
effort requi red to imp lemen t the p roposed m e t h o d are
c o m p a r a b l e to those requi red by F i shman ' s , Wal lace ' s ,
and T a d i k a m a l l a ' s methods . The p roposed m e t h o d is

faster than F i s h m a n ' s and T a d i k a m a l l a ' s me thod for all
va lues o f ct, a > 2. The average C P U t ime requi red per
variate for the p roposed me thod remains fa i r ly constant
for m e d i u m and large values o f a. The p roposed me thod
is s impler and faster than Ahrens and Die ter ' s m e t h o d
for all va lues o f a.

Received October 1977; revised April 1978

References
1. Ahrens, J.H., and Dieter, U. Computer methods for sampling
from gamma, beta, Poisson and binomial distributions. Computing 12
(1974), 223-246.
2. Atkinson, A.C., and Pearce, M.C. The computer generation of
beta gamma and normal random variables. J. Royal Statist. Soc. Ser.
A, 139 (1976), 431-461.
3. Box, G.E.P., and Muller, M.E. A note on the generation of
normal deviates. Annals Math. Statist. 29 (1958), 610-611.
4. Dudewicz, E.J. Speed and quality of random numbers. Annual
Tech. Conf. Trans. ASQC, Vol. 29, 1975, pp. 170-180.
5. Fishman, G.S. Sampling from the gamma distribution on a
computer. Comm. ACM. 19, 7 (July 1976), 407-409.
6. Greenwood, A.J. A fast generator for gamma distributed random
variables. In CompStat, G. Bruckman et al., Eds., Physica Verlag,
Vienna, 1974, pp. 19-27.
7. J6hnk, M.D. Erzeugung Von Betavesteilten Und Gamma
Vesteilten Zufellszahlen. Metrika 8 (1964), 5-15.
8. Kinderman, A.J., and Ramage, J.G. Computer generation of
normal random variables. J. Amer. Statist. Assoc. 17 (1976), 893-896.
9. Lurie, D., and Mason, R.L. Empirical investigation of several
techniques for computer generation of order statistics. Comm. Statist.
2 (1973), 363-371.
10. Marsaglia, G. Random variables and computer. Trans. Third
Prague Conf. Inform. Theory, Statist. Decision Functions, Random
Processes, June 1962, Prague: Czechoslovak Acad. of Sciences,
Prague, 1964, pp. 499-512.
11. Odell, P.L., and Newman, T.G. The Generation of Random
Variates. Charles Griffin, London, 1972.
12. Tadikamalla, P.R. Computer generation of gamma random
variables. Comm. A C M 21, 5 (May 1978), 419-422.
13. Tadikamalla, P.R. FORTRAN programs for computer
generation of gamma random variables. Tech. Rep., Dept. Business
Admin., Eastern Kentucky U., Richmond, Ky., 1977.
14. Tadikamalla, P.R. The factors that may affect the speed of
normal variate generators. Tech. Rep., Dept. Business Admin.,
Eastern Kentucky U., Richmond, Ky., 1978.
15. Tadikamalla, P.R., and Johnson, M.E. Some simple rejection
methods for sampling from the normal distribution. Proc. First Int.
Conf. Math. Modeling, St. Louis, Mo., 1977, 573-578.
16. Wallace, N.D. Computer generation of gamma random variates
with non-integral shape parameters. Comm. A C M 17, 12 (Dec. 1974),
691-695.
17. Whittekar, J. Generating gamma and beta random variables with
nonintegral shape parameters. App. Statist. 23 (1974), 210-213.

928

P r o g r a m m i n g J . J .Horn ing
Languages Ed i to r

A Simple Recovery-
Only Procedure For
Simple Precedence
Parsers
G. David Ripley
RCA Laboratories

A simple method is described enabling simple
precedence parsers to recover from syntax errors. No
attempt to repair errors is made, yet parsing and most
semantic processing can continue. The result is a good
"first approximation" to syntax error handling with
negligible increase in parsing time, space, and
complexity of both the parser and its table generator.

