
334

Federated Learning for Computationally-Constrained
Heterogeneous Devices: A Survey

KILIAN PFEIFFER, Karlsruhe Institute of Technology, Germany
MARTIN RAPP, Karlsruhe Institute of Technology, Germany
RAMIN KHALILI,Munich Research Center Huawei Technologies, Germany
JÖRG HENKEL, Karlsruhe Institute of Technology, Germany

With an increasing number of smart devices like internet of things (IoT) devices deployed in the field, offloading
training of neural networks (NNs) to a central server becomes more and more infeasible. Recent efforts to
improve users’ privacy have led to on-device learning emerging as an alternative. However, a model trained
only on a single device, using only local data, is unlikely to reach a high accuracy. Federated learning (FL)
has been introduced as a solution, offering a privacy-preserving trade-off between communication overhead
and model accuracy by sharing knowledge between devices but disclosing the devices’ private data. The
applicability and the benefit of applying baseline FL are, however, limited in many relevant use cases due
to the heterogeneity present in such environments. In this survey, we outline the heterogeneity challenges
FL has to overcome to be widely applicable in real-world applications. We especially focus on the aspect of
computation heterogeneity among the participating devices and provide a comprehensive overview of recent
works on heterogeneity-aware FL. We discuss two groups: works that adapt the NN architecture and works
that approach heterogeneity on a system level, covering Federated Averaging (FedAvg), distillation, and split
learning-based approaches, as well as synchronous and asynchronous aggregation schemes.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Cooperation and coordination.

Additional Key Words and Phrases: Machine Learning, Federated Learning, Resource-Constraints, Heteroge-
neous, Distributed Computing

ACM Reference Format:
Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jörg Henkel. 2023. Federated Learning for Computationally-
Constrained Heterogeneous Devices: A Survey. ACM Comput. Surv. 55, 14s, Article 334 (July 2023), 27 pages.
https://doi.org/10.1145/3596907

1 INTRODUCTION
In recent years, a paradigm shift in machine learning (ML) on smart devices, such as internet of
things (IoT) or smartphones, could be observed. Previously, most deployments of ML solutions
on such devices were designed to train the ML model once at design time in a high-performance
cloud [83]. At run time, the fully-trained model gets deployed on the devices, where only inference
tasks are performed. The increasing number of smart devices and recent hardware improve-
ments open the possibility of performing (continuous) on-device learning. This paradigm shift is
mainly motivated by privacy and security concerns and motivated by policies like the European
Union’s GDPR [30] or California’s CCPA [11].

Authors’ addresses: Kilian Pfeiffer, kilian.pfeiffer@kit.edu, Karlsruhe Institute of Technology, Karlsruhe, Germany; Martin
Rapp, martin.rapp@kit.edu, Karlsruhe Institute of Technology, Karlsruhe, Germany; Ramin Khalili, ramin.khalili@huawei.
com, Munich Research Center Huawei Technologies, Munich, Germany; Jörg Henkel, henkel@kit.edu, Karlsruhe Institute
of Technology, Karlsruhe, Germany.

© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Computing Surveys, https://doi.org/10.1145/3596907.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

ar
X

iv
:2

30
7.

09
18

2v
1

 [
cs

.L
G

]
 1

8
Ju

l 2
02

3

HTTPS://ORCID.ORG/0000-0003-3872-0495
HTTPS://ORCID.ORG/0000-0002-5989-2950
HTTPS://ORCID.ORG/0000-0003-2463-7033
HTTPS://ORCID.ORG/0000-0001-9602-2922
https://doi.org/10.1145/3596907
https://orcid.org/0000-0003-3872-0495
https://orcid.org/0000-0002-5989-2950
https://orcid.org/0000-0002-5989-2950
https://orcid.org/0000-0003-2463-7033
https://orcid.org/0000-0001-9602-2922
https://doi.org/10.1145/3596907

334:2 Pfeiffer, et al.

On-device learning has several advantages over centralized training. In the extreme case, when
devices independently perform on-device learning, no information about local data samples leaves
the device, maintaining users’ privacy. Additionally, on-device learning eliminates communication
that comes with uploading collected training samples to a centralized server. This is particularly
relevant with the expected growth rate of IoT devices [69], each equipped with sensors producing
massive amounts of data, where the increasing communication burden limits the ability to process
all this data centrally. However, this comes with new challenges. Firstly, not all deployed devices
are capable of doing any training, hence rely on an externally trained model. Further, devices that
are capable can only train on their own samples (a tiny subset of a potential centralized dataset),
and the resulting models suffer from accuracy losses and weak generalization properties.
Federated learning (FL) [70] is a recently introduced decentralized approach, where training is

done in a distributed manner on each device, but devices can still collaborate to share knowledge. FL
improves privacy [8, 96] compared to the traditional centralized cloud paradigm. At the same time,
FL enables devices to exchange relevant knowledge, improving the models’ ability to generalize and
overall increasing the accuracy. There are several techniques for how knowledge can be exchanged.
The most common approach is to exchange neural network (NN) model weights [70], but there are
other methods, as will be discussed later.

While FL systems for smart devices are proposed for a lot of different fields like health-care [19,
32, 49, 105], transportation [21, 62, 78, 84], and robotics [64, 65] using natural language processing,
computer vision, and reinforcement learning policies, only a few production use cases like the
Google Keyboard (GBoard) [100] provide evidence of the success of the FL approach. We argue that
real-world applications powered by FL are challenging to build because of the heterogeneity present
in these environments [7, 46, 60], as almost any real-world system has heterogeneous properties
that affect the efficacy of an FL system. A key factor of heterogeneity is the devices’ different
capabilities to perform training of an NN due to different degrees of computational resources1.
Training NNs is computationally expensive due to the high number of trained parameters and its
iterative search for a solution. This manifests itself in long training times, ranging up to several
weeks for complex tasks. Today’s IoT devices, smartphones, and embedded systems are still heavily
constrained in their training capabilities.
For example, the PM2.5 [16, 17] IoT sensor network continuously measures air quality (fine

particular matter below a diameter of 2.5 µm) to train a model for anomaly detection. Several factors
affect the devices’ computational resources. The two most important ones in this setting are:

• The open-source nature of the project allows for a variety of hardware realizations, hence
sensor devices have heterogeneous computational resources.

• Sensor devices are deployed in various environments, like indoors, where the devices are
continuously powered, or outdoors where energy harvesting is required, limiting energy for
training in a heterogeneous manner.

These and other sources of heterogeneity need to be considered when designing an FL system for
cooperative learning. However, research on FL on computationally-constrained heterogeneous
systems is still in its infancy.

For instance, in GBoard, incorporating devices with heterogeneous resources is circumvented by
forcing a homogeneous setting and excluding devices that do not fit. The ML model is exclusively
trained on high-end smartphones that are in an idle state and have at least 2GB of memory. These
limitations might play a minor role when having a billion participating devices, as it could be the
case in cross-device FL [50], but in smaller-scale applications (i.e., horizontal cross-silo [50]), excluding
1Section 3 gives a detailed overview over the types of computational resources, and the sources and characteristics of
heterogeneity in these resources.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:3

Table 1. Previous surveys in FL that partially cover computation heterogeneity in FL.

Survey Focus Techniques w/ comp.
heterogeneity Distillation

Abdulrahman et al. [1] FL Overview 7 ✗

Xu et al. [98] Asynchronous FL 4 ✗

Imteaj et al. [47] FL for constrained IoT 10 ✗

Khan et al. [51] FL for IoT 3 ✗

Lo et al. [67] FL Engineering Aspects 6 ✗

Yin et al. [103] FL Overview 3 ✗

Bellavista et al. [6] FL Deployment 7 ✗

Ours Comp. heterogeneity in FL 35 ✓

a large number of devices from the training reduces the achievable accuracy and generalization of
the model. More importantly, there are cross-device cases where excluding devices also excludes an
essential share of data that is exclusively available on constrained devices [68]. Because of fairness
or fair representation, it might be required to learn from these devices. Therefore, computation-
heterogeneity-aware FL is required to enable FL to learn from all devices and utilize any data.

