG)

data are collected from users to determine daily activity levels. Google Map’s Live Traffic is another popular

community sensing program conducted globally using GPS data from mobile phones with more than 154.4 million

monthly participants [10]. Globally, there are 31 million and 100 million active Fitbit and Apple Watch users

respectively [8, 12]. The privacy of the sensor data collected from such a vast community of users needs to be

safeguarded.

Though many existing community sensing programs send features processed from raw sensor data (step count,

activity, location, etc.) to the community sensing server, there are also numerous community sensing applications

that directly share the raw sensor values [13, 37, 52, 79, 83]. Besides, just sharing processed features with the

community sensing server severely limit the advanced analytics that can be performed on the server. With

open-source AI analytics tools such as GGIR [64], AirSensor [35], exploreR [57] in widespread use for studying

users’ activity, health, etc., there have been increasing deployments of community sensing applications that share

raw sensor data to the cloud [6]. For instance, crowd-sourced raw IMU data from smartphones have been used

to construct an open hazard data map for preventing bicycle accidents [52]. This helps transport authorities

efficiently monitor road surfaces by detecting road potholes and bumps [83]. Feverprint [79] is a community

sensing program from Apple that collects body temperature values from iPhone users to identify the normal

range of temperatures for a country-wide population at different times throughout the day. Weather researchers

use crowdsourced raw air temperature observations [37] and raw atmospheric pressure measurements [13] from

smartphone barometer sensors to create a crowd-sourced intercontinental network for weather forecasting. We

believe that crowd-sensing programs will benefit significantly from receiving privacy-preserved raw sensor data

from users to learn advanced insights regarding the behavior of the community.

However, preserving the privacy of wearable sensor data being sent to the community sensing server is a

challenge [26, 28, 36, 54, 62, 86]. For instance, accelerometers can reveal a person’s height [9] and emotions [5];

barometer data can help identify driving patterns [42], transportation modes [75]; temperature sensor data can
reveal information related to female infertility [40] and depression [72]. Although the data being sent to the

community sensing servers are anonymized, participants can still be de-identified if biometrics are monitored

continuously for a considerable period of time: Foschini et al. showed that step counts of six days suffice to

identify a user from 100 million users [38]. Recent reports question the privacy guarantee provided by community

sensing organizations. In 2020, it was found that Samsung had been releasing Samsung Pay data to a third

party for years without the user’s knowledge [85]. Therefore, it is essential to implement Privacy Enhancing

Technologies (PET) on wearable sensors at the user level.

Distributed Differential Privacy (DDP) is a data distortion method that perturbs the raw sensor data (being sent

from the user’s wearables to the community sensing servers) by the addition of statistical noise, so that attackers

cannot infer information about any specific user record. In 2017, Apple implemented local differential privacy (a

variant of distributed differential privacy) in Mac OS Sierra and iOS 10 [19] - to gain insights into usage patterns.

DDP is also recently adopted to the Exposure Notification Privacy-preserving Analytics (ENPA) introduced by

Apple and Google to enable automated alerts to users with potential exposure to COVID-19. Here, user metrics

are randomized using distributed differential privacy at the smartphone before sending them to Public Health

Authorities [20]. With wearables intimately worn on users throughout the day, they provide substantially more

personal sensor information than smartphones, so DDP is even more critically needed. However, wearables such

as smartwatches, fitness trackers, smart glasses have very limited compute and battery resources, due to cost and

weight constraints. In this paper, we thus focus on lowering the power and computation overheads involved in

realizing DDP on today’s wearables with constrained hardware resources.

To characterize the overheads involved in supporting DDP on wearables, we implemented a state-of-the-art

baseline DDP system [33] as shown in Figure 1. In our baseline DDP implementation, each user sends their raw

sensor data into a differential privacy preservation module (running on the processor of the wearable device),
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Fig. 1. Baseline DDP implementation for wearable community sensing applications

which generates random noise and adds it to the raw sensor data to protect the user’s identity, and then the

encrypted sensor data from each user’s wearable device is sent to a server via WiFi. We implemented the baseline

DDP architecture using the Tizen Studio environment for Samsung Galaxy smartwatch (87DB). Software based

white gaussian noise generation in the Galaxy smartwatch introduces 1.3ms delay for each sampling of the

accelerometer sensor, which constitutes about 33% of the total end-to-end delay illustrated in Figure 1, from the

sampling of the sensor, through the noise generation and computation, transmission to the server and server

computation. Further, noise generation and addition consumes 20% additional energy.

In wearables, data is continuously obtained from sensors and the acquired sensor data is inherently noisy

owing to the electrical/mechanical properties of the sensor as well as the inherent variance in the biological

data sensed from the person wearing the wearable (see Section 4.1 for more details ). In this paper, we explore

whether the inherent sensor noise observed can be used in place of the software random noise generation step,

thus lowering the runtime and power overheads for differential privacy preservation in community sensing

applications.

To address the above thesis, we propose SeRaNDiP (Sensor Random Noise for Differential Privacy) which
utilizes the sensor’s inherent noise to meet differential privacy requirements under distributed differential privacy,

thus removing the need for noise generation. We make use of the state-of-the-art noise profiling mechanism,

Allan Deviation (AD) [89] to characterize and estimate noise components required to satisfy differential privacy

requirements for wearable community sensing applications. Further, SeRaNDiP leverages various hardware
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Fig. 2. Overall architecture of our SeRaNDiP framework for differential privacy preservation in wearable community sensing
applications

configurations of the sensors to introduce different amounts of inherent noise depending on the application-

specific differential privacy requirements. Thereby, SeRaNDiP guarantees differential privacy requirements for

different population sizes whilst ensuring low power and compute requirements on wearables.

The contributions of this paper are summarized as follows:

• We study the latency and energy consumption overheads associated with realizing state-of-the-art DDP on

today’s wearables with accelerometers, barometers and temperature sensors.

• We propose SeRaNDiP which leverages a sensor’s inherent noise to meet DDP requirements, thus saving

on the need for noise generation for DDP. Hence SeRaNDiP is readily applicable to fitness trackers and

smartwatches without any hardware modification.

• We analyze the inherent noise of hardware sensors common in today’s wearables and demonstrate the

specific sensor configurations and application scenarios where the inherent sensor noise suffices for DDP

guarantees.
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• We implemented SeRaNDiP on a low-power ESP32 microcontroller interfaced with accelerometers (MPU-

9250 and ADXL-345), barometers (BMP-388 andMLP 315A2) and body temperature sensor (MLX90632) from

different manufacturers and evaluated the performance of SeRaNDiP against three alternative differential

privacy implementations - (a) the baseline state-of-the-art distributed differential privacy [33] of Figure 1,

(b) Local differential privacy [77] and (c) Gamma distribution based noise generated distributed differential

privacy [14]. Our experiments show that SeRaNDiP realizes latency as well as energy improvement of

1.4X-1.8X, 1.3X-1.7X, 1082X-3334X and 1.2X-1.5X, 1.2X-1.8X, 7.4X-11.2X respectively against these three

baselines.

• We also conducted user trials with 10 participants and showed that SeRaNDiP realizes latency and energy

savings while maintaining high accuracy at the community-sensing server.

• We studied the variation in the inherent sensor noise of the accelerometer and barometer sensors under

different room temperatures and found that the inherent sensor noise remains stable at different room

temperatures - demonstrating the robustness of SeRaNDiP.
The remaining of the paper is structured as follows. In Section 2, we review the literature on efficient differential

privacy preservation techniques for community sensing applications and measured the power-performance

overheads of state-of-the-art DDP implementations on wearables. Section 3 introduces background on DDP

theory and sensor noise, analyzing population-scale differential privacy guarantees for community sensing

applications. Section 4 explains how the inherent noise that exists in sensor data can be utilized to guarantee

differential privacy. Section 5 outlines the various steps involved in our SeRaNDiP framework. Experimental

validation of our solution against conventional DDP implementation is presented in Section 6. Section 7 discusses

the limitations as well as factors that determine the scalability of SeRaNDiP . Finally, we conclude the paper in
Section 8.

2 RELATED WORKS AND MOTIVATION
In this section, we review the related works with respect to four key characteristics - (1) DP approaches which

guarantee privacy using hardware level modifications vs. software algorithms, (2) DP mechanisms that guarantee

privacy without random noise generation, (3) DP techniques that consider sensor noise, and (4) Low power

privacy mechanisms for IoT devices. Through experiments with an accelerometer sensor, we motivated the need

for a low-power and low-compute framework for ensuring differential privacy guarantees in wearables - by

characterizing the various overheads associated with the state-of-the-art baseline DDP implementation. Table 1

summarizes the literature in comparison to SeRaNDiP based on the above aspects. Similar to a typical DDP

application, we assume that the community sensing server accepts the privacy protocol followed by the wearable

device but is not trusted to hold the user’s raw sensor data.

Table 1. Summary of the related works with respect to SeRaNDiP

Related Work Hardware Level DP Noiseless Privacy Sensor Noise with DP Power Saving

Choi et al. [27] ✓ × × ✓
Duan et al. [31] × ✓ × ×

Bhaskar et al. [24] × ✓ × ×
Sei et al. [77] × × ✓ ×
Shi et al. [82] × × × ✓
Ács et al. [14] × × × ✓

SeRaNDiP " " " "
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2.1 Software Algorithms and Hardware-level Modifications to Ensure Differential Privacy
Most current differential privacy techniques are implemented as software algorithms that run on the processor

of the wearable device, where differential privacy noise is generated using the said software algorithms [14, 34,

71, 82, 87]. While it is easy to augment software-generated noise in DDP applications, it adds a considerable

amount of computation overhead (timing and energy consumption) to the system compared to hardware-level

modifications. The computation cost involved with random noise generation significantly affects the latency and

energy consumption in wearables where battery life, as well as computation capacity, is highly limited due to

form-factor restraints.

