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A broadcast packet is for delivery to all nodes of a 
network. Algorithms for accomplishing this delivery 
through a store-and-forward packet switching computer 
network include (1) transmission of separately 
addressed packets, (2) multidestination addressing, 
(3) hot potato forwarding, (4) spanning tree forwarding, 
and (5) source based forwarding. To this list of 
algorithms we add (6) reverse path forwarding, a 
broadcast routing method which exploits routing 
procedures and data structures already available for 
packet switching. Reverse path forwarding is a practical 
algorithm for broadcast routing in store-and-forward 
packet switching computer networks. The algorithm is 
described as being practical because it is not optimal 
according to metrics developed for its analysis in this 
paper, and also because it can be implemented in 
existing networks with less complexity than that 
required for the known alternatives. 
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1. Introduction 

Store-and-forward packet switching computer net- 
works provide communication using computers as well 
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as communication among computers. The delay versus 
throughput characteristics of these networks make them 
exceptionally suitable for general purpose computer-to- 
computer communication [10]. Such networks use so- 
called routing algorithms, which direct a packet from its 
source node to its destination node. Store-and-forward 
packet switching networks based on point-to-point cir- 
cuits, like the Arpanet [14], use either static or dynamic 
routine tables to minimize the delivery delay due to 
store-and-forward transmissions. 

Whilepoint-to-point packet switching has proven very 
useful in computer resource sharing, certain distributed 
computing applications requiring multipoint communi- 
cation have been suffering. Broadcast multipoint com- 
munication is the delivery of  messages to all destinations, 
while multicast, or multidestination delivery, is the deliv- 
ery of  messages to some specified subset of  all the 
destinations. Ethernet [11], the DCS Ring [6] and other 
broadcast networks are ideally suited for such commu- 
nication. Broadcast routing is defined to be the routing 
procedures by which broadcast is achievable in inher- 
ently nonbroadcast communication networks [4]. Broad- 
cast routing is a special case of  multidestination 
routing. 

Some applications in distributed computing environ- 
ments require broadcast while others require multicast. 
For example, in the Arpanet user authentication and 
billing scheme [3], a Tip must locate an RSExec server 
to process and verify a user's password, and then period- 
ically record the user's charges. Multicast helps in locat- 
ing one of  several RSExec servers faster, and can help in 
redundantly storing accounting data. Autodin I supports 
multidestination addressing and the average address 
multiplicity per message is 1.75 [13]. On the other hand, 
broadcast routing could be used in the case where the 
headquarters of  a corporation each day issues directives 
and news to all its branch offices which are connected 
together by, say, a private store-and-forward communi- 
cation network. 

Algorithms for broadcast routing through a store- 
and-forward packet switching computer network include 
(1) transmission of  separately addressed packets, (2) 
multidestination addressing, (3) hot potato forwarding, 
(4) spanning tree forwarding, and (5) source based for- 
warding. To this list of  algorithms, we present in this 
paper (6) reverse path forwarding, a broadcast routing 
method which exploits routing procedures and data 
structures already available for packet switching. 

Reverse path forwarding is a practical algorithm for 
broadcast routing in store-and-forward packet switching 
computer networks. The algorithm is described as being 
practical because it is not optimal according to metrics 
developed for its analysis in this paper, and also because 
it can be implemented in existing networks with less 
complexity than that required for the known alternatives. 

Section 2 of  this paper proposes a simple abstract 
model with which to view store-and-forward packet 
routing. Section 3 describes alternatives for broadcast 
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routing. Reverse path forwarding is described in Section 
4, and its extension in Section 5. The performance of  
reverse path forwarding as compared to the other known 
alternatives is discussed in Section 6. Section 7 discusses 
the reliability of  broadcast routing algorithms, and Sec- 
tion 8 presents our conclusions. 

2. Store-and-Forward Routing 

Efficient techniques for store-and-forward routing in 
packet switching networks are vital to achieve low delay, 
congestion free communication. This subject has re- 
ceived considerable attention and analysis [7, 8, 12]. 

Typically, each node in the network has a routing 
function that determines the appropriate outgoing link 
that an arriving packet should take toward its destina- 
tion. The routing function is based on route maintenance 
and link maintenance algorithms. Route maintenance is 
the updating of  the routing table, used by the routing 
function, based on estimates of delay between nodes of  
the network. Link maintenance is the determination of  
expected delays along links connected to a node. This 
information is used to influence the route maintenance 
algorithm. Link maintenance in a node involves that 
node and its links, while route maintenance involves all 
nodes and links. 

Route maintenance can be performed statically or 
dynamically. Static route maintenance involves setting 
up the routing tables at the start, once and for all, with 
no maintenance at all. Dynamic route maintenance is 
sensitive to traffic patterns and network topology 
changes. Dynamic route maintenance can be achieved 
by a centralized or distributed algorithm. Centralized 
route maintenance involves some centralized measure- 
ment and control authority. This authority collects sta- 
tistics on internode delays and then updates the routing 
tables at each node. Distributed route maintenance in- 
volves each node in updating its own routing tables 
based on communication with other nodes (typically the 
number is much smaller than the total number of  nodes 
in the network). A detailed taxonomy of route mainte- 
nance algorithms can be found in [12]. 

