
Computer D. Siewiorek
Systems Editor

Reverse Path
Forwarding of
Broadcast Packets
Yogen K. Dalal and Robert M. Metcalfe
Xerox Corporation and
Stanford University

A broadcast packet is for delivery to all nodes of a
network. Algorithms for accomplishing this delivery
through a store-and-forward packet switching computer
network include (1) transmission of separately
addressed packets, (2) multidestination addressing,
(3) hot potato forwarding, (4) spanning tree forwarding,
and (5) source based forwarding. To this list of
algorithms we add (6) reverse path forwarding, a
broadcast routing method which exploits routing
procedures and data structures already available for
packet switching. Reverse path forwarding is a practical
algorithm for broadcast routing in store-and-forward
packet switching computer networks. The algorithm is
described as being practical because it is not optimal
according to metrics developed for its analysis in this
paper, and also because it can be implemented in
existing networks with less complexity than that
required for the known alternatives.

Key Words and Phrases: reverse path forwarding,
broadcast packets, routing, computer networks, store-
and-forward packet switching, broadcast protocols

CR Categories: 3.81, 4.32, 5.32

1. Introduction

Store-and-forward packet switching computer net-
works provide communication using computers as well

Permission to 'copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was done at the Stanford University Digital Systems
Laboratory, supported in part by the Advanced Research Projects
Agency, Department of Defense, under Arpa Order Number 2494,
Contract Number MDA903-76C-0093, and in part by the National
Science Foundation, under Research Grant MCS73-07973-A1,2.

Authors' address: Xerox Systems Development Department, Xe-
rox Corporation, 3408 Hillview Avenue, Palo Alto, CA 94304.
© 1978 ACM 0001-0782/78/1200-1040 $00.75

1040

as communication among computers. The delay versus
throughput characteristics of these networks make them
exceptionally suitable for general purpose computer-to-
computer communication [10]. Such networks use so-
called routing algorithms, which direct a packet from its
source node to its destination node. Store-and-forward
packet switching networks based on point-to-point cir-
cuits, like the Arpanet [14], use either static or dynamic
routine tables to minimize the delivery delay due to
store-and-forward transmissions.

Whilepoint-to-point packet switching has proven very
useful in computer resource sharing, certain distributed
computing applications requiring multipoint communi-
cation have been suffering. Broadcast multipoint com-
munication is the delivery of messages to all destinations,
while multicast, or multidestination delivery, is the deliv-
ery of messages to some specified subset of all the
destinations. Ethernet [11], the DCS Ring [6] and other
broadcast networks are ideally suited for such commu-
nication. Broadcast routing is defined to be the routing
procedures by which broadcast is achievable in inher-
ently nonbroadcast communication networks [4]. Broad-
cast routing is a special case of multidestination
routing.

Some applications in distributed computing environ-
ments require broadcast while others require multicast.
For example, in the Arpanet user authentication and
billing scheme [3], a Tip must locate an RSExec server
to process and verify a user's password, and then period-
ically record the user's charges. Multicast helps in locat-
ing one of several RSExec servers faster, and can help in
redundantly storing accounting data. Autodin I supports
multidestination addressing and the average address
multiplicity per message is 1.75 [13]. On the other hand,
broadcast routing could be used in the case where the
headquarters of a corporation each day issues directives
and news to all its branch offices which are connected
together by, say, a private store-and-forward communi-
cation network.

Algorithms for broadcast routing through a store-
and-forward packet switching computer network include
(1) transmission of separately addressed packets, (2)
multidestination addressing, (3) hot potato forwarding,
(4) spanning tree forwarding, and (5) source based for-
warding. To this list of algorithms, we present in this
paper (6) reverse path forwarding, a broadcast routing
method which exploits routing procedures and data
structures already available for packet switching.

Reverse path forwarding is a practical algorithm for
broadcast routing in store-and-forward packet switching
computer networks. The algorithm is described as being
practical because it is not optimal according to metrics
developed for its analysis in this paper, and also because
it can be implemented in existing networks with less
complexity than that required for the known alternatives.

Section 2 of this paper proposes a simple abstract
model with which to view store-and-forward packet
routing. Section 3 describes alternatives for broadcast

Communications December 1978
of Volume 21
the ACM Number 12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359657.359665&domain=pdf&date_stamp=1978-12-01

routing. Reverse path forwarding is described in Section
4, and its extension in Section 5. The performance of
reverse path forwarding as compared to the other known
alternatives is discussed in Section 6. Section 7 discusses
the reliability of broadcast routing algorithms, and Sec-
tion 8 presents our conclusions.

2. Store-and-Forward Routing

Efficient techniques for store-and-forward routing in
packet switching networks are vital to achieve low delay,
congestion free communication. This subject has re-
ceived considerable attention and analysis [7, 8, 12].

Typically, each node in the network has a routing
function that determines the appropriate outgoing link
that an arriving packet should take toward its destina-
tion. The routing function is based on route maintenance
and link maintenance algorithms. Route maintenance is
the updating of the routing table, used by the routing
function, based on estimates of delay between nodes of
the network. Link maintenance is the determination of
expected delays along links connected to a node. This
information is used to influence the route maintenance
algorithm. Link maintenance in a node involves that
node and its links, while route maintenance involves all
nodes and links.