While we mainly focus on computation heterogeneity in FL, heterogeneity also manifests itself
in other domains. Devices have different data distributions and quantities of samples available.
Also, they could have different communication capabilities. For a wider use of FL systems, these
heterogeneities should be taken into account.

1.1 Scope and Contribution
This survey studies FL under computation heterogeneity. We also briefly discuss other sources
of heterogeneity, such as communication and data heterogeneity, when there is an overlap with
computation, but we refer readers to recently published surveys, e.g., [86] and [56], for a more
detailed discussion. In this survey, we first provide an extensive analysis of the sources of het-
erogeneity in devices in various kinds of environments and the implications for cross-device and
horizontal cross-silo FL. We then provide a thorough analysis of the state-of-the-art techniques that
cope with heterogeneous computation capabilities during FL training. We focus on literature that
tackles computation heterogeneity on two different levels and exclude techniques that improve the
resource efficiency of devices through hardware design considerations, such as accelerators [5],
as they are not specific to FL. For techniques that exclusively target inference, such as federated
neural architecture search (NAS) techniques, we refer to Lui et al. [66].
The presented techniques are grouped into two major groups, namely techniques that tackle

heterogeneity through the devices’ NN architectures level and techniques that address heterogeneity
on the system level. An additional fine-grained categorization is based on the employed FL paradigm
(Federated Averaging (FedAvg), distillation, and split learning) for NN architecture-level techniques
and is based on whether system-level techniques employ synchronous or asynchronous aggregation.
We present our taxonomy of the research on FL with computation heterogeneity in Section 3 and
Table 3, where we outline the different computation-related challenges that come from real-world
applications and present a selection of works that make notable contributions to computation
heterogeneity aware FL. Finally, we conclude by outlining open problems and remaining challenges.
In contrast to previous surveys [1, 6, 47, 51, 67, 98, 103] that cover certain aspects of device
heterogeneity in FL, we provide the following novel contributions:

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:4 Pfeiffer, et al.

• We provide an up-to-date review of the state of the art and analyze many techniques that are
not yet covered in existing surveys. The problem of computation heterogeneity in FL only
very recently gained relevance with upcoming training-capable IoT devices and proposals for
5G sensor networks. Therefore, FL techniques addressing computation heterogeneity only
recently gained popularity. In particular, about 50% of our covered techniques were published
in 2021/2022. Besides, existing surveys cover less than half of the papers we survey. Table 1
presents a comparison to other works.

• Existing literature treats computation resources in a very abstract way (e.g., only considering
the training time of the number of multiply-accumulate operations), neglecting the different
kinds of computational resource limitations and their different implications. This is as their
main focus is different (see Table 1). For the design of future real-world FL applications, these
abstract metrics do not suffice, as they do not well reflect the variety of heterogeneity sources
that affect a deployed FL application. In contrast, we distinguish between four different
concepts, which are constraint types, heterogeneity types, the scale of the heterogeneity, and
its granularity.

• In contrast to existing surveys, we also include distillation-based FL approaches. This novel
knowledge aggregation technique potentially enables NN model-agnostic FL, therefore,
enables the use of custom-tailored NNmodels to better account for the devices’ heterogeneous
capabilities. We provide an in-depth description of how distillation-based FL approaches
exchange knowledge, present seven different approaches that utilize distillation to cope with
computation heterogeneity and discuss their current limitations.

The remainder of this survey is structured as follows: First, in Section 2, we introduce the major
baseline algorithm of FL, FedAvg, and recently introduced distillation and split learning approaches
and their respective advantages and disadvantages. In Section 3, we analyze the different sources that
enforce computation constraints on devices and discuss how that leads to computation heterogeneity
in FL. In Section 4, state-of-the-art work addressing computation heterogeneity is discussed. Finally,
Section 5 presents open problems and future directions.

2 BASICS OF FEDERATED LEARNING
2.1 Problem Formulation
Similar to distributed stochastic gradient descent (SGD), FL follows a server-client model, where
client workers (devices) do training and communicate with a central server to share knowledge.
The simplified case of FL aims to learn a model under the constraint that the training data is locally
distributed among many devices. Therefore the goal is to minimize the following function by
finding optimal NN weights𝑤 s.t.

min
𝑤

𝑓 (𝑤) where 𝑓 (𝑤) := 1
|K |

∑︁
𝑘∈K

𝑓𝑘 (𝑤), (1)

where 𝑓 (𝑤) is the global loss (at a centralized server that handles knowledge aggregation) and 𝑓𝑘 (𝑤)
is the loss function of device 𝑘 , where 𝑘 is a device within the set K . Each device exclusively has
access to its local datasetD𝑘 = {𝑥𝑘 , 𝑦𝑘 } where 𝑥𝑘 is the input and𝑦𝑘 is the label. The function 𝑓𝑘 (𝑤),
therefore, can be rewritten as

𝑓𝑘 (𝑤) = 𝑙 (𝑥𝑘 , 𝑦𝑘 ,𝑤) {𝑥𝑘 , 𝑦𝑘 } ∼ P ∀𝑘. (2)
Each device 𝑘 draws its samples from the distribution P resulting in |K | disjoint splits of the full
dataset. The accuracy of such a scheme is bounded by the following two bounds. First, a natural
upper accuracy bound is the centralized training case where a device has access to the whole
dataset. The second is a device without any knowledge transfer, only relying on its local data,

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:5

𝑤𝑡+1 = 1
|DC |

∑︁
𝑘∈C

|D𝑘 |𝑤𝑡+1𝑘

FedAvg Server Device 1

D1
(𝑥1, 𝑦1) → 𝑙 (𝑦)

training

𝑤𝑡+11

Device 2

D2
(𝑥2, 𝑦2) → 𝑙 (𝑦)

training

𝑤𝑡+12

D3
(𝑥3, 𝑦3

. . .

𝑤𝑡

Fig. 1. FedAvg: Knowledge of devices 1, . . . , 𝐾 is shared through averaging the NNs’ weights. Each device
trains on its disjoint local data D1, . . . ,D𝐾 , producing newly trained weights𝑤1, . . . ,𝑤𝐾 . Every round, the
new averaged weights𝑤𝑡 are distributed to all devices.

thus building a natural lower bound to the accuracy. We identify two main goals in computational
heterogeneity-aware FL techniques: Increasing the convergence speed and reaching a high final
accuracy despite having constrained devices.

2.2 Baseline Federated Averaging (FedAvg)
FedAvg is an algorithm for FL that was first introduced by McMahan et al. [70] and is widely
considered a baseline for FL. In the case of synchronous FedAvg, training is done in rounds. In
each round, every device pulls the current model from the server. Now, each device trains for a
fixed amount of mini-batches up to several epochs on its data. After training, each device uploads
its models to the server. The server model is updated by averaging all the uploaded models. In
the special case where during the local training phase, each device only applies one gradient step,
FedAvg behaves like distributed SGD.

The following detailed description assumes synchronous round-based FedAvg. The aggregation
scheme (one round) is visualized in Fig. 1 and described in the following steps:
(1) At the beginning of every training round, the server deploys the current weights𝑤𝑡 on the

set of devices. When starting the training𝑤𝑡 = 𝑤0 to achieve the same random initialization
of the NN on all devices. Since usually a very large number of devices participate in federated
learning, a subset C ⊂ K of all devices is selected for training.

(2) Devices train their model (SGD steps) for a fixed number of mini-batches or epochs on their
local data, consequently, every device does the same amount of training steps

𝑤𝑡+1𝑘 = 𝑤𝑡 − 𝜂∇𝑓𝑘 (𝑤𝑡), (3)

where𝑤𝑡+1
𝑘

is the resulting model weights set, while 𝜂 is the learning rate.
(3) Afterward, devices upload their updated model weights𝑤𝑡+1

𝑘
to the server.

(4) The server aggregates the devices’ knowledge by averaging the received weights using

𝑤𝑡+1 =
1

|DC |
∑︁
𝑘∈C

|D𝑘 |𝑤𝑡+1𝑘 , (4)

where𝑤𝑡+1 represents the new global model and |DC | the number of samples of devices in
subset C. The next round starts with Item 1 (𝑤𝑡+1 → 𝑤𝑡).

