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I. Introduction 

The use of structuring techniques in programming-- 
for example, programming by successive refinement [5] 
(also called hierarchical programming)--has been rec- 
ognized as increasingly helpful in the design and man- 
agement of large system efforts. A number of such design 
techniques are now promoted for routine use in corn- 
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mercial software development [33]. Some of these tech- 
niques are also alleged to permit the verification of large 
systems by reducing them to a collection of small pro- 
grams, each easily verified. 

Important questions about such hierarchical proofs 
are: 

- - C a n  systems be decomposed into subprograms that 
can be characterized by clear and natural assertions? 

- - C a n  proofs of the subprograms be combined to dem- 
onstrate the correctness of the system? 

- - Is  it generally possible to formulate and prove signif- 
icant implementation-independent properties of sys- 
tems? 

Several recent developments yield positive answers: the 
hierarchical design and module specification techniques 
of [24] and the data abstraction techniques of [9] and 
[26]. (The word "module" is very widely and imprecisely 
used and the reader should be wary of drawing inferences 
not based on our very specific use.) A module is the basic 
unit in a hierarchical decomposition--a collection of 
operations and data. The module permits the definition 
of complex abstract types. For example, a type "file" can 
be defined by a module with operations for creating a 
file, inserting a record into a file, reading a record, 
appending two files, etc., and data structures recording 
the file's contents. 

To permit hierarchical proof, one must formally spec- 
/fy the modules of a hierarchical system. Styles of speci- 
fication and their mathematical foundations differ (e.g. 
consult [8, 24, 27]; also, [15] and [13] are overviews), but 
the basic aim is to achieve abstract specification, i.e. 
specification that describes the input-output behavior of 
a module without recourse to an implementation of the 
module. This may be done in terms of the sequences of 
operations that have been performed on the module, or 
by abstracting from these sequences to a module state. 
In the first of these approaches, one may attempt to 
describe concisely the infinite class of possible histories 
by a small number of "algebraic specifications," as in 
[8]. In this paper, we will use the state approach. An 
important aspect of a good specification--in any 
method--is  that, for a properly conceived module, it is 
a concise, intuitive, and precise characterization of the 
behavior of the module, successfully abstracting from 
the details of any implementation of the module. It is 
often possible to formulate and prove important prop- 
erties of a module in terms of its specifications. 

Similarly, both algebraic and state styles of specifi- 
cation lend themselves to two-stage implementations: 
First, the data structures of a module (other than the 
most primitive) are represented in terms of lower level 
data structures (as in [9] and [26]) and, second, abstract 
programs are written for each operation in terms of lower 
level operations. Each abstract program may then be 
proved to satisfy its specifications on the assumption that 
the more primitive modules it employs are correct, given 
the specific data representation used. 

Should descriptions of hierarchical structure, formal 
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specifications of  modules, and implementations all be 
written in a single language? We have chosen to separate 
these functions, and will describe a powerful specifica- 
tion language, SPECIAL, and a very simple implemen- 
tation language ILPL. An alternative is to provide ab- 
straction directly in the implementation language--the 
approach of [4, 11, 14, 31, 32]. A second language issue 
is what characteristics a language (or, in our view, set of 
languages) should have to enable the correct implemen- 
tation of hierarchies of abstractions. For example, what 
protection principles are needed to ensure the data integ- 
rity of a module? 

The primary contributions of this paper are a descrip- 
tion of the design and proof of a nontrivial, useful 
program, and a demonstration of a technique that has 
promise of making proof and formal description possible 
for large programs. Our example is a program to main- 
tain unique lists with an efficient underlying implemen- 
tation. We have attempted to address three classes of 
readers: those who wish to learn about formal specifica- 
tion should be able to do so by following our specifica- 
tions and the associated prose; those who wish to learn 
about so-called "functional program verification" will be 
introduced to this style of proof; and those who are 
unfamiliar with list processing may obtain an introduc- 
tion to some relevant techniques. 

In the next section, we introduce our design and 
proof method. Then in Section 3 and Section 4 we 
present formal specifications of the two modules that 
comprise the top-level machine of an illustrative hierar- 
chy. Based on these specifications, we are able in Section 
5 to prove several properties of this machine. The imple- 
mentation of this machine and a proof of the correctness 
of this implementation are presented in Section 6 and 
Section 7. Section 8 outlines how the hierarchy described 
up to that point might be refined into an executable 
program. Finally, Section 9 presents some concluding 
remarks. 

2. Design and Proof Method 

Suppose a programming problem P and a machine 
M are given and it is required to construct a program C 
that executes on M to solve P. M may be either a physical 
machine or a virtual machine provided, for example, by 
the compiler for a particular programming language. We 
believe that the program construction should proceed as 
follows. 

First, we design an abstract computer AM on which 
it is easy to solve P. AM is designed by describing its 
states and executable instructions. We deliberately leave 
vague the meaning of an "easy solution" of P--for  some 
purposes this will be a solution by a program AC that is 
only a page or two long; for other purposes it will be a 
solution by a program that can be mechanically proved 
correct using state-of-the-art verification systems. Having 
designed AM, we implement a solution of P on AM, 
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and, in practice, usually alter the design of  AM in the 
process. I f  AM is the same as M, then we have satisfied 
the original requirement if  it can be demonstrated that 
the solution is correct. Otherwise, we have reduced the 
original requirement to the new one of  realizing AM in 
terms of  M. To do this, we design a new machine AM'  
on which it is easy to realize AM. We represent the states 
of  the first machine AM in terms of  the states of  AM'  
and we implement the executable instructions of  AM by 
means of  a set of  programs AC'  on AM'. The choice of  
representation or implementation may prove awkward; if  
so, we resort to altering the design of  AM'  or even that 
of  AM. (Unfortunately, we usually cannot alter the 
original requirement P, though requirements sometimes 
are changed when a problem is better understood.) 

Next, the realization of  AM on AM'  must be verified. 
This verification means that the (partial) solution of  P 
obtained by executing AC on AM is equivalent to the 
(more complete) solution obtained by executing AC and 
AC'  together on AM'.  In this latter solution, the execu- 
tion of  an instruction of  AM by AC is viewed not as 
primitive but as a call on the subroutine in AC'  that 
realizes that instruction on AM'.  Again, if  AM'  is the 
same as M, we are done and otherwise we must continue 
to approach M by extending the sequence of  machines 
AM, AM',  ... and programs AC, AC',  .... When We have 
extended this sequence to a program that executes on M, 
then the set o f  programs and subroutines AC, AC',  ... 
constitutes the required solution C on machine M. 