Route maintenance can be performed statically or
dynamically. Static route maintenance involves setting
up the routing tables at the start, once and for all, with
no maintenance at all. Dynamic route maintenance is
sensitive to traffic patterns and network topology
changes. Dynamic route maintenance can be achieved
by a centralized or distributed algorithm. Centralized
route maintenance involves some centralized measure-
ment and control authority. This authority collects sta-
tistics on internode delays and then updates the routing
tables at each node. Distributed route maintenance in-
volves each node in updating its own routing tables
based on communication with other nodes (typically the
number is much smaller than the total number of nodes
in the network). A detailed taxonomy of route mainte-
nance algorithms can be found in [12].

The output of the routing function can be a link or
multiple alternative links. The latter kind of output may
be used to transmit successive packets over different
links in order to distribute packets in the network uni-
formly, thereby not producing localized points of conges-
tion, or causing the route maintenance algorithm to
oscillate.

2.1 Abstract Model
Store and forward routing algorithms can be modeled

abstractly in the following manner:
A network consists of nodes labeled 1, 2, 3 N.

Each node is connected to some other set of nodes by
links that are labeled 1, 2, 3 L relative to that node.
A node's neighbors are those nodes connected to it by

1041

links. Each node knows its own identity, referred to as
self, but not necessarily the identity of its neighbors. We
assume, without loss of generality, that there is exactly
one host computer connected to each packet-switching
node through its link 0. Since each node has only one
host connected to it, node addresses are synonymous
with host addresses.

A packet is defined by SourceNode, the source of the
packet, by DestinationNode, the intended destination of
the packet, and by Text, the contents of the packet. At
each node, a packet is associated with an lncomingLink,
the link on which it arrived, and an OutgoingLink, the
link over which it is to be transmitted. The OutgoingLink
is determined by applying the routing function, routing,
to the DestinationNode of the arriving packet. Stated
more formally, for the arriving packet, OutgoingLink
~-- Routing[DestinationNode]. If OutgoingLink is 0, then
the packet is destined to the host connected to the node.
The DestinationNode for such packets is equal to self. If
OutgoingLink is -1 , then the DestinationNode is un-
reachable, and the packet is discarded.

We assume that route maintenance attempts to min-
imize delivery delay. We assume further that delay is
measured in hops, the number of links over which a
packet is transmitted to reach its destination. These
assumptions allow the reader to work examples simply
with small integers evident from topology.

3. Broadcast Routing Algorithms

In this section we briefly describe the five other
methods for routing broadcast packets [2, 4], and in the
following sections we describe reverse path forwarding.
A special destination address, AllNodes, is reserved for
packets that are to be broadcast. Some algorithms will
use the distinguished AllNodes address, while others will
not.

These are metrics by which the broadcast routing
algorithms are evaluated:

(1) C(n), the number of packet copies transmitted to
broadcast a packet from the host connected to node n.
The unit for C(n) is packet-hops. The minimum value
for C(n) is 2N - 1, where N is the number of nodes.
This is so because exactly one packet copy is transmitted
from the source node per destination node, accounting
for N - 1 packet-hops, and there are an additional N
packet-hops to and from hosts and nodes. Each of the
N - 1 destination hosts requires its own copy from its
node, and one copy is required from the source host to
source node.

(2) A(n), the average delay across the N - 1 desti-
nation hosts, before a host receives a broadcast packet
from the host connected to node n.

(3) M(n), the maximum delay across the N - 1
destination hosts, before a host receives a broadcast
packet from the host connected to node n.

Communications December 1978
of Volume 21
the ACM Number 12

Other nonquantitative measures are (1) the changes
to packet format, (2) the amount of table space in each
node specifically for broadcast routing, (3) algorithm
complexity in the node, and (4) reliability of the broad-
cast.

Network flooding is defined as the excessive retrans-
mission and forwarding of a broadcast packet. Broadcast
routing algorithms should be stable enough never to
cause flooding.

Since broadcast routing algorithms route broadcast
packets to many destinations, many of the parameters in
the abstract model described in Section 2.1 will become
sets. For example, OutgoingLink wilt generalize to
OutgoingLinkSet. If OutgoingLinkSet is empty, then the
packet is discarded. AllLinks is the set of links {0, 1, 2,
.... L} at each node. We introduce such generalizations
or modifications as they arise.

3.1 Separately Addressed Packets
The simplest me thod for achieving broadcast is to

make a copy of the broadcast packet, at the source, one
for each destination, and to use the normal routing
mechanism for delivering each one. This is how multicast
is achieved in the Arpanet.

The disadvantages of this method are that many
more packet copies are transmitted than necessary, the
average and maximum delays are quite large because of
queueing delays, and the level of congestion within the
network increases with the large number of packet copies
and their interference with one another.

On the positive side, no changes are required to the
routing algorithm or packet format, and the reliability of
broadcast is as much as the underlying routing mecha-
nism.

3.2 Multidestination Addressing
If packets could carry multiple destination addresses,

then existing routing mechanisms can be used to achieve
broadcast routing with the optimal number of packet
copies and minimum delay. DestinationNode would gen-
eralize to DestinationNodeSet. Packets would then have
a variable length destination address field to carry mul-
tiple addresses, or perhaps a fixed length bit map.