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:6 Pfeiffer, et al.

2.3 Client Selection in FedAvg
In [70], as presented in Section 2.2, the availability of devices in K is modeled to be random, s.t.
each round 𝑡 a random subset C𝑡 ⊂ K participates in FL. If a device 𝑘 in the set C𝑡 takes longer
than others, it delays the synchronous aggregation, hence, slows down the overall FL training. If
waiting becomes impractical, the device has to be dropped from the current FL round, wasting its
resources. Devices like these are called stragglers. Client selection techniques assume that device
availability and their expected resources for training can be acquired by the server to select an
optimal subset𝐶𝑡 of devices for each round. Further, they allow for variable per-round training time
deadlines. Client selection techniques mainly target one or more of the following goals: Maximizing
the overall FL convergence speed, minimizing the number of stragglers, or minimizing the overall
energy spent on FL.

2.4 Asynchronous FedAvg
Alternatively, in asynchronous FedAvg, devices can pull the most recent model from the server at
any time, perform local update steps on it, and upload it at any time. Knowledge aggregation is done
at the server as soon as a new model update from a device arrives. Stale devices: In asynchronous
schemes, devices can not become stragglers since their updated model can be aggregated instantly
into the global model. Yet, devices that take too long to finish their training become stale devices.
Stale devices upload their trained weights based on an old state of the global model, introducing
instability. Chen et al. first provided evidence of that for asynchronous SGD [15]. Further, Xi et al.,
as well as Xu et al., demonstrate that staleness in FL lowers the convergence speed and affects the
maximum reachable accuracy [97, 99].

2.5 Distillation for Federated Learning
Distillation techniques in FL take motivation from knowledge distillation (KD) [40], which was
originally used to transfer knowledge of a larger NN into a reduced smaller one for model com-
pression. Typically, NNs trained on classification problems output probabilities using a softmax
layer that converts logits into probabilities. KD aims to distill the better generalization of larger
models into smaller ones by not training the smaller network on the sample’s class but rather on
the sample’s distribution (soft label) that is predicted by the larger network. Therefore, the smaller
network not only learns the correct classes but also, through likelihood scores, learns about the
larger model’s knowledge representation.
Federated model distillation (FedMD) is an algorithm that uses distillation for FL that has been

proposed recently by Li and Wang [59]. We exemplary describe how distillation is used in federated
learning using FedMD: Additional to the devices’ local (private) datasets, a second dataset D𝑝 is
introduced, which is a public dataset that is known to all participating devices. With consecutive
training of private data and inference on public labels, devices transfer the knowledge of their
private data into the public soft labels. The major difference to the previously discussed FedAvg
scheme is that knowledge is not shared through model weights but through soft labels of a public
dataset. This concept change allows for devices to be independent of the server model architecture.

The steps of a synchronous knowledge aggregation round are visualized in Fig. 2 and described
in the following steps. In the general case, FedMD is applicable to any machine learning algorithm
and task. For the sake of simplicity, we consider in the following detailed explanation only NNs that
perform classification with a softmax activation layer. Again a subset C of all devices contributes
in one round.
(1) At the beginning of each round, all devices download the current public dataset’s soft labels𝑦𝑡𝑝 .

In the first round, the public dataset’s labels are one-hot encoded.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:7

𝑦𝑡+1𝑝 = 1
| C |

∑
𝑘∈C

𝑦𝑡+1
𝑝,𝑘

FedMD Server Device 1

D1

D𝑝

(𝑥1, 𝑦1)

(𝑥𝑝 , 𝑦𝑡𝑝)
𝑙 (𝑦)
𝑦𝑡+1𝑝,1

training

Device 2

D2

D𝑝

(𝑥2, 𝑦2)

(𝑥𝑝 , 𝑦𝑡𝑝)
𝑙 (𝑦)
𝑦𝑡+1𝑝,2

training

D3

D𝑝

(𝑥3, 𝑦3

(𝑥𝑝 , 𝑦𝑡𝑝

. . .

𝑦𝑡𝑝

Fig. 2. FedMD: Knowledge of devices 1 to 𝐾 is shared through soft labels 𝑦𝑡𝑝 of the public dataset D𝑝 that
is known to all devices. Additionally, devices train on their private data set D1, . . . ,D𝐾 . Devices transfer
knowledge of their private data into public soft labels. Every round, the new averaged soft labels are distributed
to the devices.

(2) First, all devices train their NNs on the public dataset D𝑝 , followed by training on their
private data D𝑘 = {𝑥𝑘 , 𝑦𝑘 }. After training on the private dataset, an inference phase on the
public set follows. Instead of storing the one-hot encoded outputs, each device stores its
generated soft label outputs 𝑦𝑡+1

𝑝,𝑘
.

(3) The outputs, representing the probability distribution of the input over all possible classes,
are uploaded for each public data sample to the server.

(4) The results from all participating devices are aggregated by using averaging

𝑦𝑡+1𝑝 =
1
|C|

∑︁
𝑘∈C

𝑦𝑡+1𝑝,𝑘 , (5)

building a new averaged soft label for each sample in the public dataset. The public dataset is
updated to {𝑥𝑝 , 𝑦𝑡+1𝑝 }. The round repeats with Item 1 (𝑦𝑡+1𝑝 → 𝑦𝑡𝑝).

2.6 Split Learning
Lastly, we also briefly elaborate on split learning techniques. In difference to FedAvg or distillation-
based approaches, split learning techniques transfer information by using activations and gradients.
In split learning, the NN model is split into two parts: A device model 𝑎𝑘 = 𝑓𝑘 (𝑤𝑘 , 𝑥𝑘) for all
devices 𝑘 ∈ K , and a single server model 𝑓𝑠 (𝑤𝑠 , 𝑎𝑘) that takes activations 𝑎𝑘 from the devices as
input. A combination of both can be used on device 𝑘 for inference, s.t. 𝑦𝑘 = 𝑓𝑠 (𝑤𝑠 , 𝑓𝑘 (𝑤𝑘 , 𝑥𝑘)).
Server and device models are trained in the following way:
(1) Device 𝑘 calculates activations 𝑎𝑘 by using 𝑎𝑘 = 𝑓𝑘 (𝑤𝑘 , 𝑥𝑘) for its private data D𝑘 and sends

activations 𝑎𝑘 with the respective class labels 𝑦𝑘 to the server.
(2) The server receives the activations and class labels and calculates 𝑦 = 𝑓𝑠 (𝑤𝑠 , 𝑎𝑘) as well as

the gradient ∇𝑓𝑠 (𝑤𝑠). The gradient step (w.r.t 𝑓𝑠) is applied on the server the gradient w.r.t
to 𝑎𝑘 is sent back to device 𝑘 .

(3) Device 𝑘 uses the received gradient from the server to calculate ∇𝑓𝑘 (𝑤𝑘). The procedure
repeats with Item 1.

Split learning techniques can reach a high convergence speed and allow to reduce the computational
burden on the devices. This comes at the cost of a high communication volume.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:8 Pfeiffer, et al.

Table 2. (a) Computational capabilities (float performance, RAM) vary across different device classes. (b) The
resource requirements (number of MAC operations, memory footprint) for training of several established
image classification NNs (training with PyTorch [76], on CIFAR10 [55] with batch size 32).

(a) Computational resources of end-devices
Device FLOPS RAM

MSP430 Ser. 105 - 106 0.5 kB - 66 kB
STM32F7 Ser. (Arm Cortex-M7) 2 · 108 256 kB - 512MB
Raspberry Pi Ser. 108 - 1010 512MB - 8GB
Low-End Smartphones 1010 - 1011 1GB - 2GB
Nvidia Jetson Nano 1011 - 1012 2GB - 4GB
High-End Smartphones 1011 - 1012 4GB - 8GB
Server GPUs 1013 - 1014 32GB - 100GB

(b) Resource requirements of NNs
ML Model # MACs Memory

(Forward) (Training)

LeNet 6.7·105 0.5GB
ResNet18 5.6·108 0.8GB
EfficientNet 3.2·107 0.9GB
MobileNetV2 9.6·107 1.4GB
ResNet152 3.7·109 5.3GB

3 COMPUTATION HETEROGENEITY IN FEDERATED LEARNING
This section covers different types of heterogeneity in devices and their effects on FL systems.