To bypass the compute overheads associated with software algorithms, Choi et al. [27] proposed a hardware-

level local differential privacy implementation by introducing resampling and thresholding-based mechanisms to

prevent privacy loss in fixed-point random noise generation hardware. However, it requires hardware modifica-

tions in the wearable device, and is thus not applicable to existing wearable devices. In addition, the random

number generation hardware module itself [27] also incurs considerable latency and power consumption. On the

other hand, SeRaNDiP leverages existing sensor hardware in wearables to realize differential privacy without

any changes in the hardware. Our proposed approach harnesses inherent sensor noise by configuring various

hardware parameters such as sampling frequency, filter settings, etc. available in the sensor to acquire sensor data

with the desired amount of random noise needed to ensure a differential privacy guarantee. By doing so, SeRaNDiP
gets rid of the computation costs (latency and energy consumption) involved in random noise generation at the

wearable device.

2.2 Differential Privacy Approaches that Do Not Require Random Noise Generation
Duan et al. [31] mathematically validated that when the data is sufficiently large in a centralized server setting,

inherent uncertainty associated with unknown quantities of noise available in the data can be used to guarantee

privacy without adding external noise. Bhaskar et al. [24] showed that the required differential privacy guarantee

could already be existing in the aggregated user data if it satisfies conditions, e.g., the adversarial attackers

have very limited or no information about the data stored in the server and each user entry in the server is

independent. Since the availability of auxiliary information is very much applicable in the context of wearables,

this approach cannot be applied to wearables. Both [31] and [24] trust the centralized community sensing server

where differential privacy is guaranteed. In our work, we consider community sensing servers as not trustworthy

and ensure differential privacy guarantees at the sensor hardware on the wearable device before releasing the

sensor data to the server.

2.3 DP Techniques that Consider Sensor Noise
Recently, [77] proposes a 2-stage process to estimate sensing errors in the sensor data being received at the

community sensing server. Firstly, random noise is generated and added to the raw sensor data at the wearable

device to ensure privacy. The server receives the perturbed data and estimates the true data distribution after

accounting for the unknown sensing errors. The proposed approach still generates random noise at the wearable

device and only tackles the removal of sensing errors observed in the data at the server.

2.4 Low Power Privacy Mechanisms for IoT Devices
As the battery is highly constrained in wearables, it is essential to realize DDP approaches at lower power

consumption incurred from the computation and communication of the perturbed sensor data. Shi et al. [82]

developed a DP approach that eliminates a complete round of sensor data communication required before

decryption to make DP plausible for low-power sensor networks. Lightweight encryption [14] algorithms have

also been developed for use in IoT devices. There are privacy approaches [58, 73] that filter sensitive events in
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the sensor data and replace it with insensitive event data. Since these algorithms are computationally expensive

due to the use of machine learning algorithms, they can currently only be run on processors in smartphones or

PC. While off-loading such tasks to a smartphone saves limited energy on wearable device, the communication

between the smartphone and the wearable device incurs considerable latency as well as power consumption.

Therefore, this will not be applicable for wearables that can already communicate directly to the Cloud over WiFi

or cellular connectivity.

In our work, since we do not generate random noise for differential privacy requirements, we save a considerable

amount of energy and computation whilst still providing a strong differential privacy guarantee. All the above

privacy mechanisms are orthogonal to our work; SeRaNDiP can co-exist with these approaches to deliver further

savings.

2.5 Power and Latency Bottlenecks in State-of-the-art DDP Implementation for Wearables
As detailed power and timing analysis cannot be obtained using commercial smart watches/fitness trackers due

to their closed nature, we implemented the state-of-the-art gaussian noise-based DDP[33] (see Figure 1) in a

widely used wearable and IoT platform, ESP32. In the rest of this paper, we will name this baseline as DDP-BL
for brevity. We implemented the differential privacy preservation module on a low-power ESP32 microcontroller

which acts as the wearable device and the Raspberry Pi 3b development board (see Figure 3) runs the server with

parameters shown in Table 2. We then categorized the delays into four stages - sensing, random noise generation,

encryption and BLE communication.

(1) Sensor data acquisition, I2C communication, and pre-processing by ESP32 fall under sensing delay.
(2) Random white gaussian noise generation (with standard deviation 0.001) and perturbation as random noise

generation delay.
(3) AES encryption performed on sensor data is termed encryption delay.
(4) Buffering encrypted sensor data and BLE communication time taken to send the encrypted sensor data to

the server is categorized as BLE communication delay.

Timing measurements were conducted using Arduino software timers and power measurements were made

using a Monsoon power monitor. As shown in Figure 4, the random noise generation step in the baseline

DDP implementation introduces up to 1.5x computation (SW) and communication (COMM) delays (i.e., 1.4x

total delays), as well as 1.3x computation (SW) and communication (COMM) energy overheads (i.e., 1.4x total

overheads) to the wearable.

In addition, we also evaluated the latency and energy overheads associated with random noise generation in a

typical DDP implementation for five different wearable sensors. Random white gaussian noise was generated

using the Arduino gaussian noise generation library [78]. For all the five sensors used in our characterization study

- MPU-9250 accelerometer, ADXL345 accelerometer, BMP388 barometer, MPL3115A2 barometer and MLX90632

body temperature sensor, the corresponding hardware configurations can be found in Table 3.

The latency was measured using Arduino software timers and power measurements were made using a

Monsoon power monitor. From Figure 5, it is evident that random noise generation adds about 30% latency and

energy overheads to the wearable device for all sensors except the body temperature sensor. The reason behind

such low overheads in the temperature sensor is the absence of hardware buffers and registers for sensor data

access. This eliminates the overheads associated with I2C communication and sensor data acquisition. However,

most sensors come with hardware buffers as they significantly reduce sensing delay and power, and thus, the

overheads associated with random noise generation will be considerably higher. Our characterization study thus

affirm that random noise generation adds significant overheads to wearable devices, motivating the need for

a low-power and low-compute differential privacy preservation mechanism for wearable community sensing

applications. By exploiting the inherent sensor noise observed in the sensor data, SeRaNDiP eliminates the power

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 61. Publication date: June 2023.
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Table 2. Hardware configuration details of our ESP32 prototype

Component Model Parameter Setting

Sensor MPU-9250 accelerometer sensor Sampling rate 25Hz

Low Pass Filter cut-off frequency 20Hz

Range +/- 2g

Buffer Size 85 Samples

I2C Connectivity - Clock frequency 400 kHz

Processor and ESP32 Development Board Version DOIT ESP32 DEVKIT V1

Wireless Communication Module

CPU Frequency 80MHz

Voltage 5V

BLE Connectivity - Connection interval 6.25- 7.5 ms

- Buffer Size 340 Bytes

- MTU 345

BLE Server Raspberry Pi Board Version Raspberry Pi-3b

Table 3. Sensor Parameters used in our Characterization Study

Sensor Model Parameters Value

Accelerometer MPU-9250 Low pass Filter(LPF) cut-off frequency 20Hz

Range +/-2g

Sampling Rate 25 Hz

Buffer Size 85 Samples

ADXL345 Range +/-2g

Sampling Rate 25 Hz

Buffer Size 32 Samples

Barometer BMP388 Pressure Oversampling x4

IIR filter OFF

Temperature Oversampling SKIP

Sampling Rate 0.78 Hz

Buffer Size 72 Samples

MLP 3115A2 Oversample x4

Sampling Rate 1 Hz

Buffer Size 32 Samples

Body Temperature Sensor MLX90632 Emissivity 0.987

Room Temperature 25
𝑜𝐶

Sampling Rate 1 Hz

Buffer Size Buffer is Unavailable

and computation overheads caused by random noise generation and perturbation in state-of-the-art baseline

DDP implementation. In Section 6, we show that SeRaNDiP offers 1.4-1.8X latency improvements and 1.2X-1.5X

energy savings against DDP-BL.
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Fig. 3. Implementation of the state-of-the-art baseline DDP system (DDP-BL). The ESP32 microcontroller acts as the wearable
device which performs random noise generation to meet DDP requirements. The Rpi 3B board runs the community sensing
server to which the encrypted sensor data is being sent. A Monsoon power monitor is used to measure the power consumption
of ESP32.

Fig. 4. Profiling state-of-the-art baseline DDP implementation (DDP-BL) w.r.t. total latency and energy consumption

3 THEORY AND BACKGROUND
In this section, we briefly review the theorems of differential privacy that form the basis of SeRaNDiP, followed

by the Allan variance analysis for identifying that various wearable sensors exhibit inherent sensor noise that

is gaussian, before presenting the theoretical foundations for estimating the population size needed to provide

theoretical differential privacy guarantees.

3.1 Differential Privacy
Differential Privacy (DP) is a well-known privacy technique for providing the necessary privacy guarantees at the

server by utilizing the statistical properties of observed user data. It ensures trust between the community sensing

server and the user by making sure an adversary is unable to re-identify the user through observing his/her

data stored at the server. Given a differentially private community sensing server with user data, the output of

the server does not change significantly even if a user’s record has been added, removed, or modified owing

to the mathematical guarantees provided by the differential privacy algorithm. Hence, it is almost impossible

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 61. Publication date: June 2023.
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Fig. 5. Energy and latency overheads associated with random noise generation (%)

for adversaries to glean any information regarding a specific participant. We summarise the key mathematical

definitions and theorems of differential privacy below.

