
Short Communications
Programming Languages

An Algol-Based
Implementation of SNOBOL4
Patterns

J. Nevil Brownlee
University of Auckland

which SNOBOL4 patterns are compiled into Algol
functions, which can be combined into larger (more
complicated) patterns, and which are directly executed.
It was developed as part of the implementation of
"Snobal /67" [1], a Burroughs B6700 compiler for a
SNOBOL4-1ike language.

The algorithms presented below were developed in
Burroughs B6700 Extended Algol, but are described
here in Pascal [6, 7], since this is probably a more
widely known language. The version of Pascal used
has two extensions: record-valued functions, and the
ability to declare varying length arrays. The algorithms
are by no means complete; for example, they do not
include any attempt to avoid futile searching for a
match [3].

Key Words and Phrases: patterns, SNOBOL4,
pattern matching, string processing, pattern
implementation, algorithms in Pascal

CR Categories: 4.29

1. Introduction

When a string appears as the subject of a SNO-
BOL4 statement [5], it may be scanned to see whether
or not it contains a specified pattern. The position
reached in the subject string during such pattern match-
ing is called the cursor position. Any pattern P may be
matched against a subject string S at a given cursor
position c. If the match succeeds the cursor will move to
a new position. Gimpel [3] formalized P as a function

e (s , c) = c' .

Since P may have implicit alternatives (i.e. contain
several component patterns in an order of preference),
c ' is an ordered sequence of cursor positions.

In the usual implementations of SNOBOL4 [2-4] a
pattern is compiled into a graph, whose nodes are
patterns and whose edges indicate the order in which
the nodes must be matched. A "scanner" procedure is
then called to thread a path through the graph, match-
ing the pattern. This implementation is straightfor-
ward, and has the advantage that patterns can be dy-
namic, i.e. modified after being compiled. However ,
since the scanner is fundamentally an interpreter (using
pattern graphs as its input code), pattern matching
appears to be a time-consuming process.

This paper describes an alternative approach in

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Author's address: Computer Centre, University of Auckland,
Private Bag, Auckland, New Zealand.

2. Pattern Functions

Figure 1 gives the global declarations required for
pattern matching. First we declare the type string to
describe SNOBOL4 strings. A string is a record with
two components - length is the number of characters in
the string, and body is an array containing them. If a
string is non-null, length is positive and body[l] con-
tains its first character. String subject is assumed to be
the subject string, in which we will at tempt to match
patterns.

Next we declare type state, a record containing all
the variables which will be needed by pattern functions
(see below). For temporary storage of state variables a
push-down stack is provided by array patternstack, inte-
ger psp (which stores the location of the last variable
entered), procedures push, pop, cut, and function top-
o fstac k.

A pattern function F requires at least one state.
parameter s, and returns an updated version of this
state. When F is first invoked, s.cursor gives the posi-
tion in subject at which F is to start matching, and
s.succeed is false. If the function does not match,
F.succeed is set false; otherwise F.succeed is true, and
F.cursor indicates the starting cursor position for the
next pattern component.

Every pattern function which succeeds may be
called again to test for its next implicit alternative. In
this case it expects as its input state the state it last
returned. Hence the state variable can be used to store
information between alternatives. Should a pattern
function need to store more information between alter-
natives than can be kept in one state variable, it may
push state variables into patternstack. Such a function
will expect the stack to be unchanged when it is called
for its next alternative, hence any pattern function
which fails must remove any items it has stored in
patternstack .

As an example of a pattern function, Figure 2 shows
len, which implements LEN (the SNOBOL4 primitive

527 Communications July 1977
of Volume 20
the ACM Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359636.359716&domain=pdf&date_stamp=1977-07-01

Fig. 1. G l o b a l d e c l a r a t i o n s f o r p a t t e r n m a t c h i n g .

type string = record
length : integer;
body : a r r a y [0 . . length] of char;
end;

state = record
succeed : Boolean;
cursor, alternative : integer;
end;

var subject : string;
patternstack : a r r a y [integer] of state;
psp : integer;

procedure push(p : state);
begin psp := p s p + l ; patternstack [psp] := p ; end;

procedure cut;
be~upsp := p s p - 1 ; end;

function topo~tack : state;
begin topofstack := patternstack [psp]; end;

procedure pop (va r p : state);
begin p := patternstack [psp]; psp : = psp-1; end;

Fig. 2. S a m p l e p a t t e r n f u n c t i o n .

function len(p : state, l : integer) : state;
begin

if ~ p.succeed then begin
if subject.length - p.cursor + 1 >- 1 then begin

len.succeed := true;
len.cursor := p.cursor + l;
end

else len.succeed := false;
end

else len.succeed := false;
end;

Fig. 3. C o n c a t e n a t i o n o f p a t t e r n f u n c t i o n s A a n d B .