Our main focus is on computation heterogeneity in existing devices, i.e., different devices cooperat-
ing in an FL system differ in their capabilities to train NNs.

3.1 Computational Resources in End-Devices
Table 2a shows the computational resources of several common end device classes in terms of
floating-point operations per second (FLOPS) and RAM. These devices range from ultra-low-
power MSP430 microcontrollers to high-performance server GPUs. Table 2b shows the resource
requirements of several well-known image classification NNs, in terms of the number of MAC
operations in the forward pass and required memory for training a mini-batch of size 32. Note that
the number of MAC operations for training a whole epoch would be 3-5 orders of magnitude larger
because training additionally requires a backward pass, which has around 2× the MACs of the
forward pass [4] (plus eventual computations for a stateful optimizer), and a device has hundreds
to thousands of local training samples to process in a round.
We observe that it is unrealistic to aim at training recent NN topologies on all devices. For

instance, an MSP430-based embedded device by far does not provide sufficient memory. This is
an important observation that puts a limit on how far into the embedded domain we can push FL,
and it is much more realistic to employ powerful embedded devices such as Raspberry Pi, NVIDIA
Jetson, or smartphones in FL systems. Nevertheless, there is large heterogeneity even within one
type of devices. For instance, the computational performance of smartphones varies between 1010
and 1012 FLOPS and 512MB and 8GB RAM. Heterogeneity greatly affects FL because, clearly, not
all devices can perform the same computations in each round, as will be discussed in more detail in
Section 3.2.

In general, this heterogeneity may have many different sources:
• Different hardware or software generations of devices or device tiers may cooperate in one FL
system. These can be, for instance, different smartphone generations or hardware revisions
of IoT devices [17]. Different hardware generations may be equipped with different ML
accelerators that speed up training. Devices also can have different amounts of memory or
storage capacities, limiting the devices’ training capabilities.

• Degradation of components affects the available resources. The two famous examples are
battery fading, where the energy capacity and peak power capabilities of a rechargeable

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:9

battery reduce over time [26, 29], and circuit degradation, which reduces the switching speed
of a circuit over time, reducing the achievable performance [92].

• The power/energy supply may be subject to variation. For example, the power supplied by a
solar cell varies with solar irradiation, which both depends on local random weather effects
(clouds) and regular cycles (day/night, summer/winter). Similar effects apply to other energy
harvesting techniques [33].

• Ambient temperature affects the efficacy of cooling. This limits the thermally-safe power
dissipation and, thereby, also limits computation [38].

• Shared resource contention with other applications running on a device affects the available
resources for training. ML model training often runs in parallel to other tasks on the same
platform [31]. This leads to fast-changing degrees of contention in shared resources such as
CPU time, memory, or energy.

3.2 Categorization of Constraints and Heterogeneity
We distinguish between two main categories of computation constraints, hard constraints and
soft constraints, that cause different kinds of computation heterogeneity in an FL system, namely,
heterogeneity across devices, over rounds, and over time. These heterogeneities can have different
scales and granularities.
Hard Constraints: These constraints prevent a device from training a given NN model. The

most prominent example is limited memory. Despite considerate efforts to shrink the number of
parameters in modern NNs [42, 89], model architectures likeMobileNetV2 [43] still have millions of
parameters, which need to be kept in memory in high-precision (e.g., 32-bit floating-point) during
training. In addition to the model parameters, also activations have to be kept in memory for
applying backpropagation. This may easily accumulate to more than 1GB of memory for training,
as shown in Table 2b. If a chosen NN architecture in an FL system exceeds the devices’ memory
capacity or the memory is not available due to resource contention, the device can not participate
in the FL system.
Soft Constraints: These constraints allow for training a certain NN architecture but prevent

the device from achieving its full training throughput (e.g., FLOPS). The computational capability
is affected by several factors, such as the used micro-architecture, degradation of components,
unstable power supplies, or shared resource contention. Constraints like these enforce slower
training. For a device participating in an FL system, soft constraints can prevent the device from
finishing its local training on time, making it a straggler or a stale device.

The aforementioned constraints may be heterogeneous throughout the set of devices participating
in FL and over the training duration. We differentiate between three types of heterogeneity caused
by device constraints.
Heterogeneity across Devices: Firstly, devices participating in an FL system may have dif-

ferent kinds of hard and soft constraints, causing heterogeneity across the devices. These kinds
of constraints (e.g., availability of accelerator or memory capacity) are either known at design
time or before starting the training and do not change over time. Different devices may be subject
to different constraints that limit the training throughput. An example of heterogeneity across
devices is a smartphone application FL system. As discussed above, a low-end smartphone operates
only with 1/100th of the peak performance and may have only 1/8th of the memory capacity of a
high-end smartphone. Table 2 also lists other devices and their respective training throughput and
memory resources. To support heterogeneity across devices, an FL algorithm needs to be able to
use different amounts of resources on different devices in a round.

Heterogeneity over Rounds: If the number of devices in an FL system is comparatively small
(cross-silo FL), devices need to participate in many FL rounds. This is, for instance, the case in

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:10 Pfeiffer, et al.

robotics [45] or lifelong learning [64]. Soft constraints of devices may be determined by the devices’
environments and change over the rounds. Examples of such constraints are the devices’ expected
battery level during training, the current power supply, or ambient temperatures. This includes all
constraints that change slower than FL rounds (in the range of minutes to hours), can be predicted,
and are known prior to an FL round. To support heterogeneity over rounds, an FL algorithm needs
to either implement stateless clients or explicitly support changes in the availability of the resources
of a device.
Heterogeneity over Time: Soft constraints that change at a finer granularity than FL rounds

cause heterogeneity over time in an FL system. These throughput changes can not be predicted
and randomly occur (in the range of milliseconds/seconds). One example is resource contention
on a smartphone, where the share of available resources is unpredictable for the FL system and
changes within seconds, i.e., much faster than FL rounds. To support heterogeneity over time, an FL
algorithm needs to adaptively adjust the required resources at the client during the round without
relying on the server.
In any real system, a combination of the different types of heterogeneities is expected to oc-

cur. Finally, there are two additional properties of the heterogeneity that describe the statistical
distribution of constraints present in a set of devices.
Scale of Heterogeneity: Heterogeneity across devices or over rounds/time can have different

scales. This scale can vary depending on the source of constraints. In a smartphone application
with different tiers or hardware generations, memory capacity and peak performance can vary by a
factor of 10× and 8×. Contrary to that, constraints caused by an aging effect (battery) may result in a
peak power reduction of more than 50 % [26], which translates to a throughput difference of around
20%, assuming a cubic relationship between dynamic power and performance (𝑉 2 𝑓 -scaling [37]).
This is much lower than the scale of 10× observed with different tiers or hardware generations. An
FL algorithm must support the scale of heterogeneity present in the system.

Granularity of Heterogeneity: The heterogeneity present in an FL system can have different
granularities. In a smartphone application, where devices are equipped with different memory
capacities (e.g., 1GB, 2GB, and 4GB), an FL system has to account for only a small finite number
of types of devices. On the other hand, devices experiencing resource contention can have a
continuous range of total training throughput in an FL round. Either an FL algorithm supports
arbitrary resource availability levels or quantizing the continuous range into a reasonable finite
number of constraint levels is required. The number of supported levels by the algorithm must
be high enough to avoid wasting too many resources, which can slow down the overall training.
For example, resource contention (e.g., four other applications sharing CPU time) would reduce
the available resources for training by 5×. If the FL algorithm supports only 5 levels, which is not
uncommon, as we observe in Section 4, the ratio between subsequent levels is at least 1.5× if levels
are distributed exponentially. As an example, levels of [1×, 1.5×, 2.2×, 3.3×, 5×] could lead to 33%
of available resources for training being wasted. Note that this gap increases strongly if a larger
scale needs to be supported.
As with all the other properties, an FL technique must be able to cope with the granularity of

the system at hand.
These different types of computational heterogeneity require different solutions. We analyze

the capabilities of the state-of-the-art techniques for heterogeneity-aware FL to cope with all the
different types of computational heterogeneity in Section 4.