Definition 3.1 (Differential Privacy [32]). A privacy mechanism M satisfies (𝜖, 𝛿)-differential privacy (𝜖, 𝛿 > 0),

if we have

𝑃𝑟 [𝑀 (𝐷1) ∈ 𝑆] ≤ exp(𝜖) · 𝑃𝑟 [𝑀 (𝐷2) ∈ 𝑆] + 𝛿 (1)

for all adjacent databases 𝐷1 and 𝐷2 which differ on at most one record, and for all sets S ⊆ Range(M). Typically,

the gaussian mechanism is used to implement DP where random noise is drawn from a zero-mean gaussian

distribution and added to the query output 𝑓 (𝐷) with the gaussian noise scaled to 𝑙2 sensitivity [33].

Definition 3.2 ( 𝑙2 sensitivity [33]). For any function 𝑓 : 𝐷 → 𝑅𝑑 , the 𝑙2 sensitivity of 𝑓 w.r.t. 𝐷 is given as

Δ2 (𝑓 ) = max
𝐷1,𝐷2∈𝐷

∥ 𝑓 (𝐷1) − 𝑓 (𝐷2)∥2 (2)

for all 𝐷1, 𝐷2 differing on at most one record. Δ2 (𝑓 ) measures the Euclidean distance as follows:

Δ2 (𝑓 ) =
√︄∑︁

𝑖

[𝑓𝑖 (𝐷1) − 𝑓𝑖 (𝐷2)]2 (3)

For any function 𝑓 : 𝐷 → 𝑅𝑑 , the Gaussian mechanism with parameter 𝜎 for any dataset 𝐷 is 𝑀 (𝐷) = 𝑓 (𝐷) +
𝑁 (0, 𝜎2)𝑑 . We have the following theorem.

Theorem 3.3 (Gaussian Mechanism [33]). Let 𝜖 ∈ (0, 1] be arbitrary. For 𝑐2 > 2 ln(1.25/𝛿), the Gaussian
mechanism with parameter 𝜎 ≥ 𝑐Δ2 (𝑓 )/𝜖 is (𝜖, 𝛿)-differentially private.

In addition, based on the results in [65], we have the following corollary on the overall privacy guarantee of

multiple invocations of the Gaussian mechanism.

Corollary 3.4. Let 𝑓1, . . . , 𝑓𝑘 be a set of functions. For 𝑐2 > 2 ln(1.25/𝛿), applying the Gaussian mechanism on
𝑓1, . . . , 𝑓𝑘 with parameter 𝜎 ≥

√
𝑘 · 𝑐Δ2 (𝑓 )/𝜖 is (𝜖, 𝛿)-differentially private.
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Fig. 6. Data acquisition unit of a typical wearable Sensor

3.2 Presence of Inherent Noise in Wearable Sensors
Today’s wearable devices are equipped with a multitude of sensors like accelerometers, barometers, body

temperature sensors, etc. The data acquisition hardware in a sensor comprises three main components - a

transducer, an amplifier, and an Analog to Digital (A/D) converter (see Figure 6). The transducer captures physical

phenomena such as user movements and converts them to a corresponding voltage value. The voltage is then fed to

an internal amplifier for further amplification before being converted to a digital signal via an ADC chip. Electrical

components such as resistors, capacitors, etc. present in amplifiers produce a considerable amount of stochastic

noise along with the sensor reading [4]. The observed electrical noise distorts the signal considerably and hence,

hardware developers reduce the observed electrical noise at various stages of sensor design through configurable

hardware filters, more advanced filters [39, 45, 49, 60], and signal post-processing algorithms [21, 55, 84].

3.2.1 Stochastic Noise in Sensors. Stochastic noise in the observed sensor data comprises random noise compo-

nents - which can also be represented as random variables having a certain probability distribution [68, 80]. In

a typical DDP implementation, white gaussian noise is generated at the wearable device and added to the raw

sensor data before being sent to the community sensing server. Fortunately, white gaussian noise is one of the

random noise components observed in the sensor data. To identify white gaussian noise in the stochastic sensor

noise, a well-known noise analysis method can be used - Allan Deviation (AD) analysis [59].

3.2.2 Allan Deviation Analysis of Sensor Noise. Allan deviation analysis is used for identifying the various sources

of noise in stationary sensor data [46, 59]. Taking an accelerometer sensor as an example, given N samples of

accelerometer sensor data at a sample time of 𝜏0, we can form data clusters of duration 𝜏0, 2𝜏0, 3𝜏0..,𝑚𝜏0 where

𝑚 < (𝑁 −1)/2. We then obtain the averages of the sum of the data points contained in each cluster over the length

of the cluster. The Allan variance (in this case) is defined as the two-sample variance of the data cluster averages

as a function of cluster time. However, the clusters are overlapping in the assumed Allan variance estimation.

The Allan variance estimation performs much better when the clusters are non-overlapping. Therefore, the Allan

deviation function divides the sampled accelerometer signals into non-overlapping cluster Ω̄𝑘 (𝜏) averages over a
cluster duration 𝜏 and computes the variance among each cluster group as a function of varying 𝜏 .

𝜎𝑎 (𝜏) =

√√√
1

2(𝑁 − 2𝑛)

𝑁−2𝑛∑︁
𝑘=1

[Ω̄𝑘+1 (𝜏) − Ω̄𝑘 (𝜏)]2 (4)
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where 𝑛 = 𝜏/Δ𝑡 , N = total number of samples in Ω(𝑡), Δ𝑡 =sampling period and

Ω̄𝑘+1 (𝜏) =
1

(𝜏)

∫ 𝑡𝑘+𝜏

𝑡𝑘

Ω(𝑡)𝑑𝑡, Δ𝑡 ≤ 𝜏 ≤ 𝑁Δ𝑡/2. (5)

Figure 7 shows a plot of Allan deviation values against different cluster time duration (𝜏). Prior research [46]

has identified the relationship between the slope of the Allan deviation plot and contributing noise sources

in the observed sensor data. As seen in Figure 7, there are different slopes for different 𝜏 and each stochastic

noise component is prominent at a unique cluster time duration (𝜏). Therefore, each specific stochastic noise

component can be obtained by looking at a specific 𝜏 .

Fig. 7. Sample plot of Allan Deviation analysis results (Source : [46])

Similarly, noise resulting from barometer readings have a significant white gaussian noise component since the

Allan deviation plot has a slope of -0.5 [59]. Thermopile detectors used for contactless body temperature sensing

in wearables [3] also produce an inherent thermal noise (Johnson noise) which is identical to white gaussian

noise [29].

3.3 Theoretical Estimation of Sensor Noise Required from Each User for Providing DP Guarantees to
a Given Population Size

For a community sensing program with a given number of participants (e.g. 10 million or 100 million participants),

there is a minimum amount (standard deviation) of inherent sensor noise required from each user’s sensor data

to provide a differential privacy guarantee. In this subsection, we explain how to estimate the minimum standard

deviation of white Gaussian noise required from each user’s sensor data to provide distributed differential privacy

at the community sensing server with a known number of participants. We also study how the DDP guarantee

is affected by machine learning-based classifiers applied to the aggregated user data at the community sensing

server.

To begin with, we apply Theorem 3.3 to estimate the standard deviation of sensor noise required from each

participant. 𝛿 in Theorem 3.3 is represented as 1/(number of participants in the community sensing program) and

Δ2 (𝑓 ) is the measurement range (difference between the maximum and minimum sensor reading). The standard

deviation estimated using Theorem 3.3 is the total standard deviation of accumulated inherent sensor noise from

all the participants under a typical DDP setup (𝜎a+b+....). The total variance of the inherent sensor noise is the
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sum of variances from all the participants.

𝜎2

𝑎+𝑏+...+𝑁 = 𝜎2

𝑎 + 𝜎2

𝑏
+ .... + 𝜎2

𝑁 (6)

Therefore, the standard deviation of the inherent sensor noise required from each user to provide a (𝜖, 𝛿)−DDP
guarantee would be obtained as,

𝜎𝑎 = 𝜎𝑎+𝑏+...+𝑁 /
√
𝑛 (7)

Community sensing servers also perform data analytics on the aggregated data from each user to evaluate the

community’s behavior of interest whilst still providing a privacy guarantee. Based on the data analytics required,

the desired ML/DL-based classification algorithms are used. However, classifiers usually require consecutive time

series sensor data to estimate a community’s common behavior at a particular time. Given the classifier requires

𝑗 consecutive samples of the sensor data as input, we know from Corollary 3.4 that
√
𝑗 · 𝑐Δ2 (𝑓 )/𝜖 would be the

required SD of inherent white gaussian noise in the sensor data to ensure (ε, δ)-differential privacy. Therefore,

each user’s sensor data should have an inherent white gaussian noise with a standard deviation(𝜎𝑎) of -

𝜎𝑎 ≥
√︁
𝑗 · 𝑐Δ2 (𝑓 )/

√
𝑛𝜖 (8)

to provide (𝜖, 𝛿)-distributed differential privacy guarantee at the server after applying the classifier. This means

that the amount of standard deviation (SD) of inherent sensor noise required to ensure differential privacy will

also increase (by
√
𝑗 ) with the number of consecutive time series sensor data samples ( 𝑗 ) required by the ML/DL

classifier employed at the server.

4 EXPERIMENTAL VALIDATION OF INHERENT WHITE GAUSSIAN NOISE OBSERVED IN
SENSORS

In this section, we experimentally validated the inherent noise observed in the sensor data and show that it

would be sufficient for meeting differential privacy requirements. The inherent sensor noise can be harnessed to

get rid of the runtime and energy overheads associated with random noise generation. Through our experiments,

we answer the following questions:

Q1. Is inherent white gaussian noise present in experimental sensor data? (see Section 4.1)

Q2. Can the amount of hardware sensor noise be controlled by software? (see Section 4.2)

Q3. Will the inherent sensor noise be enough to satisfy the differential privacy requirements for a particular

community sensing application with a known participant count? (see Section 4.3)

4.1 Is Inherent Gaussian Noise Present in the Sensor Data? (Q1)
Here, we experimentally show that inherent white gaussian noise is observed even in the stationary sensor data.