This description of  programming has been phrased 
in the top-down paradigm, but that is not what is im- 
portant. To make the programming of  large problems 
feasible, reliable, and controllable, they must be some- 
how divided into small parts. We have no special pref- 
erence for top-down or bot tom-up programming in ar- 
riving at this division, and suspect that a flexible mixture 
of  both techniques is required in general. We do advocate 
the use of  formal methods to describe the division, to 
validate the resulting design, and to prove the correctness 
of  the final program. 

The product of  our endeavors will thus consist of: 

- - A  hierarchy of  abstract machines 
- - A  formal specification of each machine 
- - A  representation of  the states of  each machine (except 

the given machine) in terms of  the states of  the ma- 
chine below it 

- - A n  implementat ion of  the instructions of  each ma- 
chine (except the given machine) in terms of  the 
instructions of  the machine below it 

We specify an abstract machine using a method 
originally proposed by Parnas [24] and subsequently 
extended by Robinson and Levitt [26]. (Our formal 
specification language, SPECIAL, is described in [28].) 
A machine has a state and an instruction set. We give 
the state by describing the initial values of  a set of  V- 
functions. We give the instructions, called O V-functions, 
by describing how each changes the state of  the machine 
and what value it returns. (The return of  a particular 
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value may, for formal purposes, be thought of  as part of  
the change of  state.) 

A V-function specification consists of  a header that 
describes its arguments and result and an initialization 
that describes the values of  the function in an initial 
machine state. 

An OV-function specification consists of  a header 
that describes its argument structure, an assertion list 
stating preconditions on the calls of  the function, an 
exception list describing when its execution may have no 
effect other than signaling an error, and a set of  effects 
that nonprocedurally describe the changed state due to 
an execution of  the function by defining the resulting 
values of  the V-functions of  the machine. (These values 
are described in terms of  the old values of  the V-functions 
and the arguments to the OV-function.) The effects 
include, if  appropriate, the designation of  the value to be 
computed and may allow a nondeterministic choice of  
successor state. 

It is usually possible to give additional structure to 
an abstract machine M by describing it as the "product" 
of  modules M1, M2 . . . . .  Mn. When we do this, we will 
refer to the Mi as submachines or modules of  M; other- 
wise the terms machine and module are used as syn- 
onyms. To form such a product, we require that the 
functions of  the Mi be renamed to avoid conflicts. M has 
as its V-functions each of  the V-functions of  the Mi with 
the same initial sections. M has as its OV-functions each 
of  the OV-functions of  the Mi, with augmented effects 
sections. Specifically, if  I is an OV-function of  Mi and V 
is a V-function of  M j ,  where i ~ =  j, we add to the effects 
o f  I the assertion that V is not changed by the execution 
of  I. 

3. The U L I S T  Module 

In this section and the next, we present an abstract 
machine consisting of  two modules: one that maintains 
conventional list structures and one that maintains a 
class of  unique lists--lists such that no two are structur- 
ally isomorphic. (Figure 1 illustrates the usual realization 
of  conventional lists where distinct isomorphic lists are 
possible.) Thus the at tempt to construct one of  these 
unique lists yields an old list if  there is already one with 
the right components.  1 Naturally, we want the check of  
existing cells to be efficient. We use a particularly effec- 
tive method introduced by Deutsch in his verification 
system [6] to associate properties with arbitrary symbolic 
expressions. 

We begin by presenting a formal specification of  a 
machine providing unique lists, and explain our notation 

1 As an example of the utility of such a facility, suppose we save 
the property SIMPLIFIES-TO-ZERO in some table under--as key-- 
the address of the list (SUBTRACT x x). If we subsequently inde- 
pendently create a conventional list of the same form, it will have a 
different address and the property will not be retrieved. But if both are 
unique then their addresses will be the same so that the property can 
be looked up successfully. 
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Fig. 1. Distinct isomorphic lists. (a)A picture of the list ((c.d) nil 
a. b). (b)Two distinct isomorphic versions of the list ((c. d) nil a. b) at 
100 and 102. 
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by referring to this specification. The state of  a ULIST 
machine is determined by what unique list cells exist. 
Hence we want a single V-function, UCELL(XI ,X2)  
whose value is the cell with X 1 and X2 as components - -  
if there is any such ce l l - -and the distinguished value 
"?" if  there is no such cell. (All that will matter  about 
"?" in this paper  is that it does not satisfy the predicate 
A T O M P  to be introduced in Section 3.) There are four 
instructions on the ULIST machine: UCONS to obtain 
a list with specified components, U C A R  and U C D R  to 
extract the components of  a ULIST  list, and ULISTP to 
test whether an arbitrary object is a ULIST  list. The 
specification is given below. 

module: ULIST: 
forall: Z 1,Z2 
vfns: UCELL(X1,X2) 

initial UCELL(XI,X2) = ? 
define: ISUCELL(X) = (exists XI,X2:UCELL(X1,X2)=X~=?) 
ovfns: UCONS(X1,X2) ~ X 

assert ISUCELL(X1) or ATOMP(X1) 
ISUCELL(X2) or ATOMP(X2) 

effects if UCELL(X1,X2) = ? 
then UCELL(Z 1,Z2)~ =X and 

'UCELL(X1,X2)=X and 
X-=? and -ATOMP(X) and 
(XI~=Z1 or X2~=Z2 

'UCELL(Z 1,Z2) 
=UCELL(Z 1,Z2)) 

else 'UCELL(Z I,Z2)=UCELL(ZI,Z2) and 
X = UCELL(XI,X2) 

UCAR(X) ~ X1 
assert ISUCELL(X) 
effects 'UCELL(Z 1,Z2)=UCELL(Z 1,Z2) 

UCELL(Z 1,Z2)=X ~ X 1 =Z 1 
UCDR(X) ~ X2 

assert ISUCELL(X) 
effects 'UCELL(Z I,Z2)=UCELL(Z I,Z2) 

UCELL(ZI,Z2)=X ~ X2=Z2 
UCONSP(X) ~ B 

effects 'UCELL(Z I,Z2)=UCELL(Z 1,Z2) 
B = ISUCELL(X) 

It will be common, in the specification of  this module, 
to ask the question, "Is the object X a unique list cell?" 
Therefore we introduce the abbreviation ISUCELL,  ex- 
pressing this predicate in terms of the module 's  single V- 
function. Note also that in the specification we use the 
predicate A T O M P  to distinguish the objects that may be 
the "leaves" of  list structures from the objects that are 
list cells. Rather  than implementing this predicate as we 
develop our hierarchy, we will simply assume that it is 
present in the most primitive machine of  the hierarchy 
and is reflected upward, with the same meaning, in each 
nonprimitive machine. In Section 9, we will discuss the 
significance of  this assumption. 