3.3 Communication Heterogeneity
Knowledge transfer, for instance, through sharing NN parameters between devices, is only possi-
ble via communication. The throughput, latency, and reliability of communication channels are

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:11

limited and can vary between devices causing stragglers or stale devices. Most of the current
research focuses on making the transmission more efficient by using compression and quantization
schemes [3, 28, 54, 72]. Even though we do not focus on communication heterogeneity in this
survey, we nevertheless cover certain aspects of communication because of the inter-dependencies
between communication and computation:

• The complexity of the trained NN architecture correlates with the model size that has to be
transmitted to the server. Hence, reducing the NN structure (e.g., by pruning [48]) reduces
not only the computation complexity but also the communication burden.

• Increasing training throughput and communication throughput can create a trade-off sce-
nario [81], because ultimately, both may compete for resources like energy [73].

3.4 DataQuantity Heterogeneity
In a real-world scenario, the quantity of the data gathered on different devices may vary. However,
to guarantee a high accuracy, the model needs to be trained over all available data. This imposes
more training overhead on devices with a higher quantity of data, as they require to perform higher
numbers of mini-batch training per round. Techniques that cope with limited throughput (soft
constraints) can be applied to such devices to prevent them from becoming a straggler or stale
devices.

4 COMPUTATION HETEROGENEITY-AWARE FEDERATED LEARNING
4.1 Categorization of Techniques
We categorize techniques addressing FL with heterogeneous computational capabilities into two
groups:
NN architecture level: We distinguish between techniques where devices can choose from a

limited set of model architectures or submodels. These techniques stem from FedAvg and are
covered in Section 4.2. Other techniques do not impose any limitations on the model architecture.
These techniques build on top of FedMD and are covered in Section 4.3. Lastly, we cover split
learning based techniques in Section 4.4.
System level: In this case, heterogeneity is not addressed by varying model complexity but by

allowing for variable-length rounds, grouping, and partial updates. Besides synchronous solutions,
variable training times can also be accounted for by allowing for asynchronous updates. These
approaches are covered in Sections 4.5 and 4.6, respectively.

Lastly, we discuss which types of computation heterogeneity are addressed. All discussed tech-
niques are listed in Table 3.

4.2 NN Architecture Heterogeneity based on FedAvg
The following techniques adapt FedAvg to achieve model architecture heterogeneity. Allowing
for variable model complexity in FedAvg is not straightforward since the aggregation scheme
relies on averaging of model weights. If the model architectures vary, it is not clear how to
match the parameters for averaging. Even networks with the same architecture can have different
learned structures, thus, averaging their weights hurts performance [70]. One reason for that is
the NNs’ permutation invariance, which means that even two-layer networks trained on the same
distribution can have different internal structures. Several research works, therefore, focus on
matching internal features. Wang et al. [94] introduce FedMA to match layer-wise filters together.
Similarly, Yurochkin et al. [106] focus on matching neurons by identifying similar neuron subsets
to match features in non-independent and identical distributed (iid) data scenarios. Reliable feature
matching would allow for combining networks with varying architectures as well as a better

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:12 Pfeiffer, et al.

Table 3. Comparison of techniques aiming at computation heterogeneity-aware FL. We differentiate between
hard and soft constraints, and heterogeneity across devices (D), over rounds (R), and over time (T).

Work Layer Mechanism Constraints Heterogen.
Async Knowledge ex. Hard Soft D R T

Section 4.2 NN Architecture Heterogeneity based on FedAvg
Caldas et al. [9] Model - Parameters ✓ ✓ - - -
ELFISH Xu et al. [99] Model - Parameters ✓ ✓ ✓ ✓ -
DISTREAL Rapp et al. [80] Model - Parameters - ✓ ✓ ✓ ✓

HeteroFL Diao et al. [25] Model - Parameters ✓ ✓ ✓ ✓ -
MFL Yu and Li [104] Model - Parameters ✓ ✓ ✓ ✓ -
FjORD Horváth et al. [41] Model - Parameters ✓ ✓ ✓ ✓ ✓

FedRolex Alam et al. [2] Model - Parameters ✓ ✓ ✓ ✓ -
FedorAS Dudziak et al. [27] Model - Parameters ✓ ✓ ✓ ✓ ✓

FedHM Yao et al. [101] Model - Parameters ✓ ✓ ✓ ✓ -
FLANC Mei et al. [71] Model - Parameters ✓ ✓ ✓ ✓ -
ZeroFL Qui et al. [79] Model - Parameters ✓ ✓ - - -
CoCoFL Pfeiffer et al. [77] Model - Parameters ✓ ✓ ✓ ✓ -
Section 4.3 NN Architecture Heterogeneity based on Distillation
FedMD Li and Wang [59] Model - Soft labels (public) ✓ ✓ ✓ - -
Cronus Chang et al. [14] Model - Soft labels (public) ✓ ✓ ✓ - -
FedHE Hin et al. [39] Model ✓ Soft labels (per class) ✓ ✓ ✓ ✓ ✓

FedProto Tan et al. [90] Model - Soft labels (per class) ✓ ✓ ✓ - -
FedDF Lin et al. [63] Model - Soft labels (server) ✓ ✓ ✓ - -
FML Shen et al. [85] Model - Soft labels (public) ✓ ✓ ✓ - -
Section 4.4 NN Architecture Heterogeneity based on Other Techniques
FedGTK He et al. [85] Model ✓ Soft labels & activ. ✓ ✓ - - -
AdaSplit Chopra et al. [20] Model ✓ Gradients & activ. ✓ ✓ ✓ ✓ ✓

Section 4.5 System Level Awareness Through Client Selection and Flexible Aggregation
FedCS Nishio and Yonetani [75] System - Parameters - ✓ ✓ - -
TiFL Chai et al. [12] System - Parameters - ✓ ✓ ✓ -
FLANP Reisizadeh et al. [82] System - Parameters - ✓ ✓ - -
Oort Lai et al. [57] System - Parameters - ✓ ✓ ✓ -
PyramidFL Li et al. [58] System - Parameters - ✓ ✓ ✓ -
FedProx Li et al. [61] System - Parameters - ✓ ✓ ✓ ✓

Wang et al. [93] System - Parameters - ✓ ✓ ✓ -
Wang et al. [95] System - Parameters - ✓ - ✓ -
Tran et al. [91] System - Parameters - ✓ ✓ - -
AutoFL Kim and Wu [52] System - Parameters - ✓ ✓ ✓ -
Section 4.6 System Level Awareness Through Asynchronous Aggregation
ASO Chen et al. [18] System ✓ Parameters - ✓ ✓ ✓ ✓