Key Words and Phrases: syntax errors, error
recovery, parsing, simple precedence, compilers,
debugging

CR Categories: 4.12, 4.42, 5.23

1. Introduction

Syntax er ror hand l ing p rocedures for fo rma l pa rs ing
methods , such as s imple p recedence [12], LL(k) [9], and
LR(k) [8], usua l ly suffer f rom one or more d rawbacks .
Some o f these p rocedures skip the rest o f a sentence af ter
de tec t ing an er ror [10]. Others are complex and requi re
a subs tan t i a l i m p l e m e n t a t i o n effort [4-6], and m a y re-
qui re ta i lo r ing to a pa r t i cu la r l anguage [2]. A p rocedure
is desc r ibed here which enables s imple p recedence par -
sers to recover f rom syntax errors. W i t h this me thod , no
inpu t text is sk ipped, the p rocedure is very s imple and
easy to imp lemen t , and it is i n d e p e n d e n t o f source
language .

The me thod , ca l led S imple Recove ry (SR) af ter a
s imi la r m e t h o d for S L R parsers [3], is essent ia l ly the
" fo rward m o v e " descr ibed by G r a h a m and R h o d e s in
thei r p a p e r on er ror recovery and repa i r for s imple
p recedence parsers [6]. Un l ike the m e t h o d o f G r a h a m

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's present address: RCA Laboratories, Princeton, NJ 08540.
© 1978 ACM 0001-0782/78/l 100-0928 $00.75

Communications November 1978
of Volume 21
the ACM Number 11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359642.359649&domain=pdf&date_stamp=1978-11-01

and Rhodes, SR makes no "backward move," nor is any
repair of the error attempted. Rather, upon detection of
any type of syntax error, a new forward move is initiated.
In spite of its simple nature, SR is quite successful at
enabling the parse, and hence error detection, to con-
tinue. Most semantic error checking can also continue.

In what follows, it is assumed that the reader is
familiar with basic parsing notions and simple prece-
dence parsers in particular, for example as described in
[1] or [7].

2. Simple Recovery

Of course, the grammar symbols in symbolic form must
be available for use in the error messages. In addition, to
improve error pinpointing the recovery routine used in
the examples given below also lists the first terminal
symbol that begins a stacked nonterminal symbol. These
terminal symbols are maintained in a stack paralleling
the syntax stack.

Figure 1 contains the results of using SR on an
example similar to that given in [6] (Graham and Rhodes
used a subset of Algol; the examples here are written in
a language called L / l , used in a course on compiler
construction). Figure 2 is included to illustrate several
additional error situations.

A simple precedence parser detects errors in several
situations. A character pair error is detected when the
parser's top stack symbol and the next input symbol have
no precedence relation. A right hand side error has oc-
curred when a potential right-hand side on the stack has
been identified by the precedence relations yet no gram-
mar rule has such a right-hand side. Finally, a stackabil-
ity error occurs when the stack symbol to the left of the
handle is neither less than nor equal in precedence to
the left hand side of the rule whose right-hand side is the
handle. Regardless of the type of error, it is assumed that
the parser calls a recovery routine for the purposes of
producing an error message and resetting the parser state
to permit continuation of the parse.

The recovery action of SR is to simply discard the
current stack entries and push onto the (now empty)
stack the symbol "??", a unique error symbol that is less
in precedence than all other symbols in the grammar.
(The current input symbol has not as yet been pushed
onto the stack.) Control is then returned to the parser.

Error messages are produced by SR prior to recovery
based on the type of error. For character pair errors and
stackability errors, the two symbols in question are
printed along with an appropriate explanation. Right-
hand side errors are messaged by listing the alleged right-
hand side as well as the symbol immediately preceding
and the symbol immediately following the alleged right-
hand side (i.e. the stack symbol below the alleged right-
hand side and the current input symbol).