Copies of the broadcast packet are made at a node
when the different destinations in DestinationNodeSet
imply different outgoing links. Copies partition the
IncomingDestinationNodeSet which is the set of desti-
nation nodes in an incoming packet. A modified copy of
the arriving packet is generated for each member of the
OutgoingLinkSet. An outgoing packet lists in its
DestinationNodeSet a partition of the Destination-
NodeSet of the incoming packet. For each Link in the
OutgoingLinkSet, a copy is made of the incoming packet
such that its OutgoingDestinationNodeSet (the set of
destination nodes in an outgoing packet) is the set of all
nodes such that the Node is in IncomingDestination-
NodeSet, and Routing[Node] is equal to the outgoing
Link. Stated more formally:

1042

OutgoingLinkSet ,--- {Routing[IncomingDestinationNodeSet]}
FOR Link ~ OutgoingLinkSet DO

BEGIN
OutgoingDestinationNodeSet ~ { }
FOR Node E IncomingDestinationNodeSet DO

IF Link = Routing[Node] THEN
OutgoingDestinationNodeSet ~-- OutgoingDestinationNodeSet

+ {Node}
copy packet on Link
END.

This algorithm requires a modification to the routing
algorithm to extend it to handle multiple destinations in
a packet. No additional tables are needed by the algo-
rithm. This algorithm permits multicast, by just restrict-
ing the OutgoingDestinationNodeSet at the source.

3.3 Hot Potato Forwarding
This algorithm and the remaining ones described in

this section use the reserved destination address All-
Nodes.

During hot potato forwarding, each node copies the
arriving broadcast packet on all links except the
IncomingLink [1]. This simple scheme produces network
flooding very quickly, and steps must be taken to prevent
it.

The simplest method to prevent flooding is to have
a SequenceNumber field in each broadcast packet. Each
node remembers for some time the sequence numbers of
broadcast packets copied and forwarded, from various
sources, and does not make copies of any broadcast
packets it has already seen. This method is not attractive
because it is hard to define how many sequence numbers
must be remembered and for how long.

Alternately broadcast packets could have a Hop-
Count field, which is incremented each time copies are
made of a broadcast packet. Upon receiving a broadcast
packet whose HopCount field has exceeded a threshold,
the packet is discarded thereby abating network flooding.
In terms of the abstract model, the actions performed at
each node on the arrival of a packet are:

IF Destinat ionNode = AllNodes T H E N
BEGIN
HopCount ~ HopCount + 1
IF HopCount = threshold T H E N OutgoingLinkSet *-- {0}
ELSE IF HopCount > threshold T H E N OutgoingLinkSet ~ { }

ELSE OutgoingLinkSet ~-- AllLinks - IncomingLink
END

ELSE OutgoingLinkSet ~-- {Routing[DestinationNode]}

This method requires modification of format for
broadcast packets, and some more processing within the
node. Using HopCounts still generates far too many
packets for a safe value of threshold, for example, the
diameter of the network. The diameter of a network is
the length of any longest geodesic. A geodesic is the
shortest path between any two nodes [9]. The large
number of packet copies generated may produce conges-
tion within the network. Further, packet copies will be
in existence for a time larger than the maximum delay
before a node receives the broadcast packet, and there-
fore the delay for subsequent packet transmissions will

Communicat ions December 1978
of Volume 21
the ACM Number 12

also increase. The reliability of hot potato routing is very
high, and this is the very reason that Baran proposed it
in 1965.

3.4 Spanning Tree Forwarding
A spanning tree for a network is a tree that spans the

nodes of the network, such that if any branch of this tree
were removed, then the two remaining subtrees would
be disconnected. A network can have more than one
spanning tree.

In graph theoretical terms, a spanning tree is defined
as follows: Consider a connected, undirected graph, G,
with vertex set 11, and edge set, E (E is a subset of V x
V). A spanning tree is a subset of E, such that there is a
unique path between any two vertices in V. A spanning
tree is also a one-connected graph. Suppose there is a
cost associated with every edge in E; a minimal spanning
tree of G is a spanning tree that minimizes the sum of
the cost of the edges.

If a single spanning tree were overlayed on the
network topology, then every node would lie on it. Each
node would know which of its links were branches of
the spanning tree. A broadcast could be initiated from
any node. At each node, the broadcast packet will be
copied and transmitted along the branches of the span=
ning tree, except along the branch on which it arrives. If
the broadcast packet arrives on a link not in the spanning
tree, then it is discarded, since its transmission can
produce flooding. For a packet to arrive on a link not in
the spanning tree, there must be an inconsistency in the
routing information which might lead to flooding, and
therefore discarding the packet is safe. Stated in terms of
our model:

IF DestinationNode = AllNodes
THEN OutgoingLinkSet ~ BroadcastRouting[IncomingLink]
ELSE OutgoingLink ~ Routing[DestinationNode].

This scheme is optimal in the number of packet
copies, but not delay. The delay is a function of the
position of the node within the spanning tree from where
the broadcast was initiated.

The algorithm requires no change to the packet
format and makes use of the reserved destination address
AllNodes. There is a small table at each node. The
spanning tree could be static and set up initially. Alter-
nately the spanning tree could be dynamically updated
using a centralized computation. If the spanning tree was
a minimal spanning tree then a somewhat expensive
distributed computation could be used to dynamically
change it [4].

