
rules. Proc. of Sixth Texas Conf. of Comput. Syst., Austin, Tex., Nov.
1977.
18. Palme, J. Protected program modules in SIMULA 67. FOAP
Rep. No. C8372-M3(E5), Research Inst. of National Defense,
Stockholm, 1973.
19. Parnas, D. L. Information distribution aspects of design
methodology. Information Processing 71, 1 (1972), North-Holland
Pub. Co., Amsterdam, 339-344.
20. Spitzen, J., and Wegbreit, B. The verification and synthesis of
data structures. Acta Informatica 4 (1975), 127-144.
21. Standish, T.A. Data structures: an axiomatic approach. BBN
Rep. No. 2639, Bolt Beranek and Newmann, Cambridge, Mass.,
1973.
22. Suzuki, N. Automatic verification of programs with complex data
structures. Ph.D. Th., Comptr. Sci. Dept., Stanford, U., Rep. No.
STAN-CS-76-552, Feb. 1976.
23. Wegbreit, B., and Spitzen, J. Proving properties of complex data
structures. J. ACM 23, 2 (April 1976), 389-396.
24. Wulf, W.A., London, R.L., and Shaw, M. An introduction to the
construction and verification of Alphard programs. IEEE Trans.
Software Eng. SE-2, 4 (December 1976), 253-265.
25. Zilles, S. N. Abstract specifications for data types. IBM Res.
Lab., San Jose, Calif., 1975.

Programming J.J. Horning
Languages Editor

An Example of
Hierarchical Design
and Proof
Jay M. Spitzen, Karl N. Levitt, and
Lawrence Robinson
SRI International

Hierarchical programming is being increasingly
recognized as helpful in the construction of large
programs. Users of hierarchical techniques claim or
predict substantial increases in productivity and in the
reliability of the programs produced. In this paper we
describe a formal method for hierarchical program
specification, implementation, and proof. We apply this
method to a significant list processing problem and also
discuss a number of extensions to current programming
languages that ease hierarchical program design and
proof.

Key Words and Phrases: program verification,
specification, data abstraction, software modules,
hierarchical structures

CR Categories: 4.0, 4.6, 5.21, 5.24

1064

I. Introduction

The use of structuring techniques in programming--
for example, programming by successive refinement [5]
(also called hierarchical programming)--has been rec-
ognized as increasingly helpful in the design and man-
agement of large system efforts. A number of such design
techniques are now promoted for routine use in corn-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Research supported by the Office of Naval Research (Contract
N00014-75-C-0816), the National Science Foundation (Grant DCR74-
18661), and the Air Force Office of Scientific Research (Contract
F44620-73-C-0068).

Authors' present addresses: J.M. Spitzen, Advanced Systems De-
partment, Xerox Corporation, 3333 Coyote Hill Road, Palo Alto, CA
94304; K.W. Levitt and L. Robinson, SR1 International, 333 Ravens-
wood Ave., Menlo Park, CA 94025.
© 1978 ACM 0001-0782/78/1200-1064 $00.75.

Communications December 1978
of Volume 21
the ACM Number 12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359657.359667&domain=pdf&date_stamp=1978-12-01

mercial software development [33]. Some of these tech-
niques are also alleged to permit the verification of large
systems by reducing them to a collection of small pro-
grams, each easily verified.

Important questions about such hierarchical proofs
are:

- - C a n systems be decomposed into subprograms that
can be characterized by clear and natural assertions?

- - C a n proofs of the subprograms be combined to dem-
onstrate the correctness of the system?

- - Is it generally possible to formulate and prove signif-
icant implementation-independent properties of sys-
tems?

Several recent developments yield positive answers: the
hierarchical design and module specification techniques
of [24] and the data abstraction techniques of [9] and
[26]. (The word "module" is very widely and imprecisely
used and the reader should be wary of drawing inferences
not based on our very specific use.) A module is the basic
unit in a hierarchical decomposition--a collection of
operations and data. The module permits the definition
of complex abstract types. For example, a type "file" can
be defined by a module with operations for creating a
file, inserting a record into a file, reading a record,
appending two files, etc., and data structures recording
the file's contents.

To permit hierarchical proof, one must formally spec-
/fy the modules of a hierarchical system. Styles of speci-
fication and their mathematical foundations differ (e.g.
consult [8, 24, 27]; also, [15] and [13] are overviews), but
the basic aim is to achieve abstract specification, i.e.
specification that describes the input-output behavior of
a module without recourse to an implementation of the
module. This may be done in terms of the sequences of
operations that have been performed on the module, or
by abstracting from these sequences to a module state.
In the first of these approaches, one may attempt to
describe concisely the infinite class of possible histories
by a small number of "algebraic specifications," as in
[8]. In this paper, we will use the state approach. An
important aspect of a good specification--in any
method--is that, for a properly conceived module, it is
a concise, intuitive, and precise characterization of the
behavior of the module, successfully abstracting from
the details of any implementation of the module. It is
often possible to formulate and prove important prop-
erties of a module in terms of its specifications.

Similarly, both algebraic and state styles of specifi-
cation lend themselves to two-stage implementations:
First, the data structures of a module (other than the
most primitive) are represented in terms of lower level
data structures (as in [9] and [26]) and, second, abstract
programs are written for each operation in terms of lower
level operations. Each abstract program may then be
proved to satisfy its specifications on the assumption that
the more primitive modules it employs are correct, given
the specific data representation used.

Should descriptions of hierarchical structure, formal

1065

specifications of modules, and implementations all be
written in a single language? We have chosen to separate
these functions, and will describe a powerful specifica-
tion language, SPECIAL, and a very simple implemen-
tation language ILPL. An alternative is to provide ab-
straction directly in the implementation language--the
approach of [4, 11, 14, 31, 32]. A second language issue
is what characteristics a language (or, in our view, set of
languages) should have to enable the correct implemen-
tation of hierarchies of abstractions. For example, what
protection principles are needed to ensure the data integ-
rity of a module?

The primary contributions of this paper are a descrip-
tion of the design and proof of a nontrivial, useful
program, and a demonstration of a technique that has
promise of making proof and formal description possible
for large programs. Our example is a program to main-
tain unique lists with an efficient underlying implemen-
tation. We have attempted to address three classes of
readers: those who wish to learn about formal specifica-
tion should be able to do so by following our specifica-
tions and the associated prose; those who wish to learn
about so-called "functional program verification" will be
introduced to this style of proof; and those who are
unfamiliar with list processing may obtain an introduc-
tion to some relevant techniques.

In the next section, we introduce our design and
proof method. Then in Section 3 and Section 4 we
present formal specifications of the two modules that
comprise the top-level machine of an illustrative hierar-
chy. Based on these specifications, we are able in Section
5 to prove several properties of this machine. The imple-
mentation of this machine and a proof of the correctness
of this implementation are presented in Section 6 and
Section 7. Section 8 outlines how the hierarchy described
up to that point might be refined into an executable
program. Finally, Section 9 presents some concluding
remarks.

2. Design and Proof Method

Suppose a programming problem P and a machine
M are given and it is required to construct a program C
that executes on M to solve P. M may be either a physical
machine or a virtual machine provided, for example, by
the compiler for a particular programming language. We
believe that the program construction should proceed as
follows.