An exception to the messaging of right-hand side
errors occurs when the stack contains only the symbol
"??" followed by the alleged right-hand side. Experience
with the method indicates that most of the time this
situation is really an attempt by the parser to reduce a
right-hand side whose prefix is missing due to a previous
error and the subsequent discarding of the stack contents.
In this situation, referred to as a probable attempt to
"reduce across the error point" [4], no error message is
issued.

Implementation of SR follows directly from the
above description. The only modification to the simple
precedence parser tables is the addition of a row to the
precedence matrix for the error symbol "??", which is set
"less in precedence" to all other symbols in the grammar.

929

3. Discussion

Although it is not clear what a "representative" col-
lection of syntax errors consists of, a recent study of
errors made by programmers indicates that most errors
are either single missing, extra, or wrong symbols [11].
That is, most errors involve only one symbol. Figure 1
contains examples of all three of these types of errors.
All the syntax errors in this program were detected,
including the four errors in the assignment to an element
of the array "a". The erroneous symbol "." at the end of
the program was deleted by the lexical analyzer. Note
that SR tends to "bracket" wrong symbol errors, such as
"IS" in place of ":=", by giving a message immediately
before and after the incorrect symbol.

An important reason for error recovery is to enable
not only continued syntax error checking but also se-
mantic error checking. This is particularly true for
strongly typed languages, where many semantic errors
can be detected at compile time. Even though SR makes
no attempt at repairing syntax errors, it has been found
in practice that most semantic processing can still take
place. This is particularly true when semantic processing
is synchronized with syntax analysis. Since a handle that
contains a syntax error is never properly reduced, the
semantic routines deal only with correct handles and
their associated semantic information.

Certain semantic processing in a compiler relies heav-
ily on action taken during prior reductions, although this
seems to cause little problem. For example in Figure 2
the "loopheader" statement beginning with the keyword
"LOOP" contains an error (a missing semicolon), enough
to prevent semantic processing of the loop header. The
semantic action for the corresponding ENDLOOP state-
ment depends on actions that should have been taken
upon reduction of the loop header. However since a loop
header was never recognized, the grammar rule

(statement) ::-- (loop header) (statements) ENDLOOP

cannot be applied upon recognition of "ENDLOOP",
hence the dependent semantic processing will not be
attempted.

Of course semantic cascading and even internal con-

Communicat ions November 1978
of Volume 21
the ACM Number 11

Fig. 1. An example of Simple Recovery.

PROC test();
LOCAL a[5] INT (5:0), b[10] INT (10:0);
LOCAL i INT(0), j INT(0), k INT(0), 1 INT(0);
CALL sub(l+5 1+10);

***** Error: 5 may not be followed by 1

up: i+j > k+ l*4 THEN BREAKTO; ELSE k IS 2;
***** Error: the label beginning with up

may not be followed by
the arith.expr, beginning with i

***** Error: BREAKTO may not be followed by ;
***** Error: k may not be followed by IS
***** Error: IS may not be followed by 2

a 2 .--- b[3 *(i+4,j*/k]
***** Error: a may not be followed by 2
***** Error: 2 may not be followed by :=
***** Error: The components left paren arith.expr.,

beginning with (
when preceded by *
and followed by j
do not form part of a sentence

***** Error: * may not be followed by /
IF i=l THEN THEN REPEATAT up;

***** Error:] may not be followed by IF
***** Error: THEN may not be followed by THEN

12: RETURN;
END test.
***** Error: "." is illegal--deleted
***** Error: test may not be followed by end-file

Fig. 2. Another example of Simple Recovery.

PROC samples (i INT,,s STR);

***** Error: , may not be followed b y ,

s ~ 'sam';

LOCAL x[2] INT (0,0), y INT(I;;

***** Error: The statement(s) beginning with s
may not be followed by LOCAL

***** Error: The components decl.header arith.expr.
beginning with y
when preceded by the declarations
beginning with LOCAL
and followed by ;
do not form part of a sentence

***** Error: ; may not be followed by ;
L O O P i : = 1 BY 1 TO 10

x[] := x[]+y+l;

***** Error: 10 may not be followed by x

***** Error: The components x []
when preceded by :=
and followed by +
do not form part of a sentence

ENDLOOP;
RETURN;
END samples;

fusion may occur unless certain semantic processes are
done in a "fail-safe" manner. The point is that experience
suggests this may not in general be difficult to achieve.