3.5 Source Based Forwarding
A broadcast packet that arrives at a node is copied

along a subset of the links according to the data structure
in each node which lists the outgoing links to use as a
function of packet source. This data structure is based
on the shortest path trees from each node to all the
others, or in other words the algorithm is based on
having a delay-minimizing spanning tree for each source

1043

node rather than only one for all nodes. This algorithm
makes use of the reserved destination address AllNodes
as well. In terms of the abstract model, the actions a
node performs on receiving a packet is:

IF DestinationNode = AllNodes
THEN OutgoingLinkSet ~ BroadcastRouting[SourceNode]
ELSE OutgoingLink ~ Routing[DestinationNode].

The characteristics of this algorithm are that the
arriving packet is copied but not modified, the optimal
number of packet copies is generated, ar/d the transmis-
sion delay is minimum. There is, however, a large table
at each node, and updating this table in a dynamic
manner involves a complex computation.

4. The Reverse Path Forwarding Algorithm

The reverse path forwarding algorithm broadcasts
packets with the reserved destination address AllNodes
based on the source of the packet. This is achieved
without any extra tables and routing procedures beyond
those described in the abstract model for point-to-point
routing.

When a broadcast packet arrives at a node on an
IncomingLink, the node will copy this packet on All-
Links except the IncomingLink, if and only if the node
believes that the best way to get to SourceNode is via
IncomingLink. If this condition is not met, then the
broadcast packet is discarded, thereby preventing net-
work flooding. This algorithm has the flavor of both hot
potato and source based forwarding. In terms of the
abstract model, the actions a node would perform on
receiving a packet are:

IF DestinationNode = AllNodes THEN
BEGIN

IF IncomingLink = Routing[SourceNode]
THEN OutgoingLinkSet ~ AllLinks - {IncomingLink}
ELSE OutgoingLinkSet ~-- { }
END

ELSE OutgoingLink ~-- Routing[DestinationNode].

The algorithm derives its name, reverse path for-
warding, from the observation that a broadcast packet is
accepted for forwarding only if it arrives along a link
that is part of the shortest path tree to SourceNode from
all the other nodes. This is the shortest reverse path tree
from SourceNode, and is in general different from the
shortest path tree from SourceNode to all the other
nodes. In the case that delays over links are the same in
both directions, as with hop counts, the shortest path tree
from SourceNode and the shortest reverse path tree from
SourceNode are isomorphic.

The shortest reverse path trees are very easily derivable
from the shortest path trees from a node, which is what the
route maintenance algorithm uses to build the routing
table. Figure 1 illustrates how the reverse path forward-
ing takes place from node 8, along the reverse path tree
from node 8. The packet copies are labeled Pij....,k, where
i is the source of the packet and k its immediate desti-

Communications December 1978
of Volume 21
the ACM Number 12

Fig. 1. Reverse path forwarding initiated from node 8.

p Pa,9,7,3, 2 3

' "J ~ 9 "8'9'7

4 i k - " ' " ~ ps., ~ Pe,9

Fig. 2. Extended reverse path forwarding initiated from node 8.

3

nation. The sequence i, j, k defines the genealogy of
the packet. Ps.9 is the first copy arriving at a node 9 after
departure from the source 8. Likewise for P8,9,7. Note
that more packet copies are transmitted than necessary.
31 packet copies are transmitted while the optimal num-
ber is 17. (Remember to count the N copies needed
between nodes and their hosts.) The number of packet
copies transmitted is equal to the sum of the cardinality
of AllLinks at each node, minus (N - l), because each
node forwards the broadcast packet on I AllLinksl -- 1
links, except the source which has packet copies trans-
mitted on [AllLinks 1. For most network topologies, this
number is larger than the optimal value.

Although extra packet copies are generated, the extra
packets are immediately discarded, thereby preventing
network flooding.

There is no change in the packet format or data
structures at each node. The extension to the routing
function in each node is very simple, and could be made
very easily to the program in the Imps and Tips in the
Arpanet [12].

The delays to perform broadcast are minimum if the
shortest reverse path trees are isomorphic to the shortest
path trees, as would be the case if hop count was the
measure of delay. The two trees would also be iso-
morphic if communication traffic was symmetric over a
link thereby producing equal delay in both directions,
an assumption that is generally not true [5].

5. The Extended Reverse Path Forwarding Algorithm

It is the property of reverse path forwarding that
extra packet copies are deleted immediately, by the
neighbors of the node generating them. The extension is
proposed wherein a periodic exchange of routing infor-
mation among neighbors allows nodes to avoid the gen-
eration of extra packets.

The extended reverse path forwarding algorithm
transmits the optimal number of packet copies per broad-
cast by using tables similar to that used by the source
based forwarding algorithm, in conjunction with the
basic control structure described in Section 4. The tables
list the outgoing links over which an acceptable broad-

1044

cast packet should be forwarded. The algorithm makes
sure that packet copies are transmitted only along the
branches of the reverse path tree. The novel feature
about this extension to the reverse path forwarding al-
gorithm, is that this data structure can be computed very
easily in a distributed fashion, unlike the one used by
the source based forwarding algorithm. In terms of the
abstract model, the actions performed at a node are:

IF DestinationNode = AllNodes THEN
BEGIN

IF IncomingLink = Routing[SourceNode] THEN
OutgoingLinkSet ~-- BroadcastRouting[SourceNode] + {0)
ELSE OutgoingLinkSet ~ { }
END

ELSE OutgoingLink ~ Routing[DestinationNode].

