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which SNOBOL4 patterns are compiled into Algol 
functions, which can be combined into larger (more 
complicated) patterns, and which are directly executed. 
It was developed as part of the implementation of 
"Snobal /67" [1], a Burroughs B6700 compiler for a 
SNOBOL4-1ike language. 

The algorithms presented below were developed in 
Burroughs B6700 Extended Algol, but are described 
here in Pascal [6, 7], since this is probably a more 
widely known language. The version of Pascal used 
has two extensions: record-valued functions, and the 
ability to declare varying length arrays. The algorithms 
are by no means complete; for example, they do not 
include any attempt to avoid futile searching for a 
match [3]. 
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1. Introduction 

When a string appears as the subject of a SNO- 
BOL4 statement [5], it may be scanned to see whether 
or not it contains a specified pattern.  The position 
reached in the subject string during such pattern match- 
ing is called the cursor position. Any pattern P may be 
matched against a subject string S at a given cursor 
position c. If the match succeeds the cursor will move to 
a new position. Gimpel [3] formalized P as a function 

e ( s ,  c) = c' .  

Since P may have implicit alternatives (i.e. contain 
several component  patterns in an order of preference),  
c '  is an ordered sequence of cursor positions. 

In the usual implementations of SNOBOL4 [2-4] a 
pattern is compiled into a graph, whose nodes are 
patterns and whose edges indicate the order in which 
the nodes must be matched. A "scanner"  procedure is 
then called to thread a path through the graph, match- 
ing the pattern.  This implementation is straightfor- 
ward, and has the advantage that patterns can be dy- 
namic, i.e. modified after being compiled. However ,  
since the scanner is fundamentally an interpreter (using 
pattern graphs as its input code), pattern matching 
appears to be a time-consuming process. 

This paper describes an alternative approach in 
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2. Pattern Functions 

Figure 1 gives the global declarations required for 
pattern matching. First we declare the type string to 
describe SNOBOL4 strings. A string is a record with 
two components - length  is the number of characters in 
the string, and body is an array containing them. If a 
string is non-null, length is positive and body[l]  con- 
tains its first character. String subject is assumed to be 
the subject string, in which we will at tempt to match 
patterns. 

Next we declare type state, a record containing all 
the variables which will be needed by pattern functions 
(see below). For temporary storage of state variables a 
push-down stack is provided by array patternstack, inte- 
ger psp (which stores the location of the last variable 
entered),  procedures push, pop, cut, and function top- 
o fstac k. 

A pattern function F requires at least one state. 
parameter  s, and returns an updated version of this 
state. When F is first invoked, s.cursor gives the posi- 
tion in subject at which F is to start matching, and 
s.succeed is false. If the function does not match, 
F.succeed is set false; otherwise F.succeed is true, and 
F.cursor indicates the starting cursor position for the 
next pattern component.  

Every pattern function which succeeds may be 
called again to test for its next implicit alternative. In 
this case it expects as its input state the state it last 
returned. Hence the state variable can be used to store 
information between alternatives. Should a pattern 
function need to store more information between alter- 
natives than can be kept in one state variable, it may 
push state variables into patternstack. Such a function 
will expect the stack to be unchanged when it is called 
for its next alternative, hence any pattern function 
which fails must remove any items it has stored in 
patternstack . 

As an example of a pattern function, Figure 2 shows 
len, which implements LEN (the SNOBOL4 primitive 
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Fig.  1. G l o b a l  d e c l a r a t i o n s  f o r  p a t t e r n  m a t c h i n g .  

type  string = record 
length : integer; 
body : a r r a y  [0 . . length] of  char; 
end; 

state = record 
succeed : Boolean; 
cursor, alternative : integer; 
end; 

var subject : string; 
patternstack : a r r a y  [integer] of state; 
psp : integer; 

procedure push(p : state); 
begin psp := p s p + l ;  patternstack [psp] := p ;  end; 

procedure cut; 
be~upsp  := p s p - 1 ;  end; 

function topo~tack : state; 
begin topofstack := patternstack [psp]; end; 

procedure pop (va r  p : state); 
begin p :=  patternstack [psp]; psp : =  psp-1; end; 