This validates our assumption that inherent sensor noise is caused by the electrical noise arising from the sensor

hardware rather than the noise due to environmental factors and motion artifacts.

4.1.1 Prototype Details: We built four prototypes using the ESP32 development board, accelerometer, barometer

sensors, and an SD card module. Two of the ESP32 prototypes (Prototype v1 in Figure 8) were interfaced

with an MPU-9250 accelerometer from InvenSense
1
and a BMP388 barometer from Bosch

2
. Another two of

the ESP32 prototypes (Prototype v2 in Figure 8) had an ADXL345 accelerometer from Analog Devices
3
and a

MPL3115A2 barometer from NXP
4
. We used existing firmware libraries to acquire raw sensor data from the ESP32

1
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/

2
https://www.adafruit.com/product/3966

3
https://www.analog.com/en/products/adxl345.html

4
https://www.nxp.com/docs/en/data-sheet/MPL3115A2.pdf
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Prototype v1 Prototype v2 Android app for 
data collection

MPL3115A2 
barometer

ADXL345 
accelerometer

ESP32

MPU-9250 
accelerometer

BMP-388 
barometer

ESP32

Fig. 8. Our ESP32 sensor prototypes (Prototype v1 and Prototype v2) interfaced with sensors from different manufacturers
and the Android app UI for data collection.

board [15, 61, 90, 91]. Each sensor was interfaced to ESP32 via I2C and the SD card module was interfaced via SPI

connection. An Android app for data acquisition from ESP32 was developed using MIT App Inventor library(see

Figure 8). The application controls sensor data logging and communicates with the ESP32 prototypes via BLE.

Since the programmable amplifiers in digital sensors produce a higher amount of noise at a lower sampling

rate [4], each sensor was configured to the lowest reasonable frequencies for community sensing applications:

3.13 Hz for accelerometers, 0.78 Hz for BMP 388 and 0.125 Hz for MPL3115A2. The lower sampling frequencies

chosen for the sensors are practical for most existing community sensing applications. In Section 6, we also

show that lower sampling frequencies of the sensors do not have a considerable effect on the accuracy of the

community sensing applications.

4.1.2 Experimental Setup: SeRaNDiP primarily focuses on wearables and hence we collected sensor data for both

stationary and mobile settings to reflect practical deployment scenarios. We recruited 10 participants (5 male, 5

female) for our experiments. For the accelerometer sensor, We considered standing as a stationary setting and

jogging, walking, or any other horizontal activity as a dynamic mobile setting. We first asked the participants to

wear our ESP32 prototypes on the left leg pocket (the y-axis of the accelerometer is affected by gravity). The

participants were requested to stand still for 5 minutes before engaging in the following activities - jogging,

walking and climbing up stairs, each for a duration of 5 minutes. For the barometer sensor, we kept the prototypes

on a still table to emulate a stationary setting and escalators up/down, elevators up/down, and stairs up/down as

a dynamic setting. Prototype v1 was worn by the participants with user IDs 3, 7, 8 and 10. Prototype V2 was

worn by the remaining participants. Next, we obtained the sensor data from the prototypes and fed the noise

traces (observed sensor data - mean (observed sensor data)) to the Allan Deviation algorithm to calculate the

standard deviation of white gaussian noise present in the sensor data.

4.1.3 Results: As shown in Figure 9, the standard deviation of the white gaussian noise of the accelerometer is

higher in a dynamic setting compared to the stationary setting. We also obtained similar plots for the barometer

sensors (see Figure 10). SeRaNDiP can thus provide the minimum privacy guarantee with the available white

gaussian noise in a stationary setting and much higher privacy guarantees in a dynamic setting. The evaluations
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affirm the existence of inherent white gaussian noise to aid in the elimination of compute-intensive random noise

generation in DP.

Fig. 9. Standard deviation (SD) values of the inherent white gaussian noise observed in the accelerometer sensor during
stationary and dynamic settings.

Fig. 10. Standard deviation(SD) values of the inherent white gaussian noise observed in the barometer sensor during
stationary and dynamic settings

4.2 Impact of Sensor Hardware Configuration on the Amount of Inherent Sensor Noise (Q2)
Here, we show that the programmable hardware configurations of the sensor can be controlled to produce varying

amounts of inherent sensor noise from the same sensor without any hardware modification.
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4.2.1 Experimental Setup: We varied the sampling rate of the accelerometer and barometer sensors in our earlier

prototypes and collected the noise traces from the observed sensor data in a stationary setting. The prototypes

were left on a still table to emulate a stationary setting. In addition to the sensors in our earlier prototypes, we

also interfaced MLX 90632 infrared contactless body temperature sensor to the ESP32 board via I2C and placed a

finger on it to obtain noise traces under a stationary setting. The configured hardware filter parameters for each

sensor are listed in Table 4. While we use the best-performing hardware filter configurations in this experiment,

various parameters of the digital filters in the sensor hardware can be modified to produce different amounts of

inherent sensor noise.

4.2.2 Observations: As observed in Figures 11 and 12, the standard deviation of white gaussian noise decreases

with increasing sampling rate regardless of sensor manufacturer or the sensor type. We can thus conclude that

the sampling rate can be varied to produce the desired amount of inherent noise in the observed sensor readings -

with the highest sensor noise produced at the lowest sampling frequency. Since various sensor configurations

can result in different amounts of inherent white gaussian noise, the community sensing app can set the user’s

wearable device’s sensor configuration based on the amount of inherent sensor noise required from each user.

Table 4. Hardware parameters of the sensors used in our study

Sensor Model Parameters Value

Accelerometer MPU-9250 Low pass Filter(LPF) cut-off frequency 460Hz

Range +/-2g

ADXL345 Range +/-2g

Barometer BMP388 Pressure Oversampling x4

IIR filter OFF

Temperature Oversampling SKIP

MLP 3115A2 Oversample x4

Body Temperature Sensor MLX90632 Emissivity 0.987

Room Temperature 25
𝑜𝐶

Fig. 11. Variations in the SD of White gaussian noise in the accelerometer sensor w.r.t. sampling rate

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 61. Publication date: June 2023.



SeRaNDiP - Leveraging Inherent Sensor Random Noise for Differential Privacy Preservation in Wearable Community Sensing... • 61:17

Fig. 12. Variations in the SD of white gaussian noise in the barometer and temperature sensor w.r.t. sampling rate

Fig. 13. SD of the inherent sensor noise required per user for the accelerometer sensor based on the number of participants
and classifier’s input size

4.3 Inherent Sensor Noise Meets Differential Privacy Requirement (Q3)
Finally, we empirically show that the inherent sensor random noise is sufficient for satisfying differential privacy

guarantees required for a community sensing program. Based on Equations 7 and 8, Figure 13 shows the

minimum SD of inherent white gaussian noise (when 𝜖 = 1) from the accelerometer sensor of each user for

different population sizes. The SD of inherent white gaussian noise required from each user varies inversely with

the number of participants. As explained in Section 3.3, the number of consecutive sensor data samples required

by the community sensing server is a critical bottleneck in providing the desired amount of inherent sensor noise

from each user. From Figure 13, the SD of inherent sensor noise required from each user is directly proportional

to the number of consecutive data samples.

Prior works [53] have shown that accelerometer-based activity classification can be done with >90% accu-

racy with just 4 seconds of data sampled at 5Hz. From Figure 11, we find that both MPU-9250 and ADXL345

accelerometers’ sensor data have the highest amount of inherent sensor noise when the sampling rate was 3.13

Hz. Therefore, we configure the accelerometer to the lowest sampling rate of 3.13 Hz, a sensing range of ±2g,
and a 460Hz low pass filter cut-off frequency. If fewer number of consecutive sensor data samples are used as
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input to the classifier at the community sensing server, it reduces the amount of inherent sensor noise required

from each user. Hence, we input 1 second of consecutive data samples (3 samples for a 3.13Hz sampling rate) to

the classifier at the community sensing server. As explained earlier in Section 4.1, we considered standing as a

stationary setting and obtained the best inherent noise-producing sensor hardware configuration empirically

from the user’s stationary accelerometer data. From the data collected from 10 participants while standing, Acc X,

Acc Y, and Acc Z values had a white gaussian noise with average standard deviation values of 0.017 g, 0.007g, and

0.03g respectively. From Section 3.3, SeRaNDiP can provide differential privacy guarantees for community sensing

programs with a minimum of 4.7 million, 27.5 million, and 1.5 million participants for Acc X, Acc Y, and AccZ

data respectively. Thus, we can conclude that the community sensing program (which needs data from all three

accelerometer axes) must have at least 27.5 million participants to ensure a differential privacy guarantee with

SeRaNDiP. Similar to standing, we also observed the inherent white gaussian noise available in the accelerometer

sensor data for stationary activities like sitting, lying, etc. and observed that the SD of white gaussian noise was

around 0.002g. Therefore, when all the participants are completely stationary, SeRaNDiP will require at least

337 million participants to ensure differential privacy guarantees. Fortunately, as the accelerometer sensor’s

intent is for monitoring motion, stationary data is not as useful. In a practical activity detection application

with SeRaNDiP , phases with motion can be locally detected at the wearable, and inherent sensor noise is only

leveraged during these phases, while stationary phases send a predefined white gaussian noise.

Though a differential privacy guarantee of 𝜖=1 is the theoretical goal, most practical deployments of community

sensing programs utilize a lower differential privacy guarantee (𝜖) ranging between 2 to 34.9 as shown in Table 5.