In the initial ULIST  state, there are to be no list cells. 
We specify this by requiring that UCELL(Z1,Z2) be 
"?." initially. (We abbreviate slightly by listing at the 
head of  each module symbols that should be read as 
universally quantified in all their uses in the module 
specification; for ULIST  these are Z1 and Z2.) 

Next, we specify the instruction UCONS(XI ,X2)  to 
obtain a cell with components X 1 and X2. This instruc- 
tion has no exceptions: it is required to achieve its effects 
for a n y  arguments and state; in particular, this requires 
that any implementation have an unlimited set of  cells. 
(Although this requirement is idealistic, it simplifies our 
presentation; SPECIAL does provide for the description 
of  resource  errors.)  We assert that the arguments to 
U C O N S  are either outputs of  UCONS [ISUCELL(X)] 
or atoms [ATOMP(X)]. Its effects are stated with an "if- 
then-else" assertion. We need to refer to two sets of  
values of  U C E L L - - t h o s e  associated with the state before 
the U C O N S  instruction is executed and those reflecting 
the changed state due to the execution. We will do this 
by writing UCELL(X1,X2) to refer to the old state and 
'UCELL(X1,X2) to refer to the changed state. First, if 
the machine state is such that UCELL(X1,X2) is '"?.", 
then a new cell must be created. We do not choose to 
specify how cells are represented (e.g. by their integer 
addresses on some machine), but say only that the new 
cell is a value X that is not a cell before the execution of  
this instruction (i.e. U C E L L ( Z 1 , Z 2 ) - = X  for any X1, 
X2) and is the cell with the specified components after- 
wards [ 'UCELL(X1,X2)=X]. Besides constraining the 
value of  the new cell, we must ensure that no other cells 
are affected by the instruction. Thus we say that if 
(Z1,Z2) is any pair of  cell components other than the 
(X1,X2) given in the instruction call, then the new cell 
associated with (Z1,Z2) is the same as the old 
[ 'UCELL(Z 1 ,Z2)=UCELL(Z 1,Z2)]. 

I f  UCELL(X1,X2) is not "?.", then the effects of  the 
instruction are simpler. We constrain the result of  
U C O N S  to be the existing cell [Z---UCELL(X1,X2)] and 
require the new state to have exactly the same cells as 
the old [ 'UCELL(Z1,Z2)=UCELL(Z1,Z2)] .  

Next, we specify the U C A R  and U C D R  instructions. 
Our notion of  the ULIST  module is that it is not mean- 
ingful to ask for either o f  the components of  an object 
other than a ULIST  cell. Hence we assert that the 
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arguments to UCAR and UCDR are ULIST cells using 
the predicate ISUCELL which requires that its argument 
be in the image, under UCELL, of  the set of pairs 
(Z1,Z2). The effects of  UCAR and UCDR are similar. 
If  Z 1 and Z2 are such that UCELL(Z 1,Z2) is the argu- 
ment to UCAR or UCDR, then the UCAR component 
of  UCELL(ZI ,Z2)  is Z1 and the UCDR component is 
Z2. (It is not obvious that such a specification is noncon- 
tradictory; this is a consequence of  the theorem, proved 
below, that UCELL is single-valued: it maps distinct 
arguments to the same result only when that result is 
"?".) Besides giving the values of these functions, the 
specification asserts that they have no effect on UCELL 
[ 'UCELL(Z 1,Z2)=UCELL(Z 1,Z2)]. 

The last ULIST instruction is UCONSP. It is like 
UCAR and UCDR in that UCELL is unchanged. Its 
result B must be true or false, and true if and only if its 
argument is a ULIST list. But this is easily stated in 
terms of  the UCELL V-function--i t  is equivalent to the 
existence of  a pair (Z1,Z2) such that UCELL(Z1,Z2) is 
equal to the argument X [B = exists Z1,Z2: 
UCELL(Z 1,Z2)=X]. 

4. The List Module 

Our goal is to design an abstract machine that pro- 
vides its user with both unique and conventional list 
processing. This machine is the product of ULIST and 
a module LIST that we will specify next. The formal 
specification of  LIST is given below. 

module: LIST: 
foraU: Z I,Z2,Z 
vfns: CELL(X 1,X2,X) 

initial CELL(X 1,X2,X)=false 
define: ISCELL(X) = (exists XI,X2:CELL(X1,X2,X) and X~=?) 
ovfns: CONS(XI,X2) ~ X 

assert ATOMP(XI) or ISCELL(XI) 
ATOMP(X2) or ISCELL(X2) 

effects 'CELL(X1,X2,X) 
not CELL(Z1,Z2,X) 

not ATOMP(X) 
Z~ =X ~ 'CELL(Z 1,Z2,Z)= CELL(Z 1,Z2,Z) 

CAR(X) ~ XI 
assert ISCELL(X) 
effects 'CELL(Z 1,Z2,Z)=CELL(Z 1,Z2,Z) 

exists Z2: CELL(X I,Z2,X) 
CDR(X) ~ X2 

assert ISCELL(X) 
effects 'CELL(Z 1,Z2,Z)=CELL(Z 1,Z2,Z) 

exists Z 1 : CELL(Z I,X2,X) 
CONSP(X) ~ B 

effects 'CELL(Z I,Z2,Z)=CELL(Z 1,Z2,Z) 
B = ISCELL(X) 

The structure of  this module is quite similar to ULIST: 
there is a single V-function CELL and four OV-functions 
CONS, CAR, CDR, and CONSP. However, there are 
important differences. First, whereas UCELL is a func- 
tion from a U C A R / U C D R  pair (XI,X2) to the unique 
list cell X - - i f  any- -wi th  X1 and X2 as UCAR and 
UCDR, CELL is a predicate on the triple (X I,X2,X) that 
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tests whether X is a conventional list cell with CAR X1 
and CDR X2. This difference is necessary: because there 
may be more than one conventional list cell with a 
particular CAR and CDR, CELL cannot be a function. 
The second difference between the two modules is in the 
effects of  UCONS and CONS. UCONS does not always 
change the ULIST state, but CONS always changes the 
LIST state. Even if there are already X1, X2, and 
X~---? such that CELL(X1,X2,X), an execution of 
CONS(X1,X2) will create a new cell with this CAR and 
CDR. 