Fig.  2.  S a m p l e  p a t t e r n  f u n c t i o n .  

function len(p : state, l : integer) : state; 
begin 

if ~ p.succeed then begin 
if subject.length - p.cursor + 1 >- 1 then begin 

len.succeed := true; 
len.cursor := p.cursor + l; 
end 

else len.succeed := false; 
end 

else len.succeed := false; 
end; 

Fig.  3.  C o n c a t e n a t i o n  o f  p a t t e r n  f u n c t i o n s  A a n d  B .  

(a)  S t r u c t u r e  o f  cat. 

Outer loop 
maintains " A  succeeds" 

Inner loop 
maintains " B  succeeds" 

Exit to containing 
pattern function. 

<~ Return for next 
alternative o f  B. 

(b)  P r o g r a m  fo r  cat. 

function cat(inp : state) : state; 
var p : state; 
begin 

p := inp ; 
if p.succeed then goto 5; 
repeat 

p := A ( p ) ;  
if p.succeed then begin 

push(p) ; 
p.succeed := false; 
5 : p  := B ( p ) ;  

ifp.succeed then goto 9; 
pop(p) ; 
end; 

unt i l  -7 p.succeed; 
9: cat := p ;  

end; 
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matching any string of N characters).  When len is first 
invoked p.succeed is false, so if sufficient characters 
remain in subject, len succeeds. If  len is invoked again, 
p brings back the last value oflen,  i .e .p .succeed is true. 
Since LEN has no implicit alternatives, len fails. 

3. Operations on Patterns 

Two of the most common operators  used in building 
up patterns are concatenation (e.g. A B means "match  
A, then B")  and alternation, (e.g. A I B means "match  
A, if A fails match B") .  

The structure of cat, an algorithm for concatenating 
pattern functions A and B is shown in Figure 3(a). Its 
outer loop repeats as long as A succeeds, i.e. it termi- 
nates When there are no further implicit alternatives for 
A.  The inner loop does the same for B. When both A 
and B have succeeded we have found one match for A 
B, so we exit from cat to continue with the function 
which called it. Should we need to retry cat we must 
return into the inner loop for B's next alternative. 

Figure 3(b) gives a program for cat. This uses a 
working state variable p for interacting with A and B. 
The outer  loop is a simple repeat  loop, which saves its 
current value of p in patternstack while executing the 
inner loop. Exit from the inner loop is implemented  by 
the statement "goto 9";  return into it by "goto 5".  The 
inner loop keeps its value of p between retries in the 
function value (as did len in Section 2). 

cat could be implemented as a function with proce- 
dures A and B as parameters  allowing us to handle 
patterns like A B C as (A B) C. Note,  however,  that 
A ' s  repeat  loop can be duplicated as many times as 
required, allowing us to create a cat-like function with 
any given number  of pattern arguments.  

Alternation is more difficult to handle, since every 
alternative of each pattern component  must be tried 
before moving on to the next component ,  alt, an algo- 
rithm for A I B is shown in Figure 4(a). This pat tern 
has two components .  The outer  loop tries them in turn, 
using its inner loop to test their implicit alternatives. 
When a successful alternative is found we exit f rom alt, 
making provision to continue the inner loop should we 
need to retry. 

The program for alt (Figure 4(b)) ,  is complicated by 
the fact that three items of information must be saved 
between retries. These are altnbr (the number  of the 
current pattern component) ,  newp (the state variable 
for the current implicit al ternative),  and p (the initial 
value of newp). When alt is first invoked inp.succeed is 
false, so we push inp ( a s p )  and set altnbr to zero. The 
outer  repeat  loop retrieves this initial p for each pattern 
component .  When the inner repeat  loop finds a match 
it pushes newp and exits ("goto 9") ,  storing altnbr in 
the function value. A retry recovers these values (as p 
and altnbr) before returning into the inner loop. When 
alt finally fails the initial p is cut from the stack. 