FedAsync Xie et al. [97] System ✓ Parameters - ✓ ✓ ✓ ✓

Sprague et al. [87] System ✓ Parameters - ✓ ✓ ✓ ✓

Papaya Huba et al. [44] System ✓ Parameters - ✓ ✓ ✓ ✓

FedAT Chai et al. [13] System ✓ Parameters - ✓ ✓ ✓ ✓

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:13

generalization in non-iid data scenarios. Current techniques circumvent direct feature matching
of varying NN structures by training with regularly changing variable-sized dropout masks or by
training subsets of the full network, as discussed in the following. These techniques share some
similarities with well-known inference approaches like pruning. The major differences are that
pruning is primarily done after training has converged, intending to create an efficient model
for inference. Meanwhile, in the following approaches, smaller subsets remain embedded in the
full-size NN architecture, while each part is constantly updated every round.
Unstructured Subsets: Caldas et al. [9] were within the first to address the high computation

burden of FL, introducing Federated Dropout (FD) for FedAvg, where instead of the full network,
only a subset of the network is trained and updated in every round. A fixed set of weights is set
to zero, and the remaining weights are packed into a dense matrix for efficient computation. For
convolutional layers, full filters are dropped. In their experiments, they achieve a 1.7× reduction
of computations on MNIST [23] without hurting final accuracy. The provided results suggest that
averaging subsets through dropout masks does not negatively impact the aggregation mechanism
of FedAvg. While reducing the devices’ computation effort, FD forces a fixed dropout rate on all
devices, thus limiting the ability to adapt to heterogeneity across devices. Heterogeneity across
devices is tackled by Xu et al. [99] in ELFISH, a method that identifies neurons that contribute
much to convergence and builds dropout masks based on this information. Each device receives a
specific dropout mask to best match its current computing capabilities. Masks are updated every
round. In DISTREAL [80], the authors explore how subsets can be trained in environments with
time-varying computational resources that change faster than FL rounds and are not known in
advance. A mini-batch level granularity for training subsets by randomly switching filters of the
CNN during training is achieved. Additionally, DISTREAL does not require a common fixed subset
ratio per layer. Instead, this design space is explored with a genetic algorithm to find Pareto-optimal
per-layer subset ratios. The results show that in scenarios with fast-changing resources, randomly
switching between filters and optimized per-layer subset ratios result in faster convergence and
higher final accuracies compared to FD.
Structured Subsets: While FD and ELFISH utilize unstructured subsets (masks), where the

subset parameters are scattered over the full-size NN structure, some other studies propose a strictly
hierarchical nesting of subsets. HeteroFL is presented by Diao et al. [25], a FedAvg adaption that
allows devices to select from specific subsets of the full model. A smaller set is constructed as a
subset of the next bigger set, giving devices a hierarchical selection of networks. Aggregation is
done by only averaging trained parameters from the devices. Therefore, some parts of the model
are only updated by strong devices. Similarly, Yu and Li [104] propose partitioning of convolutional
neural network (CNN) layer width, depth, and kernel size by slices of power of two and introduce
a submodel search algorithm to best match a submodel to the devices’ individual resources. They
only provide proof-of-concept experiments for small networks in homogeneous cases. Horváth et
al. [41] present FjORD, where devices receive submodels of various complexities through applying
Ordered Dropout (OD). Differently to HeteroFL, in each local round, every device uniformly selects
from different complexity levels (within its capabilities) for a short training period. Since higher-
performance devices are not fully utilized this way, the authors apply KD on top of OD to transfer
knowledge from larger complexity models to smaller ones during local training. For comparison,
they extend FD with variable dropout rates for each device and show that their structured subsets
outperform random dropout masks.
Hybrid Subsets: Also, a mixture of both approaches, specifically the use of structured but not

hierarchical subsets, is considered. In difference to the previous approaches, this allows training of
NN-models that exceed the strongest devices’ capacity. Additionally, each parameter gets eventually
trained by each device. The use of a rolling window approach is proposed by Alam et al. [2] in

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:14 Pfeiffer, et al.

FedRolex. In each training round, a device trains a different slice of the NN. Federated NAS [35,
74, 102] techniques are proposed, using subsets of shared common structure to allow for device
personalizing, aiming for better accuracy in non-iid cases and efficient models for inference. An
advantage compared to previous techniques is that the devices’ NN models can be independently
optimized for their hardware, however, this comes at the cost of exploring the architecture search
space, which can be resource-hungry. Dudziak et al. [27] present FedorAS, a federated NAS technique
that also accounts for device heterogeneity during training. Similarly to FedRolex, devices receive
a subset of the full server model, and depending on their resources, switch between further splits
of the subset on a mini-batch level. The common training is followed by an architecture search for
several tiers based on the full model and lastly, a fine-tuning step.

Low-Rank Factorization: Low-rank factorization is considered to select the subset’s parameters.
These techniques also root from inference compression. The major difference to its use for inference
is that here, the low-rank NN is updated during training, and the low-rank updates are applied
to the full model on the server. Yao et al. [101] present FedHM, where they create low-complexity
submodels on the server by doing a low-rank factorization of the full model. Layer parameters
with dimensions𝑚 × 𝑛 are decomposed into two matrices with dimensions𝑚 × 𝑟 and 𝑟 × 𝑛. The
complexity of the model can be controlled via the rank 𝑟 . Computationally weak devices perform
two lightweight convolution operations based on the matrix decomposition instead of one complex
operation. To avoid a strong accuracy degradation, the complexity reduction through matrix
decomposition is preferably applied in the later layers of the NN model. The authors show that
subsets through low-rank factorization can achieve higher accuracies than straightforward splitting,
but more importantly, dramatically reduces the communication burden. A similar technique is
employed by Mei et al. [71] in FLANC, where in the factorization, the parameters are decomposed
in matrices with dimensions smaller than𝑚 and 𝑛, allowing for a reduction of the activation size
and hence, memory requirements.
Others: In ZeroFL [79], dropout masks in combination with sparse convolutions are used to

lower the computational complexity in training (FLOPS) and reduce the communication volume,
although special hardware and software support is required to enable real-world gains. Lastly, in
CoCoFL [77], a technique is presented that does not use subsets of an NN for training. Instead, only
for some layers per round gradients get calculated while the remainder of the layers are frozen. This
saves computation time (fewer backpropagation components) and reduces the upload volume since
only updated layers must be uploaded. Further, the freezing of the remaining layers allows for the
reduction of the computation complexity by using inference techniques, such as batch norm folding
and quantization (e.g., int8 instead of float32). While in width scaling approaches (HeteroFL),
gains in computation time and communication volume are tightly coupled, selective freezing and
training can decouple those properties. The results show benefits over HeteroFL, especially in
scenarios where the devices’ constraints regarding computation and communication are decoupled.

Discussion:Most presented techniques send lower complexity subsets of the full NNmodel to the
devices. Allowing flexible NN models addresses hard constraints (e.g., devices can train a submodel
with a lower memory footprint). Approaches partly require the resources to be known prior to
the round, limiting real-world use cases. A remaining challenge is the scale and granularity of
heterogeneity: For example, HeteroFL uses 5 subsets and scales down the parameters exponentially
down to a 250× reduction. Consequently, there is a 4× gap between the full model and the largest
sub-model. It remains unclear if subsets maintain effectiveness under both large scale and high
granularity (many subsets). Lastly, while devices are enabled to participate in training with a 250×
reduction of parameters, it remains untested if these devices can make a meaningful contribution
to the global model.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:15

4.3 NN Architecture Heterogeneity based on Distillation
Contrary to FedAvg, FedMD does not transfer knowledge by sharing model weights but by sharing
soft labels of a public dataset. Since the aforementioned problems of FedAvg (matching of NN
features) do not apply here, the devices’ capabilities can be better matched with tailored models
(even disclosed from the server) as long as they share the soft label representation at the NNs’
output. This allows to address hard constraints. However, creating a suitable public dataset and
distributing it to all devices may be challenging in real-world scenarios. Additionally, training and
inference on public data are computationally expensive. Also, distributing the public dataset to
all devices may induce a large communication volume, thereby increasing the communication
overhead. Also, if knowledge is shared purely through soft labels, participating devices have to be
stateful. Consequently, when a new device joins the system at a later stage, it still needs to train its
model from scratch with the public soft labels. This is in contrast to FedAvg, where new devices
simply download the latest model weights and immediately benefit from the already performed
training of other devices.
Distillation With Public Data: Li and Wang [59] introduce FedMD (in detail shown in Sec-

tion 2.5), which utilizes KD for FL, directly addressing the heterogeneous computational capabilities
of devices. They test their solution with the EMNIST/MNIST [22] and the CIFAR10/100 [55] dataset
(public/private) using 10 devices, each deploying a unique NN architecture. They achieve a 20%
increase in accuracy on every device compared to an isolated (on-device) setting. Chang et al. [14]
present Cronus, which is similar to FedMD and also allows for heterogeneous architectures. While
in FedMD, public and private data are trained consecutively, Cronus mixes both for local training.
Mixture of Distillation and FedAvg: As distillation approaches lack behind FedAvg w.r.t.