From Corollary 3.4, we find that the SD of inherent sensor noise required from the user decreases with the

differential privacy guarantee (𝜖). For the MPU-9250 accelerometer sensor data sampled at 3.13Hz, the SD of

inherent sensor noise required from each user against differential privacy guarantee (𝜖) is shown in Figure 14. For

instance, if a community sensing program requires a less stringent 𝜖=16, we can guarantee DP for a minimum

population size of just 21.06 million participants as opposed to the minimum population size of 337 million

participants with the stricter privacy guarantee of 𝜖 = 1 (when all the participants are stationary). Similarly, when

all the participants are in standing poses (for instance, applications that focus on tracking exercise-related health),

the minimum population size for 𝜖 = 16 would be just 1.72 million participants as opposed to the minimum

population size of 27.5 million participants with 𝜖 = 1.

Table 5. Differential Privacy Guarantee(𝜖) Requirement in Existing Community Sensing Programs [7]

Data collector Real-world DP application 𝜖 value

Apple and Google Exposure Notification framework 8

Apple QuickType suggestions 16

Emoji suggestions 4

Lookup hints 8

Health Type Usage 2

Safari Energy Draining Domains 8

Safari Crashing Domains 8

Safari Autoplay Intent Detection 16

LinkedIn Labor Market Insights 28.8

Audience Engagements API 34.9

OhmConnect Energy Differential Privacy 4.72

United States Census Bureau Post-Secondary Employment Outcomes 3

2020 Census Redistricting Data 19.61
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Fig. 14. SD of the inherent sensor noise required per user for the MPU-9250 accelerometer sensor for providing different DP
guarantees(𝜖) w.r.t. a given population size.

Figure 15 shows the required SD of inherent sensor noise from each user’s barometer to ensure differential

privacy guarantee for different population sizes. We only need two consecutive samples to determine the pressure

difference in a barometer data. From Figure 12, the SD of inherent sensor noise (from BMP388 barometer

with 0.78Hz sampling rate, pressure oversampling x4, temperature oversampling OFF and from MLP3115A2

barometer with 0.125 Hz sampling rate, oversampling x4 settings) can satisfy differential privacy requirements for

a community size of at least 0.8 million participants. For a lower differential privacy guarantee (𝜖 = 16), SeRaNDiP
can offer differential privacy guarantee for a population size of just 50,000 participants with the barometer sensor.

Figure 15 plots the SD of inherent sensor noise required from a body temperature sensor (MLX90632) for

ensuring differential privacy guarantees in community fever sensing applications with different population

sizes. Since a body temperature greater than 37.5𝑜𝐶 is fever, we only require a single temperature value for

the classification. From Figure 12, we find that the highest amount of white gaussian noise (SD = 0.025
𝑜𝐶) was

observed when the temperature sensor was sampled at 0.5Hz. Thus, SeRaNDiP can guarantee differential privacy

guarantee for such a community fever sensing program with at least 3.64 million participants (see Figure 15).

With a higher 𝜖 =16, only 227.5K participants are required for the body temperature sensor.

For all three sensors studied, differential privacy requirements can be satisfied at a higher sampling frequency

when more participants take part in community sensing. We acknowledge that higher sampling rates provide

fine granularities in the sensor data. However, sensors operated at such high sampling rates also contribute to

the power consumption of the wearable device. Our experiments indicate that the choice of sampling rate needs

to appropriately consider privacy in the face of data utility and battery life.
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Fig. 15. SD of the inherent sensor noise required per user for the barometer and body temperature sensor based on the
number of participants and classifier’s input size

5 SYSTEM DESIGN
Based on our observations from Section 3.3, we propose a low-power and low-compute SeRaNDiP framework for

providing differential privacy guarantees in wearable community sensing applications. SeRaNDiP has three main

stages - Hardware configuration, Real-time data streaming and Inherent sensor noise update.
Hardware configuration parameters of the sensor and the corresponding SD of the inherent sensor noise for

each sensor are stored as tables in the external flash memory of wearables. For sensors like accelerometers, the

sensor output can be configured for multiple ranges (e.g. accelerometers can be configured to produce sensor

outputs in the range of ±g, ±2g, ±4g, ±8g, etc.). For sensors whose output range can be configured, the inherent

sensor noise also varies with the sensor range. For sensors with a configurable range, the hardware configuration

parameters of the sensor and the corresponding SD of inherent sensor noise for each range configuration will be

stored as sub-tables within the table allocated to the sensor. Hardware configuration parameters include (but not

limited to) - Low pass filter cut-off frequency, oversampling ratio, sampling rate, etc. The records in the hardware

configuration table for each sensor are sorted in ascending order of the SD of the inherent sensor noise. During

each session, the community sensing server estimates the minimum required SD of the inherent noise from each

user based on the number of participants, range of the sensor readings, etc. This minimum required SD is sent

to each user’s wearable device, which next runs the configuration step of SeRaNDiP to choose the appropriate

hardware configuration to produce the desired amount of inherent sensor noise.

5.1 Hardware Configuration Step
After receiving the differential privacy requirements from the community sensing server, the wearable device

chooses the appropriate configuration sub-table from flash memory w.r.t the sensor range requested by the

community sensing server. The exact hardware configuration that can produce sensor data with the requested

standard deviation of white gaussian noise is obtained from the configuration sub-table using Binary Search (BS)

algorithm. The sensors’ hardware registers are then configured for the chosen configuration and the chosen

sampling Rate (SR) is sent back to the community server as shown in Figure 16.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 61. Publication date: June 2023.



SeRaNDiP - Leveraging Inherent Sensor Random Noise for Differential Privacy Preservation in Wearable Community Sensing... • 61:21

Hardware configuration step Real-time data streaming step

Fig. 16. Hardware configuration and real-time data streaming steps in SeRaNDiP

5.2 Real-time Data Streaming Step
After configuring the sensor hardware to the chosen hardware configuration, wireless data streaming is done

from the wearable device to the community sensing server as shown in Figure 16. First, low pass filtering via

the in-built hardware digital filters present in the sensor is applied to the acquired sensor data and the filtered

data is stored in the hardware buffer of the sensor. As the sensor and the wearable processor are interfaced

over I2C/SPI, the sensor data from the hardware buffer are read by the processor once the hardware buffers are

full. At the processor, there are three main tasks - sensing, computation(encryption) and communication of the

sensor data happens. The sensing task reads the hardware buffer of the sensor and fills up an internal buffer

in the wearable processor, the computation task performs calculations like computing the normalized 3-axis

accelerometer values, AES encryption, etc., and the communication task buffers the AES encrypted processed

sensor data to send wirelessly to the server.

Since SeRaNDiP offers distributed differential privacy, encryption still has to be performed on the raw sensor

data at the wearable device to preserve user privacy [71, 82]. However, resource-constrained devices such as smart-

phones and wearables cannot run intensive cryptographic algorithms continuously. Therefore, wearables have

built-in low-power AES hardware accelerators to perform on-device encryption of the sensor data before sharing

it with the community sensing server. At the server, the encrypted data cannot be used directly for data analytics.

Homomorphic encryption is a well-known encryption scheme that allows servers to perform computations on

the user data in its encrypted format [88]. Thus, AES to homomorphic encryption conversion [17] happens at

the server. To perform homomorphic encryption, AES-ciphertexts (AES encrypted sensor data) are received

from each participant and converted to the corresponding homomorphic ciphertexts (homomorphic encrypted

sensor data) through an open-source AES-to-homomorphic conversion library [41]. Then, the homomorphic

ciphertexts from all the participants are added together to obtain an aggregated homomorphic ciphertext. The

server distributes the AES encryption keys to all the participants when they sign up for the community sensing

program through a secure channel. The server also stores the corresponding decryption key for decrypting the

aggregated homomorphic ciphertext. Using the decryption key, the server decrypts the aggregated homomorphic

ciphertext to obtain aggregated(summed) sensor data from all the participants. As the number of participants

per session varies and classifiers are trained on different population sizes, the average of aggregated sensor data

is fed to ML/DL classifiers in the server. Since the aggregated(summed) sensor data from all the participants

preserve privacy and the average of the aggregated sensor data is a statistic derived from the aggregated sensor

data, the same level of differential privacy is guaranteed [93].
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5.3 Inherent Sensor Noise Update Step
Hardware configuration tables on the wearables are updated locally and the Algorithm 1 updates the hardware

configuration table for a specific hardware configuration X. We first configure the sensor hardware to X configu-

ration and collect sensor data with the specified sample size of L samples, while the wearable device remains

stationary. The collected sensor data[1:L], X configuration and the sample size of the sub-data (a samples) are

input to the classifier algorithm running on the community sensing server. From our experiments, L=16,000 and
a=800 values work very well with our algorithm. Standard deviation of inherent sensor noise (σ) is calculated from

the sensor data using AD algorithm for each sub-data and the average standard deviation σaverage is obtained for

hardware configuration X. The main intuition behind dividing the collected sensor data to a few sub-data items of

equal length (a) is to apply AD algorithm multiple times and obtain a fair SD value for the inherent sensor noise

(σ) for the hardware configuration X. If the existing standard deviation (σcurrent) in the hardware configuration

table significantly differs (for example, ∆ > 0.0001 for accelerometer) from newly calculated σaverage, SeRaNDiP
updates the related hardware configuration sub-table with σaverage. Otherwise, σcurrent remains unchanged in the

hardware configuration sub-table.