First, we design an abstract computer AM on which
it is easy to solve P. AM is designed by describing its
states and executable instructions. We deliberately leave
vague the meaning of an "easy solution" of P--for some
purposes this will be a solution by a program AC that is
only a page or two long; for other purposes it will be a
solution by a program that can be mechanically proved
correct using state-of-the-art verification systems. Having
designed AM, we implement a solution of P on AM,

Communications December 1978
of Volume 21
the ACM Number 12

and, in practice, usually alter the design of AM in the
process. I f AM is the same as M, then we have satisfied
the original requirement if it can be demonstrated that
the solution is correct. Otherwise, we have reduced the
original requirement to the new one of realizing AM in
terms of M. To do this, we design a new machine AM'
on which it is easy to realize AM. We represent the states
of the first machine AM in terms of the states of AM'
and we implement the executable instructions of AM by
means of a set of programs AC' on AM'. The choice of
representation or implementation may prove awkward; if
so, we resort to altering the design of AM' or even that
of AM. (Unfortunately, we usually cannot alter the
original requirement P, though requirements sometimes
are changed when a problem is better understood.)

Next, the realization of AM on AM' must be verified.
This verification means that the (partial) solution of P
obtained by executing AC on AM is equivalent to the
(more complete) solution obtained by executing AC and
AC' together on AM'. In this latter solution, the execu-
tion of an instruction of AM by AC is viewed not as
primitive but as a call on the subroutine in AC' that
realizes that instruction on AM'. Again, if AM' is the
same as M, we are done and otherwise we must continue
to approach M by extending the sequence of machines
AM, AM', ... and programs AC, AC', When We have
extended this sequence to a program that executes on M,
then the set o f programs and subroutines AC, AC', ...
constitutes the required solution C on machine M.

This description of programming has been phrased
in the top-down paradigm, but that is not what is im-
portant. To make the programming of large problems
feasible, reliable, and controllable, they must be some-
how divided into small parts. We have no special pref-
erence for top-down or bot tom-up programming in ar-
riving at this division, and suspect that a flexible mixture
of both techniques is required in general. We do advocate
the use of formal methods to describe the division, to
validate the resulting design, and to prove the correctness
of the final program.

The product of our endeavors will thus consist of:

- - A hierarchy of abstract machines
- - A formal specification of each machine
- - A representation of the states of each machine (except

the given machine) in terms of the states of the ma-
chine below it

- - A n implementat ion of the instructions of each ma-
chine (except the given machine) in terms of the
instructions of the machine below it

We specify an abstract machine using a method
originally proposed by Parnas [24] and subsequently
extended by Robinson and Levitt [26]. (Our formal
specification language, SPECIAL, is described in [28].)
A machine has a state and an instruction set. We give
the state by describing the initial values of a set of V-
functions. We give the instructions, called O V-functions,
by describing how each changes the state of the machine
and what value it returns. (The return of a particular

1066

value may, for formal purposes, be thought of as part of
the change of state.)

A V-function specification consists of a header that
describes its arguments and result and an initialization
that describes the values of the function in an initial
machine state.

An OV-function specification consists of a header
that describes its argument structure, an assertion list
stating preconditions on the calls of the function, an
exception list describing when its execution may have no
effect other than signaling an error, and a set of effects
that nonprocedurally describe the changed state due to
an execution of the function by defining the resulting
values of the V-functions of the machine. (These values
are described in terms of the old values of the V-functions
and the arguments to the OV-function.) The effects
include, if appropriate, the designation of the value to be
computed and may allow a nondeterministic choice of
successor state.

It is usually possible to give additional structure to
an abstract machine M by describing it as the "product"
of modules M1, M2 Mn. When we do this, we will
refer to the Mi as submachines or modules of M; other-
wise the terms machine and module are used as syn-
onyms. To form such a product, we require that the
functions of the Mi be renamed to avoid conflicts. M has
as its V-functions each of the V-functions of the Mi with
the same initial sections. M has as its OV-functions each
of the OV-functions of the Mi, with augmented effects
sections. Specifically, if I is an OV-function of Mi and V
is a V-function of M j , where i ~ = j, we add to the effects
o f I the assertion that V is not changed by the execution
of I.

3. The U L I S T Module

In this section and the next, we present an abstract
machine consisting of two modules: one that maintains
conventional list structures and one that maintains a
class of unique lists--lists such that no two are structur-
ally isomorphic. (Figure 1 illustrates the usual realization
of conventional lists where distinct isomorphic lists are
possible.) Thus the at tempt to construct one of these
unique lists yields an old list if there is already one with
the right components. 1 Naturally, we want the check of
existing cells to be efficient. We use a particularly effec-
tive method introduced by Deutsch in his verification
system [6] to associate properties with arbitrary symbolic
expressions.

We begin by presenting a formal specification of a
machine providing unique lists, and explain our notation

1 As an example of the utility of such a facility, suppose we save
the property SIMPLIFIES-TO-ZERO in some table under--as key--
the address of the list (SUBTRACT x x). If we subsequently inde-
pendently create a conventional list of the same form, it will have a
different address and the property will not be retrieved. But if both are
unique then their addresses will be the same so that the property can
be looked up successfully.

Communications December 1978
of Volume 21
the ACM Number 12

Fig. 1. Distinct isomorphic lists. (a)A picture of the list ((c.d) nil
a. b). (b)Two distinct isomorphic versions of the list ((c. d) nil a. b) at
100 and 102.

(b)

(a)

100

101

102

103

104

105

CAR CDR

101 103

c cl

101 105

nil 104

a I b

-n i l I 104
I

by referring to this specification. The state of a ULIST
machine is determined by what unique list cells exist.
Hence we want a single V-function, UCELL(XI ,X2)
whose value is the cell with X 1 and X2 as components - -
if there is any such ce l l - -and the distinguished value
"?" if there is no such cell. (All that will matter about
"?" in this paper is that it does not satisfy the predicate
A T O M P to be introduced in Section 3.) There are four
instructions on the ULIST machine: UCONS to obtain
a list with specified components, U C A R and U C D R to
extract the components of a ULIST list, and ULISTP to
test whether an arbitrary object is a ULIST list. The
specification is given below.

module: ULIST:
forall: Z 1,Z2
vfns: UCELL(X1,X2)

initial UCELL(XI,X2) = ?
define: ISUCELL(X) = (exists XI,X2:UCELL(X1,X2)=X~=?)
ovfns: UCONS(X1,X2) ~ X

assert ISUCELL(X1) or ATOMP(X1)
ISUCELL(X2) or ATOMP(X2)

effects if UCELL(X1,X2) = ?
then UCELL(Z 1,Z2)~ =X and

'UCELL(X1,X2)=X and
X-=? and -ATOMP(X) and
(XI~=Z1 or X2~=Z2

'UCELL(Z 1,Z2)
=UCELL(Z 1,Z2))

else 'UCELL(Z I,Z2)=UCELL(ZI,Z2) and
X = UCELL(XI,X2)

UCAR(X) ~ X1
assert ISUCELL(X)
effects 'UCELL(Z 1,Z2)=UCELL(Z 1,Z2)

UCELL(Z 1,Z2)=X ~ X 1 =Z 1
UCDR(X) ~ X2

assert ISUCELL(X)
effects 'UCELL(Z I,Z2)=UCELL(Z I,Z2)

UCELL(ZI,Z2)=X ~ X2=Z2
UCONSP(X) ~ B

effects 'UCELL(Z I,Z2)=UCELL(Z 1,Z2)
B = ISUCELL(X)

It will be common, in the specification of this module,
to ask the question, "Is the object X a unique list cell?"
Therefore we introduce the abbreviation ISUCELL, ex-
pressing this predicate in terms of the module 's single V-
function. Note also that in the specification we use the
predicate A T O M P to distinguish the objects that may be
the "leaves" of list structures from the objects that are
list cells. Rather than implementing this predicate as we
develop our hierarchy, we will simply assume that it is
present in the most primitive machine of the hierarchy
and is reflected upward, with the same meaning, in each
nonprimitive machine. In Section 9, we will discuss the
significance of this assumption.