achievable accuracy, a mixture of both approaches is proposed. Lin et al. [63] present FedDF, which
moves KD from the devices to the server, thus, removing the additional public dataset training and
inference effort. FedDF, similar to FedMD or Cronus, also allows for heterogeneous architectures,
while here, the server is fully aware of the devices’ architectures. Aggregation is done by averaging
all devices’ weights (similar to FedAvg) within groups, and building an averaged starting model
for each group. Each averaged group model now acquires knowledge from averaged soft labels
computed with all received devices’ weights. Compared to FedAvg, FedDF shows better robustness
in non-iid data cases and allows for more local steps between rounds without degrading the
performance. A disadvantage of this approach is that it requires data for distillation on the server.
Shen et al. [85] propose FML, where two models are deployed on each device. The first one is a
custom model that best fits the devices’ computational capabilities and data. The second one is a
knowledge transfer model that is used with KD to transfer knowledge between both networks in
both directions. FedAvg is used to average the weights of the knowledge transfer model on a server.
While they outperform FedAvg and FedProx [61] in certain experiments, this approach comes with
the major downside of an additional computational burden of knowledge sharing on the device
and forcing a fixed architecture for knowledge sharing on all devices.
Single Per-Class Representations: Transferring soft labels of a public dataset comes with

a large computational burden. To address this, the transfer of single per-class representations is
discussed. Hin and Edith present FedHe [39], which, similar to previous approaches, allows for
different model architectures per device. Contrary to FedMD or Cronus, FedHe does not use a
public dataset for distillation. The devices’ models only share a single per-class representation (soft
label) of their output layer trained on private data with the server. On the server, the per-class
representation is averaged asynchronously. The devices train on their private data with a mixture
of one-hot and soft label loss. FedHe is, therefore, lightweight in communication and requires no
training with public data. The authors show that FedHe outperforms FedMD in many scenarios.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:16 Pfeiffer, et al.

Similarly, Tan et al. present FedProto [90], where knowledge is exchanged with class prototypes
instead of public soft labels. Contrary to FedHe, not the output representations of the classes are
used but an internal representation (an intermediate layer output before the NN network’s last
layer) to allow for higher expressiveness. The models on the devices are trained with a combined
loss that accounts for the one-hot encoded private data and normalizes the model by keeping
representations of private samples close to the global class representations.

Discussion: Presented approaches provide the most flexibility for devices to adapt their model
architecture (addressing hard constraints), therefore, also achieving a finer granularity of the het-
erogeneity compared to using subsets. In cases where certain devices have certain ML accelerators
for specific tasks or very small memory budgets, distillation-based approaches allow for specifically
tailored NNs to be deployed on the devices. Still, distillation-based approaches show certain disad-
vantages. Firstly, in most cases, they do not reach the same accuracy as FedAvg-based approaches.
Secondly, if knowledge between server and devices is exchanged through soft labels, devices are
stateful. Consequently, it is required that each device participates in a high number of rounds
to have a sufficiently trained local model. Therefore, they do not scale as well as FedAvg-based
techniques w.r.t. the number of participating devices and are best suited for horizontal cross-silo
scenarios. Lastly, distillation adds computational overhead, limiting the applicability for purely
throughput-constrained devices.

4.4 NN Architecture Heterogeneity based on Other Techniques
He et al. [34] present a combination of split learning and distillation in FedGKT, where two models
are employed. A lightweight feature extractor on the devices to lower the computational burden and
a more complex server model. Knowledge is shared in both directions: The server receives feature
maps and respective soft labels from the devices. The devices receive soft labels from the server.
However, FedGKT does not allow for heterogeneous splits between device and server and provides
no aggregation algorithm that supports heterogeneity. The final full model is a combination of the
device and server models. The knowledge exchange is done asynchronously to avoid stragglers.
Chopra et al. enable device heterogeneity in split learning, where the full NN is split, and parts of
the model are trained on the devices while the other part is trained on the server. They present
AdaSplit [20], which allows for different device model sizes by varying the split position between
the device and the server. While in baseline split learning, activations have to be uploaded to the
server, and gradients have to be downloaded from the server, AdaSplit mitigates this by using a
contrastive loss to train locally without server interaction and send activations to the server only
after the local phase. The implementation allows for asynchronous transfer of gradients.
A downside of the approach is that it requires training the model partly on the server, i.e.,

computation of gradients by using the received activations, which is more complex than averaging
and might show problems with scaling to many devices. Additionally, split learning techniques
result in stateful devices, as every device’s final model is a combination of device and server mode.
Consequently, the presented techniques are best suited for horizontal cross-silo FL, as each device
has to participate in many rounds to reach a sufficiently trained device model.

4.5 System Level Awareness Through Client Selection and Flexible Aggregation
In heterogeneous FL systems, devices with soft constraints delay the parameter aggregation since
the server has to wait for the slowest device (straggler) [99]. To demonstrate the different behaviors
over time FedAvg with stragglers is visualized in Fig. 3. Additionally, asynchronous aggregation and
aggregation with system awareness are displayed. The following works account for heterogeneity
by minimizing straggler time through system awareness while still maintaining synchronous
rounds.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:17

Device 𝑘
Device 𝑘 + 1
Device 𝑘 + 2
Server

Baseline synchronous FedAvg [70] with random selection of clients
𝑤𝑡

long idle time

straggler 𝑤𝑡+1 𝑤𝑡+2

𝑡

. . .

Heterogenity-aware FL through Client Selection [12, 52, 57, 58, 61, 75, 82, 93]

Device 𝑘
Device 𝑘 + 1
Device 𝑘 + 2
Server

𝑤𝑡 𝑤𝑡+1 𝑤𝑡+2

. . .

𝑡

Device 𝑘
Device 𝑘 + 1
Device 𝑘 + 2
Server

Heterogenity-aware FL through asynchronous aggregation [13, 18, 44, 87, 97]

stale device

𝑤𝑡 𝑤𝑡+1𝑤𝑡+2 𝑤𝑡+3 𝑤𝑡+4 𝑤𝑡+5 𝑤𝑡+6

𝑡

. . .

Fig. 3. FL aggregation of three different strategies over time. The first (top) is baseline FedAvg, where
constrained devices can become stragglers, slowing down the rounds. The second (middle) is FL with system-
level awareness (e.g., through client selection). The third (bottom) is asynchronous aggregation, where
constrained devices can upload stale updates, hurting accuracy.

Tier based Client Selection: Nishio and Yonetani [75] propose FedCS, where they jointly
consider the communication and computation resources of devices during device selection. At the
beginning of each global round, the server requests the devices’ current capabilities and selects a
subset for the next aggregation step. The objective of this work is to achieve the highest accuracy
in a limited time. Achieving this goal requires a trade-off between maximum local training time
(the longer the maximum round time is, the more devices can participate) and finishing many
rounds within the given time budget. Chai et al. [12] introduce a tier-based aggregation scheme
TiFL, where devices are profiled and grouped in tiers based on the time it takes to train for one
epoch. Profiling can be done either static (prior to training) or continuously. The paper discusses
several tier selection schemes for training. Their experimental setup consists of five groups, where
a higher tier always has the double performance of the previous tier. Training only with the fastest
tier drastically reduces training time but hurts final accuracy, while uniform selection matches
baseline FedAvg accuracy and reduces the training time by 50% (FedAvg has to wait for stragglers).
They propose an adaptive selection to address non-iid data scenarios that selects tiers that have
low accuracy with a higher probability, thereby achieving higher accuracy than baseline FedAvg,
while significantly reducing the training time. Reisizadeh et al. [82] introduce FLANP, where the
straggler problem is mitigated by utilizing the fast devices at the start. The authors assume an iid
data environment and train with fast devices until they reach an accuracy threshold. They increase
the accuracy threshold and iteratively add more (slower) devices to training. This slows down
training but increases accuracy since, every round, more data is available. Using this technique,
FLANP converges a lot faster compared to FedAvg when having heterogeneous devices.
Presented techniques rely on similarities between devices, e.g., a low number of groups per

round. An increase in the granularity and the scale of the heterogeneity deteriorates the gains.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:18 Pfeiffer, et al.