Algorithm 1: Pseudo Code for Updating X Configuration in Configuration Table

Data: X configuration, Dataset[1:L] , a (size of Sub-dataset)

Result: Update σ of X configuration (σ_X)

1 N= L/a ;

2 σtotal=0; Initialize Buffer[1:N] to Empty

3 for (i=1; i < N; i++) do
4 Sub-dataset [:] = Dataset [(i-1)*a+1: i*a ]

5 Apply AV algorithm on Sub-dataset and obtain σi of white gaussian noise available

6 Store at Buffer[i]

7 for (i=1; i < N; i++) do
8 σtotal= σtotal + Buffer[i]

9 σaverage = σtotal/(N-1)

10 if abs(σaverage - σcurrent) > then
11 σ_X = σaverage

12 σaverage =0

13 Buffer[1:N]=null

14 else
15 σ_X = σcurrent

16 σaverage =0

17 Buffer[1:N]=null

6 RESULTS AND EVALUATION
In this section, we evaluate results in terms of accuracy, energy consumption, and latency of SeRaNDiP in

comparison with several baselines. We collected in-field sensor data for this evaluation using the same four

prototypes and Android app mentioned in Section 4.1. We implemented baselines with sensor parameters

mentioned in Table 3 and SeRaNDiP with sensor parameters listed in Table 4 (3.13Hz, 0.78Hz and 0.125 Hz were

the sampling rates of the accelerometer(both), BMP 388 barometer and MLP 3115A2 barometer respectively).
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The following baselines were implemented on the ESP32 microcontroller in our prototypes - (a) State-of-the-art

Distributed Differential Privacy (DDP) [33] implementation (For details, please refer to section 1), (b) Local

Differential Privacy (LDP) implementation [77] and (c) Gamma-distributed noise generation based Distributed

Differential Privacy (DDP) implementation [14]. For the rest of the paper, we will refer to the baselines (a), (b),

and (c) as DDP-BL, LDP-BL, and G-DDP-BL respectively. The details of baselines (b) and (c) are explained below -

(b) Local Differential Privacy implementation [77] (LDP-BL) - Unlike a DDP setting, LDP is more relaxed

and the users only send completely anonymized noisy sensor data to the community sensing server. Therefore,

each wearable device involved in LDP has to generate enormous amount of noise to anonymize the sensor data

before sending it to the community sensing server. This in turn leads to higher runtime and energy overheads

at the user’s wearable device. The overview of our baseline LDP implementation is shown in Figure 17(a). In

LDP, Laplace distributed noise is added since it provides a stronger privacy guarantee (𝜖-DP) than the gaussian

distributed noise ((𝜖 ,𝛿)-DP) [33]. The wearable device generates a Laplace-distributed noise and adds it to the raw

sensor data. Since a relatively higher amount of noise is added to the raw sensor data for complete anonymization,

the anonymized sensor data does not need to be encrypted prior to sending to the community sensing server.

The configuration parameters of the LDP implementation are summarized in Table 6.

(c) Gamma-distributed noise generation based DDP implementation [14] (G-DDP-BL) - In [14], the

authors used a gamma-distributed random noise generation technique to perturb the raw sensor data followed

by a modulo addition based encryption technique. Unlike DDP-BL where gaussian random noise generation

was employed, gamma noise generation requires relatively higher computation. Table 7 outlines the various

parameters used in our implementation. The higher privacy guarantee provided by Laplace noise generated using

gamma distribution [51] and the computationally-efficient XOR operation-based homomorphic encryption [23]

makes it an attractive alternative to DDP-BL.

Fig. 17. Overview of - (a) Local differential Privacy implementation and (b) Gamma-distributed noise generation based DDP
implementation

6.1 Accuracy Evaluation
In this subsection, we discuss our user study (conducted in accordance with our university’s IRB) in detail, along

with the accuracy metrics on collected data from 10 college students.

6.1.1 Data Collection Protocol: Each participant had a prototype in their left leg pocket with the accelerometers’

Y axis pointed downwards while standing. The four prototypes’ available sensors are configured to SeRaNDiP
settings and an Android phone installed with data logging controlling app was given to each participant to control

data logging activity for the duration of data collection. Hence, this user trial generates 5 user data sets for each

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 61. Publication date: June 2023.



61:24 • Kalupahana et al.

Table 6. Configuration Parameters of the Local Differential Privacy (LDP-BL) implementation [77]

Parameter Value

Noise Generation Mechanism Laplace Distribution

(L(𝜇,b))

Mean(𝜇) 0

Scale (b) 17888.5mg (for accelerometer)

990Pa (for barometer)

Table 7. Configuration parameters of the Gamma-distributed noise based Distributed Differential Privacy (G-DDP-BL)
implementation [14]

Phase Parameter Value

Data Sanitization Noise Generation Mechanism Difference of two random values independently

drawn from same Gamma Distribution

(𝐺1(N,𝜆)-𝐺2(N,𝜆))

Number of participants in a cluster(N) 27, 500, 000 (for accelerometer)

800,000 (for barometer)

Number of clusters 1

Scale of Gamma Distribution (𝜆) 17888.5 mg (for accelerometer)

990Pa (for barometer)

Data Encryption Pseudo-Random Function(PRF) XOR

Key Stream(𝐾𝑖 ’) Random number between 0 and 10,000,000

Pairwise Key(𝐾𝑖, 𝑗 ) 6-digit number generated at initialization

Slot key(𝑟𝑘 ) 6-digit number generated by community sensing server for each slot

sensor model. Data were collected while the participants performing the following activities: sitting, standing,

walking, jogging and climbing up stairs for 5 minutes each at different locations of the university premises for

accelerometer-based physical activity classification. Stairs up (both indoors and outdoors), stairs down (both

indoors and outdoors), elevator up, elevator down, escalator up and escalator down data for 5 minutes each

were also collected at different locations in university for barometer-based vertical transport mode detection

application.

6.1.2 Impact of SeRaNDiP on User-level Accuracy. Since SeRaNDiP changes the sensor configurations in wearables

to generate the required noise for differential privacy, there is a possibility that application accuracy may

be adversely affected. We thus investigated this with the physical activity classification application for the

accelerometer sensor and vertical activity mode classification application for the barometer sensor. The physical

activity classification application uses the 2D CNN model based open source single accelerometer based activity

classifier [47] where input is raw accelerometer data along three axes. For the vertical transport mode detection,

we used the decision tree based classifier which classifies escalator, elevator and stair modes using the XgBoost

decision tree algorithm [66] where input is pressure difference. Table 8 details the settings used for both classifiers,

based on their published configurations.

First, classification accuracy based on 10-user SeRaNDiP data is compared with previously published accuracy

using 5-fold cross-validation. 86.4% accuracy was obtained for activity classification based on data sampled at a

3.13 Hz sampling rate from MPU-9250 and ADXL-345 accelerometers compared to 89.74% accuracy reported

by publishers for WISDM dataset based on cell-phone accelerometer data sampled at 20 Hz [47]. This 3.34%

accuracy reduction is due to the 6X lower sampling rate. Accuracy of pressure difference based vertical activity

classification was 67.2% and 81.25% for barometers: BMP388 sampled at 0.78Hz and MLP 3115A2 sampled at
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Table 8. Details of the neural network classifiers

Classifier Type Configurable Hyperparameter Value

Physical Activity Classifier 2D CNN Model[47] Size (width) of kernels used in the Conv Layers 2x2

Activation function for Conv Layers relu

Number of kernels in 1st Conv layer 16

Drop out rate after 1st Conv layer 0.1

Number of kernels in 2nd Conv layer 32

Units of first Dense Layer 64

Activation of first Dense Layer relu

Drop out rate after 2nd Conv layer 0.2

Units of second Dense Layer 6

Activation of second Dense Layer softmax

Optimizer adam

Learning Rate 0.001

Frame Size 6.4 seconds

Hop Size 4.8 seconds

Vertical Activity Classifier Xg Boost Max Depth 12

Sub Sample 0.33

Objective multi:softprob

n_estimators 1000

learning rate 0.001

num_classes 6

Frame Size 7.7 seconds

Hop Size 5.1 seconds

0.125Hz respectively. This is on par with the 69% accuracy obtained in prior work [66] for data sampled from

smartphone barometers at 15Hz and 25Hz rates in both indoors and outdoors spaces. The small 1.8% drop in

accuracy for BMP388 can be acceptable at the system level.

Since pre-trained classifiers installed in mobile phones were mostly trained using data not belonging to a

particular user, data from one participant was selected as test data, and data from the other 9 participants were

used as training data in the next evaluation. Both classifiers were applied 10 times while changing the test data

set with another participant’s data until all participant’s data were used as test data. We obtained 78% accuracy

on average for physical activity classification and 64.42% and 52% accuracy on average for BMP388 and MLP

3115A2 barometers respectively for vertical activity classification. As the sensors used for SeRaNDiP , DDP-BL,
LDP-BL, and G-DDP-BL implementations are configured to the same sampling rates, there is no difference in

their accuracy (see Table 9). Besides, these accuracies are close to the accuracy numbers of the WISDM user trials

which track the same activities (at a higher sensor sampling rate) [56].

6.1.3 Impact on Server-level Accuracy due to the Configuration Changes. Next, we evaluate the accuracy at the

server, with classifiers applied on aggregated data averages to predict the most popular activity for the community

in DDP community sensing applications.