5. Properties of ULIST and LIST 

Even though we have not yet implemented ULIST 
x LIST, we can prove properties of this machine just on 
the basis of  its specifications. We illustrate this point by 
proving three results: that UCELL is one-to-one, that 
two structurally isomorphic unique lists are identical, 
and that if two conventional lists are structurally iso- 
morphic, then certain corresponding unique lists are 
identical. 

Consider the claim that the specification of  ULIST 
is consistent, that is, implementable. For example, if 
UCELL is not one-to-one on that part of its domain that 
does not map to "?", then the specifications for UCAR 
and UCDR are not realizable. For  suppose 
X=UCELL(Z1,Z2)=UCELL(Z3,Z4)~=? .  If  Z1 is not 
equal to Z3, then UCAR(X) is required to return both 
Z 1 and Z3, an impossibility. Similarly, if Z2 is different 
from Z4, then UCDR(X) is required to return two 
different values. 

This result is not, by itself, sufficient to show that 
ULIST can be implemented. On the other hand, a 
provably correct implementation of  ULIST--g iven  be- 
l ow- imp l i e s  this result. However, the result is easy to 
state and has interesting consequences. Moreover, its 
proof  illustrates a general proof technique applicable to 
abstract machines. 

THEOREM 1. foral l  Z 1,Z2,Z3,Z4: 
UCELL(Z1,Z2)= 

UCELL(Z3,Z4)~ =? 
Z 1 =Z3 and Z2=Z4. 

PROOF. The theorem will be proved by induction on 
sequences of  states of  ULIST. This method of  proving 
properties of  abstract machines, which we call generator 
induction, is discussed in [3, 9, 30]. We must prove the 
theorem for any initial state of  ULIST and for any state 
S' such that the theorem holds in a state S and S' is a 
state resulting from executing a ULIST instruction in S. 

The basis of  the induction is immediate, since 
UCELL is always "?" in an initial machine state. Thus 
it suffices to assume the theorem holds in some state S 
and to deduce its validity in a successor state S' that 
results from the operation UCONS(X1,X2) (since 
UCONS is the only operation that changes UCELL's  re- 
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suits). Suppose that this execution of  UCONS returns X 
and that, in the resulting state, there are Z1, Z2, Z3, and 
Z4 such that 'UCELL(Z1,Z2)= 'UCELL(Z3,Z4)~=?.  
If  there has been no state change--t-he "else clause" of 
the effects--or i f 'UCELL(Z1,Z2)=UCELL(ZI ,Z2)  and 
'UCELL(Z3,Z4)=UCELL(Z3,Z4),  then the inductive 
assumption gives the desired result. Suppose that there 
has been a state change-- the "then clause" and that 
'UCELL(Z I ,Z2)~--UCELL(Z 1,Z2). Thus Z 1--X 1 and 
Z2=X2. I fZ3=X1 and Z4=X2, we are done. I fZ3~=X1 
or Z4~=X2,  then the second equation of  the else clause 
implies that 'UCELL(Z3,Z4)-UCELL(Z3,Z4)  which is 
not equal to X by the first equation of  the else clause, a 
contradiction. This completes the proof. 

Next, we extend this result to show that structural 
equality implies identity for ULIST lists. Let us write 
UCAR*, UCDR*, and UCONSP* to refer to the values 
returned by these instructions in some state. (We intro- 
duce this notation to emphasize the careful distinction 
between these values, useful in stating static mathemat- 
ical properties of  a specification, and the instructions 
that might be executed to obtain them in some im- 
plementation.) Theorem 1 implies that, in any 
state, UCAR* and UCDR* are functions mapping the 
set of  X such that UCONSP*(X) to a range not con- 
taining "?". It is a simple matter, using Theorem 1, 
to show that the conclusion X=Y follows from the hy- 
potheses UCONSP*(X), UCONSP*(Y), UCAR*(X)= 
UCAR*(Y), and UCDR*(X)=UCDR*(Y);  we leave the 
details to the reader. Using this corollary, we can prove 
that structural isomorphism implies identity for the lists 
of  the ULIST machine. We define structural isomorph- 
ism of  unique lists recursively by: 

UISO(X,Y) ~ if UCONSP*(X) and UCONSP*(Y) 
then UISO(UCAR*(X), UCAR*(Y)) 

and UISO(UCDR*(X),UCDR*(Y)) 
else X=Y, 

and can then prove: 

THEOREM 2. forall X,Y:UISO(X,Y) ~ X=Y. 

Discussion. We wish to prove this theorem by struc- 
tural induction on unique lists. (Structural induction is 
described by Burstall in [3]; the theorem can also be 
proved, less easily, by generator induction.) We will 
prove the theorem for the atoms that form the leaves of  
a unique list and we will prove that if the theorem holds 
for the proper sublists of  a unique list, then it holds for 
the entire list. For such an induction to be sound, it is 
essential that there be no circular lists. Fortunately, the 
ULIST machine instructions provide no way to create 
circular lists. Since there are no lists in an initial ULIST 
state, since each instruction creates at most one new list, 
and since we are only interested in machine states achiev- 
able by the execution of  finitely many instructions, this 
induction is well-founded. (This same argument dem- 
onstrates that UISO is total.) 

PROOF. The basis of  the induction is the case that 
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~UCONSP*(X) or ~UCONSP*(Y),  and it is an im- 
mediate consequence of the defmition of  UISO. We 
make the inductive assumptions UCONSP*(X), 
UCONSP*(Y),  UISO(UCAR*(X) ,UCAR*(Y))  
UCAR*(X)=UCAR*(Y) ,  and UISO(UCDR*(X) ,  
UCDR*(Y)) =* UCDR*(X)=UCDR*(Y),  and must 
prove that UISO(X,Y) ~ X=Y. Expanding the defmi- 
tion of UISO(X,Y), we conclude that UISO 
(UCAR*(X),UCAR*(Y)) and UISO(UCDR*(X),  
UCDR*(Y)); hence by the inductive assumptions, 
UCAR*(X)--UCAR*(Y) and UCDR*(X)=UCDR*(Y).  
The corollary of  Theorem 1 now yields the desired result. 

Next we prove a theorem about a program that might 
be run by a top-level user of  the ULIST X LIST machine 
to translate conventional lists to unique lists. (Because of  
the overhead associated with the maintenance of  unique 
lists, it is common to do some computations with the 
corresponding conventional lists, and convert only the 
final result to a unique list.) We claim that this may be 
done by the program UCOPY defined as follows: 

UCOPY(X) ~ if CONSP(X) 
then UCONS(UCOPY(CAR(X)),  

UCOPY(CDR(X))) 
else X. 