(a) S t r u c t u r e o f cat.

Outer loop
maintains " A succeeds"

Inner loop
maintains " B succeeds"

Exit to containing
pattern function.

<~ Return for next
alternative o f B.

(b) P r o g r a m fo r cat.

function cat(inp : state) : state;
var p : state;
begin

p := inp ;
if p.succeed then goto 5;
repeat

p := A (p) ;
if p.succeed then begin

push(p) ;
p.succeed := false;
5 : p := B (p) ;

ifp.succeed then goto 9;
pop(p) ;
end;

unt i l -7 p.succeed;
9: cat := p ;

end;

528

matching any string of N characters). When len is first
invoked p.succeed is false, so if sufficient characters
remain in subject, len succeeds. If len is invoked again,
p brings back the last value oflen, i .e .p .succeed is true.
Since LEN has no implicit alternatives, len fails.

3. Operations on Patterns

Two of the most common operators used in building
up patterns are concatenation (e.g. A B means "match
A, then B") and alternation, (e.g. A I B means "match
A, if A fails match B") .

The structure of cat, an algorithm for concatenating
pattern functions A and B is shown in Figure 3(a). Its
outer loop repeats as long as A succeeds, i.e. it termi-
nates When there are no further implicit alternatives for
A. The inner loop does the same for B. When both A
and B have succeeded we have found one match for A
B, so we exit from cat to continue with the function
which called it. Should we need to retry cat we must
return into the inner loop for B's next alternative.

Figure 3(b) gives a program for cat. This uses a
working state variable p for interacting with A and B.
The outer loop is a simple repeat loop, which saves its
current value of p in patternstack while executing the
inner loop. Exit from the inner loop is implemented by
the statement "goto 9"; return into it by "goto 5". The
inner loop keeps its value of p between retries in the
function value (as did len in Section 2).

cat could be implemented as a function with proce-
dures A and B as parameters allowing us to handle
patterns like A B C as (A B) C. Note, however, that
A ' s repeat loop can be duplicated as many times as
required, allowing us to create a cat-like function with
any given number of pattern arguments.

Alternation is more difficult to handle, since every
alternative of each pattern component must be tried
before moving on to the next component , alt, an algo-
rithm for A I B is shown in Figure 4(a). This pat tern
has two components . The outer loop tries them in turn,
using its inner loop to test their implicit alternatives.
When a successful alternative is found we exit f rom alt,
making provision to continue the inner loop should we
need to retry.

The program for alt (Figure 4(b)) , is complicated by
the fact that three items of information must be saved
between retries. These are altnbr (the number of the
current pattern component) , newp (the state variable
for the current implicit al ternative), and p (the initial
value of newp). When alt is first invoked inp.succeed is
false, so we push inp (a s p) and set altnbr to zero. The
outer repeat loop retrieves this initial p for each pattern
component . When the inner repeat loop finds a match
it pushes newp and exits ("goto 9") , storing altnbr in
the function value. A retry recovers these values (as p
and altnbr) before returning into the inner loop. When
alt finally fails the initial p is cut from the stack.

As with cat, an alt-like function can be created with

C o m m u n i c a t i o n s Ju ly 1 9 7 7
o f V o l u m e 20
the A C M N u m b e r 7

any given number of pattern arguments.
When a match is complete, patternstack contains a

history of the match. It is a simple matter to put extra
items in the stack for other purposes, such as remem-
bering which parts of the pattern were to be assigned to
other strings following a successful match. Storing
items in patternstack is similar in effect to "threading
the beads" of a S NOB OL4 bead diagram. As each
pattern component is matched ("bead is threaded")
items are added to the stack. If a component finally
fails, its stack items are removed ("the needle is with-
drawn") . Failure to cut the stack back properly will
ruin the pattern m a t c h i n g - this corresponds to "cutting
the thread."

