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ABSTRACT
Deep Learning (DL) developers come from different backgrounds,
e.g., medicine, genomics, finance, and computer science. To create
a DL model, they must learn and use high-level programming lan-
guages (e.g., Python), thus needing to handle related setups and
solve programming errors. This paper presents DeepBlocks, a vi-
sual programming tool that allows DL developers to design, train,
and evaluate models without relying on specific programming lan-
guages. DeepBlocks works by building on the typical model struc-
ture: a sequence of learnable functions whose arrangement defines
the specific characteristics of the model. We derived DeepBlocks’
design goals from a 5-participants formative interview, and we
validated the first implementation of the tool through a typical use
case. Results are promising and show that developers could visually
design complex DL architectures.

CCS CONCEPTS
• Human-centered computing→ Graphical user interfaces;
Empirical studies in HCI; • Computing methodologies → Ma-
chine learning; • Software and its engineering→ Application
specific development environments.
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1 INTRODUCTION AND BACKGROUND
Recently, deep learning (DL) experienced rapid progress and achieved
competitive performance in numerous areas such as image recog-
nition, natural language processing, autonomous driving, medical
diagnosis, and drug discovery. As such, DL developers can choose
between many popular frameworks for development, including
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Figure 1: The typical deep-learning development workflow,
the highlighted part indicates the processes covered by Deep-
Blocks.

Tensorflow [1], Keras [4], and PyTorch [7]. These frameworks, how-
ever, require developers to have a certain level of programming
skills, which many developers from diverse domains (e.g., medicine,
genomics, or finance) need to master before being able to create and
evaluate a DLmodel. Thus, many challenges arise [10] as developers
experience this steep learning curve. In 2017, Sankaran et al. [10]
studied the challenges that DL developers face through a quanti-
tative survey among 113 software engineers and researchers from
various backgrounds and experiences. The authors showed that
DL frameworks exhibit a lack of needed features for quicker and
more efficient implementation and prototyping. As a solution, 89%
suggested the need for a system able to suggest hyper-parameters
and assist in debugging the DL model, while 72% of the respondents
suggested that a visual programming tool would be useful to
speed up the overall development process.

In traditional software development, visual programming is a
paradigm that lets users create programs by manipulating elements
graphically rather than by specifying them textually. DARVIZ [10],
DL-IDE [12], DeepVisual [13], and ModelTracker [2] were the first
attempts to introduce visual programming IDE enabling “no-code”
intuitive way of designing deep learning models. They, however,
exhibit limitations that do not allow the design of complex and
scalable models, such as the impossibility of merging, connecting,
and reusing layers and the impossibility of customizing the training
procedure. In addition, they do not include important features for
the complete development process, such as debugging features.
Such limitationsmust be overcome to build larger andmore complex
networks, which can accomplish the recent design requirements
that emerged in the community [3]. UMLAUT [11] is, instead, an
example of a tool targeted to non-expert developers that focuses
on debugging.
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Neural Network Console developed by Sony [6] is the only avail-
able web application that overcomes most of the above limitations.
However, the DL library it supports has quite a limited user scope,
with less than 1% usage over the DL community [12]. Moreover, it
is available in the cloud, only, thus limiting the possibility of using
in-house machines and introducing several privacy concerns.

To address the limitations of the available visual programming
tools, and to reduce the gap between visual tools’ capabilities and
the freedom of expression of pure coding, we propose DeepBlocks,
a visual programming tool for DL that integrates training, debug-
ging, and evaluation of neural network models under a single user
interface. In this way, the tool covers the main steps of the DL de-
velopment workflow (Fig. 1). DeepBlocks allows DL programmers
to design neural networks by adding, connecting, and merging
layers, which we refer to as “blocks”, to create more complex layers
and architectures. In addition, DeepBlocks allows users to create
personalized blocks and add custom functions to easily adapt the
tool to their application domain. DeepBlocks also allows developers
to schedule and process multiple inputs and to design networks
with multiple branches, being this a novel feature the existing tools,
which only allows building layers with a single forward connection.
DeepBlocks uses PyThorch, which is a DL library widely used in
the DL community, adopted by up to 75% of the papers available in
the literature.

Starting from a formative interview with 3 Machine Learning
engineers and 2 Ph.D. students in the field of deep learning, we
obtained nine crucial functionalities to be implemented in Deep-
Blocks, to make it useful, efficient, and versatile. We then present
the design and implementation of the tool, and report a use case to
validate it. Finally, we discuss possible advantages and limitations
and conclude with future work.