The output of  the routing function can be a link or 
multiple alternative links. The latter kind of  output may 
be used to transmit successive packets over different 
links in order to distribute packets in the network uni- 
formly, thereby not producing localized points of  conges- 
tion, or causing the route maintenance algorithm to 
oscillate. 

2.1 Abstract Model 
Store and forward routing algorithms can be modeled 

abstractly in the following manner: 
A network consists of nodes labeled 1, 2, 3 . . . . .  N. 

Each node is connected to some other set of  nodes by 
links that are labeled 1, 2, 3 . . . . .  L relative to that node. 
A node's neighbors are those nodes connected to it by 
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links. Each node knows its own identity, referred to as 
self, but not necessarily the identity of  its neighbors. We 
assume, without loss of  generality, that there is exactly 
one host computer connected to each packet-switching 
node through its link 0. Since each node has only one 
host connected to it, node addresses are synonymous 
with host addresses. 

A packet is defined by SourceNode, the source of  the 
packet, by DestinationNode, the intended destination of  
the packet, and by Text, the contents of  the packet. At 
each node, a packet is associated with an lncomingLink, 
the link on which it arrived, and an OutgoingLink, the 
link over which it is to be transmitted. The OutgoingLink 
is determined by applying the routing function, routing, 
to the DestinationNode of  the arriving packet. Stated 
more formally, for the arriving packet, OutgoingLink 
~-- Routing[DestinationNode]. If  OutgoingLink is 0, then 
the packet is destined to the host connected to the node. 
The DestinationNode for such packets is equal to self. If  
OutgoingLink is -1 ,  then the DestinationNode is un- 
reachable, and the packet is discarded. 

We assume that route maintenance attempts to min- 
imize delivery delay. We assume further that delay is 
measured in hops, the number of  links over which a 
packet is transmitted to reach its destination. These 
assumptions allow the reader to work examples simply 
with small integers evident from topology. 

3. Broadcast Routing Algorithms 

In this section we briefly describe the five other 
methods for routing broadcast packets [2, 4], and in the 
following sections we describe reverse path forwarding. 
A special destination address, AllNodes, is reserved for 
packets that are to be broadcast. Some algorithms will 
use the distinguished AllNodes address, while others will 
not. 

These are metrics by which the broadcast routing 
algorithms are evaluated: 

(1) C(n), the number of packet copies transmitted to 
broadcast a packet from the host connected to node n. 
The unit for C(n) is packet-hops. The minimum value 
for C(n) is 2N - 1, where N is the number of  nodes. 
This is so because exactly one packet copy is transmitted 
from the source node per destination node, accounting 
for N - 1 packet-hops, and there are an additional N 
packet-hops to and from hosts and nodes. Each of the 
N - 1 destination hosts requires its own copy from its 
node, and one copy is required from the source host to 
source node. 

(2) A(n), the average delay across the N - 1 desti- 
nation hosts, before a host receives a broadcast packet 
from the host connected to node n. 

(3) M(n), the maximum delay across the N - 1 
destination hosts, before a host receives a broadcast 
packet from the host connected to node n. 
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Other nonquantitative measures are (1) the changes 
to packet format, (2) the amount of table space in each 
node specifically for broadcast routing, (3) algorithm 
complexity in the node, and (4) reliability of the broad- 
cast. 

Network flooding is defined as the excessive retrans- 
mission and forwarding of  a broadcast packet. Broadcast 
routing algorithms should be stable enough never to 
cause flooding. 

Since broadcast routing algorithms route broadcast 
packets to many destinations, many of the parameters in 
the abstract model described in Section 2.1 will become 
sets. For example, OutgoingLink wilt generalize to 
OutgoingLinkSet. If  OutgoingLinkSet is empty, then the 
packet is discarded. AllLinks is the set of links {0, 1, 2, 
.... L} at each node. We introduce such generalizations 
or modifications as they arise. 

3.1 Separately Addressed Packets 
The simplest me thod  for achieving broadcast is to 

make a copy of the broadcast packet, at the source, one 
for each destination, and to use the normal routing 
mechanism for delivering each one. This is how multicast 
is achieved in the Arpanet. 

The disadvantages of this method are that many 
more packet copies are transmitted than necessary, the 
average and maximum delays are quite large because of 
queueing delays, and the level of congestion within the 
network increases with the large number of packet copies 
and their interference with one another. 

On the positive side, no changes are required to the 
routing algorithm or packet format, and the reliability of 
broadcast is as much as the underlying routing mecha- 
nism. 