Pattern functions can be used in a re-entrant man-
n e r - f o r example, to implement

D = '0' 1'1' ; B = D D D [D.D] D

we would use alt for D and B, and cat for the first two
components of B. In Figures 3(b) and 4(b) the working
variables (p, newp, altnbr) are local, but since they are
all saved between retries they might usefully be global.

Recursive use of the pattern functions described
above is impossible for two reasons. First, they have no
way of breaking recursive loops. To provide this we
could include an integer depth in state, set depth equal
to cursor when a function succeeds, and increment it by
one when invoking further functions. Functions would
then fail when depth exceeded subject.length. Second,
recursive invocations may store an unknown number of
items in patternstack. To cope with this we would need
to pass the stack height (value of psp) on entry to a
function, probably as another integer in state, so the
function could restore the stack reliably when it failed.

4. Conc lus ion

This implementat ion of SNOBOL4 patterns is used
in the SNOBOL4-1ike language "Snobal /67" [1],
which has an execution speed varying between 3 and 18
times faster than our Burroughs B6700 implementat ion
of SNOBOL4. Unfortunately our S NOB OL 4 has no
official support , so this performance may be suspect.

As outlined above, the overheads in implementing
fully recursive patterns are high: for this reason Snobal/
67 does not allow them. To compensate for this Snobal/
67 has ARBNX(P) , a pattern primitive which matches
pattern P as many times as possible. A R B N X is defined
as

ARBNX(P) = *P PIP

where * is S N O B O L 4 ' s "uneva luated express ion" op-
erator.
The algorithms presented above are straightforward to
use. Though they are described in a version of Pas-
cal it is possible to implement them in almost any
high-level language. This can be particularly useful in
producing pattern-matching systems (like Snobal/67)

529

Fig. 4. Alternation of pattern functions A and B.

(a) Structure of aB.

Outer loop
maintains "alternative components available"

Inner loop
maintains "current component succeeds"

Exit to containing
I> pattern function.

<1 Return for next alternative
o f current component.

(b) Program for alt.

function alt(inp : state) : state;
varp, newp : state; altnbr : integer;
begin

if ~ inp.succeed then begin
p := inp ;push(p); altnbr := O;
end

else begin
pop(p); altnbr := inp .alternative ;
end;

repeat
repeat

case altnbr of
0 : newp := A(p);
1 :newp := B(p);

end;
if newp.succeed then begin

push(newp);
newp.alternative := altnbr:
goto 9;
end;

until ~ newp.succeed;
altnbr := altnbr + 1 ;p := topofstack;
until altnbr = 2;
cut;

9: alt := newp ;
end;

where the emphasis is on execution speed and simplic-
ity of implementat ion, rather than on providing the full
generality of SNOBOL4.

Acknowledgments. I would like to thank my ref-
erees for their extremely helpful suggestions for the
revision of this paper.

Received January 1976; revised September 1976

References
1. Brownlee, J.N. Snobal /67- A Burroughs B6700 compiler for a
dialect of SNOBOL4. Tech. Rep. 1, Comptr. Centre, U. of Auck-
land, New Zealand, 1975.
2. Dewar, R.B. SPITBOL-Vers ion 2.0. SNOBOL4 Doc. $4D23,
Illinois Inst. of Tech., Chicago, 1971.
3. Gimpel, J.F. A theory of discrete patterns and their implementa-
tion in SNOBOL4. Comm. A C M 16, 2 (Feb. 1973), 91-100.
4. Griswold, R.E. The Macro Implementation o f S N O B O L 4 .
W.H. Freeman, San Francisco, 1972.
5. Griswold, R.E., Poage, J.F., and Polonsky, I.P. The S N O B O L 4
Programming Language. Prentice-Hall, Englewood Cliffs, N.J., Sec.
Ed., 1971.
6. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the
programming language PASCAL. Acta Informatica 2 (1973), 335-
355.
7. Wirth, N. The programming language PASCAL. Acta lnforma-
tica 1 (1971), 35-63.

Communications July 1977
of Volume 20
the ACM Number 7