2 FORMATIVE INTERVIEWS AND DESIGN
GOALS

We conducted five semi-structured interviews, online and in-person,
to five DL developers in October 2022. In the interviews, we focused
on three main questions: 1) how they perform the design of deep
learning architectures; 2) the main difficulties they face throughout
the process; and 3) we discussed the possible advantages and dis-
advantages of the adoption of a visual programming interface to
develop deep learning architectures.

We interviewed three data scientists who frequently develop
deep learning models at a large, data-driven software company, and
two artificial intelligence Ph.D. students, who both develop and
apply deep learning models in their research field. 3 participants
(P1–P5) self-identified as male and 2 self-identified as females, their
age was between 25 and 29 years old, and they signed a consent
form before starting the interview. We synthesized the results of
the interviews into nine design goals, which guided the design of
DeepBlocks. In a subsequent phase, participants were asked to rank
the goals by importance and comment on their decisions.

2.1 Results and Design Goals
For P1, P2, and P4 the main difficulty in programming deep neu-
ral networks is to understand from the code how the network is
structured; they argue that the code structure, in a large number

of cases, does not reflect the structure of the network, leading to
inefficient design.

For P3 and P5 the most important issue is to locate bugs in the
architecture, along with the fact that they can only spot them at the
start of the training phase. From this insight, we set our first design
goal to be Interactive Debugging. Furthermore, P1 and P3 point out
that it takes a lot of effort to monitor the inputs and outputs for
every layer of the network during training and that simplifying
such procedure would be useful to better understand the behavior
of the model. We summarize this finding in a second design goal:
Visualization of blocks inputs and outputs.Wherewe refer as a ‘block’
to an elementary architectural layer. P4 and P5 add that the reuse

Figure 2: The design goals we derived from formative inter-
views, ordered by the average importance given by every
participant.

of layers between different architectures is particularly prohibitive
due to a lack of compatibility and difficulties in separating the
individual layers from their context. From this insight, we obtain
the third design goal: Load existing and custom blocks.

P1, P2, P4, and P5 are concerned about the possibility that a
visual tool would be actually able to convey the same freedom of
design that coding does; on the other hand, all participants agree
that visual programming could be particularly suitable for the deep
learning domain, due to the repetitiveness of layers that composes
the architectures and the limited procedures schemes to train a
network. Furthermore, P2, P4, and P5 argue that a simple and in-
tuitive user interface is preferable over a more sophisticated one,
even at the cost of implementing fewer customization options; this
insight led us to derive a fourth design goal: Simple and Intuitive
Interface. In addition, for P1, P2 and P5, in a visual programming
interface default blocks should be organized in structured menus;
from this observation, we obtain our fifth goal: Blocks Organized
in structured menus. P1, P3, and P4 pointed out that such a visual
tool should be capable of designing the same architectures that
can be programmed with code, both in terms of complexity and
scalability; from this point, we derive the sixth, seventh, and eighth
design goals:Hierarchical Aggregation of blocks, Customizable blocks
and Personalize optimization strategy. P3 and P4 evidenced that not
only such a visual tool should be capable of designing the same
architectures that can be programmed with code but also it should
be able to do the same kind of model evaluation; this led us to set
the ninth design goal: Visualization for model evaluation.
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Figure 3: DeepBlocks Layout

In a second phase, participants were asked to rank the resulting
design goals, with a score from 1 (lowest importance) to 9 (highest
importance) in order for us to focus our efforts on the most relevant
design features. The results shown in Figure 2 reflect the findings
of the formative interviews, where participants agree to the need
for a simple interface to visually program the architectures and a
proper interactive debugging procedure that can easily notify users
about the location and the type of bug.

3 DEEPBLOCKS
DeepBlocks is a visual programming tool intended for Deep Learn-
ing engineers that need to develop and test complex deep learning
architectures. We designed DeepBlocks to accomplish the needs
extracted from the formative interviews. In this section, we list the
main features of DeepBlocks and describe its design and implemen-
tation.

3.1 An Example Scenario
We introduce an example scenario that will be developed through-
out all Section 3 to illustrate to the reader how the implemented
functionalities can be used by a programmer to achieve the design
of a simple DL architecture.

John is a Computer Engineering student, he is in his
third year of B.S., and he is following the Artificial In-
telligence course. In the second assignment, he has been
charged with developing, to classify an image dataset, a
simple neural network composed of five Fully Connected
Layers, using DeepBlocks.