3.2 Multidestination Addressing 
If  packets could carry multiple destination addresses, 

then existing routing mechanisms can be used to achieve 
broadcast routing with the optimal number of packet 
copies and minimum delay. DestinationNode would gen- 
eralize to DestinationNodeSet. Packets would then have 
a variable length destination address field to carry mul- 
tiple addresses, or perhaps a fixed length bit map. 

Copies of the broadcast packet are made at a node 
when the different destinations in DestinationNodeSet 
imply different outgoing links. Copies partition the 
IncomingDestinationNodeSet which is the set of desti- 
nation nodes in an incoming packet. A modified copy of 
the arriving packet is generated for each member of the 
OutgoingLinkSet. An outgoing packet lists in its 
DestinationNodeSet a partition of the Destination- 
NodeSet of the incoming packet. For each Link in the 
OutgoingLinkSet, a copy is made of the incoming packet 
such that its OutgoingDestinationNodeSet (the set of 
destination nodes in an outgoing packet) is the set of all 
nodes such that the Node is in IncomingDestination- 
NodeSet, and Routing[Node] is equal to the outgoing 
Link. Stated more formally: 
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OutgoingLinkSet ,--- {Routing[IncomingDestinationNodeSet]} 
FOR Link ~ OutgoingLinkSet DO 

BEGIN 
OutgoingDestinationNodeSet ~ { } 
FOR Node E IncomingDestinationNodeSet DO 

IF Link = Routing[Node] THEN 
OutgoingDestinationNodeSet ~-- OutgoingDestinationNodeSet 

+ {Node} 
copy packet on Link 
END. 

This algorithm requires a modification to the routing 
algorithm to extend it to handle multiple destinations in 
a packet. No additional tables are needed by the algo- 
rithm. This algorithm permits multicast, by just restrict- 
ing the OutgoingDestinationNodeSet at the source. 

3.3 Hot Potato Forwarding 
This algorithm and the remaining ones described in 

this section use the reserved destination address All- 
Nodes. 

During hot potato forwarding, each node copies the 
arriving broadcast packet on all links except the 
IncomingLink [1]. This simple scheme produces network 
flooding very quickly, and steps must be taken to prevent 
it. 

The simplest method to prevent flooding is to have 
a SequenceNumber field in each broadcast packet. Each 
node remembers for some time the sequence numbers of 
broadcast packets copied and forwarded, from various 
sources, and does not make copies of any broadcast 
packets it has already seen. This method is not attractive 
because it is hard to define how many sequence numbers 
must be remembered and for how long. 

Alternately broadcast packets could have a Hop- 
Count field, which is incremented each time copies are 
made of a broadcast packet. Upon receiving a broadcast 
packet whose HopCount field has exceeded a threshold, 
the packet is discarded thereby abating network flooding. 
In terms of the abstract model, the actions performed at 
each node on the arrival of a packet are: 

IF Destinat ionNode = AllNodes T H E N  
BEGIN 
HopCount  ~ HopCount  + 1 
IF HopCount  = threshold T H E N  OutgoingLinkSet *-- {0} 
ELSE IF HopCount  > threshold T H E N  OutgoingLinkSet ~ { } 

ELSE OutgoingLinkSet ~-- AllLinks - IncomingLink 
END 

ELSE OutgoingLinkSet ~-- {Routing[DestinationNode]} 

This method requires modification of format for 
broadcast packets, and some more processing within the 
node. Using HopCounts still generates far too many 
packets for a safe value of threshold, for example, the 
diameter of the network. The diameter of a network is 
the length of any longest geodesic. A geodesic is the 
shortest path between any two nodes [9]. The large 
number of packet copies generated may produce conges- 
tion within the network. Further, packet copies will be 
in existence for a time larger than the maximum delay 
before a node receives the broadcast packet, and there- 
fore the delay for subsequent packet transmissions will 
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also increase. The reliability of hot potato routing is very 
high, and this is the very reason that Baran proposed it 
in 1965. 

3.4 Spanning Tree Forwarding 
A spanning tree for a network is a tree that spans the 

nodes of the network, such that if any branch of  this tree 
were removed, then the two remaining subtrees would 
be disconnected. A network can have more than one 
spanning tree. 

In graph theoretical terms, a spanning tree is defined 
as follows: Consider a connected, undirected graph, G, 
with vertex set 11, and edge set, E (E is a subset of  V x 
V). A spanning tree is a subset of E, such that there is a 
unique path between any two vertices in V. A spanning 
tree is also a one-connected graph. Suppose there is a 
cost associated with every edge in E; a minimal spanning 
tree of G is a spanning tree that minimizes the sum of  
the cost of the edges. 

