
effort  requi red  to imp lemen t  the p roposed  m e t h o d  are  
c o m p a r a b l e  to those requi red  by  F i shman ' s ,  Wal lace ' s ,  
and  T a d i k a m a l l a ' s  methods .  The  p roposed  m e t h o d  is 

faster  than  F i s h m a n ' s  and  T a d i k a m a l l a ' s  me thod  for all  
va lues  o f  ct, a > 2. The  average  C P U  t ime requi red  per  
variate  for the p roposed  me thod  remains  fa i r ly  constant  
for m e d i u m  and  large values  o f  a. The  p roposed  me thod  
is s impler  and  faster  than  Ahrens  and  Die ter ' s  m e t h o d  
for  all  va lues  o f  a. 
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P r o g r a m m i n g  J . J .Horn ing  
Languages  Ed i to r  

A Simple Recovery- 
Only Procedure For 
Simple Precedence 
Parsers 
G. David Ripley 
RCA Laboratories 

A simple method is described enabling simple 
precedence parsers to recover from syntax errors. No 
attempt to repair errors is made, yet parsing and most 
semantic processing can continue. The result is a good 
"first approximation" to syntax error handling with 
negligible increase in parsing time, space, and 
complexity of both the parser and its table generator. 

Key Words and Phrases: syntax errors, error 
recovery, parsing, simple precedence, compilers, 
debugging 

CR Categories: 4.12, 4.42, 5.23 

1. Introduction 

Syntax  er ror  hand l ing  p rocedures  for fo rma l  pa rs ing  
methods ,  such as s imple  p recedence  [12], LL(k)  [9], and  
LR(k )  [8], usua l ly  suffer f rom one or  more  d rawbacks .  
Some o f  these p rocedures  skip  the rest o f  a sentence af ter  
de tec t ing  an  er ror  [10]. Others  are complex  and  requi re  
a subs tan t i a l  i m p l e m e n t a t i o n  effort  [4-6], and  m a y  re- 
qui re  ta i lo r ing  to a pa r t i cu la r  l anguage  [2]. A p rocedure  
is desc r ibed  here  which  enables  s imple  p recedence  par -  
sers to recover  f rom syntax  errors.  W i t h  this me thod ,  no  
inpu t  text is sk ipped,  the  p rocedure  is very s imple  and  
easy to imp lemen t ,  and  it is i n d e p e n d e n t  o f  source 
language .  

The  me thod ,  ca l led  S imple  Recove ry  (SR) af ter  a 
s imi la r  m e t h o d  for S L R  parsers  [3], is essent ia l ly  the 
" fo rward  m o v e "  descr ibed  by  G r a h a m  and  R h o d e s  in 
thei r  p a p e r  on  er ror  recovery  and  repa i r  for s imple  
p recedence  parsers  [6]. Un l ike  the m e t h o d  o f  G r a h a m  
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and Rhodes, SR makes no "backward move," nor is any 
repair of the error attempted. Rather, upon detection of 
any type of syntax error, a new forward move is initiated. 
In spite of its simple nature, SR is quite successful at 
enabling the parse, and hence error detection, to con- 
tinue. Most semantic error checking can also continue. 

In what follows, it is assumed that the reader is 
familiar with basic parsing notions and simple prece- 
dence parsers in particular, for example as described in 
[1] or [7]. 

2. Simple Recovery 

Of course, the grammar symbols in symbolic form must 
be available for use in the error messages. In addition, to 
improve error pinpointing the recovery routine used in 
the examples given below also lists the first terminal 
symbol that begins a stacked nonterminal symbol. These 
terminal symbols are maintained in a stack paralleling 
the syntax stack. 

Figure 1 contains the results of using SR on an 
example similar to that given in [6] (Graham and Rhodes 
used a subset of Algol; the examples here are written in 
a language called L / l ,  used in a course on compiler 
construction). Figure 2 is included to illustrate several 
additional error situations. 

A simple precedence parser detects errors in several 
situations. A character pair error is detected when the 
parser's top stack symbol and the next input symbol have 
no precedence relation. A right hand side error has oc- 
curred when a potential right-hand side on the stack has 
been identified by the precedence relations yet no gram- 
mar rule has such a right-hand side. Finally, a stackabil- 
ity error occurs when the stack symbol to the left of the 
handle is neither less than nor equal in precedence to 
the left hand side of the rule whose right-hand side is the 
handle. Regardless of the type of error, it is assumed that 
the parser calls a recovery routine for the purposes of 
producing an error message and resetting the parser state 
to permit continuation of the parse. 

The recovery action of SR is to simply discard the 
current stack entries and push onto the (now empty) 
stack the symbol "??", a unique error symbol that is less 
in precedence than all other symbols in the grammar. 
(The current input symbol has not as yet been pushed 
onto the stack.) Control is then returned to the parser. 

Error messages are produced by SR prior to recovery 
based on the type of error. For character pair errors and 
stackability errors, the two symbols in question are 
printed along with an appropriate explanation. Right- 
hand side errors are messaged by listing the alleged right- 
hand side as well as the symbol immediately preceding 
and the symbol immediately following the alleged right- 
hand side (i.e. the stack symbol below the alleged right- 
hand side and the current input symbol). 

An exception to the messaging of right-hand side 
errors occurs when the stack contains only the symbol 
"??" followed by the alleged right-hand side. Experience 
with the method indicates that most of the time this 
situation is really an attempt by the parser to reduce a 
right-hand side whose prefix is missing due to a previous 
error and the subsequent discarding of the stack contents. 
In this situation, referred to as a probable attempt to 
"reduce across the error point" [4], no error message is 
issued. 