3.2 Layout of DeepBlocks
John downloads DeepBlocks installs its dependencies
and launches the program. To design the network, he
adds an input block and five fully connected blocks by

clicking the “+” button on the respective voice in the
right panel. By clicking on the “Add Data. . . ” button
in the “Input” voice on the tree menu in the left panel,
John can select the dataset file from a dialog. John is
not required to custom preprocess the dataset, since it is
already in the format specified in the tool’s documenta-
tion.

The layout of DeepBlocks is illustrated in Fig. 3. DeepBlocks
consists of six main panes: Network Menu, The Architecture Visu-
alizer and Builder, the Blocks Menu Pane, the Project Controls, the
Results Visualization Pane, and the Optimization, Debug, and Visu-
alization Pane. The Network Menu, located on the upper left, lists
the current blocks present in the architectures and allows access to
their specific controls and parameters. The Architecture Visualizer
and Builder is the core of the visual programming capabilities of
DeepBlocks; it visualizes the blocks and allows the user to connect
the input and outputs terminal of different blocks. By right-clicking
on a specific block, users can save it under the “custom” menu in the
Blocks Pane, or, when multiple blocks are selected, users can merge
them into an abstract ”SuperBlock”. In addition, the Architecture
Visualizer and Builder provides debug tips: when a block is not
correctly processed, its contours are colored red, and when a signal
is not processed, due to an error in the block, the input and output
terminals are colored yellow as shown in Fig. 3. The Blocks Pane
lists the default available blocks, which are subdivided into main
blocks, which are the most typical deep learning processing layers,
as well as miscellaneous blocks, such as the one to concatenate
data or to do a logical OR between two inputs. In addition, the
Blocks Pane contains the controls that allow to saving and load
one or multiple custom blocks. The Optimization, Debug, and Visu-
alization Pane include the optimization controls to train and test
the network, the debug information of the selected block, and a
visualization section to visualize the inputs and outputs of every
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Figure 4: Illustration of a SuperBlock and its hierarchical visualization in the Network Menu

block. In the Results Visualization Pane are plotted the train and
test accuracy. Finally, the Project Controls Pane, allows you to save
or load a project.

3.3 Visual Programming in DeepBlocks
John connects the blocks he previously added starting
from the Input block, and sequentially through every
Fully Connected Block until the output block. He then
sets the right input and output dimension for every
Block, checking the output dimension of every Block
in the Visualization pane. John then merges the five
fully connected Blocks into a SuperBlock and renames
it “Backbone”. He then saves the “Backbone” block in
the custom blocks tree, by right-clicking over it and
selecting the “Save” option.

With respect to the literature, DeepBlocks provides a fully scal-
able way to visually design DL architectures and the possibility to
design complex, multi-branch architectures. Large practical cases
could be modeled in deep blocks thanks to the possibility of adding
custom blocks, mergingmultiple blocks into hierarchical “SuperBlocks”
as well as the possibility of scheduling multiple inputs and creating
multi-branch connections.

A Block is composed of one or multiple input and output ter-
minals. Every Block contains a Python function that characterizes
it; users can add custom blocks by adding “Custom Block” from
the Blocks Pane and specifying its custom function, or can directly
load existing custom blocks; the latter can be useful for non-expert
users, which when reusing a custom made block could only focus
on its input and outputs and not on the underlying logic. The blocks
specific properties can be set in the Network Menu (see Fig. 4).

To scale up the designed architecture, selected blocks can be
merged into more abstract “SuperBlocks” by invoking the right-
click menu over the Architecture Visualizer and Builder and se-
lecting the “Merge” option. SuperBlocks sub-blocks can be hier-
archically visualized, along with their controls, in the Network
Menu. To train or execute the architecture, a computational tree
is generated, starting from input blocks and recurrently through
every connection; if two branches converge on the same block, they
are guaranteed to be processed sequentially before the successive
computations. Cycles are not allowed in our setting. In order to
expand the capabilities of the training procedure, we introduced
a notion of “order” for every input. Inputs can be assigned to one
or multiple orders. At every training step, orders are executed se-
quentially, and, for each order, only the signals coming from input
blocks that belong to the specified order are passed downstream,
while for the others is passed a null value. This allows the designing
of many practical architectures that require alternation of different
input signals. An input signal is a dictionary composed of the input
value, the ground truth, the current order, and a flag indicating if
the current is a test or a training step. By accessing the dictionary,
the different custom functions can be programmed depending on
the order currently executing. We believe that the above-proposed
features, which are mostly missing in the literature, can make a step
forward in allowing developers to design with our visual program-
ming tool most of the variety of the typical architectural designs.