The major result about UCOPY is that if two conven- 
tional lists are isomorphic, then their U-copies are iden- 
tical. Isomorphism of  conventional lists is defined by: 

ISO(X,Y) ~ if CONSP*(X) and CONSP*(Y) 
then ISO(CAR*(X),CAR*(Y)) 

and ISO(CDR*(X),CDR*(Y)) 
else X=Y. 

Let UCP(XA,XB) be an abbreviation for ISO(XA,XB) 
=~ UCOPY(XA)=UCOPY(XB).  We will then prove: 

THEOREM 3. forall XA,XB : UCP(XA,XB) 

Discussion. The meaning of  this formula is subtle, 
since the effects and result of UCOPY are contingent 
upon the machine state in which it is executed. A more 
precise statement would be as follows. Suppose 
ISO(XA,XB). Suppose that UCOPY is applied to XA, 
beginning in some state S 1. This application terminates 
(since our lists are acyclic) yielding a value XA' and a 
state $2. Suppose, moreover, that $3 is any successor of  
$2, resulting from a series of  state transitions, starting at 
$2. Finally, suppose that UCOPY, applied to XB from 
state $3, yields value XB' and state $4. Then XA'=XB'.  

We are going to prove this result by induction. An 
inductive assumption of this rather lengthy form would 
be very cumbersome. Fortunately, the machine specifi- 
cations imply that if UCONSP*(X) holds in some state 
S, then it holds in every successor state. Also, if 
UCAR*(X) and UCDR*(X) are defined in a state S, 
then they remain defined and retain the same value in 
all successor states. In view of these facts, sometimes 
called frame axioms, we can safely omit further refer- 
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ences to changing states and use the simple statement of  
the theorem. (It is very interesting to consider whether 
this kind of  problem reduction might be done mechani- 
cally.) 

PROOF. First, suppose ~ C O N S P * ( X A ) .  Then 
ISO(XA,XB)  implies  that  XA=XB.  Also, 
UCOPY(XA)=XA and UCOPY(XB)=XB so that the 
desired result is immediate. Next suppose CONSP*(XA). 
Then ISO(XA,XB) implies that CONSP*(XB). We pro- 
ceed by simultaneous structural induction on XA and 
XB. That  is, we assume 

I1. forall X:UCP(s(XA),X) 
12. forall X:UCP(X,s(XB)) 

where s is either CAR* or CDR*. (Clearly, UCP is 
symmetric in its two arguments.) From ISO(XA,XB) it 
follows that 

I3. ISO(Car*(XA),CAR*(XB)), and 
14. ISO(CDR*(XA),CDR*(XB)). 

Combining these results with I 1 and 12 we obtain 

16. UCOPY(CDR*(XA))=UCOPY(CDR*(XB)) .  

We must prove that UCOPY(XA)=UCOPY(XB).  This 
is done as follows: 

UCOPY(XA) = UCONS*(UCOPY(CAR*(XA)),  
UCOPY(CDR* (XA))) 

{by the definition of  UCOPY} 
= UCONS*(UCOPY(CAR*(XB)),  

UCOPY(CDR*(XB))) 
(by I5, I6) 

= UCOPY(XB) 
(by the definition of  UCOPY).  

6. Implementation of ULIST x LIST  

We now wish to implement the machine specified 
above in terms of  more primitive facilities. Specifically, 
we will consider a machine, LIST x SEARCH, that has 
conventional list processing capabilities and an associa- 
tive search capability. Since we retain the LIST facilities 
in this second level machine, the main problem is to 
describe ULIST in terms of  associative search and con- 
ventional list processing. 

Our SEARCH machine is formally specified below. 

module: SEARCH: 
forall: K,T 
vfns: PRIMARYTABLE( ) 

initial PRIMARYTABLE( )~=? 
GET(KEY,TABLE) 

initial GET(KEY,TABLE)=? 
TABLEP(TABLE) 

initial TABLEP(TABLE) = 
(TABLE=PRIMARY-TABLE()) 

ovfns: NEWTABLE( ) ~ TABLE 
effects 'PRIMARYTABLE( )=PRIMARYTABLE( ) 

'GET(K,T) = GET(K,T) 
'TABLEP(T) = (TABLEP(T) or T=TABLE) 
not TABLEP(TABLE) 
TABLE~=? 
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SAVE(VALUE, KEY,TABLE) 
assert TABLEP(TABLE) and VALUE~=? and 

KEY~=? 
effects 'PRIMARYTABLE( )=PRIMARYTABLE( ) 

'GET(K,T) = ifK=KEY and T=TABLE 
then VALUE 
else GET(K,T) 

'TABLEP(T)=TABLEP(T) 
GETOP(KEY,TABLE) ~ VALUE 

assert TABLEP(TABLE) and KEY~=? 
except NOTTHERE: GET(KEY,TABLE)=? 
effects 'PRIMARYTABLE( )=PRIMARYTABLE( ) 

'GET(K,T)=GET(K,T) 
'TABLEP(T)=TABLEP(T) 
VALUE=GET(KEY,TABLE) 

PRIMARYTABLEOP( ) --~ TABLE 
effects TABLE='PRIMARYTABLE( )= 

PRIMARY-TABLE( ) 
'GET(K,T)=GET(K,T) 
'TABLEP(T)=TABLEP(T) 

The basic idea is that there are a number of  "search 
tables"- -a  special table called PRIMARYTABLE that 
exists initially, and as many secondary tables as the user 
wishes to create using the NEWTABLE instruction. In 
each table one can save a value under a key, writing over 
any previously saved value, or look up the value saved 
under a key. (We could simplify the argument structure 
and specifications of  the instructions of  this module by 
using only a single table and a G ETO P  instruction whose 
single argument combined the information in the two 
arguments of  the present GETOP.  But we believe that 
the version given yields a clearer implementation and it 
is also more suggestive of  the implementation used by 
Deutsch [6].) 

Note that the specification of  G ETO P  uses an excep- 
tion if there is no entry in the table under the key that is 
sought. It is worthwhile to contrast the use of  excep- 
tions and assertions in this specification. We assert that 
TABLEP(TABLE),  indicating that a compilation or ver- 
ification assert that TABLEP(TABLE),  indicating that 
a compilation or verification may assume this fact in 
processing the implementation of  G ETO P  but must 
verify it for uses of  GETOP.  The assertion describes a 
condition that must be guaranteed to hold at calls of  the 
function. The exception, on the other hand, describes a 
c o n d i t i o n i t h e  presence of a particular entry in the 
table-- that  may or may not hold. Implementation pro- 
grams are simplified by the possibility of  structuring 
them to consider the "normal" and "exceptional" cases 
separately. 