We evaluated the accuracy of the community sensing server for four different implementations - (1) SeRaNDiP,
(2) DDP-BL, (3) LDP-BL and (4) G-DDP-BL using both accelerometers sampled at 3.13 Hz, BMP 388 barometer

sampled at 0.78Hz and MLP 311512A2 barometer sampled at 0.125Hz. The aggregated data is averaged across

10 users, with the most popular activity among users selected. Given our limited user sample, these results just

serve to illustrate server-side functionality. For each user, the first data point was selected randomly, and the

average is computed across consecutive 85 samples (i.e. the number of floats that fit within the BLE buffer size

(see Table 2)). The process was repeated until the creation of an average aggregated data set with 0.85 million

data points (The number of data points is set sufficiently high for higher instances). In LDP-BL, the standard
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Table 9. Classification Accuracy for Prototypes - Baselines Vs SeRaNDiP

Classifier Model Accuracy

Physical Activity Classification MPU 9250 Accelerometer (SeRaNDiP) 84%

MPU 9250 Accelerometer (DDP-BL [33]) 84%

MPU 9250 Accelerometer (LDP-BL [77]) 84%

MPU 9250 Accelerometer (G-DDP-BL [14]) 84%

ADXL 345 Accelerometer (SeRaNDiP) 72%

ADXL 345 Accelerometer (DDP-BL [33]) 72%

ADXL 345 Accelerometer (LDP-BL [77]) 72%

ADXL 345 Accelerometer (G-DDP-BL [14]) 72%

Vertical Activity Classification BMP 388 Barometer (SeRaNDiP) 64.42%

BMP 388 Barometer (DDP-BL [33]) 64.42%

BMP 388 Barometer (LDP-BL [77]) 64.42%

BMP 388 Barometer (G-DDP-BL [14]) 64.42%

MLP3115A2 Barometer (SeRaNDiP) 52%

MLP3115A2 Barometer (DDP-BL [33]) 52%

MLP3115A2 Barometer (LDP-BL [77]) 52%

MLP3115A2 Barometer (G-DDP-BL [14]) 52%

deviation value of the inherent sensor noise is required by the community sensing server to effectively denoise

the perturbed/anonymized sensor data received. For each sensor, we obtain the standard deviation values through

the noise estimates available from their datasheets. Using the noise estimates, the community sensing server

denoises the anonymized sensor data obtained from 10 users and builds up a denoised aggregated data set that

serves as the best approximation of the data from 10 users. SeRaNDiP and the three baselines were evaluated

using the sensor data obtained from the 10 users in our study.

In all the baseline implementations, noise perturbation occurs at the user’s wearable device. During the noise

perturbation procedure, the sensor data was perturbed with white gaussian noise traces in DDP-BL, with Laplace

noise traces in LDP-BL and with gamma-distributed noise traces in G-DDP-BL. The perturbed data is encrypted

(excluding LDP-BL) and sent to the community sensing server. At the community sensing server, the received

data from 10 users are aggregated and averaged. In SeRaNDiP’s implementation, the white gaussian noise traces

are added to the raw sensor data while the user is in a stationary position(e.g. sitting) - since SeRaNDiP is applied

only on non-sedentary activities. For each of the implementations, noise traces were generated from the ESP32

device based on the differential privacy requirements.

At the community sensing server, SeRaNDiP utilizes an input frame size of 1 second (3 samples) and a hop

size of 0.63 seconds for the accelerometer sensor data sampled at 3.13Hz. Based on Table 10 which summarizes

accuracies on the accelerometer data, SeRaNDiP provides on par accuracy compared to the other baselines (1.66%

higher than DDP-BL, 24.35% higher than LDP-BL and 0.67% higher than G-DDP-BL). The slight increase in

accuracy against baselines reflects that the inherent sensor noise being used in SeRaNDiP results in less noisy

sensor data than the baselines which perturb the data with externally generated noise. With the barometer sensor

data, SeRaNDiP achieves 8.34% higher accuracy than DDP-BL, 9.03% higher accuracy than LDP-BL, and 8.56%

higher accuracy than G-DDP-BL [14] (See Table 11). In a practical deployment of SeRaNDiP , we will require
millions of participants at the server to deliver DDP guarantees - so that the inherent privacy noise can be

averaged out from the high number of participants and thereby help the server-side system’s accuracy to improve

further.

In short, SeRaNDiP does not compromise the accuracy of the server application compared to the state-of-the-art.
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Table 10. Server side Classification Accuracy for Accelerometer Data - SeRaNDiP Vs Baselines (Sample Rate = 3.13 Hz, LPF
cut-off = 460Hz, Range =+/-2g)

Frame Size, SeRaNDiP DDP-BL LDP-BL G-DDP-BL

1s, 0.63s 49.96% 48.39% 25.61% 49.29%

(SD of perturbed noise) (SD of perturbed noise: 0.007g) Perturbed noise from (Perturbed noise from

for sitting data:0.007g Laplace(0,6.928g) G1(27.5M,6.928g)) - G2(27.5M,6.928g)))

Table 11. Server side Classification Accuracy for Barometer Data - SeRaNDiP Vs Baselines (Sensor Sampling Rate = 0.78 Hz
and 0.125 Hz,Oversampling = x4, IIR filter =OFF, COMM Rate =1Hz)

Frame Size, SeRaNDiP DDP-BL LDP-BL G-DDP-BL

1s,0s 25.59% 17.22% 16.56% 17.03%
(SD of perturbed noise: 5.916Pa) Perturbed noise from (Perturbed noise from G1(0.8M

Laplace(0,990Pa) ,990Pa)-G2(0.8M,990Pa))

6.2 Latency Evaluation
In this subsection, we extend the latency evaluations that we conducted in section 2.5 to dynamic settings across

five users for SeRaNDiP . Figure 18 summarizes the average latency per data sample by accelerometer sensor-based

data acquisition systems. Since the type of activity does not affect to internal hardware and software task pipeline

of the sensor-based wearable system, the latency does not change significantly across the different dynamic

activities as shown in Figure 18 when the same hardware sensor is used. Since hardware latency is caused by

sensing changes with the sensor hardware change, different sensor systems provide different latency values even

for the same activities done by the same person. As SeRaNDiP sends 85 data samples once from the prototypes

and it takes around 1 minute and 25 seconds to fill up buffers with that data with a 1Hz sampling rate, we cannot

explicitly measure latency and energy taken by vertical activities: elevator up/down and escalator up/down which

normally take less than 1 minute to complete in one turn. So, we limit latency and energy measurements to the

static setting for barometers.

From Figure 19, we see that the latency per sensor data sample achieved by SeRaNDiP is consistently lower

when compared to baselines. In summary, our experiments with both the accelerometer sensors show that

SeRaNDiP is 1.4 X, 1.3X and 1401X-1596X faster than DDP-BL, LDP-BL and G-DDP-BL respectively. Evaluations

with both the barometer sensors also shows that SeRaNDiP is 1.4X-1.8X, 1.4X-1.7X and 1082X-3334X times

faster than DDP-BL, LDP-BL and G-DDP-BL respectively. Since encryption is not required in LDP-BL, LDP-BL

results in the lowest latency compared to other baselines. However, the latency from noise generation is much

higher compared to encryption (see Figure 4) and thus, SeRaNDiP still achieves the fastest latency. Though

G-DDP-BL [14] utilizes a modulo addition-based encryption scheme as an alternative to a compute-intensive

homomorphic encryption scheme, the use of complex operations such as pseudo-random function (PRF) in

homomorphic encryption results in higher compute latency. As the baselines and SeRaNDiP implementation

need to access the hardware buffer thrice in the MLP3115A2 sensor, this led to the highest latency. SeRaNDiP’s
latency savings are critical for future wearables since most wearable applications are real-time and interactive.

6.3 Energy Evaluation
In this subsection, we used FNIRSI FNB48 USB Meter Tester to measure energy consumption while doing physical

and vertical activities (dynamic setting). Accuracy was cross-checked with the Monsoon power monitor and the

absolute difference in measurement was 0.009 mAh per 1 mAh energy consumption.

As our prototypes are powered by a power bank with 5V output voltage, we placed FNB48 in between the power

bank and prototype. To measure ESP32’s hardware energy requirement without SeRaNDiP , we first configured
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ESP32’s CPU frequency to 80MHz and ran a script of idle loop for 5 minutes. Based on our experiment, the base

platform ESP32 took around 4mAh for 5 minutes of active mode non-functional operation. Hence we deducted

this amount from our measurements for 5 minutes of operation of SeRaNDiP and baseline implementations on

ESP32-based wearable configured to 80Hz CPU frequency.

One participant wore the prototype in the left leg pocket and did physical and vertical activities for 5 minutes.

Figure 18 summarizes the average energy consumption per data sample by accelerometer sensor-based data

acquisition systems while one participant is doing physical activities per each sensor. Energy consumption per

data sample varies around 0.96 uAh and it does not change significantly across different dynamic activities

with the same hardware sensor model. This is expected because each reading of the sensor activates the sensor

hardware which incurs a fixed energy consumption.

Fig. 18. Latency and energy consumption per accelerometer sensor data sample by SeRaNDiP at dynamic setting

Based on Figure 19, energy consumption per sensor data sample by SeRaNDiP is 1.4X-1.5X, 1.2X and 10.2X-11.2X

lower for both accelerometer sensors compared to DDP-BL, LDP-BL, and G-DDP-BL respectively. Similarly,

SeRaNDiP is 1.2X, 1.2X-1.8X and 7.4X-10.7X lower for both barometer sensors compared to DDP-BL, LDP-BL,

and G-DDP-BL respectively. SeRaNDiP’s low energy consumption can be attributed to the elimination of the

compute-intensive random noise generation procedure.

6.4 Is the Inherent Sensor Noise Affected by Environmental Temperature Variations?
Since people live under different weather conditions, wearable devices also operate in varied environmental

temperatures. The thermal noise in sensors is white gaussian [29] and arises from the vibration of charge carriers

within the sensor. The thermal noise’s power density is directly proportional to the temperature [1] and thus, the

standard deviation of thermal noise is proportional to
√
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐾𝑒𝑙𝑣𝑖𝑛 [11]. Depending on the environmental

conditions, the SD of the noise produced in sensors would be 0.072X lower at -12
𝑜𝐶 compared to 30

𝑜𝐶 . Thus,

variations in environmental temperature have only a negligible impact on the total noise generated by the sensors.

In SeRANDiP, we can also build configuration tables taking into account the SD of the inherent sensor noise

under the lowest environment temperature in which humans can survive (when the amount of thermal noise

generated is the lowest). By doing so, SeRaNDiP can provide privacy guarantees for higher temperatures.