If a single spanning tree were overlayed on the 
network topology, then every node would lie on it. Each 
node would know which of its links were branches of  
the spanning tree. A broadcast could be initiated from 
any node. At each node, the broadcast packet will be 
copied and transmitted along the branches of  the span= 
ning tree, except along the branch on which it arrives. If  
the broadcast packet arrives on a link not in the spanning 
tree, then it is discarded, since its transmission can 
produce flooding. For a packet to arrive on a link not in 
the spanning tree, there must be an inconsistency in the 
routing information which might lead to flooding, and 
therefore discarding the packet is safe. Stated in terms of  
our model: 

IF DestinationNode = AllNodes 
THEN OutgoingLinkSet ~ BroadcastRouting[IncomingLink] 
ELSE OutgoingLink ~ Routing[DestinationNode]. 

This scheme is optimal in the number of packet 
copies, but not delay. The delay is a function of  the 
position of the node within the spanning tree from where 
the broadcast was initiated. 

The algorithm requires no change to the packet 
format and makes use of the reserved destination address 
AllNodes. There is a small table at each node. The 
spanning tree could be static and set up initially. Alter- 
nately the spanning tree could be dynamically updated 
using a centralized computation. If  the spanning tree was 
a minimal spanning tree then a somewhat expensive 
distributed computation could be used to dynamically 
change it [4]. 

3.5 Source Based Forwarding 
A broadcast packet that arrives at a node is copied 

along a subset of the links according to the data structure 
in each node which lists the outgoing links to use as a 
function of packet source. This data structure is based 
on the shortest path trees from each node to all the 
others, or in other words the algorithm is based on 
having a delay-minimizing spanning tree for each source 

1043 

node rather than only one for all nodes. This algorithm 
makes use of  the reserved destination address AllNodes 
as well. In terms of the abstract model, the actions a 
node performs on receiving a packet is: 

IF DestinationNode = AllNodes 
THEN OutgoingLinkSet ~ BroadcastRouting[SourceNode] 
ELSE OutgoingLink ~ Routing[DestinationNode]. 

The characteristics of  this algorithm are that the 
arriving packet is copied but not modified, the optimal 
number of packet copies is generated, ar/d the transmis- 
sion delay is minimum. There is, however, a large table 
at each node, and updating this table in a dynamic 
manner involves a complex computation. 

4. The Reverse Path Forwarding Algorithm 

The reverse path forwarding algorithm broadcasts 
packets with the reserved destination address AllNodes 
based on the source of  the packet. This is achieved 
without any extra tables and routing procedures beyond 
those described in the abstract model for point-to-point 
routing. 

When a broadcast packet arrives at a node on an 
IncomingLink, the node will copy this packet on All- 
Links except the IncomingLink, if and only if the node 
believes that the best way to get to SourceNode is via 
IncomingLink. If  this condition is not met, then the 
broadcast packet is discarded, thereby preventing net- 
work flooding. This algorithm has the flavor of  both hot 
potato and source based forwarding. In terms of  the 
abstract model, the actions a node would perform on 
receiving a packet are: 

IF DestinationNode = AllNodes THEN 
BEGIN 

IF IncomingLink = Routing[SourceNode] 
THEN OutgoingLinkSet ~ AllLinks - {IncomingLink} 
ELSE OutgoingLinkSet ~-- { } 
END 

ELSE OutgoingLink ~-- Routing[DestinationNode]. 

The algorithm derives its name, reverse path for- 
warding, from the observation that a broadcast packet is 
accepted for forwarding only if it arrives along a link 
that is part of the shortest path tree to SourceNode from 
all the other nodes. This is the shortest reverse path tree 
from SourceNode, and is in general different from the 
shortest path tree from SourceNode to all the other 
nodes. In the case that delays over links are the same in 
both directions, as with hop counts, the shortest path tree 
from SourceNode and the shortest reverse path tree from 
SourceNode are isomorphic. 

The shortest reverse path trees are very easily derivable 
from the shortest path trees from a node, which is what the 
route maintenance algorithm uses to build the routing 
table. Figure 1 illustrates how the reverse path forward- 
ing takes place from node 8, along the reverse path tree 
from node 8. The packet copies are labeled Pij....,k, where 
i is the source of the packet and k its immediate desti- 
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Fig. 1. Reverse path forwarding initiated from node 8. 
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Fig. 2. Extended reverse path forwarding initiated from node 8. 

3 

nation. The sequence i, j, .... k defines the genealogy of 
the packet. Ps.9 is the first copy arriving at a node 9 after 
departure from the source 8. Likewise for P8,9,7. Note 
that more packet copies are transmitted than necessary. 
31 packet copies are transmitted while the optimal num- 
ber is 17. (Remember to count the N copies needed 
between nodes and their hosts.) The number of packet 
copies transmitted is equal to the sum of the cardinality 
of AllLinks at each node, minus (N - l), because each 
node forwards the broadcast packet on I AllLinksl -- 1 
links, except the source which has packet copies trans- 
mitted on [AllLinks 1. For most network topologies, this 
number is larger than the optimal value. 

Although extra packet copies are generated, the extra 
packets are immediately discarded, thereby preventing 
network flooding. 