Any scheme for implementing unique lists requires 
determining whether a given pair of arguments to 
UCONS are the UCAR and UCDR of  a previously 
UCONSed cell. In the specification of  ULIST, the V- 
function UCELL serves to map from arguments pairs to 
cells; however, because of  a quirk of Interlisp (the pos- 
sibility of  basing a hash probe on a single pointer but 
not on a pair of pointers), UCELL is not directly imple- 
mentable in Interlisp. Instead, Deutsch employed--and  
we formally describe--a scheme based on two levels of  
search. This scheme is illustrated in Figure 2(c). The lists 
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Fig. 2. Implementation of ULIST. 

1. (c) 
2. (b c) 
3. (a b c) 
4. (d b c) 
S. (e c) 
6. ((b c) c) 
7. (a (b c) c) 

(a) A SET OF SEVEN LIST STRUCTURES 

(b) 

3 2 

7 6 

THE SAME LIST STRUCTURES IMPLEMENTED WITH 
SHARING OF COMMON CELLS 

b 2 

,FTyq 
PRIMARY SECONDARY 

TABLE TABLES 

(©) THE SEARCH TABLES FOR THESE LISTS 

in Figure 2(a) are shown as they might be uniquely 
represented in Figure 2(b). Each list cell is shown with 
a numeric cell identifier corresponding to the list number.  
The pr imary table of  Figure 2(c) represents the associa- 
tion between U C D R s  of  cells and secondary tables. A 
secondary table, corresponding to a particular U C D R  
X2, then associates UCARs of  cells with the cell, if  any, 
having that U C A R  and U C D R  X2. 

Implementat ion of ULIST x LIST by LIST x 
SEARCH is now possible. The implementation has three 
parts: a representation of  states, an initialization pro- 
gram, and programs realizing each of  the OV-functions 
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of  the upper level. First, the state representation is de- 
scribed by two formulas: 

UCELL(X1,X2) ~ GET(X1,GET(X2,PRIMARYTABLE())) 
CELL(X 1,X2,X) ~ CELL(X 1,X2,X) 

and GET(X 1,GET(X2, 
PRIMARY-TABLE( )))~=X 

In these formulas, the left-hand sides refer to V- 
functions of  the upper  machine and the right-hand sides 
to V-functions of  the lower machine. The first of  these 
formulas describes the state correspondence needed to 
implement the two level search procedure: it provides 
that an upper  state where UCELL(X1,X2) is not "?" will 
be represented by a lower state where the double search 
with X1 and X2 yields a result other than "?.". Also, it 
requires that if  UCELL(X1,X2) is '~.", then the double 
search in the lower level state must yield "?." too. 

The second formula describes how the upper  level 
conventional lists are represented. The answer is, they 
are represented by lower level lists. We state this by 
using CELL on both sides of  the definition, to be read as 
describing the upper  level CELL in terms of  the lower 
level CELL. However, there is a subtlety: some of  the 
lower level lists will be used in the implementation to 
represent upper  level unique lists and these, so far as the 
upper  level is concerned, do not exist as lists. Thus, we 
add the second conjunct to this formula to exclude these 
lists from the set of  upper  level ceils. 

The initialization program must start from an initial 
state of  LIST x SEARCH and arrive at a state of  that 
machine that represents an initial state of  ULIST  x 
LIST. However, all that is required of  an initial state of  
ULIST  x LIST is that UCELL(X1,X2) is "?." and 
CELL(X1,X2,X) is "false" and, in view of the represen- 
tation just given, this is represented by an initial state of  
LIST × SEARCH. Hence, the empty program suffices 
for initialization. 

Finally, we must realize the upper level OV-functions 
UCONS,  UCAR,  UCDR,  UCONSP,  CONS, CAR, 
CDR, and CONSP by lower level programs. These are 
given below. 

UCONS(X1,X2) : begin locals TABLE, C; 
execute TABLE ~-- GETOP(X2,PRIMARYTABLEOP()) then 

on normal: execute C *--- GETOP(X1, TABLE) then 
on normal: return(C); 
on NOTTHERE: C *--- CONS(X1,X2); 

SAVE(C,X1,TABLE); 
return(C) end; 

on NOTTHERE: TABLE +-- NEWTABLE( ); 
C *- CONS(X1,X2); 
SAVE(C,X 1,TABLE); 
SAVE(TABLE,X2,PRIMARYTABLEOP()) end end; 

UCAR(X) : CAR(X); 
UCDR(X) : CDR(X); 
UCONSP(X) : begin locals TABLE, C; 

if CONSP(X) 
then execute 

TABLE ,--- GETOP(CDR(X),PRIMARYTABLEOP()) 
then 

on normal: 
execute C ,,-- GETOP(CAR(X),TABLE); 
then 
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on normal: return(C=X); 
on NOTTHERE: return(false) end; 

on NOTTHERE: return(false) end 
else return(false) end; 

CONS(X 1,X2) : CONS(X 1,X2); 
CAR(X) : CAR(X); 
CDR(X) : CDR(X); 
CONSP(X) : CONSP(X) and ~UCONSP(X); 

First, note that occurrences of  CONS, CAR, CDR, and 
CONSP in the defining programs denote these instruc- 
tions on the lower level machine. Next, note that the 
defining programs for the top level functions CONS, 
CAR, and CDR are trivial because exactly the right 
instruction exists at the lower level. The defining pro- 
grams for UCAR and UCDR are also single instructions; 
this is a consequence of the decision we made to represent 
upper level unique lists by lower level conventional lists. 
The nontrivial implementations are those for UCONS, 
UCONSP, and CONSP. 

The implementation for UCONSP is a block that 
introduces two local variables: TABLE and C. If  the 
argument X does not satisfy the lower level CONSP 
predicate, it cannot- - in  view of  the representation-- 
satisfy UCONSP. However, if it is a list cell, the 
UCONSP program uses the "execute" statement, a spe- 
cial feature of  our implementation language. We use this 
statement to call an OV-function that may have excep- 
tions and then deal with the normal exit and the excep- 
tional exits in turn. Thus the UCONSP program first 
searches in the primary table with CDR(X) as key. If  
there is no exception, then the TABLE that results is 
searched with CAR(X) as key. A normal exit from this 
second search with result C indicates that C is a unique 
list with the same components as X and therefore is the 
only such unique list. Hence X is a unique list if and 
only if it is C. If  either search has an exceptional exit, 
this means that there is no unique list with CAR(X) and 
CDR(X) as components. Thus UCONSP returns "false." 