In the initial ULIST state, there are to be no list cells.
We specify this by requiring that UCELL(Z1,Z2) be
"?." initially. (We abbreviate slightly by listing at the
head of each module symbols that should be read as
universally quantified in all their uses in the module
specification; for ULIST these are Z1 and Z2.)

Next, we specify the instruction UCONS(XI ,X2) to
obtain a cell with components X 1 and X2. This instruc-
tion has no exceptions: it is required to achieve its effects
for a n y arguments and state; in particular, this requires
that any implementation have an unlimited set of cells.
(Although this requirement is idealistic, it simplifies our
presentation; SPECIAL does provide for the description
of resource errors.) We assert that the arguments to
U C O N S are either outputs of UCONS [ISUCELL(X)]
or atoms [ATOMP(X)]. Its effects are stated with an "if-
then-else" assertion. We need to refer to two sets of
values of U C E L L - - t h o s e associated with the state before
the U C O N S instruction is executed and those reflecting
the changed state due to the execution. We will do this
by writing UCELL(X1,X2) to refer to the old state and
'UCELL(X1,X2) to refer to the changed state. First, if
the machine state is such that UCELL(X1,X2) is '"?.",
then a new cell must be created. We do not choose to
specify how cells are represented (e.g. by their integer
addresses on some machine), but say only that the new
cell is a value X that is not a cell before the execution of
this instruction (i.e. U C E L L (Z 1 , Z 2) - = X for any X1,
X2) and is the cell with the specified components after-
wards ['UCELL(X1,X2)=X]. Besides constraining the
value of the new cell, we must ensure that no other cells
are affected by the instruction. Thus we say that if
(Z1,Z2) is any pair of cell components other than the
(X1,X2) given in the instruction call, then the new cell
associated with (Z1,Z2) is the same as the old
['UCELL(Z 1 ,Z2)=UCELL(Z 1,Z2)].

I f UCELL(X1,X2) is not "?.", then the effects of the
instruction are simpler. We constrain the result of
U C O N S to be the existing cell [Z---UCELL(X1,X2)] and
require the new state to have exactly the same cells as
the old ['UCELL(Z1,Z2)=UCELL(Z1,Z2)] .

Next, we specify the U C A R and U C D R instructions.
Our notion of the ULIST module is that it is not mean-
ingful to ask for either o f the components of an object
other than a ULIST cell. Hence we assert that the

1067 Communications December 1978
of Volume 21
the ACM Number 12

arguments to UCAR and UCDR are ULIST cells using
the predicate ISUCELL which requires that its argument
be in the image, under UCELL, of the set of pairs
(Z1,Z2). The effects of UCAR and UCDR are similar.
If Z 1 and Z2 are such that UCELL(Z 1,Z2) is the argu-
ment to UCAR or UCDR, then the UCAR component
of UCELL(ZI ,Z2) is Z1 and the UCDR component is
Z2. (It is not obvious that such a specification is noncon-
tradictory; this is a consequence of the theorem, proved
below, that UCELL is single-valued: it maps distinct
arguments to the same result only when that result is
"?".) Besides giving the values of these functions, the
specification asserts that they have no effect on UCELL
['UCELL(Z 1,Z2)=UCELL(Z 1,Z2)].

The last ULIST instruction is UCONSP. It is like
UCAR and UCDR in that UCELL is unchanged. Its
result B must be true or false, and true if and only if its
argument is a ULIST list. But this is easily stated in
terms of the UCELL V-function--i t is equivalent to the
existence of a pair (Z1,Z2) such that UCELL(Z1,Z2) is
equal to the argument X [B = exists Z1,Z2:
UCELL(Z 1,Z2)=X].

4. The List Module

Our goal is to design an abstract machine that pro-
vides its user with both unique and conventional list
processing. This machine is the product of ULIST and
a module LIST that we will specify next. The formal
specification of LIST is given below.

module: LIST:
foraU: Z I,Z2,Z
vfns: CELL(X 1,X2,X)

initial CELL(X 1,X2,X)=false
define: ISCELL(X) = (exists XI,X2:CELL(X1,X2,X) and X~=?)
ovfns: CONS(XI,X2) ~ X

assert ATOMP(XI) or ISCELL(XI)
ATOMP(X2) or ISCELL(X2)

effects 'CELL(X1,X2,X)
not CELL(Z1,Z2,X)

not ATOMP(X)
Z~ =X ~ 'CELL(Z 1,Z2,Z)= CELL(Z 1,Z2,Z)

CAR(X) ~ XI
assert ISCELL(X)
effects 'CELL(Z 1,Z2,Z)=CELL(Z 1,Z2,Z)

exists Z2: CELL(X I,Z2,X)
CDR(X) ~ X2

assert ISCELL(X)
effects 'CELL(Z 1,Z2,Z)=CELL(Z 1,Z2,Z)

exists Z 1 : CELL(Z I,X2,X)
CONSP(X) ~ B

effects 'CELL(Z I,Z2,Z)=CELL(Z 1,Z2,Z)
B = ISCELL(X)

The structure of this module is quite similar to ULIST:
there is a single V-function CELL and four OV-functions
CONS, CAR, CDR, and CONSP. However, there are
important differences. First, whereas UCELL is a func-
tion from a U C A R / U C D R pair (XI,X2) to the unique
list cell X - - i f any- -wi th X1 and X2 as UCAR and
UCDR, CELL is a predicate on the triple (X I,X2,X) that

1068

tests whether X is a conventional list cell with CAR X1
and CDR X2. This difference is necessary: because there
may be more than one conventional list cell with a
particular CAR and CDR, CELL cannot be a function.
The second difference between the two modules is in the
effects of UCONS and CONS. UCONS does not always
change the ULIST state, but CONS always changes the
LIST state. Even if there are already X1, X2, and
X~---? such that CELL(X1,X2,X), an execution of
CONS(X1,X2) will create a new cell with this CAR and
CDR.

5. Properties of ULIST and LIST

Even though we have not yet implemented ULIST
x LIST, we can prove properties of this machine just on
the basis of its specifications. We illustrate this point by
proving three results: that UCELL is one-to-one, that
two structurally isomorphic unique lists are identical,
and that if two conventional lists are structurally iso-
morphic, then certain corresponding unique lists are
identical.