There is no change in the packet format or data 
structures at each node. The extension to the routing 
function in each node is very simple, and could be made 
very easily to the program in the Imps and Tips in the 
Arpanet [ 12]. 

The delays to perform broadcast are minimum if the 
shortest reverse path trees are isomorphic to the shortest 
path trees, as would be the case if hop count was the 
measure of delay. The two trees would also be iso- 
morphic if communication traffic was symmetric over a 
link thereby producing equal delay in both directions, 
an assumption that is generally not true [5]. 

5. The Extended Reverse Path Forwarding Algorithm 

It is the property of reverse path forwarding that 
extra packet copies are deleted immediately, by the 
neighbors of the node generating them. The extension is 
proposed wherein a periodic exchange of routing infor- 
mation among neighbors allows nodes to avoid the gen- 
eration of extra packets. 

The extended reverse path forwarding algorithm 
transmits the optimal number of packet copies per broad- 
cast by using tables similar to that used by the source 
based forwarding algorithm, in conjunction with the 
basic control structure described in Section 4. The tables 
list the outgoing links over which an acceptable broad- 
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cast packet should be forwarded. The algorithm makes 
sure that packet copies are transmitted only along the 
branches of the reverse path tree. The novel feature 
about this extension to the reverse path forwarding al- 
gorithm, is that this data structure can be computed very 
easily in a distributed fashion, unlike the one used by 
the source based forwarding algorithm. In terms of the 
abstract model, the actions performed at a node are: 

IF DestinationNode = AllNodes THEN 
BEGIN 

IF IncomingLink = Routing[SourceNode] THEN 
OutgoingLinkSet ~-- BroadcastRouting[SourceNode] + {0) 
ELSE OutgoingLinkSet ~ { } 
END 

ELSE OutgoingLink ~ Routing[DestinationNode]. 

Copies of a broadcast packet are made only along 
the branches of the reverse path tree by using a data 
structure consisting of a table, LinkBroadcastTable, for 
each of the L links. Each table is indexed by SourceNode 
and results in a boolean, indicating whether the broad- 
cast packet from SourceNode should be copied on that 
link or not. A packet addressed to AllNodes should be 
copied on a link if LinkBroadcastTable[SourceNode] = 
TRUE, for that link. Figure 2 illustrates the flow of 
broadcast packets from node 8 along the reverse path 
tree using this extension. 

Consider now the process by which these tables at 
each node may be updated dynamically, in a distributed 
manner. In terms of the reverse path forwarding model, 
in order to construct such a table, a node must know to 
which destinations a given link will be used by its 
neighbors to normally transmit a packet. Hence, if a 
broadcast packet arrived from one of these "destina- 
tions," then the node will know along which links to 
make copies. Periodically, each node will transmit an 
appropriate LinkBroadcastTable to each of its neighbors. 
Upon receiving such a table a node merely replaces its 
old copy by the new one. A LinkBroadcastTable can be 
computed for a Link directly from the routing function 
at that node: 

LinkBroadcastTable[SourceNode] ~-- Routing[SourceNode] = Link. 

This algorithm is optimal in the delay metrics if the 
delays over a link are equal in both directions. 

Communications December 1978 
of  Volume 2 l 
the ACM Number 12 



Table I. Performance of the Broadcast Routing Algorithms for the Network of  Figure 3. 

Performance C(n) packet hops A(n) hops M(n) hops 
measure n n n 

Broadcast routing algorithm l 2 3 4 l 2 3 4 1 2 3 4 

C(n) A(n) M(n) 

Separately addressed packets 10 9 
Multidestination addressing 7 7 
Source based forwarding 7 7 
Hot potato forwarding 13 15 

(threshold = diameter = 2) 
Spanning tree forwarding 7 7 
Reverse path forwarding 11 ! 1 
Extended reverse path forwarding 7 7 

10 9 3.6 3.3 3.6 
7 7 3.3 3 3.3 
7 7 3.3 3 3.3 

13 15 3.3 3 3.3 

7 7 3.3 3.3 4 
11 i l  3.3 3 3.3 
7 7 3.3 3 3.3 

3.3 5 5 5 5 9.5 3.5 5 
3 4 3 4 3 7 3.2 3.5 
3 4 3 4 3 7 3.2 3.5 
3 4 3 4 3 14 3.2 3.5 

4 4 4 5 5 7 3.7 4.5 
3 4 3 4 3 11 3.2 3.5 
3 4 3 4 3 7 3.2 3.5 

6. Performance  Evaluation 

Figure 3 illustrates a simple four node network. Table 
I indicates the performance of  the various broadcast 
routing algorithms for this network. For each broadcast 
routing algorithm we determine C(n) which is the num- 
ber of packet copies transmitted to broadcast to all hosts 
from a host connected to node n, A(n) which is the 
average delay, across the N - 1 destinations, before a 
broadcast packet from a host connected to node n reaches 
a destination host, and M(n) which is the maximum 
delay, across the N - 1 destinations, before a destination 
host receives a broadcast packet from a host connected 
to node n. We also determine C(n), A(n) and M(n) which 
are averages over all N sources. This simple network is 
presented so the reader may understand the metrics by 
checking them in his head. Figure 4 illustrates the logical 
map for the Arpanet as of August 1976. The network 
contains 59 nodes. Table II indicates the performance of  
the algorithms for this network. We only display C(n), 
A(n) and M(n) which are averages over the N sources 
for the Arpanet, since the table would have otherwise 
become extremely large? 