Copies of a broadcast packet are made only along
the branches of the reverse path tree by using a data
structure consisting of a table, LinkBroadcastTable, for
each of the L links. Each table is indexed by SourceNode
and results in a boolean, indicating whether the broad-
cast packet from SourceNode should be copied on that
link or not. A packet addressed to AllNodes should be
copied on a link if LinkBroadcastTable[SourceNode] =
TRUE, for that link. Figure 2 illustrates the flow of
broadcast packets from node 8 along the reverse path
tree using this extension.

Consider now the process by which these tables at
each node may be updated dynamically, in a distributed
manner. In terms of the reverse path forwarding model,
in order to construct such a table, a node must know to
which destinations a given link will be used by its
neighbors to normally transmit a packet. Hence, if a
broadcast packet arrived from one of these "destina-
tions," then the node will know along which links to
make copies. Periodically, each node will transmit an
appropriate LinkBroadcastTable to each of its neighbors.
Upon receiving such a table a node merely replaces its
old copy by the new one. A LinkBroadcastTable can be
computed for a Link directly from the routing function
at that node:

LinkBroadcastTable[SourceNode] ~-- Routing[SourceNode] = Link.

This algorithm is optimal in the delay metrics if the
delays over a link are equal in both directions.

Communications December 1978
of Volume 2 l
the ACM Number 12

Table I. Performance of the Broadcast Routing Algorithms for the Network of Figure 3.

Performance C(n) packet hops A(n) hops M(n) hops
measure n n n

Broadcast routing algorithm l 2 3 4 l 2 3 4 1 2 3 4

C(n) A(n) M(n)

Separately addressed packets 10 9
Multidestination addressing 7 7
Source based forwarding 7 7
Hot potato forwarding 13 15

(threshold = diameter = 2)
Spanning tree forwarding 7 7
Reverse path forwarding 11 ! 1
Extended reverse path forwarding 7 7

10 9 3.6 3.3 3.6
7 7 3.3 3 3.3
7 7 3.3 3 3.3

13 15 3.3 3 3.3

7 7 3.3 3.3 4
11 i l 3.3 3 3.3
7 7 3.3 3 3.3

3.3 5 5 5 5 9.5 3.5 5
3 4 3 4 3 7 3.2 3.5
3 4 3 4 3 7 3.2 3.5
3 4 3 4 3 14 3.2 3.5

4 4 4 5 5 7 3.7 4.5
3 4 3 4 3 11 3.2 3.5
3 4 3 4 3 7 3.2 3.5

6. Performance Evaluation

Figure 3 illustrates a simple four node network. Table
I indicates the performance of the various broadcast
routing algorithms for this network. For each broadcast
routing algorithm we determine C(n) which is the num-
ber of packet copies transmitted to broadcast to all hosts
from a host connected to node n, A(n) which is the
average delay, across the N - 1 destinations, before a
broadcast packet from a host connected to node n reaches
a destination host, and M(n) which is the maximum
delay, across the N - 1 destinations, before a destination
host receives a broadcast packet from a host connected
to node n. We also determine C(n), A(n) and M(n) which
are averages over all N sources. This simple network is
presented so the reader may understand the metrics by
checking them in his head. Figure 4 illustrates the logical
map for the Arpanet as of August 1976. The network
contains 59 nodes. Table II indicates the performance of
the algorithms for this network. We only display C(n),
A(n) and M(n) which are averages over the N sources
for the Arpanet, since the table would have otherwise
become extremely large?

The performance was calculated keeping some other
issues in mind:

(i) The effect of queueing delays has not been taken
into account for any of the other algorithms except
separately addressed packets for which it is assumed that
a source host can only transmit a packet to the source
node after the packet previously transmitted from the
source host to its node has reached the node; a delay of
one hop.

(ii) When determining M(n) for separately addressed
packets it is assumed that the source host transmits
packets to the source node in an order that minimizes
M(n). The host transmits a packet to the furthest host
first and the closest host last. In general, hosts will not
have knowledge of the communication network topol-
ogy, and so this feature provides optimistic values for
M(n).

(iii) The spanning tree used for spanning tree for-
warding was the minimal spanning tree. This minimal
spanning tree is unique since the network is transformed
into one with distinct link delays using a simple tie-

1045

Fig. 3. A network and its minimal spanning tree.

7q
4 - - 3 4 - - 3

Fig. 4. Arpanet logical map, August 1976.

45 34 4 12 47 6 31 5 49

2 10
35

3 ~25 2 7 ~ ~-

• IMP • PLURIBUSIMP
• T IP ~ S A T E L L I T E CIRCUIT

59 NODES

Table II. Performance of the broadcast routing algorithms for the
Arpanet.

Performance C(n----) A (n--) M(----n)
measure packet hops hops

Broadcast routing algorithm hops

Separately addressed packets 425 35.3 60
Multidestination addressing 117 7.3 11.1
Hot potato forwarding 1238 7.3 11.1

(threshold = diameter = 11)
Spanning tree forwarding 117 14.5 27.6
Source based forwarding 117 7.3 11.1
Reverse path forwarding 145 7.3 11.1
Extended reverse path forward- 117 7.3 11.1

ing

breaking algorithm that can be computed distributedly
[4].