Implementation of SR follows directly from the 
above description. The only modification to the simple 
precedence parser tables is the addition of a row to the 
precedence matrix for the error symbol "??", which is set 
"less in precedence" to all other symbols in the grammar. 
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3. Discussion 

Although it is not clear what a "representative" col- 
lection of syntax errors consists of, a recent study of 
errors made by programmers indicates that most errors 
are either single missing, extra, or wrong symbols [11]. 
That is, most errors involve only one symbol. Figure 1 
contains examples of all three of these types of errors. 
All the syntax errors in this program were detected, 
including the four errors in the assignment to an element 
of the array "a". The erroneous symbol "." at the end of 
the program was deleted by the lexical analyzer. Note 
that SR tends to "bracket" wrong symbol errors, such as 
"IS" in place of ":=", by giving a message immediately 
before and after the incorrect symbol. 

An important reason for error recovery is to enable 
not only continued syntax error checking but also se- 
mantic error checking. This is particularly true for 
strongly typed languages, where many semantic errors 
can be detected at compile time. Even though SR makes 
no attempt at repairing syntax errors, it has been found 
in practice that most semantic processing can still take 
place. This is particularly true when semantic processing 
is synchronized with syntax analysis. Since a handle that 
contains a syntax error is never properly reduced, the 
semantic routines deal only with correct handles and 
their associated semantic information. 

Certain semantic processing in a compiler relies heav- 
ily on action taken during prior reductions, although this 
seems to cause little problem. For example in Figure 2 
the "loopheader" statement beginning with the keyword 
"LOOP" contains an error (a missing semicolon), enough 
to prevent semantic processing of the loop header. The 
semantic action for the corresponding ENDLOOP state- 
ment depends on actions that should have been taken 
upon reduction of the loop header. However since a loop 
header was never recognized, the grammar rule 

(statement)  ::-- (loop header) (statements) ENDLOOP 

cannot be applied upon recognition of "ENDLOOP",  
hence the dependent semantic processing will not be 
attempted. 

Of course semantic cascading and even internal con- 
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Fig. 1. An example of  Simple Recovery. 

PROC test( ); 
LOCAL a[5] INT (5:0), b[10] INT (10:0); 
LOCAL i INT(0), j INT(0), k INT(0), 1 INT(0); 
CALL sub(l+5 1+10); 

***** Error: 5 may not be followed by 1 

up: i+j > k+ l*4  THEN BREAKTO; ELSE k IS 2; 
***** Error: the label beginning with up 

may not be followed by 
the arith.expr, beginning with i 

***** Error: BREAKTO may not be followed by ; 
***** Error: k may not be followed by IS 
***** Error: IS may not be followed by 2 

a 2 .--- b[3 *(i+4,j*/k] 
***** Error: a may not be followed by 2 
***** Error: 2 may not be followed by := 
***** Error: The components left paren arith.expr.,  

beginning with ( 
when preceded by * 
and followed by j 
do not form part of  a sentence 

***** Error: * may not be followed by / 
IF i=l  THEN THEN REPEATAT up; 

***** Error: ] may not be followed by IF 
***** Error: THEN may not be followed by THEN 

12: RETURN;  
END test. 
***** Error: "." is illegal--deleted 
***** Error: test may not be followed by end-file 

Fig. 2. Another example of  Simple Recovery. 

PROC samples (i INT,,s STR); 

***** Error: , may not be followed b y ,  

s ~  'sam'; 

LOCAL x[2] INT (0,0), y INT(I;; 

***** Error: The statement(s) beginning with s 
may not be followed by LOCAL 

***** Error: The components decl.header arith.expr. 
beginning with y 
when preceded by the declarations 
beginning with LOCAL 
and followed by ; 
do not form part of  a sentence 

***** Error: ; may not be followed by ; 
L O O P i : =  1 BY 1 TO 10 

x[] := x[]+y+l;  

***** Error: 10 may not be followed by x 

***** Error: The components x [ ] 
when preceded by := 
and followed by + 
do not form part of  a sentence 

ENDLOOP; 
RETURN; 
END samples; 

fusion may occur unless certain semantic processes are 
done in a "fail-safe" manner. The point is that experience 
suggests this may not in general be difficult to achieve. 

Figure 2 illustrates the benefit of continued semantic 
processing in several places. For example, even though 
the formal parameter list contains an error, following 
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recovery the parameter "s" was processed both syntact- 
ically and semantically, resulting in no cascaded seman- 
tic errors for this parameter. Panic mode recovery, in 
comparison, by skipping to the end of an erroneous 
sentence or other large construct before restarting the 
parse, would most likely not have fared so well. Figure 
2 also contains a declaration out of order (declarations 
must precede executable statements in L/1). After detec- 
tion of the ordering problem, syntactic and semantic 
processing of the rest of the declaration continued. 

It is possible for SR to miss certain right-hand side 
errors, but only when such an error occurs irn'mediately 
following another error, with no intervening symbols. 
This is due to the assumption by SR that in such a 
situation an attempt is being made to reduce across the 
error point. Figure 2 illustrates this point. The first 
erroneous "x[ ]" is not reported, as the missing semicolon 
error occurred immediately before it. However, the sym- 
bol ":=" appearing between the two errors "x[ ]" was 
sufficient to enable messaging of the second such error. 
Fortunately, due to the sparse nature of most syntax 
errors, this property of SR seems to be of little concern 
in practice. 

Of course effective error repair in general is more 
desirable than simple recovery in situations where the 
associated complexity is considered worth the effort. The 
paper by Graham and Rhodes in fact illustrates this. 
The point of SR is that for negligible increase in time, 
space, and, most important, complexity of the parser 
(and also of the parser generator), a reasonable "first 
approximation" to error handling is possible. 
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