As with cat, an alt-like function can be created with 
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any given number  of pattern arguments.  
When a match is complete,  patternstack contains a 

history of the match. It is a simple matter  to put extra 
items in the stack for other purposes,  such as remem- 
bering which parts of the pattern were to be assigned to 
other strings following a successful match. Storing 
items in patternstack is similar in effect to "threading 
the beads"  of a S NOB OL4  bead diagram. As each 
pattern component  is matched ("bead is threaded")  
items are added to the stack. If a component  finally 
fails, its stack items are removed ("the needle is with- 
drawn") .  Failure to cut the stack back properly will 
ruin the pattern m a t c h i n g -  this corresponds to "cutting 
the thread."  

Pattern functions can be used in a re-entrant  man- 
n e r - f o r  example,  to implement  

D = '0' 1'1'  ; B  = D D D [ D.D ] D 

we would use alt for D and B, and cat for the first two 
components  of B. In Figures 3(b) and 4(b) the working 
variables (p, newp, altnbr) are local, but since they are 
all saved between retries they might usefully be global. 

Recursive use of the pattern functions described 
above is impossible for two reasons. First, they have no 
way of breaking recursive loops. To provide this we 
could include an integer depth in state, set depth equal 
to cursor when a function succeeds, and increment it by 
one when invoking further functions. Functions would 
then fail when depth exceeded subject.length. Second, 
recursive invocations may store an unknown number  of 
items in patternstack. To cope with this we would need 
to pass the stack height (value of psp) on entry to a 
function, probably as another  integer in state, so the 
function could restore the stack reliably when it failed. 

4. Conc lus ion  

This implementat ion of SNOBOL4 patterns is used 
in the SNOBOL4-1ike language "Snobal /67"  [1], 
which has an execution speed varying between 3 and 18 
times faster than our Burroughs B6700 implementat ion 
of SNOBOL4.  Unfortunately our S NOB OL 4  has no 
official support ,  so this performance may be suspect. 

As outlined above,  the overheads in implementing 
fully recursive patterns are high: for this reason Snobal/ 
67 does not allow them. To compensate  for this Snobal/ 
67 has ARBNX(P) ,  a pattern primitive which matches 
pattern P as many times as possible. A R B N X  is defined 
as  

ARBNX(P)  = *P PIP 

where  * is S N O B O L 4 ' s  "uneva luated  express ion" op- 
erator. 
The algorithms presented above are straightforward to 
use. Though they are described in a version of Pas- 
cal it is possible to implement them in almost any 
high-level language. This can be particularly useful in 
producing pattern-matching systems (like Snobal/67) 
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Fig. 4. Alternation of pattern functions A and B. 

(a) Structure of aB. 

Outer loop 
maintains "alternative components  available" 

Inner loop 
maintains "current component  succeeds" 

Exit to containing 
I> pattern function. 

<1 Return for next alternative 
o f  current component.  

(b) Program for alt. 

function alt(inp : state) : state; 
varp, newp : state; altnbr : integer; 
begin 

if ~ inp.succeed then begin 
p := inp ;push(p);  altnbr := O; 
end 

else begin 
pop(p);  altnbr := inp .alternative ; 
end; 

repeat 
repeat 

case altnbr of 
0 : newp := A(p); 
1 :newp := B(p); 

end; 
if newp.succeed then begin 

push(newp); 
newp.alternative := altnbr: 
goto 9; 
end; 

until ~ newp.succeed; 
altnbr := altnbr + 1 ;p := topofstack; 
until altnbr = 2; 
cut; 

9: alt := newp ; 
end; 

where the emphasis is on execution speed and simplic- 
ity of implementat ion,  rather than on providing the full 
generality of SNOBOL4.  
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