(iv) For the network representing the Arpanet, it was
assumed that there was only one host connected to each
node, in order to be consistent with the abstract model
used in this paper. The metrics would have had much
larger values if the actual number was taken into account.

This analysis shows that reverse path forwarding is

Communications December 1978
of Volume 21
the ACM Number 12

an optimal algorithm under the assumptions made, and
even in an operational network in which the reverse path
tree from a node is not isomorphic to the shortest path
tree from that node its suboptimality under the C(n) and
A(n) metric is probably acceptable.

7. Reliability of Broadcast

The preceding performance evaluation misses an im-
portant consideration, namely whether broadcast routing
within the network can be made reliable, and what the
implications of unreliable broadcast is on the higher level
applications that rely on this capability. Reliability here
is taken to mean the ability to deliver exactly one copy
of the broadcast packet to all destinations, under the
assumption of a perfectly reliable network; i.e. one that
is not partitioned and therefore has a route from every
node to every other.

We first examine the reverse path, and extended
reverse path forwarding algorithms. If the route main-
tenance algorithm is static, then exactly one copy of the
broadcast packet will be delivered to each host as we
have seen in the previous two sections. If, however, the
route and link maintenance algorithms are dynamic, as
is usually the case, then both the reverse path and
extended reverse path forwarding algorithms cannot
guarantee to deliver exactly one copy of a broadcast
packet to all destinations, as we shall show.

In the reverse path forwarding algorithm, a broadcast
packet is transmitted over every link of the network. At
any instant a node has one and only one branch corre-
sponding to a given reverse path tree. The reverse path
tree for a given SourceNode may, however, change
cates or no packets to be delivered to some of the
hosts.

For example, in Figure 1, assume that node 2 has just
received packet P8,5,2 along link (2, 5) which is a branch,
but Pa,l,2 from node 1 has not yet arrived at node 2.
Node 2 will deliver P8,5,2 to its host and copy the
packet appropriately along the other links. The
routing function at node 2 may now be updated to reflect
that the best way to get to node 8 from node 2 is over
link (1, 2) and not (2, 5). Therefore when P8,1,2 arrives at
node 2 from 5, it too will be delivered to the host
connected to node 2 and copied appropriately over the
other links. Therefore, the host connected to node 2
received two copies of the broadcast packet.

Similarly, if /98,9,7,3,2 and Pa,I,2 arrived at node 2
before P8,5,2, they would be discarded since link (2, 5) is
the best way to get to node 8, the SourceNode. The
routing function at node 2 may now be updated to reflect
the fact that link (2, 5) is not the best way to get to node
8, but (1, 2) is the best way. Subsequently, when P8,~,2
arrives, it too will be discarded resulting in the delivery
of no broadcast packet to the host connected to
node 2.

1046

Consider now the extended reverse path forwarding
algorithm. In Figure 2, assume that Ps,5,6 has arrived at
node 6 from 5. It will be delivered to the host connected
to 6 and not copied further. Further assume that at this
time Ps,9,7 has not yet arrived at node 7 from 9. Now the
LinkBroadcastTables at node 3 are updated to reflect
that the best way to get to node 8 is via link (3, 6) rather
than (3, 7). Thus, when/'8,9,7 arrives at node 7, it will be
delivered to the host connected to 7 but will not be
forwarded. As a consequence, the host connected to node
3 will never receive the broadcast packet.

Similarly, if /08,9,7 and P8,9,7,3 had arrived respec-
tively at nodes 7 and 3 before P8,5,6 reached node 6,
and then the very same changes were made to the
LinkBroadcastTables at node 3, then the host connected
to node 3 will receive duplicate copies of the broadcast
packet.

Note that the extended reverse path forwarding al-
gorithm, as stated in Section 5, copies a broadcast packet
only if it arrived on the "correct link", i.e. the same link
that the node would have used to transmit a packet to
the SourceNode using the normal routing function. This
test was necessary in the reverse path forwarding algo-
rithm to prevent network flooding. In the extended
version of the algorithm, this test is not necessary, if the
reverse path tree did not dynamically change, because
packets would only be copied along branches of the
reverse path tree and therefore arrive only on the "correct
link." If the reverse path tree can dynamically change
during the course of a broadcast, then a node may copy
a broadcast packet on a link it thinks is a branch, but its
neighbor at the other end thinks is not. For example, in
Figure 2, node 7 may forward P8,9,7 tO node 3, while node
3 has sent node 7 a LinkBroadcastTable that does not
include link (3, 7) for node 8 as SourceNode. Thus, node
3 will conclude that P8,9,7 did not arrive on the "correct
link" and will discard the packet. This may result in
node 3 never receiving an acceptable broadcast packet.
Alternatively, if nodes accepted and forwarded broadcast
packets based on the source irrespective of the link it
arrived on, then more packets would be transmitted than
necessary, and some nodes may receive duplicates.

Therefore these algorithms cannot guarantee that a
node will receive one and only one acceptable broadcast
packet. This is because during the course of a broadcast
the reverse path tree changes, and as a result decisions
made during the beginning of the broadcast process are
incorrect.