Consider the claim that the specification of ULIST
is consistent, that is, implementable. For example, if
UCELL is not one-to-one on that part of its domain that
does not map to "?", then the specifications for UCAR
and UCDR are not realizable. For suppose
X=UCELL(Z1,Z2)=UCELL(Z3,Z4)~=? . If Z1 is not
equal to Z3, then UCAR(X) is required to return both
Z 1 and Z3, an impossibility. Similarly, if Z2 is different
from Z4, then UCDR(X) is required to return two
different values.

This result is not, by itself, sufficient to show that
ULIST can be implemented. On the other hand, a
provably correct implementation of ULIST--g iven be-
l ow- imp l i e s this result. However, the result is easy to
state and has interesting consequences. Moreover, its
proof illustrates a general proof technique applicable to
abstract machines.

THEOREM 1. foral l Z 1,Z2,Z3,Z4:
UCELL(Z1,Z2)=

UCELL(Z3,Z4)~ =?
Z 1 =Z3 and Z2=Z4.

PROOF. The theorem will be proved by induction on
sequences of states of ULIST. This method of proving
properties of abstract machines, which we call generator
induction, is discussed in [3, 9, 30]. We must prove the
theorem for any initial state of ULIST and for any state
S' such that the theorem holds in a state S and S' is a
state resulting from executing a ULIST instruction in S.

The basis of the induction is immediate, since
UCELL is always "?" in an initial machine state. Thus
it suffices to assume the theorem holds in some state S
and to deduce its validity in a successor state S' that
results from the operation UCONS(X1,X2) (since
UCONS is the only operation that changes UCELL's re-

Communications December 1978
of Volume 21
the ACM Number 12

suits). Suppose that this execution of UCONS returns X
and that, in the resulting state, there are Z1, Z2, Z3, and
Z4 such that 'UCELL(Z1,Z2)= 'UCELL(Z3,Z4)~=?.
If there has been no state change--t-he "else clause" of
the effects--or i f 'UCELL(Z1,Z2)=UCELL(ZI ,Z2) and
'UCELL(Z3,Z4)=UCELL(Z3,Z4), then the inductive
assumption gives the desired result. Suppose that there
has been a state change-- the "then clause" and that
'UCELL(Z I ,Z2)~--UCELL(Z 1,Z2). Thus Z 1--X 1 and
Z2=X2. I fZ3=X1 and Z4=X2, we are done. I fZ3~=X1
or Z4~=X2, then the second equation of the else clause
implies that 'UCELL(Z3,Z4)-UCELL(Z3,Z4) which is
not equal to X by the first equation of the else clause, a
contradiction. This completes the proof.

Next, we extend this result to show that structural
equality implies identity for ULIST lists. Let us write
UCAR*, UCDR*, and UCONSP* to refer to the values
returned by these instructions in some state. (We intro-
duce this notation to emphasize the careful distinction
between these values, useful in stating static mathemat-
ical properties of a specification, and the instructions
that might be executed to obtain them in some im-
plementation.) Theorem 1 implies that, in any
state, UCAR* and UCDR* are functions mapping the
set of X such that UCONSP*(X) to a range not con-
taining "?". It is a simple matter, using Theorem 1,
to show that the conclusion X=Y follows from the hy-
potheses UCONSP*(X), UCONSP*(Y), UCAR*(X)=
UCAR*(Y), and UCDR*(X)=UCDR*(Y); we leave the
details to the reader. Using this corollary, we can prove
that structural isomorphism implies identity for the lists
of the ULIST machine. We define structural isomorph-
ism of unique lists recursively by:

UISO(X,Y) ~ if UCONSP*(X) and UCONSP*(Y)
then UISO(UCAR*(X), UCAR*(Y))

and UISO(UCDR*(X),UCDR*(Y))
else X=Y,

and can then prove:

THEOREM 2. forall X,Y:UISO(X,Y) ~ X=Y.

Discussion. We wish to prove this theorem by struc-
tural induction on unique lists. (Structural induction is
described by Burstall in [3]; the theorem can also be
proved, less easily, by generator induction.) We will
prove the theorem for the atoms that form the leaves of
a unique list and we will prove that if the theorem holds
for the proper sublists of a unique list, then it holds for
the entire list. For such an induction to be sound, it is
essential that there be no circular lists. Fortunately, the
ULIST machine instructions provide no way to create
circular lists. Since there are no lists in an initial ULIST
state, since each instruction creates at most one new list,
and since we are only interested in machine states achiev-
able by the execution of finitely many instructions, this
induction is well-founded. (This same argument dem-
onstrates that UISO is total.)

PROOF. The basis of the induction is the case that

1069

~UCONSP*(X) or ~UCONSP*(Y), and it is an im-
mediate consequence of the defmition of UISO. We
make the inductive assumptions UCONSP*(X),
UCONSP*(Y), UISO(UCAR*(X) ,UCAR*(Y))
UCAR*(X)=UCAR*(Y) , and UISO(UCDR*(X) ,
UCDR*(Y)) =* UCDR*(X)=UCDR*(Y), and must
prove that UISO(X,Y) ~ X=Y. Expanding the defmi-
tion of UISO(X,Y), we conclude that UISO
(UCAR*(X),UCAR*(Y)) and UISO(UCDR*(X),
UCDR*(Y)); hence by the inductive assumptions,
UCAR*(X)--UCAR*(Y) and UCDR*(X)=UCDR*(Y).
The corollary of Theorem 1 now yields the desired result.

Next we prove a theorem about a program that might
be run by a top-level user of the ULIST X LIST machine
to translate conventional lists to unique lists. (Because of
the overhead associated with the maintenance of unique
lists, it is common to do some computations with the
corresponding conventional lists, and convert only the
final result to a unique list.) We claim that this may be
done by the program UCOPY defined as follows:

UCOPY(X) ~ if CONSP(X)
then UCONS(UCOPY(CAR(X)),

UCOPY(CDR(X)))
else X.

The major result about UCOPY is that if two conven-
tional lists are isomorphic, then their U-copies are iden-
tical. Isomorphism of conventional lists is defined by:

ISO(X,Y) ~ if CONSP*(X) and CONSP*(Y)
then ISO(CAR*(X),CAR*(Y))

and ISO(CDR*(X),CDR*(Y))
else X=Y.

Let UCP(XA,XB) be an abbreviation for ISO(XA,XB)
=~ UCOPY(XA)=UCOPY(XB). We will then prove:

THEOREM 3. forall XA,XB : UCP(XA,XB)

Discussion. The meaning of this formula is subtle,
since the effects and result of UCOPY are contingent
upon the machine state in which it is executed. A more
precise statement would be as follows. Suppose
ISO(XA,XB). Suppose that UCOPY is applied to XA,
beginning in some state S 1. This application terminates
(since our lists are acyclic) yielding a value XA' and a
state $2. Suppose, moreover, that $3 is any successor of
$2, resulting from a series of state transitions, starting at
$2. Finally, suppose that UCOPY, applied to XB from
state $3, yields value XB' and state $4. Then XA'=XB'.