To validate our hypothesis, we conducted controlled experiments to study the effect of temperature on the SD

of white gaussian noise produced by both accelerometer and barometer sensors. For this experiment, we used the
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Fig. 19. Latency and energy consumption per sensor data sample by SeRaNDiP vs baselines

same 4 device prototypes used in our earlier experiments (see Figure 8). The configuration parameters of the

sensors are outlined in Table 3. In addition to the prototypes, we also collected accelerometer sensor data at 25Hz

from a Fitbit Sense smartwatch to study the effect of environmental temperature on commercial wearables where

the sensors are securely packaged to remain unaffected by variations in environmental temperature.

6.4.1 Experimental Setup: We left our prototypes and the Fitbit Sense stationary on a flat table in an air-

conditioned room with adjustable temperatures(between 16
𝑜𝐶 to 30

𝑜𝐶) and collected data from each sensor for 2

minutes under four different temperatures: 16
𝑜𝐶 , 21𝑜𝐶 , 25𝑜𝐶 and 30

𝑜𝐶 . After configuring the air conditioner to a

given temperature, we waited 15 minutes for the room to be cooled to the set temperature value. To study the

effect of much lower temperatures on the sensor noise, a refrigerator was used. Since the motor in the refrigerator

induces motion signals in the accelerometer sensor, the refrigerator was switched on for 30 minutes and switched

off during the 2 minutes of data logging. With the refrigerator, we collected sensor readings under two different

temperatures of 3
𝑜𝐶 in the normal compartment and -12

𝑜𝐶 in the freezer compartment. Before each measurement,

the temperature was verified using a Xiaomi Mi Temperature and Humidity monitor.

6.4.2 Results: As shown in Figure 20, the SD of the gaussian noise produced by both the accelerometers do

not change significantly with respect to temperature variations. Similarly, from Figure 21, we see that both the

barometers’ gaussian noise only change negligibly with respect to temperature variations. In addition, the same
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trend is also observed in the sensor data collected from the FitBit Sense smartwatch (see Figure 22). The results

validate the robustness of SeRaNDiP to temperature variations in the environment.

Fig. 20. SD of white noise of accelerometer sensors (sampled at 25 Hz) under different environment temperature conditions

Fig. 21. SD of white noise of barometer sensors (BMP388 sampled at 0.78Hz and MLP 3115A2 at 1Hz) under different
environment temperature conditions

7 DISCUSSION
In this section, we discuss how SeRaNDiP works with other wearable sensors, platforms, settings and differential

privacy techniques.

7.1 Other Wearable Sensors
Here, we explore the possibility of expanding our solution to other wearable sensors like PhotoPlethysmoGram

(PPG) sensor, microphone, ambient light sensor, Global Positioning System (GPS) sensor, magnetometer and

gyroscope.
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Fig. 22. SD of white noise of Fitbit accelerometer sensor (sampled at 25Hz) under different environment temperature
conditions

7.1.1 PPG sensor: Though we sent raw sensor data to a server in our work, some DDP-based community sensing

programs need features derived from raw sensors instead. For example, PPG-based derived features of heart rate,

SpO2, and blood pressure are typically fed to community sensing programs from users [50]. Since PPG signals are

substantially affected by human movements, PPG de-noising frameworks like TROIKA uses users’ accelerometer

signal to de-noise PPG signal to compute features [92]. Hence, controlling an accelerometer’s parameters can

introduce different amounts of noise to the heart rate, SpO2, and other derived features sent to the server with

DDP. In relation to SeRaNDiP, it is required to build up a configuration table for the accelerometer concerning

noise resulting in PPG-based features. Since motion artifacts are deducted from PPG signal, accelerometer noise

and PPG noise shares a reciprocal relationship. Hence selecting an accelerometer setting that adds less amount of

noise to the accelerometer signal increases the chance of a higher level of privacy for PPG-based features.

7.1.2 Microphone: According to Shamsabadi et al., though speaker anonymization is done on audio to remove

voice print, it still needs to add DP to linguistic and prosodic attributes, since they still contain speaker informa-

tion [81]. Though the Gaussian inherent noise is not so prominent in microphones, ambient noise in dB scale

follows Gaussian distribution [70]. Hence we need to explore whether the white Gaussian noise component in

ambient noise in air is sufficient to satisfy the DP noise requirement of linguistic and prosodic attributes for

use in community sensing programs. Depending on the level of complexity, the microphone offers a variety of

configurable options. For example, Microsemi ZL38063 audio processor [63] in Microsemi Development Kit for

Amazon AVS [18] has settings such as gain, level tuning, and sampling frequency and Tizen OS used in Samsung

smart watches for controlling microphone settings such as sampling rate (8kHz -48kHz), channel type (mono or

stereo) and type of sample (8 or 16 bit) [74]. Further, simple off-the-shelf microphone modules [16] allow the

configuration of just the clock signal. Hence, we see SeRaNDiP as being readily applicable to microphone-based

community sensing applications like crowd sensing.

7.1.3 Ambient light sensor: According to our knowledge, there has not been literature regarding the inherent

noise profile of the ambient light sensor. According to Hua et al., there is a significant white gaussian noise

component associated with Visual Light Communication(VLC) [43] and hardware components used in VLC and

ambient light sensor system are similar. So there is a possibility of having gaussian noise associated with ambient

light sensor systems. Ambient light sensors also have a set of configurable settings such as amplifier gain and

conversion time. Hence, there is a potential of applying our solution on ambient light sensor for community

sensing program like determining UV light exposure.
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7.1.4 GPS: . According to Niu et al., inherent noise in GPS sensors has a significant white Gaussian noise

component [69]. Further, since GPS sensor has settings like sampling rate which can be configurable, SeRaNDiP is

applicable for GPS sensors. But given the high power and timing overheads of the GPS sensor [67], the potential

compute savings offered by SeRaNDiP may not be significant.

7.1.5 Magnetometer and gyroscope: Since the magnetometer and gyroscope have significant white Gaussian

noise components in their inherent noise [30, 68] and the sensors have settings that are configurable [2], SeRaNDiP
can be directly applied.

7.2 Applicability to Commercial Smartwatches
Since ESP32 achieves ultra-low power consumption through power-saving features including fine-resolution

clock gating, multiple power modes and dynamic power scaling, it is widely used as a wearable development

platform [25]. Hence we conducted our experiments on the ESP-32 development board. We also explored the

possibility of expanding our solution to other wearable platforms like Fitbit and Samsung smartwatch. We

obtained readings while placing the device on table. SD produced by accelerometer sensor in Fitbit Sense fitness

tracker and Samsung Galaxy smartwatch decreases when sampling rate is increased, just like ESP32, as shown in

Figure 23. This shows that SeRaNDiP can work readily on other wearable platforms.

Fig. 23. Variations in the SD of white gaussian noise in the accelerometer sensor of Fitbit Sense and Samsung Galaxy
smartwatch w.r.t. sampling rate

7.3 Applicability of Findings from SeRaNDiP’s Limited User Trials to Large Population Sizes
While we showed earlier (Section 4.3) that differential privacy theory enables the derivation of the number of

users necessary for ensuring differential privacy guarantees based on our experimentally measured sensor noise,

our actual user trials are clearly limited in scale. Unfortunately, there are no large datasets of raw sensor data

that we can leverage: The WISDM Lab data set involves 36 users [56], the MHEALTH Dataset data set tracked 10

users [22], the PhysioNet’s labeled raw accelerometry data captured during walking, stair climbing and driving

monitored 32 users [48], the PhysioNet’s in-hospital physical activity has 58 users [76] and the LTMM database

has 71 users [44].

We thus attempt to explore the practicality of SeRaNDiP’s scalability to a large population size through

simulations with Matlab Simulink’s MPU-9250 and ADXL345 accelerometer models. The accelerometer models

produce x, y, z axis readings based on the configured parameter values obtain from their respective datasheets at

25
𝑜𝐶 operating temperature. We simulated a population size of up to 100 million users, generating 16000 samples

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 61. Publication date: June 2023.



SeRaNDiP - Leveraging Inherent Sensor Random Noise for Differential Privacy Preservation in Wearable Community Sensing... • 61:33

Fig. 24. Variations in the SD of white Gaussian noise in the Matlab modeled MPU-9250 accelerometer (sampled at 3.13 Hz,
+/- 2g range) along sensor axes w.r.t. no. of users at environment temperature 25

𝑜𝐶

Fig. 25. Variations in the SD of white Gaussian noise in the Matlab modeled ADXL-345 accelerometer (sampled at 3.13 Hz,
+/- 2g range) along sensor axes w.r.t. no. of users at environment temperature 25

𝑜𝐶
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of data for both accelerometers using sensor configuration choices such as measurement range, resolution,

temperature bias, bias instability, noise density etc. for each user.

The simulations show that the average SD of the inherent noise produced from randomly chosen population

sizes of both accelerometers does not change significantly under different population sizes (see Figures 24 and 25).

This implies that SeRaNDiP’s experimental characterization of the inherent noise of accelerometers on a small

subset of 10 users can be used to populate the configuration tables apriori, before launching the app for large

scale deployment.

8 CONCLUSION
In this paper, we presented SeRaNDiP , a framework that considers inherent sensor random noise for differential

privacy preservation in wearable community sensing applications. It leverages sensors’ inherent noise by changing

sensor configurations at the software level without any hardware modifications. Extensive experimental results

demonstrate SeRaNDiP’s ability to provide differential privacy to a variety of wearable sensors in different

wearable platforms while delivering energy and latency savings. Hence SeRaNDiP can be readily applied to

today’s wearables, smartwatches and smartphones. We plan to release an open-source SeRaNDiP framework for

ESP32 as a development framework for privacy-preserving community sensing applications.
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