Separately addressed packets and multidestination
addressing guarantee to deliver exactly one copy of the
broadcast packet to all nodes even if adaptive routing
mechanisms are used in the network. This is because
each destination explicitly appears as a destination ad-
dress in a packet. Of course, the adaptive routing mech-
anism may cause a larger number of packet copies to be
transmitted than the optimal, and as a result may in-
crease the delay. Source based forwarding and spanning
tree forwarding, as described in this paper, guarantee to

Communications December 1978
of Volume 21
the ACM Number 12

deliver exactly one copy to all nodes since they use static
routing mechanisms. Static techniques reduce the per-
formance of all routing, broadcast included. Hot potato
forwarding guarantees to deliver at least one copy to all
nodes if the threshold is chosen correctly.

In reality, the network may partition, since it is not
perfectly reliable, and so any of the algorithms described
cannot guarantee to deliver exactly one copy of the
broadcast packet to all nodes.

8. C o n c l u s i o n s

The extended reverse path forwarding algorithm is
practical and optimal if the delays in both directions of
a link are identical. This algorithm can be implemented
in existing networks using existing routing procedures,
and with simple extensions to the data structures. The
suboptimality of reverse path forwarding under the C(n)
and actual delay metrics is probably acceptable in op-
erational networks as well.

Both reverse path and extended reverse path for-
warding algorithms have the tragic flaw, that if the
underlying dynamic routing mechanism changes the
routing tables used by the nodes during the course of a
broadcast, then a broadcast packet may not be delivered
to a node even if a path to it exists. This flaw is shared
to a greater or lesser degree by the alternatives except
for separately addressed packets, multidestination ad-
dressing and hot potato forwarding. Duplicate copies
may also be delivered.

We conjecture that it is useful to divide broadcast
routing algorithms into two classes, one oriented towards
sending a message to every host on the network, and the
other oriented towards sending a message to a relatively
small percentage of all hosts.

Algorithms of the first class will have a reasonable
cost for transmitting a message to all hosts, but essentially
the same cost for sending a message to even a small
group. Those of the second class will have a reasonable
cost for sending a message to a small group, but extrav-
agant cost for sending the message to all hosts. Examples
of the first class are hot potato forwarding, spanning tree
forwarding, source based forwarding and reverse path
forwarding, while examples of the second are separately
addressed packets and multidestination addressing.

If algorithms that support efficient broadcast routing
are used to deliver messages to a subset of the destina-
tions, then a number of hosts will receive packets that
they will subsequently discard. This is a wasteful use of
a critical resource--the communication channel con-
necting the host to the network. In such cases the channel
may become the bottleneck. Further, each host will have
to process the packet in order to decide if it is intended
for it.

Of course, techniques of the first class can be modi-
fied to be used for restricted broadcast. For example,
different spanning trees could be used for different re-

1047

stricted broadcast groups. Alternatively, a node that is
on the spanning tree, but whose host does not belong to
a restricted broadcast group, will forward the packet to
other nodes as per the conventions of the protocol with-
out delivering the packet to its host. They can be useful,
however, if communication networks wish to provide
special services.

Our division of broadcast routing algorithms into two
groups is based on what we imagine communication
networks will be used for. The most usual use of broad-
cast will be to reach a small fraction of the hosts, and
therefore there is the need for efficient multicast routing
algorithms. However, for limited purpose networks, it is
easier to imagine the need for communication with all
hosts, and therefore it is desirable to use broadcast
routing algorithms.

We have shown that it is, in general, not possible to
achieve reliable broadcast routing, but this is true of
routing in general. In some applications one might take
the position that unreliable broadcast is a prelude to
reliable point-to-point communication; for example
when a Tip in the Arpanet locates an RSExec server.
There will be other applications in which one and only
one copy of the broadcast packet must be delivered to
all hosts. The broadcast protocol within the network or
the hosts must sequence broadcast packets (messages)
generated from the source, so that duplicates may be
filtered at the destinations. Further, responses to a broad-
cast packet can contain the sequence number of the
broadcast, to identify with which message the response
is associated. It may be necessary for the recipients to
acknowledge the broadcast packet (message), so that the
source may retransmit only to hosts that did not respond,
thus reducing the bandwidth used in the reliable broad-
cast. The design of reliable broadcast protocols analo-
gous to reliable point-to-point interprocess communica-
tion protocols in computer networks is a subject for
future research.

Acknowledgments. An earlier treatment of these al-
gorithms appears in Yogen Dalal's Stanford Ph.D. dis-
sertation supervised by Vinton G. Cerf, Robert M. Met-
calfe, Susan S. Owicki, and Philip M. Spira.

Received October 1977

References
1. Baran, P., Boehm, S., and Smith, P. On Distributed
Communication. Tech. Rep., Vol. 1-9, Rand Corp., Santa Monica,
Calif., 1964.
2. Cerf, V.G. Obtaining broadcast communication from non-
broadcast transmission media. Private communication, Sept, 1976.
3. Cosell, B.P., Johnson, P.R., Malman, J. H., Schantz, R.E.,
Sussman, J., Thomas, R.H., and Walden, D.C. An operational system
for computer resource sharing. Proc. Fifth Symp. Operating Syst.
Principles, Nov. 1975, 75-81 (available from ACM, New York).
4. Dalai, Y.K. Broadcast protocols in packet switched computer
networks., Ph.D. Th., Stanford, DSL Techn. Rep. 128, April 1977;
available as R78-64, IEEE Comptr. Repository, IEEE-CS, Long
Beach, Calif.
5. Danthine, A.A.S., and Eschenauer, E.C. Influence on packet
node behavior of the internode protocol. 1EEE Trans. Comm. COM-
24, 6 (June 1976), 606-614.