We are going to prove this result by induction. An
inductive assumption of this rather lengthy form would
be very cumbersome. Fortunately, the machine specifi-
cations imply that if UCONSP*(X) holds in some state
S, then it holds in every successor state. Also, if
UCAR*(X) and UCDR*(X) are defined in a state S,
then they remain defined and retain the same value in
all successor states. In view of these facts, sometimes
called frame axioms, we can safely omit further refer-

Communications December 1978
of Volume 21
the ACM Number 12

ences to changing states and use the simple statement of
the theorem. (It is very interesting to consider whether
this kind of problem reduction might be done mechani-
cally.)

PROOF. First, suppose ~ C O N S P * (X A) . Then
ISO(XA,XB) implies that XA=XB. Also,
UCOPY(XA)=XA and UCOPY(XB)=XB so that the
desired result is immediate. Next suppose CONSP*(XA).
Then ISO(XA,XB) implies that CONSP*(XB). We pro-
ceed by simultaneous structural induction on XA and
XB. That is, we assume

I1. forall X:UCP(s(XA),X)
12. forall X:UCP(X,s(XB))

where s is either CAR* or CDR*. (Clearly, UCP is
symmetric in its two arguments.) From ISO(XA,XB) it
follows that

I3. ISO(Car*(XA),CAR*(XB)), and
14. ISO(CDR*(XA),CDR*(XB)).

Combining these results with I 1 and 12 we obtain

16. UCOPY(CDR*(XA))=UCOPY(CDR*(XB)) .

We must prove that UCOPY(XA)=UCOPY(XB). This
is done as follows:

UCOPY(XA) = UCONS*(UCOPY(CAR*(XA)),
UCOPY(CDR* (XA)))

{by the definition of UCOPY}
= UCONS*(UCOPY(CAR*(XB)),

UCOPY(CDR*(XB)))
(by I5, I6)

= UCOPY(XB)
(by the definition of UCOPY).

6. Implementation of ULIST x LIST

We now wish to implement the machine specified
above in terms of more primitive facilities. Specifically,
we will consider a machine, LIST x SEARCH, that has
conventional list processing capabilities and an associa-
tive search capability. Since we retain the LIST facilities
in this second level machine, the main problem is to
describe ULIST in terms of associative search and con-
ventional list processing.

Our SEARCH machine is formally specified below.

module: SEARCH:
forall: K,T
vfns: PRIMARYTABLE()

initial PRIMARYTABLE()~=?
GET(KEY,TABLE)

initial GET(KEY,TABLE)=?
TABLEP(TABLE)

initial TABLEP(TABLE) =
(TABLE=PRIMARY-TABLE())

ovfns: NEWTABLE() ~ TABLE
effects 'PRIMARYTABLE()=PRIMARYTABLE()

'GET(K,T) = GET(K,T)
'TABLEP(T) = (TABLEP(T) or T=TABLE)
not TABLEP(TABLE)
TABLE~=?

1070

SAVE(VALUE, KEY,TABLE)
assert TABLEP(TABLE) and VALUE~=? and

KEY~=?
effects 'PRIMARYTABLE()=PRIMARYTABLE()

'GET(K,T) = ifK=KEY and T=TABLE
then VALUE
else GET(K,T)

'TABLEP(T)=TABLEP(T)
GETOP(KEY,TABLE) ~ VALUE

assert TABLEP(TABLE) and KEY~=?
except NOTTHERE: GET(KEY,TABLE)=?
effects 'PRIMARYTABLE()=PRIMARYTABLE()

'GET(K,T)=GET(K,T)
'TABLEP(T)=TABLEP(T)
VALUE=GET(KEY,TABLE)

PRIMARYTABLEOP() --~ TABLE
effects TABLE='PRIMARYTABLE()=

PRIMARY-TABLE()
'GET(K,T)=GET(K,T)
'TABLEP(T)=TABLEP(T)

The basic idea is that there are a number of "search
tables"- -a special table called PRIMARYTABLE that
exists initially, and as many secondary tables as the user
wishes to create using the NEWTABLE instruction. In
each table one can save a value under a key, writing over
any previously saved value, or look up the value saved
under a key. (We could simplify the argument structure
and specifications of the instructions of this module by
using only a single table and a G ETO P instruction whose
single argument combined the information in the two
arguments of the present GETOP. But we believe that
the version given yields a clearer implementation and it
is also more suggestive of the implementation used by
Deutsch [6].)

Note that the specification of G ETO P uses an excep-
tion if there is no entry in the table under the key that is
sought. It is worthwhile to contrast the use of excep-
tions and assertions in this specification. We assert that
TABLEP(TABLE), indicating that a compilation or ver-
ification assert that TABLEP(TABLE), indicating that
a compilation or verification may assume this fact in
processing the implementation of G ETO P but must
verify it for uses of GETOP. The assertion describes a
condition that must be guaranteed to hold at calls of the
function. The exception, on the other hand, describes a
c o n d i t i o n i t h e presence of a particular entry in the
table-- that may or may not hold. Implementation pro-
grams are simplified by the possibility of structuring
them to consider the "normal" and "exceptional" cases
separately.

Any scheme for implementing unique lists requires
determining whether a given pair of arguments to
UCONS are the UCAR and UCDR of a previously
UCONSed cell. In the specification of ULIST, the V-
function UCELL serves to map from arguments pairs to
cells; however, because of a quirk of Interlisp (the pos-
sibility of basing a hash probe on a single pointer but
not on a pair of pointers), UCELL is not directly imple-
mentable in Interlisp. Instead, Deutsch employed--and
we formally describe--a scheme based on two levels of
search. This scheme is illustrated in Figure 2(c). The lists

Communications December 1978
of Volume 21
the ACM Number 12

Fig. 2. Implementation of ULIST.

1. (c)
2. (b c)
3. (a b c)
4. (d b c)
S. (e c)
6. ((b c) c)
7. (a (b c) c)

(a) A SET OF SEVEN LIST STRUCTURES

(b)

3 2

7 6

THE SAME LIST STRUCTURES IMPLEMENTED WITH
SHARING OF COMMON CELLS

b 2

,FTyq
PRIMARY SECONDARY

TABLE TABLES

(©) THE SEARCH TABLES FOR THESE LISTS

in Figure 2(a) are shown as they might be uniquely
represented in Figure 2(b). Each list cell is shown with
a numeric cell identifier corresponding to the list number.
The pr imary table of Figure 2(c) represents the associa-
tion between U C D R s of cells and secondary tables. A
secondary table, corresponding to a particular U C D R
X2, then associates UCARs of cells with the cell, if any,
having that U C A R and U C D R X2.

Implementat ion of ULIST x LIST by LIST x
SEARCH is now possible. The implementation has three
parts: a representation of states, an initialization pro-
gram, and programs realizing each of the OV-functions

1071

of the upper level. First, the state representation is de-
scribed by two formulas:

UCELL(X1,X2) ~ GET(X1,GET(X2,PRIMARYTABLE()))
CELL(X 1,X2,X) ~ CELL(X 1,X2,X)

and GET(X 1,GET(X2,
PRIMARY-TABLE()))~=X

In these formulas, the left-hand sides refer to V-
functions of the upper machine and the right-hand sides
to V-functions of the lower machine. The first of these
formulas describes the state correspondence needed to
implement the two level search procedure: it provides
that an upper state where UCELL(X1,X2) is not "?" will
be represented by a lower state where the double search
with X1 and X2 yields a result other than "?.". Also, it
requires that if UCELL(X1,X2) is '~.", then the double
search in the lower level state must yield "?." too.