Figure 2 illustrates the benefit of continued semantic
processing in several places. For example, even though
the formal parameter list contains an error, following

930

recovery the parameter "s" was processed both syntact-
ically and semantically, resulting in no cascaded seman-
tic errors for this parameter. Panic mode recovery, in
comparison, by skipping to the end of an erroneous
sentence or other large construct before restarting the
parse, would most likely not have fared so well. Figure
2 also contains a declaration out of order (declarations
must precede executable statements in L/1). After detec-
tion of the ordering problem, syntactic and semantic
processing of the rest of the declaration continued.

It is possible for SR to miss certain right-hand side
errors, but only when such an error occurs irn'mediately
following another error, with no intervening symbols.
This is due to the assumption by SR that in such a
situation an attempt is being made to reduce across the
error point. Figure 2 illustrates this point. The first
erroneous "x[]" is not reported, as the missing semicolon
error occurred immediately before it. However, the sym-
bol ":=" appearing between the two errors "x[]" was
sufficient to enable messaging of the second such error.
Fortunately, due to the sparse nature of most syntax
errors, this property of SR seems to be of little concern
in practice.

Of course effective error repair in general is more
desirable than simple recovery in situations where the
associated complexity is considered worth the effort. The
paper by Graham and Rhodes in fact illustrates this.
The point of SR is that for negligible increase in time,
space, and, most important, complexity of the parser
(and also of the parser generator), a reasonable "first
approximation" to error handling is possible.

Received April 1977

References
1. Aho, A.V., and Ullman, J.D. The Theory of Parsing, Translation,
and Compiling, Vol. 1. Prentice-Hall, Englewood Cliffs, N.J., 1972.
2. Conway, R.W., and Wilcox, T.R. Design and implementation of
a diagnostic compiler for PL/I. Comm. A CM 16, 3 (March 1973),
I69-179.
3. Druseikis, F.C., and Ripley, G.D. Error recovery for simple
LR(k) parsers. Proc. ACM Annual Conf., Houston, Tex., 1976, pp.
396-400.
4. Druseikis, F.C., and gipley, G.D. Extended SLR(k) parsers for
error recovery and repair. Tech. Rep., Comptr. Sci. Dept., U. of
Arizona, Tucson, 1977.
5. Fischer, C.N., Milton, D.R., and Quiring, S.B. An efficient
insertion-only error-corrector for LL(I) parsers. Proc. Fourth ACM
Symp. on Principles of Programming Languages, Santa Monica,
Calif., 1977, pp. 97-103.
6. Graham, S.L., and Rhodes, S.P. Practical syntax error recovery.
Comm. ACM 18, 11 (Nov. 1975), 639-642.
7. Gries, D. Compiler Construction for Digital Computers. Wiley,
New York, 1971.
8. Knuth, D.E. On the translation of languages from left to right.
Inform. Contr. 8 (Oct. 1965), 607-639.
9. Lewis, P.M., and Stearns, R.E. Syntax directed transduction. J.
ACM 15, 3 (March 1968), 464--488.
10. McKeeman, W.M., Horning, J.J., and Wortman, D.B. A
Compiler Generator. Prentice-Hall, Englewood Cliffs, N.J., 1970.
11. Ripley, G.D., and Druseikis, F.C. A statistical analysis of syntax
errors. J. Computer Languages. To appear.
12. Wirth, N., and Weber, H. EULER: A generalization of Algol and
its formal definition, Pts. I, II. Comm. ACM 9, 1-2 (Jan., Feb. 1966),
13-35, 89-99.

Communications November 1978
of Volume 21
the ACM Number 11