The implementation of  UCONS has a similar struc- 
ture. If  both searches have normal exits and result C, 
then UCONS just returns C. If  the first search encounters 
the N O T T H E R E  exception, this means that there are no 
existing unique lists with UCDR X2. Hence we create a 
new search table to record such unique lists, enter it in 
the primary table under key X2, create the new (repre- 
sentation of  a) unique list CONS(X 1,X2), and enter it in 
the new secondary table under key X I. The new list is 
then the answer returned by UCONS. 

If  the first search has a normal exit, but the second 
search has a N O T T H E R E  exception, this indicates that 
there is already a secondary search table TABLE for 
unique lists with UCDR X2, but that there is no entry in 
TABLE with X1 as UCAR. Hence we again create a 
new unique list representation CONS(X1,X2), enter it in 
TABLE under Key X1, and return it as the answer of  
UCONS. 

Finally, the implementation of  CONSP introduces 
some difficulty. Although there is a CONSP instruction 
at the lower level, it does not suffice: the lower level 
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CONSP is satisfied by the lower level ceils that represent 
upper level unique lists but these are not conventional 
lists in the abstraction provided by the upper level ma- 
chine. We have given an implementation that makes an 
additional test [~UCONSP(X)] to avoid this problem, a 
correct but unpleasantly inefficient implementation of 
what ought to be a low-overhead type checking opera- 
tion. For  present purposes, the correct but inefficient 
implementation suffices; Section 9 discusses some alter- 
natives. 

7. Correctness of the Implementation 

The proof  that an implementation is correct with 
respect to a pair of  machine specifications and a state 
representation has two parts. First, we must prove that 
the initialization program for the lower level-- in this 
case the empty program--can be executed from any 
initial state of  the lower level machine to yield a lower 
level state that represents an initial state of  the upper 
level machine. Second, we must prove that this represen- 
tation is preserved by the execution of  the implementa- 
tions of  OV-functions in the lower machine. That  is, 
suppose S and S' are states of  the upper machine and T 
and T'  are states of  the lower machine. Suppose that S' 
is a state that results from the execution of  an OV- 
function call "F(X)" according to the specification of  the 
upper machine. Also, suppose that T'  is a state that 
results from the execution of  the implementation of 
"F(X)" in the lower machine. Then, we must prove that 
T'  is a representation of S'. (This may be thought as a 
proof  that the diagram of  Figure 3 commutes.) 

In doing these proofs, it is important to note that the 
execution of  the implementations of  the upper machine 
instructions does not fully exercise the facilities of  the 
lower machine. For example, in our LIST × SEARCH 
machine there are states such that, for some X, the result 
of  "GETOP(X,PRIMARYTABLEOP(  ))" is neither an 
exception nor a secondary table but, instead, a list cell. 
Since we never store anything other than secondary 
tables in the primary table, we know that this can never 
occur and would like to use this knowledge to help the 
proof. We can do this by formulating an invariant pred- 
icate I(T) on the states T of  the lower machine. We then 
prove that I holds for states resulting from the initial" 
zation of  the lower machine. We also prove that if I(T) 
holds, and P is the implementation of  an upper machine 
OV-function, then I(T') holds where T' results from T 
when P is executed in the lower machine. Having proved 
such an invariant property, we may assume that I holds 
for all states that arise in the proofs described in the 
previous paragraph. 

We will illustrate the proof of correctness of  imple- 
mentations in this methodology (Figure 3) by proving 
the correctness of  the implementation given in the pre- 
ceding section. The necessary invariant assertion has two 
parts. First, if  a fetch from the primary table yields a 
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Fig. 3. A necessary condition for implementation correctness. 

Q ,,., : Q  

re~ re o 

) impl(f, x) ~ Q  

result, not "?", then that result is a (secondary) table. 
Second, if a fetch from the secondary table yields a 
result, not "?", then that result is a list cell whose 
components are the keys of the two fetches. Stating this 
formally, we have 

I(T) = GET(Z2,PRIMARYTABLE( ))=TABLE~=? 
implies (TABLEP(TABLE) and 

(GET(ZI,TABLE)=Z~=? 
implies (CONSP(Z) and CAR(Z)=ZI 
and CDR(Z)=Z2))). 

(Note that the notation is such that the state T does not 
appear explicitly in the right-hand side of  this definition; 
note also the implicit universal quantification of  Z 1, Z2, 
Z, and TABLE.) It is easy to show that I is an invariant 
of  the lower machine states that arise in the implemen- 
tation. It is true of  the initial state because its antecedent 
is always false in this initial state. If  it is true of  a state 
T, then the execution of  the implementations of  UCAR, 
UCDR, UCONSP, CONS, CAR, CDR, and CONSP 
involve no calls of SAVE and therefore no changes in 
GET. The remaining case is the implementation of  
UCONS(X1,X2). This implementation can affect the 
truth of  I because it does call SAVE. However, it calls 
SAVE only with C, which has the proper CAR and 
CDR and is stored under the appropriate keys, and with 
TABLE which does satisfy TABLEP (in view of the 
effects of  NEWTABLE)  and is also saved in the primary 
table under the proper key. Thus I is indeed invariant. 

We have already Shown that an initial state of the 
lower machine, followed by an empty initialization, rep- 
resents an initial state of  the upper machine. We must 
now prove that the representation of the upper machine 
state by the lower machine state is preserved by the 
execution of  the implementations. It should be clear, in 
each case, that the result returned satisfies the corre- 
sponding specification. Except for UCONS and CONS, 
the instructions of  the upper machine are implemented 
by programs whose only effect is the return of a result; 
thus these implementations all preserve the representa- 
tion of  the specified upper state by the resulting lower 
state. 

The upper machine's CONS instruction is imple- 
mented by the CONS of  the lower machine. Since the 
execution of  the lower machine CONS affects only the 
V-function CELL, and only in a way consistent with the 
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representation, this implementation also preserves the 
representation. The remaining upper machine construc- 
tion is UCONS; consider its implementation. If  both 
execute statements are "normal," there is no state change; 
that the result returned is correct is immediate from the 
invariant. If  the outer execute statement has a normal 
exit and the inner a " N O T T H E R E "  exception, then the 
implementation creates exactly one new cell, and saves 
it in the proper table, thus preserving the representation 
of  UCELL. Moreover, since the first conjunct of  the 
representation of  CELL becomes true exactly where the 
second conjunct becomes false, the specification that the 
representation of  the upper level CELL be unaffected by 
execution of  UCONS is satisfied. 