The second formula describes how the upper level
conventional lists are represented. The answer is, they
are represented by lower level lists. We state this by
using CELL on both sides of the definition, to be read as
describing the upper level CELL in terms of the lower
level CELL. However, there is a subtlety: some of the
lower level lists will be used in the implementation to
represent upper level unique lists and these, so far as the
upper level is concerned, do not exist as lists. Thus, we
add the second conjunct to this formula to exclude these
lists from the set of upper level ceils.

The initialization program must start from an initial
state of LIST x SEARCH and arrive at a state of that
machine that represents an initial state of ULIST x
LIST. However, all that is required of an initial state of
ULIST x LIST is that UCELL(X1,X2) is "?." and
CELL(X1,X2,X) is "false" and, in view of the represen-
tation just given, this is represented by an initial state of
LIST × SEARCH. Hence, the empty program suffices
for initialization.

Finally, we must realize the upper level OV-functions
UCONS, UCAR, UCDR, UCONSP, CONS, CAR,
CDR, and CONSP by lower level programs. These are
given below.

UCONS(X1,X2) : begin locals TABLE, C;
execute TABLE ~-- GETOP(X2,PRIMARYTABLEOP()) then

on normal: execute C *--- GETOP(X1, TABLE) then
on normal: return(C);
on NOTTHERE: C *--- CONS(X1,X2);

SAVE(C,X1,TABLE);
return(C) end;

on NOTTHERE: TABLE +-- NEWTABLE();
C *- CONS(X1,X2);
SAVE(C,X 1,TABLE);
SAVE(TABLE,X2,PRIMARYTABLEOP()) end end;

UCAR(X) : CAR(X);
UCDR(X) : CDR(X);
UCONSP(X) : begin locals TABLE, C;

if CONSP(X)
then execute

TABLE ,--- GETOP(CDR(X),PRIMARYTABLEOP())
then

on normal:
execute C ,,-- GETOP(CAR(X),TABLE);
then

Communications December 1978
of Volume 21
the ACM Number 12

on normal: return(C=X);
on NOTTHERE: return(false) end;

on NOTTHERE: return(false) end
else return(false) end;

CONS(X 1,X2) : CONS(X 1,X2);
CAR(X) : CAR(X);
CDR(X) : CDR(X);
CONSP(X) : CONSP(X) and ~UCONSP(X);

First, note that occurrences of CONS, CAR, CDR, and
CONSP in the defining programs denote these instruc-
tions on the lower level machine. Next, note that the
defining programs for the top level functions CONS,
CAR, and CDR are trivial because exactly the right
instruction exists at the lower level. The defining pro-
grams for UCAR and UCDR are also single instructions;
this is a consequence of the decision we made to represent
upper level unique lists by lower level conventional lists.
The nontrivial implementations are those for UCONS,
UCONSP, and CONSP.

The implementation for UCONSP is a block that
introduces two local variables: TABLE and C. If the
argument X does not satisfy the lower level CONSP
predicate, it cannot- - in view of the representation--
satisfy UCONSP. However, if it is a list cell, the
UCONSP program uses the "execute" statement, a spe-
cial feature of our implementation language. We use this
statement to call an OV-function that may have excep-
tions and then deal with the normal exit and the excep-
tional exits in turn. Thus the UCONSP program first
searches in the primary table with CDR(X) as key. If
there is no exception, then the TABLE that results is
searched with CAR(X) as key. A normal exit from this
second search with result C indicates that C is a unique
list with the same components as X and therefore is the
only such unique list. Hence X is a unique list if and
only if it is C. If either search has an exceptional exit,
this means that there is no unique list with CAR(X) and
CDR(X) as components. Thus UCONSP returns "false."

The implementation of UCONS has a similar struc-
ture. If both searches have normal exits and result C,
then UCONS just returns C. If the first search encounters
the N O T T H E R E exception, this means that there are no
existing unique lists with UCDR X2. Hence we create a
new search table to record such unique lists, enter it in
the primary table under key X2, create the new (repre-
sentation of a) unique list CONS(X 1,X2), and enter it in
the new secondary table under key X I. The new list is
then the answer returned by UCONS.

If the first search has a normal exit, but the second
search has a N O T T H E R E exception, this indicates that
there is already a secondary search table TABLE for
unique lists with UCDR X2, but that there is no entry in
TABLE with X1 as UCAR. Hence we again create a
new unique list representation CONS(X1,X2), enter it in
TABLE under Key X1, and return it as the answer of
UCONS.

Finally, the implementation of CONSP introduces
some difficulty. Although there is a CONSP instruction
at the lower level, it does not suffice: the lower level

1072

CONSP is satisfied by the lower level ceils that represent
upper level unique lists but these are not conventional
lists in the abstraction provided by the upper level ma-
chine. We have given an implementation that makes an
additional test [~UCONSP(X)] to avoid this problem, a
correct but unpleasantly inefficient implementation of
what ought to be a low-overhead type checking opera-
tion. For present purposes, the correct but inefficient
implementation suffices; Section 9 discusses some alter-
natives.

7. Correctness of the Implementation

The proof that an implementation is correct with
respect to a pair of machine specifications and a state
representation has two parts. First, we must prove that
the initialization program for the lower level-- in this
case the empty program--can be executed from any
initial state of the lower level machine to yield a lower
level state that represents an initial state of the upper
level machine. Second, we must prove that this represen-
tation is preserved by the execution of the implementa-
tions of OV-functions in the lower machine. That is,
suppose S and S' are states of the upper machine and T
and T' are states of the lower machine. Suppose that S'
is a state that results from the execution of an OV-
function call "F(X)" according to the specification of the
upper machine. Also, suppose that T' is a state that
results from the execution of the implementation of
"F(X)" in the lower machine. Then, we must prove that
T' is a representation of S'. (This may be thought as a
proof that the diagram of Figure 3 commutes.)

In doing these proofs, it is important to note that the
execution of the implementations of the upper machine
instructions does not fully exercise the facilities of the
lower machine. For example, in our LIST × SEARCH
machine there are states such that, for some X, the result
of "GETOP(X,PRIMARYTABLEOP())" is neither an
exception nor a secondary table but, instead, a list cell.
Since we never store anything other than secondary
tables in the primary table, we know that this can never
occur and would like to use this knowledge to help the
proof. We can do this by formulating an invariant pred-
icate I(T) on the states T of the lower machine. We then
prove that I holds for states resulting from the initial"
zation of the lower machine. We also prove that if I(T)
holds, and P is the implementation of an upper machine
OV-function, then I(T') holds where T' results from T
when P is executed in the lower machine. Having proved
such an invariant property, we may assume that I holds
for all states that arise in the proofs described in the
previous paragraph.

We will illustrate the proof of correctness of imple-
mentations in this methodology (Figure 3) by proving
the correctness of the implementation given in the pre-
ceding section. The necessary invariant assertion has two
parts. First, if a fetch from the primary table yields a

Communications December 1978
of Volume 21
the ACM Number 12

Fig. 3. A necessary condition for implementation correctness.