The performance was calculated keeping some other 
issues in mind: 

(i) The effect of  queueing delays has not been taken 
into account for any of the other algorithms except 
separately addressed packets for which it is assumed that 
a source host can only transmit a packet to the source 
node after the packet previously transmitted from the 
source host to its node has reached the node; a delay of  
one hop. 

(ii) When determining M(n) for separately addressed 
packets it is assumed that the source host transmits 
packets to the source node in an order that minimizes 
M(n). The host transmits a packet to the furthest host 
first and the closest host last. In general, hosts will not 
have knowledge of the communication network topol- 
ogy, and so this feature provides optimistic values for 
M(n). 

(iii) The spanning tree used for spanning tree for- 
warding was the minimal spanning tree. This minimal 
spanning tree is unique since the network is transformed 
into one with distinct link delays using a simple tie- 
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Fig. 3. A network and its minimal spanning tree. 

7q 
4 -  - 3  4 -  - 3  

Fig. 4. Arpanet logical map, August 1976. 

45 34 4 12 47 6 31 5 49 
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59 NODES 

Table II. Performance of  the broadcast routing algorithms for the 
Arpanet. 

Performance C(n----) A (n--) M(----n) 
measure packet hops hops 

Broadcast routing algorithm hops 

Separately addressed packets 425 35.3 60 
Multidestination addressing 117 7.3 11.1 
Hot potato forwarding 1238 7.3 11.1 

(threshold = diameter = 11) 
Spanning tree forwarding 117 14.5 27.6 
Source based forwarding 117 7.3 11.1 
Reverse path forwarding 145 7.3 11.1 
Extended reverse path forward- 117 7.3 11.1 

ing 

breaking algorithm that can be computed distributedly 
[4]. 

(iv) For the network representing the Arpanet, it was 
assumed that there was only one host connected to each 
node, in order to be consistent with the abstract model 
used in this paper. The metrics would have had much 
larger values if the actual number was taken into account. 

This analysis shows that reverse path forwarding is 
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an optimal algorithm under the assumptions made, and 
even in an operational network in which the reverse path 
tree from a node is not isomorphic to the shortest path 
tree from that node its suboptimality under the C(n) and 
A(n) metric is probably acceptable. 

7. Reliability of Broadcast 

The preceding performance evaluation misses an im- 
portant consideration, namely whether broadcast routing 
within the network can be made reliable, and what the 
implications of  unreliable broadcast is on the higher level 
applications that rely on this capability. Reliability here 
is taken to mean the ability to deliver exactly one copy 
of  the broadcast packet to all destinations, under the 
assumption of  a perfectly reliable network; i.e. one that 
is not partitioned and therefore has a route from every 
node to every other. 

We first examine the reverse path, and extended 
reverse path forwarding algorithms. If  the route main- 
tenance algorithm is static, then exactly one copy of  the 
broadcast packet will be delivered to each host as we 
have seen in the previous two sections. If, however, the 
route and link maintenance algorithms are dynamic, as 
is usually the case, then both the reverse path and 
extended reverse path forwarding algorithms cannot 
guarantee to deliver exactly one copy of  a broadcast 
packet to all destinations, as we shall show. 

In the reverse path forwarding algorithm, a broadcast 
packet is transmitted over every link of the network. At 
any instant a node has one and only one branch corre- 
sponding to a given reverse path tree. The reverse path 
tree for a given SourceNode may, however, change 
cates or no packets to be delivered to some of the 
hosts. 

For example, in Figure 1, assume that node 2 has just 
received packet P8,5,2 along link (2, 5) which is a branch, 
but Pa,l,2 from node 1 has not yet arrived at node 2. 
Node 2 will deliver P8,5,2 to its host and copy the 
packet appropriately along the other links. The 
routing function at node 2 may now be updated to reflect 
that the best way to get to node 8 from node 2 is over 
link (1, 2) and not (2, 5). Therefore when P8,1,2 arrives at 
node 2 from 5, it too will be delivered to the host 
connected to node 2 and copied appropriately over the 
other links. Therefore, the host connected to node 2 
received two copies of  the broadcast packet. 