Communications December 1978
of Volume 21
the ACM Number 12

6. Farber, D.J., and Larson, K,C. The structure of a distributed
computing system--the communication system. Proc. Symp.
Computer-Communications Networks and Traffic, Polytechnic Inst.
of Brooklyn, Brooklyn, N.Y., April 1972, pp. 21-27.
7. Fultz, G.L. Adaptive routing techniques for message switching
computer communication networks. Ph.D. Th., UCLA-ENG-7252,
U. of California, Los Angeles, July 1972.
8. Gerla, M. The design of store- and forward (S/F) networks for
computer communication. Ph.D. Th., UCLA-ENG-7319, U. of
California, Los Angeles, 1973.
9. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969.
10. Metcalfe, R.M. Packet Communication. Ph.D. Th., Harvard,
Proj. Mac Tech. Rep. No. 114, M.I.T., Cambridge, Mass., Dec. 1973.
II . Metcalfe, R.M., and Boggs, D.R., Ethernet: Distributed packet
switching for local computer networks. Comm. ACM 19, 7 (July
1976), 395-404.
12. McQuillan, J.M. Adaptive routing algorithms for distributed
computer networks. Ph.D. Th., Harvard, BBN Rep. 2831, May 1974;
available as AD781467, N.T.I.S., Springfield, Va.
13. Paoletti, L.M. AUTODIN. In Computer Communication
Networks, R.L. Grimsdale and F.F. Kuo, Eds. (Proc. NATO
Advanced Study Inst. Comptr. Comm. Networks, Sussex, U.K., Sept.
1973), Noordoff Int. Publ., Leyden, 1975.
14. Roberts, L.G., and Wessler, B.D. The ARPA computer network.
In Computer Communication Networks, N. Abramson and F. Kuo,
Eds., Prentice-Hall, Englewood Cliffs, N.J., 1972.

Corrigendum. Programming Languages

David Gries, An Exercise in Proving Parallel Programs
Correct, Comm. ACM 20, 12 (Dec. 1977), 921-930.

Dr. Leslie Lamport detected what appeared to be a
methodological mistake in the proof of the on-the-fly
garbage collector. The assignment atleastgray(m[t].left)
of the Collector (see the algorithm labeled (3.6) on page
925) contains references to the two shared variables
m[z].lefi and m[m[t].leftl.color, and this clearly violates
the restriction (2.10) found on page 923.

The problem is not a methodological error but a
missing footnote. The statement atleastgray(m[t].left) in
(3.6) does have a footnote number 3 attached to it, and
an earlier version of the paper [Springer Lecture Notes
in Computer Science 46, 1976, 57-81] contained the
footnote

This should be written as "t:= m[t].left; atleastgray(t)'" where t is a
local variable. Since the mutator never tests the color of a node and
only grays a node using also atleastgray, the single statement atleast-
gray(m[t].left) is equivalent under parallel operation to this sequence
of two operations.

Dr. Lamport also noted that the informal discussion
of noninterference of assertions (4.5. l) and (4.5.2) in the
first four paragraphs of Section 4.5 could be interpreted
as using circular reasoning, but that a formal proof of
noninterference does indeed work.

My thanks to Dr. Lamport for pointing out these
problems and my apologies for any inconvenience they
have caused the reader.

Programming J.J. Homing
Languages Editor

Abstract Data Types
and Software
Validation
John V. Guttag, Ellis Horowitz, and
David R. Musser
University of Southern California

A data abstraction can be naturally specified using
algebraic axioms. The virtue of these axioms is that
they permit a representation-independent formal
specification of a data type. An example is given which
shows how to employ algebraic axioms at successive
levels of implementation. The major thrust of the paper
is twofold. First, it is shown how the use of algebraic
axiomatizations can simplify the process of proving the
correctness of an implementation of an abstract data
type. Second, semi-automatic tools are described which
can be used both to automate such proofs of
correctness and to derive an immediate implementation
from the axioms. This implementation allows for limited
testing of programs at design time, before a
conventional implementation is accomplished.

Key Words and Phrases: abstract data type,
correctness proof, data type, data structure,
specification, software specification

CR Categories: 4.34, 5.24

1. Introduction

The key problem in the design and validation of
large software systems is reducing the amount of corn-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was supported in part by the National Science
Foundation under Grant MCS76-06089, by the Defense Research
Projects Agency under Contract DAHC 15 72 C 0308, and by the Joint
Services Electronics Program Monitored by the Air Force Office of
Scientific Research under Contract F44 620-76-C-0061.

Authors' addresses: J.V. Guttag and E. Horowitz, Computer Sci-
ence Department, University of Southern California, Los Angeles, CA
90007; D.R. Musser, USC Information Sciences Institute, 4676 Admi-
ralty Way, Marina del Re),, CA 90291.
© 1978 ACM 0001-0782/78/1200~1048 $00.75

1048 Communications December 1978
of Volume 21
the ACM Number 12