Q ,,., : Q

re~ re o

) impl(f, x) ~ Q

result, not "?", then that result is a (secondary) table.
Second, if a fetch from the secondary table yields a
result, not "?", then that result is a list cell whose
components are the keys of the two fetches. Stating this
formally, we have

I(T) = GET(Z2,PRIMARYTABLE())=TABLE~=?
implies (TABLEP(TABLE) and

(GET(ZI,TABLE)=Z~=?
implies (CONSP(Z) and CAR(Z)=ZI
and CDR(Z)=Z2))).

(Note that the notation is such that the state T does not
appear explicitly in the right-hand side of this definition;
note also the implicit universal quantification of Z 1, Z2,
Z, and TABLE.) It is easy to show that I is an invariant
of the lower machine states that arise in the implemen-
tation. It is true of the initial state because its antecedent
is always false in this initial state. If it is true of a state
T, then the execution of the implementations of UCAR,
UCDR, UCONSP, CONS, CAR, CDR, and CONSP
involve no calls of SAVE and therefore no changes in
GET. The remaining case is the implementation of
UCONS(X1,X2). This implementation can affect the
truth of I because it does call SAVE. However, it calls
SAVE only with C, which has the proper CAR and
CDR and is stored under the appropriate keys, and with
TABLE which does satisfy TABLEP (in view of the
effects of NEWTABLE) and is also saved in the primary
table under the proper key. Thus I is indeed invariant.

We have already Shown that an initial state of the
lower machine, followed by an empty initialization, rep-
resents an initial state of the upper machine. We must
now prove that the representation of the upper machine
state by the lower machine state is preserved by the
execution of the implementations. It should be clear, in
each case, that the result returned satisfies the corre-
sponding specification. Except for UCONS and CONS,
the instructions of the upper machine are implemented
by programs whose only effect is the return of a result;
thus these implementations all preserve the representa-
tion of the specified upper state by the resulting lower
state.

The upper machine's CONS instruction is imple-
mented by the CONS of the lower machine. Since the
execution of the lower machine CONS affects only the
V-function CELL, and only in a way consistent with the

1073

representation, this implementation also preserves the
representation. The remaining upper machine construc-
tion is UCONS; consider its implementation. If both
execute statements are "normal," there is no state change;
that the result returned is correct is immediate from the
invariant. If the outer execute statement has a normal
exit and the inner a " N O T T H E R E " exception, then the
implementation creates exactly one new cell, and saves
it in the proper table, thus preserving the representation
of UCELL. Moreover, since the first conjunct of the
representation of CELL becomes true exactly where the
second conjunct becomes false, the specification that the
representation of the upper level CELL be unaffected by
execution of UCONS is satisfied.

Finally, if both execute statements have "NOT-
T H E R E " exceptions, then a new secondary table is
created and saved under the proper key in the primary
table. This does not affect the representation, and the
remainder of code in this case preserves the representa-
tion by the argument just made for the case of a single
exception.

This completes the proof of the ULIST implemen-
tation.

8. F u r t h e r I m p l e m e n t a t i o n s

The preceding sections have described how properties
of an unimplemented machine can be proved from its
formal specifications, how such a machine can be real-
ized in terms of a more primitive machine, and how such
a realization can be proved with respect to the two
machines. To save space, we will in this section sketch
rather than fully presenting the further refmement of the
LIST × SEARCH machine.

If Interlisp is an acceptable primitive machine, then
the programs described so far solve the original problem,
since it provides the LIST and SEARCH facilities to
which we have reduced the problem. This would raise
an interesting problem for the proof of the LIST ×
SEARCH specifications. The most complete extant spec-
ification of Interlisp, [19], is not written in SPECIAL;
this proof would thus require a different theory from
that discussed here.

A more primitive Lisp than Interlisp can also be used
as the basis of our hierarchy. For example, one can easily
implement the facilities of SEARCH, except for the
PRIMARYTABLEOP instruction, in terms of Lisp lists;
the implementation is just the usual Lisp "association
list." The implementation of PRIMARYTABLEOP can
be accomplished by using a single variable to remember
which association list represents the primary search table.
That is, LIST × SEARCH can be implemented in terms
of VARIABLE × LIST. (VARIABLE is a very simple
module: its state is the value saved in the variable and it
has two instructions, one to read the value and one to
save a new value.) The machines of this hierarchy, and
their component modules, are shown in Figure 4.

Alternatively, one can distinguish two kinds of search

Communications December 1978
of Volume 21
the ACM Number 12

Fig. 4. An implementing hierarchy for unique lists.

LIST J (ULIST

SEARCH

LIST

LISP

operations in the implementation of ULIST--those that
start from the primary table and those that start from
one of the secondary tables. Actual use of ULIST sug-
gests that it is reasonable to use a hashtable for the
primary search table and association lists for the second-
ary tables. Since Interlisp provides named hashtables,
this means that LIST × SEARCH could be realized by
HASHTABLE × LIST and, in turn, HASHTABLE ×
LIST could be realized by Interlisp. (We will not provide
an implementation of HASHTABLE here. The inter-
ested reader should consult [30]; in that paper, HASH-
TABLE is implemented in terms of arrays and a "hash
probe" function and it is proved that the implementation
is correct.)

9. Concluding Remarks

In Section 6, we implemented some specifications in
an Algol-like language called ILPL, which is described
in Appendix C of [22]. However, the use of this language,
while convenient, is not essential to the use of our
methodology. On the contrary, we believe that enough
structure is given to even a large system by its decom-
position and precise specification in SPECIAL to permit
implementation in many languages. The critical points
in the design and implementation of systems tend to be

1074

global issues such as a decision on how to decompose a
system into modules or how to describe the implemen-
tation of a module by a hierarchy of abstractions--
exactly the areas in which SPECIAL is expressive. By
contrast, the details of any particular programming lan-
guage usually address very local issues in programming,
e.g. whether to use a case or conditional statement to
describe a choice, whether to use a "while-do" or a
"repeat-until" statement to describe a particular itera-
tion. While such local decisions certainly have an impact
on the clarity of the programs that can be written, we
believe that this impact is negligible by comparison with
the impact of well or poorly done overall design and
specification. If the latter is precise, so that a large system
is implementable by a large number of loosely coupled
small parts, then many different languages may be
equally good for implementing the parts.

This is not to deny that care should be taken in the
choice of an implementation language. Certainly one
ought to use a language with lucid syntax and a flexible
set of control structures. Since we advocate the decom-
position of a program into many parts, it follows that we
recommend choosing a language that can be compiled
into a form in which linkage between the parts is eco-
nomical. Since we seek to implement systems, we are
interested in the ultimate efficiency of implementations
and therefore require a language in which machine-level
representations can be described for the use of the most
primitive levels of a hierarchy.