3.4 Debug Features and Validation
John notices that the contours of the “Backbone” Su-
perBlock are painted red; he inspects the debug pane
to check what error is causing the block not to process,
and understands that there is a problem in the input
dimensions since the image must be flattened before
passing it to the Fully Connected Block. He flattens the
input of the first fully connected block on the left pane,
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Figure 5: Visualization Features of DeepBlocks.

and the red contour disappears. He then sets up the op-
timization parameters, and finally trains the network.
He checks the training meters by looking at the Train
Metrics Plot on the right.

Although the model evaluation is not the main focus of Deep-
Blocks, which is rather more engineered on the architecture design,
we added two main features to monitor the model results: the Vi-
sualization and the Train Metric Plot panes (Fig. 5). The former
reports, for the selected block, the input and output dimensions,
as well as an heatmap of their values. The latter shows training
reports evaluation metrics over the training and test data.

In addition, as in John’s story, a Debug Pane is available, showing
the type and dimension of the various Blocks’ inputs and outputs.

3.5 Implementation Details
DeepBlocks has been implemented in Python 3.8 using PyTorch
[7] for Deep Learning modeling, PyQT5 [8] for the user interface
design, and PyQTgraph [9] for the visual programming features.

4 USE CASE: DOMAIN-ADVERSARIAL
NEURAL NETWORK

This section demonstrates the applicability of DeepBlocks in a typ-
ical use cases: how to visually design a domain-adversarial neural
network (DANN) [5]. DANN takes as inputs labeled samples from
a source distribution and unlabelled samples from a target distribu-
tion and it learns how to extract the features to solve the task for
both the source and target domains.

We start by adding two Inputs Blocks and load on the first the
source and the second the target domain data. We then concatenate
the outputs. To design the feature extractor, we add three Convolu-
tional Blocks to the Architecture Visualization and Builder Pane,
and connect them; we then select them and merge them into a
single SuperBlock that we rename “Feature Extractor”. From the

miscellaneous blocks, we add the Copy Block that simply copies
the input to one or more outputs, and we connect it to the outputs
of the Feature Extractor. To design the label classifier, we add three
Fully Connected Blocks, connect them and merge them as done
with the Feature Extractor. We repeat the process for the Domain
Classifier. To reverse the gradients of the Domain classifier, we add
a Custom Block where we simply replace the predefined “back-
ward” function returning its negative. Fig. 6 reports the resulting
architecture along with the one in the reference paper [5].

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced DeepBlocks, a visual programming
tool for deep learning software development. DeepBlocks allows
developers to design and implement DL architectures visually. The
tool provides several development features including model design-
ing from scratch, interactive debugging, model training, and model
inference. In addition, with respect to the previously available tools,
DeepBlocks allows the designing of more complex, scalable, and
custom architectures.

We designed DeepBlocks with the support of a formative inter-
view with 5 participants, and we preliminary validated it through
a use case. With the use case, in particular, we showed that just
allowing a little customization of blocks, we can permit developers
to visually design complex and experimental architectures. Clearly,
there is a trade-off between customization capabilities and the ac-
tual automation that DeepBlocks provides in the process of DL
programming. Allowing customization without losing automation
is design-challenging, but it could augment the complexity of the
tool; for example, when adding the notion of “order” — to let users
customize the training procedure — we require the users to specify
it for every training procedure. The right balance should be found
between customization capabilities, complexity, and automation of
the tool.
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Figure 6: Domain-Adversarial Neural Network as described in [5] (above) and visualized in DeepBlocks (below).

As future work, DeepBlocks can tame the problem of visualizing
a large number of inputs and outputs (in the order of billion). Cur-
rently, there is also no way in the tool to understand the behavior
of sub-blocks that composes a SuperBlock. This applies to debug as
well; in fact, from a faulty SuperBlock you cannot visually locate the
bug in the sub-blocks without expanding it in the Debug Pane, and
this becomes unfeasible with a very large number of hierarchies.

Among the next steps, DeepBlocks needs to undergo a series of
user studies, involving its usability and effectiveness against similar
tools and traditional programming approaches. Finally, once the
tool is consolidated, we plan to release it and further evaluate the
tool in a large-scale, in-the-wild study, e.g., with machine learning
students.
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