Similarly, if /98,9,7,3,2 and Pa,I,2 arrived at node 2 
before P8,5,2, they would be discarded since link (2, 5) is 
the best way to get to node 8, the SourceNode. The 
routing function at node 2 may now be updated to reflect 
the fact that link (2, 5) is not the best way to get to node 
8, but (1, 2) is the best way. Subsequently, when P8,~,2 
arrives, it too will be discarded resulting in the delivery 
of  no broadcast packet to the host connected to 
node 2. 
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Consider now the extended reverse path forwarding 
algorithm. In Figure 2, assume that Ps,5,6 has arrived at 
node 6 from 5. It will be delivered to the host connected 
to 6 and not copied further. Further assume that at this 
time Ps,9,7 has not yet arrived at node 7 from 9. Now the 
LinkBroadcastTables at node 3 are updated to reflect 
that the best way to get to node 8 is via link (3, 6) rather 
than (3, 7). Thus, when/'8,9,7 arrives at node 7, it will be 
delivered to the host connected to 7 but will not be 
forwarded. As a consequence, the host connected to node 
3 will never receive the broadcast packet. 

Similarly, if /08,9,7 and P8,9,7,3 had arrived respec- 
tively at nodes 7 and 3 before P8,5,6 reached node 6, 
and then the very same changes were made to the 
LinkBroadcastTables at node 3, then the host connected 
to node 3 will receive duplicate copies of  the broadcast 
packet. 

Note that the extended reverse path forwarding al- 
gorithm, as stated in Section 5, copies a broadcast packet 
only if it arrived on the "correct link", i.e. the same link 
that the node would have used to transmit a packet to 
the SourceNode using the normal routing function. This 
test was necessary in the reverse path forwarding algo- 
rithm to prevent network flooding. In the extended 
version of  the algorithm, this test is not necessary, if the 
reverse path tree did not dynamically change, because 
packets would only be copied along branches of  the 
reverse path tree and therefore arrive only on the "correct 
link." If the reverse path tree can dynamically change 
during the course of  a broadcast, then a node may copy 
a broadcast packet on a link it thinks is a branch, but its 
neighbor at the other end thinks is not. For  example, in 
Figure 2, node 7 may forward P8,9,7 tO node 3, while node 
3 has sent node 7 a LinkBroadcastTable that does not 
include link (3, 7) for node 8 as SourceNode. Thus, node 
3 will conclude that P8,9,7 did not arrive on the "correct 
link" and will discard the packet. This may result in 
node 3 never receiving an acceptable broadcast packet. 
Alternatively, if nodes accepted and forwarded broadcast 
packets based on the source irrespective of the link it 
arrived on, then more packets would be transmitted than 
necessary, and some nodes may receive duplicates. 

Therefore these algorithms cannot guarantee that a 
node will receive one and only one acceptable broadcast 
packet. This is because during the course of a broadcast 
the reverse path tree changes, and as a result decisions 
made during the beginning of the broadcast process are 
incorrect. 

Separately addressed packets and multidestination 
addressing guarantee to deliver exactly one copy of the 
broadcast packet to all nodes even if adaptive routing 
mechanisms are used in the network. This is because 
each destination explicitly appears as a destination ad- 
dress in a packet. Of  course, the adaptive routing mech- 
anism may cause a larger number of  packet copies to be 
transmitted than the optimal, and as a result may in- 
crease the delay. Source based forwarding and spanning 
tree forwarding, as described in this paper, guarantee to 
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deliver exactly one copy to all nodes since they use static 
routing mechanisms. Static techniques reduce the per- 
formance of all routing, broadcast included. Hot potato 
forwarding guarantees to deliver at least one copy to all 
nodes if the threshold is chosen correctly. 

In reality, the network may partition, since it is not 
perfectly reliable, and so any of the algorithms described 
cannot guarantee to deliver exactly one copy of  the 
broadcast packet to all nodes. 

8. C o n c l u s i o n s  

The extended reverse path forwarding algorithm is 
practical and optimal if the delays in both directions of  
a link are identical. This algorithm can be implemented 
in existing networks using existing routing procedures, 
and with simple extensions to the data structures. The 
suboptimality of reverse path forwarding under the C(n) 
and actual delay metrics is probably acceptable in op- 
erational networks as well. 

Both reverse path and extended reverse path for- 
warding algorithms have the tragic flaw, that if the 
underlying dynamic routing mechanism changes the 
routing tables used by the nodes during the course of a 
broadcast, then a broadcast packet may not be delivered 
to a node even if a path to it exists. This flaw is shared 
to a greater or lesser degree by the alternatives except 
for separately addressed packets, multidestination ad- 
dressing and hot potato forwarding. Duplicate copies 
may also be delivered. 

We conjecture that it is useful to divide broadcast 
routing algorithms into two classes, one oriented towards 
sending a message to every host on the network, and the 
other oriented towards sending a message to a relatively 
small percentage of  all hosts. 

Algorithms of  the first class will have a reasonable 
cost for transmitting a message to all hosts, but essentially 
the same cost for sending a message to even a small 
group. Those of the second class will have a reasonable 
cost for sending a message to a small group, but extrav- 
agant cost for sending the message to all hosts. Examples 
of  the first class are hot potato forwarding, spanning tree 
forwarding, source based forwarding and reverse path 
forwarding, while examples of  the second are separately 
addressed packets and multidestination addressing. 