Finally, if both execute statements have "NOT- 
T H E R E "  exceptions, then a new secondary table is 
created and saved under the proper key in the primary 
table. This does not affect the representation, and the 
remainder of  code in this case preserves the representa- 
tion by the argument just made for the case of a single 
exception. 

This completes the proof  of  the ULIST implemen- 
tation. 

8. F u r t h e r  I m p l e m e n t a t i o n s  

The preceding sections have described how properties 
of  an unimplemented machine can be proved from its 
formal specifications, how such a machine can be real- 
ized in terms of  a more primitive machine, and how such 
a realization can be proved with respect to the two 
machines. To save space, we will in this section sketch 
rather than fully presenting the further refmement of the 
LIST × SEARCH machine. 

If  Interlisp is an acceptable primitive machine, then 
the programs described so far solve the original problem, 
since it provides the LIST and SEARCH facilities to 
which we have reduced the problem. This would raise 
an interesting problem for the proof of the LIST × 
SEARCH specifications. The most complete extant spec- 
ification of  Interlisp, [19], is not written in SPECIAL; 
this proof  would thus require a different theory from 
that discussed here. 

A more primitive Lisp than Interlisp can also be used 
as the basis of  our hierarchy. For example, one can easily 
implement the facilities of SEARCH, except for the 
PRIMARYTABLEOP instruction, in terms of  Lisp lists; 
the implementation is just the usual Lisp "association 
list." The implementation of  PRIMARYTABLEOP can 
be accomplished by using a single variable to remember 
which association list represents the primary search table. 
That  is, LIST × SEARCH can be implemented in terms 
of VARIABLE × LIST. (VARIABLE is a very simple 
module: its state is the value saved in the variable and it 
has two instructions, one to read the value and one to 
save a new value.) The machines of this hierarchy, and 
their component modules, are shown in Figure 4. 

Alternatively, one can distinguish two kinds of search 
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Fig. 4. An implementing hierarchy for unique lists. 

LIST J ( ULIST 

SEARCH 

LIST 

LISP 

operations in the implementation of ULIST--those that 
start from the primary table and those that start from 
one of the secondary tables. Actual use of ULIST sug- 
gests that it is reasonable to use a hashtable for the 
primary search table and association lists for the second- 
ary tables. Since Interlisp provides named hashtables, 
this means that LIST × SEARCH could be realized by 
HASHTABLE × LIST and, in turn, HASHTABLE × 
LIST could be realized by Interlisp. (We will not provide 
an implementation of HASHTABLE here. The inter- 
ested reader should consult [30]; in that paper, HASH- 
TABLE is implemented in terms of arrays and a "hash 
probe" function and it is proved that the implementation 
is correct.) 

9. Concluding Remarks 

In Section 6, we implemented some specifications in 
an Algol-like language called ILPL, which is described 
in Appendix C of [22]. However, the use of this language, 
while convenient, is not essential to the use of our 
methodology. On the contrary, we believe that enough 
structure is given to even a large system by its decom- 
position and precise specification in SPECIAL to permit 
implementation in many languages. The critical points 
in the design and implementation of systems tend to be 
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global issues such as a decision on how to decompose a 
system into modules or how to describe the implemen- 
tation of a module by a hierarchy of abstractions-- 
exactly the areas in which SPECIAL is expressive. By 
contrast, the details of any particular programming lan- 
guage usually address very local issues in programming, 
e.g. whether to use a case or conditional statement to 
describe a choice, whether to use a "while-do" or a 
"repeat-until" statement to describe a particular itera- 
tion. While such local decisions certainly have an impact 
on the clarity of the programs that can be written, we 
believe that this impact is negligible by comparison with 
the impact of well or poorly done overall design and 
specification. If  the latter is precise, so that a large system 
is implementable by a large number of loosely coupled 
small parts, then many different languages may be 
equally good for implementing the parts. 

This is not to deny that care should be taken in the 
choice of  an implementation language. Certainly one 
ought to use a language with lucid syntax and a flexible 
set of control structures. Since we advocate the decom- 
position of a program into many parts, it follows that we 
recommend choosing a language that can be compiled 
into a form in which linkage between the parts is eco- 
nomical. Since we seek to implement systems, we are 
interested in the ultimate efficiency of implementations 
and therefore require a language in which machine-level 
representations can be described for the use of the most 
primitive levels of a hierarchy. 

A related issue is the provision of data structures by 
the base language. For example, we assumed above that 
our base machine provided a set of objects satisfying the 
predicate ATOMP and disjoint sets of objects to repre- 
sent abstractions such as ceils and tables. I f  an adequate 
facility for defining concrete data types is present in the 
base, then it need not be provided by the hierarchy 
and- - i f  the base language is carefully implemented--the 
cost of soundly manipulating objects of different types 
will be kept to a minimum. (Such a base should permit 
an efficient implementation of the upper level CONSP 
instruction in Section 6; by contrast, [6] is not intended 
as a hierarchical solution to the unique list problem, does 
not distinguish the list cells of the different levels of 
abstraction, and uses the same selectors CAR and CDR 
for all of  them.) If  the base does not have a sufficient 
facility, for example because it is a bare machine, then 
a type system must be synthesized as part of the hierarchy 
of machines. This can be quite hard, but it is possible 
[22]. 

Some base languages will provide not only concrete 
but also abstract data structures; these include CLU 
[15], a modification of Simula [23], Modula [31], and 
Alphard [32]. Some of these facilities are clearly redun- 
dant if our methodology is used with a tool that statically 
confirms that implementation programs are compatible 
with specifications, e.g. in what functions they call or 
what objects they refer to. On the other hand, the use of 
such a base language can ease the proof that implemen- 
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tation programs have the protection semantics implicit 
in the methodology. 

Boyer and Moore have developed a formal semantics 
and a verification condition generator for our method- 
ology [1], using the underlying theory of their Lisp 
Theorem Prover [2]. This makes it possible to produce 
precise machineable versions of the theorems given in 
Section 7 and preliminary experiments encourage us in 
the hope that these theorems may be mechanically 
proved. This will be a major theme in our future work. 

There are certainly many other ways to specify pro- 
grams formally. We think that the method of algebraic 
specifications [8] is very promising. It is similar to our 
method in its precision and compatibility with formal 
proof. It appears, in some published examples, to pro- 
duce specifications that are quite concise but may require 
of readers greater mathematical sophistication than do 
ours; we are not aware of its use on examples as large as 
[22]. It would be premature to draw firm conclusions 
about the relative merits of the two methods and we look 
forward to the further development of both. 
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