A related issue is the provision of data structures by
the base language. For example, we assumed above that
our base machine provided a set of objects satisfying the
predicate ATOMP and disjoint sets of objects to repre-
sent abstractions such as ceils and tables. I f an adequate
facility for defining concrete data types is present in the
base, then it need not be provided by the hierarchy
and- - i f the base language is carefully implemented--the
cost of soundly manipulating objects of different types
will be kept to a minimum. (Such a base should permit
an efficient implementation of the upper level CONSP
instruction in Section 6; by contrast, [6] is not intended
as a hierarchical solution to the unique list problem, does
not distinguish the list cells of the different levels of
abstraction, and uses the same selectors CAR and CDR
for all of them.) If the base does not have a sufficient
facility, for example because it is a bare machine, then
a type system must be synthesized as part of the hierarchy
of machines. This can be quite hard, but it is possible
[22].

Some base languages will provide not only concrete
but also abstract data structures; these include CLU
[15], a modification of Simula [23], Modula [31], and
Alphard [32]. Some of these facilities are clearly redun-
dant if our methodology is used with a tool that statically
confirms that implementation programs are compatible
with specifications, e.g. in what functions they call or
what objects they refer to. On the other hand, the use of
such a base language can ease the proof that implemen-

Communications December 1978
of Volume 21
the ACM Number 12

tation programs have the protection semantics implicit
in the methodology.

Boyer and Moore have developed a formal semantics
and a verification condition generator for our method-
ology [1], using the underlying theory of their Lisp
Theorem Prover [2]. This makes it possible to produce
precise machineable versions of the theorems given in
Section 7 and preliminary experiments encourage us in
the hope that these theorems may be mechanically
proved. This will be a major theme in our future work.

There are certainly many other ways to specify pro-
grams formally. We think that the method of algebraic
specifications [8] is very promising. It is similar to our
method in its precision and compatibility with formal
proof. It appears, in some published examples, to pro-
duce specifications that are quite concise but may require
of readers greater mathematical sophistication than do
ours; we are not aware of its use on examples as large as
[22]. It would be premature to draw firm conclusions
about the relative merits of the two methods and we look
forward to the further development of both.

Acknowledgments. We thank B. Elspas, R. Boyer,
and the referees for their helpful suggestions; R. Boyer
and J Moore for their work on formalizing SPECIAL;
and S. German for the idea of trying to prove Theorem
3.

Received January 1976; revised August 1977

References
1. Boyer, R.S., and Moore, JS. Private communication, June 1977.
2. Boyer, R.S., and Moore, JS. A lemma driven automatic theorem
prover for recursive function theory. Proc. Int. Joint Conf. Artificial
Intelligence, Cambridge, Mass., Aug. 1977.
3. BurstaU, R.M. Proving properties of programs by structural
induction. Comptr. J. 12, 1 (Jan. 1969), 41-48.
4. Dalai, O.J., Mylirliaug, B., and Nygaard, K. Common base
language, S-22. Norwegian Comptng. Ctr., Oslo, Norway, Oct. 1970.
5. Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R. Structured
Programming. Academic Press, New York, 1972.
6. Deutsch, L.P. An interactive program verifier. Ph.D. Th., Dept.
of Comptr. Sci., U. of California, Berkeley, 1973.
7. Good, D.I. Provable programming. Proc. Int. Conf. Reliable
Software, SIGPLAN Notices (ACM) 10, 6 (June 1975), 411-419.
8. Guttag, J. Abstract data types and the development of data
structures. Comm. A CM 20, 6 (June 1977), 396-404.
9. Hoare, C.A.R. Proof of correctness of data representations. A cta
Informatica 1, 4 (1972), 271-281.
10. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the
programming language PASCAL. Acta lnformatica 2, 4 (1973),
335-355.
11. Ichbiah, J.D., et al. The system implementation language LIS.
Tech. Rep. 4549, E/EN, Compagnie Internationale pour
l'Informatique, Louveciennes, France, Dec. 1974.
12. Igarashi, S., London, R.L., and Luckham, D.C. Automatic
program verification I: A logical basis and its implementation. Acta
Informatica 1, 4 (1975), 145-182.
13. An appraisal of program specifications. Computation Structures.
Group Memo 141-1, Lab. for Comptr. Sci., M.I.T., Cambridge,
Mass., April 1977.
14. Liskov, B., and ZiUes, S. Programming with abstract data types.
Proc. ACM SIGPLAN Conf. Very High Level Languages,
SIGPLAN Notices (ACM) 9, 4 (April 1974), 50-59.
15. Liskov, B., and Zilles, S. Specification techniques for data
abstraction. IEEE Trans. Software Eng. SE-1, 1 (March 1975), 7-19.
16. McCarthy, J. A basis for a mathematical theory of computation.

In Computer Programming and Formal Systems, Braffort and
Hirschberg, Eds., North-Holland, Amsterdam, 1963, pp. 33-70.
17. McCarthy, J., et al. LISP 1.5 Programmer's Manual M.I.T.
Press, Cambridge, Mass., 1962.
18. Manna, Z., Ness, S., and Vuillemin, J. Inductive methods for
proving properties of programs. Comm. A CM 16, 8 (Aug. 1973),
491-502.
19. Moore, JS. The Interlisp virtual machine specification. Rep. CSL
76-5, Xerox Palo Alto Res. Ctr., Palo Alto, Calif., Sept. 1976.
20. -Morris, J. Protection in programming languages. Comm. A CM
16, 1 (Jan. 1973), 15-21.
21. Morris, J.M. Types are not sets. Proc. ACM Symposium on
Principles of Programming Languages, Boston, Mass., Oct. 1973, pp.
120-124.
22. Neumann, P.G., et al. A provably secure operating'system: The
system, its applications, and proofs. Final Rep., SRI Proj. 4332, SRI
Int., Menlo Park, Calif., Feb. 1977.
23. Palme, J. Protected program modules in Simula 67. Res. Inst. of
Nat. Defense, Stockholm, Sweden, July 1973.
24. Parnas, D.L. A technique for software module specification with
examples. Comm. ACM 15, 5 (May 1972), 330-336.
25. Parnas, D.L. On the criteria to be used in decomposing systems
into modules. Comm. ACM 15, 12 (Dec. 1972), 1053-1058.
26. Robinson, L., and Levitt, K.N. Proof techniques for
hierarchically structured programs. Comm. ACM 20, 4 (April 1977),
271-283.
27. Robinson, L., et al. On attaining reliable software for a secure
operating system. Proc. Int. Conf. Reliable Software, SIGPLAN
Notices (ACM) 10, 6 (June 1975), 267-284.
28. Roubine, O., and Robinson, L. SPECIAL Reference Manual.
Tech. Rep. CSL-45, SRI Project 4828, SRI Int., Menlo Park, Calif.,
3rd ed., Jan. 1977.
29. Weghreit, B. The treatment of data types in EL 1. Comm. A CM
17, 5 (May 1974), 251-264.
30. Wegbreit, B., and Spitzen, J. M. Proving properties of complex
data structures. J. ACM 23, 2 (April 1976), 389-396.
31. Wirth, N. Modula: A language for modular multiprogramming.
Software--Practice and Experience 7 (1977), 3-35.
32. Wulf, W.A. ALPHARD: Toward a language to support
structured programs. Comptr. Sci. Dept., Carnegie-Mellon U.,
Pittsburgh, Pa., April 1974.
33. Yourdon, E., and Constantine, L.L. Structured Design. Yourdon
Press, New York, 1975.

1075 Communications December 1978
of Volume 21
the ACM Number 12