If  algorithms that support efficient broadcast routing 
are used to deliver messages to a subset of  the destina- 
tions, then a number of  hosts will receive packets that 
they will subsequently discard. This is a wasteful use of  
a critical resource--the communication channel con- 
necting the host to the network. In such cases the channel 
may become the bottleneck. Further, each host will have 
to process the packet in order to decide if it is intended 
for it. 

Of  course, techniques of  the first class can be modi- 
fied to be used for restricted broadcast. For example, 
different spanning trees could be used for different re- 
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stricted broadcast groups. Alternatively, a node that is 
on the spanning tree, but whose host does not belong to 
a restricted broadcast group, will forward the packet to 
other nodes as per the conventions of  the protocol with- 
out delivering the packet to its host. They can be useful, 
however, if communication networks wish to provide 
special services. 

Our division of  broadcast routing algorithms into two 
groups is based on what we imagine communication 
networks will be used for. The most usual use of broad- 
cast will be to reach a small fraction of  the hosts, and 
therefore there is the need for efficient multicast routing 
algorithms. However, for limited purpose networks, it is 
easier to imagine the need for communication with all 
hosts, and therefore it is desirable to use broadcast 
routing algorithms. 

We have shown that it is, in general, not possible to 
achieve reliable broadcast routing, but this is true of  
routing in general. In some applications one might take 
the position that unreliable broadcast is a prelude to 
reliable point-to-point communication; for example 
when a Tip in the Arpanet locates an RSExec server. 
There will be other applications in which one and only 
one copy of the broadcast packet must be delivered to 
all hosts. The broadcast protocol within the network or 
the hosts must sequence broadcast packets (messages) 
generated from the source, so that duplicates may be 
filtered at the destinations. Further, responses to a broad- 
cast packet can contain the sequence number of the 
broadcast, to identify with which message the response 
is associated. It may be necessary for the recipients to 
acknowledge the broadcast packet (message), so that the 
source may retransmit only to hosts that did not respond, 
thus reducing the bandwidth used in the reliable broad- 
cast. The design of  reliable broadcast protocols analo- 
gous to reliable point-to-point interprocess communica- 
tion protocols in computer networks is a subject for 
future research. 
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Corrigendum. Programming Languages 

David Gries, An Exercise in Proving Parallel Programs 
Correct, Comm. ACM 20, 12 (Dec. 1977), 921-930. 

Dr. Leslie Lamport detected what appeared to be a 
methodological mistake in the proof of the on-the-fly 
garbage collector. The assignment atleastgray(m[t].left) 
of the Collector (see the algorithm labeled (3.6) on page 
925) contains references to the two shared variables 
m[z].lefi and m[m[t].leftl.color, and this clearly violates 
the restriction (2.10) found on page 923. 

The problem is not a methodological error but a 
missing footnote. The statement atleastgray(m[t].left) in 
(3.6) does have a footnote number 3 attached to it, and 
an earlier version of the paper [Springer Lecture Notes 
in Computer Science 46, 1976, 57-81] contained the 
footnote 

This should be written as "t:= m[t].left; atleastgray(t)'" where t is a 
local variable. Since the mutator never tests the color of a node and 
only grays a node using also atleastgray, the single statement atleast- 
gray(m[t].left) is equivalent under parallel operation to this sequence 
of two operations. 

Dr. Lamport also noted that the informal discussion 
of noninterference of assertions (4.5. l) and (4.5.2) in the 
first four paragraphs of Section 4.5 could be interpreted 
as using circular reasoning, but that a formal proof of 
noninterference does indeed work. 

My thanks to Dr. Lamport for pointing out these 
problems and my apologies for any inconvenience they 
have caused the reader. 

Programming J.J. Homing 
Languages Editor 

Abstract Data Types 
and Software 
Validation 
John V. Guttag, Ellis Horowitz, and 
David R. Musser 
University of Southern California 

A data abstraction can be naturally specified using 
algebraic axioms. The virtue of these axioms is that 
they permit a representation-independent formal 
specification of a data type. An example is given which 
shows how to employ algebraic axioms at successive 
levels of implementation. The major thrust of the paper 
is twofold. First, it is shown how the use of algebraic 
axiomatizations can simplify the process of proving the 
correctness of an implementation of an abstract data 
type. Second, semi-automatic tools are described which 
can be used both to automate such proofs of 
correctness and to derive an immediate implementation 
from the axioms. This implementation allows for limited 
testing of programs at design time, before a 
conventional implementation is accomplished. 

Key Words and Phrases: abstract data type, 
correctness proof, data type, data structure, 
specification, software specification 

CR Categories: 4.34, 5.24 

1. Introduction 

The key problem in the design and validation of 
large software systems is reducing the amount of corn- 
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