While an active selection of devices based on resources speeds up training in iid scenarios, it might
hurt performance in non-iid cases, especially when resources are coupled with data distribution
shifts, therefore, an environment not only enforces specific constraints on some devices but also
influences the devices’ data distributions. This may, for instance, be the case in an IoT system,
where some devices are deployed indoors while others are outdoors, with outdoor devices being
more constrained in energy and with data distribution being variant between indoor and outdoor
devices. This issue is tackled in the following techniques.

Client Selection with Device Impact: Lai et al. [57] present Oort, a client selection framework
with the aim to optimize convergence speed (w.r.t. time) by allowing for rounds with variable
lengths. In difference to previous client selection techniques, Oort considers the impact a device
has on the global model. Devices and round times are selected based on a utility score that includes
the resources and the global model impact based on the local training loss. Li et al. [58] introduce
PyramidFL, building on top of Oort and further improving convergence speed, mainly through a
more fine-grained selection by allowing devices to train variable amounts of local epochs.

Partial Device Updates: Li et al. [61] introduce FedProx, which instead of dropping stragglers
completely, allows for partial contributions to the global model. This is achieved by introducing an
inexactness term to the devices’ updates that accounts for fewer local epochs. FedProx, therefore,
allows for a variable number of local steps. Especially in cases where in baseline FedAvg many
devices have to be dropped, FedProx outperforms FedAvg with respect to final accuracy. Wang et
al. [93] present an optimization framework to tackle stragglers in a mobile device scenario. They
conduct real-world measurements on smartphone processors to measure the training throughput
of various devices. Contrary to other works, they also incorporate the effects of thermal throttling
into the throughput model. The framework achieves optimal utilization of devices by accounting
for the devices’ capabilities and splitting the devices’ private data into trainable subsets. The device
scheduling algorithm is also designed to be aware of non-iid data.

Efficiency Trade-Offs: Wang et al. [95] study how to effectively utilize available resources and
obtain a convergence bound, highlighting how local device steps and global rounds contribute to
convergence. Further, they propose an algorithm that finds a resource-efficient trade-off between
communication and computation but does not specifically cover heterogeneity over time or across
devices. They show that in non-iid data scenarios, their adaptive synchronous approach outperforms
asynchronous settings in terms of convergence speed. Similarly, Tran et al. [91] study the trade-off
between training time/accuracy and energy spent on training. They associate an energy cost with
training throughput per time and communication bandwidth. They model energy consumption
for training throughput per second and transmission of bytes per second in a wireless channel
environment. A scenario with three classes of devices is studied where each device operates at
certain CPU frequency levels. With that, they determine a Pareto-optimal trade-off between time
and energy in FL with heterogeneous devices. Kim and Wu present AutoFL [52], a system-level
approach to optimize convergence speed and energy usage by training a reinforcement learning
algorithm to select an optimal subset of devices for training. The server algorithm takes several
device-specific factors into account, such as the number of data classes, network bandwidth, CPU,
and memory contention. The solution is evaluated in a scenario with 200 mobile devices with three
different device classes (high-end, mid-end, and low-end), simulating resource contention, unstable
connections, and data heterogeneity.

Discussion: Presented synchronous system-level approaches optimize the round time and device
selection by processing the devices’ resource availability information at the server mostly on a
round basis. To account for soft constraints (i.e., throughput constraints) of the devices, the server
has to track and monitor the devices’ state and estimated capabilities. This induces overhead on
the server as well as on the devices and might be unreasonable to predict in real-world scenarios.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:19

Others, like FedProx, allow partial local training, accounting for resource changes during local
rounds without server knowledge.

4.6 System-Level Awareness Through Asynchronous Aggregation
Another way to account for different training times is by doing weight aggregation asynchronously.
Thereby, each device can download the current model at any time and, depending on its resources,
upload its updated weights (visualized in Fig. 3). Several papers [15, 82, 88, 108] hint that asynchro-
nous aggregation achieves similar convergence speeds as synchronous schemes if the staleness of
devices is within certain bounds. It has to be noted that most theoretical guarantees only cover
asynchronous distributed SGD in convex cases. Convergence speed guarantees for asynchronous
FedAvg, especially the comparison with synchronous FedAvg, is ongoing research.

Asynchronous Aggregation: Chen et al. [18] introduceAsynchronous Online Federated Learning
(ASO) for a setting with devices under heterogeneous resources and data quantity. They use a
modified version of baseline FedAvg (𝐿2-norm regularization on the client and weight normalization
on the server) to account for the devices’ data quantity and reduce the effect of the devices’ models
drifting away from the global model. They assume devices continuously receive a new stream of
training data and do not have the memory capacity to learn in batches. The authors show that
their asynchronous aggregation scheme requires less time to converge in comparison to baseline
FedAvg. Similarly, FedAsync by Xie et al. [97] uses an asynchronous aggregation scheme with a
local regularization term. The staleness problem of devices is mitigated by weighting the devices’
updates contribution with a time-dependent parameter. This means that the contribution of devices
that take very long, thus updating an old model state of the server, is reduced. The authors show
that FedAsync outperforms FedAvg in small staleness scenarios. Sprague et al. [87] study the effects
of synchronous and asynchronous FedAvg, showing that asynchronous aggregation outperforms
synchronous w.r.t. convergence speed in cases where devices have different training throughput.
Additionally, they study the effects of devices joining late in training, observing a disturbance in the
convergence in non-iid cases. Huba et al. present Papaya [44], a framework for large-scale FL that
supports synchronous and asynchronous aggregation. They empirically show that in large-scale
(100M phones) next-word-prediction tasks, asynchronous aggregation converges faster and with
higher accuracy compared to synchronous FL. In a similar experiment, synchronous FL converges
slower if the aggregation waits for stragglers or reaches lower final accuracies if stragglers are
discarded.

Hybrid Aggregation: Extending their previous work TiFL [12], Chai et al. [13] present FedAT, a
hybrid synchronous-asynchronous approach utilizing tiers. Devices are grouped in tiers based on
their performance, similar to TiFL. While devices within one tier do synchronous aggregation, tiers
asynchronously update the global model. To mitigate bias towards faster tiers (especially in non-iid
cases), FedAT weights the updates of tiers, s.t. slower tiers are considered with a higher weight
when updating the global model, thus allowing for equal contribution to the global model. Similar
to FedProx [61], they use a constraint term to restrict local weights to be closer to the global model.
Experiments with 100 devices grouped in 5 tiers show that FedAT outperforms baseline FedAvg, as
well as TiFL and pure asynchronous schemes like FedAsync [97].

Discussion: Presented approaches tackle soft constraints of devices by doing aggregation asyn-
chronously. Asynchronous approaches allow for an arbitrarily-high granularity in the heterogeneity
since every device can upload its model at any time. While the straggler effect can be fully ad-
dressed that way, asynchronous aggregation suffers from stale updates. The scale of heterogeneity
is therefore limited by the effect of stale updates. From current research, it can be concluded that it
is unknown whether synchronous or asynchronous aggregation is ultimately preferable. Results

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

334:20 Pfeiffer, et al.

show that, depending on the assumptions, both show advantageous properties. Further theoretical
work to study convergence properties beyond convex utility cases is needed.

5 OPEN PROBLEMS AND FUTURE DIRECTIONS
Current techniques covered in Section 4 have great potential to enable FL for applications with
device heterogeneity. However, we identify several open problems that demand further research.
Problem 1: Maintaining effectiveness under fine-grained granularity or large-scale

heterogeneity: In most of the state-of-the-art research, tackling heterogeneity focuses on ac-
counting for soft and/or hard constraints. The attributes scale and granularity are often neglected,
are hidden behind the technique, and lack discussion in the papers. The reported scale in the
resources supported by the techniques ranges from 4× − 25× [12, 41, 52, 61, 71, 77, 79, 80, 85, 101]
up to 100× − 250× [25, 87], yet it remains unclear whether training at such high scales is still
effective. Hence, while all approaches show the effectiveness of their solution in certain scenarios, it
often remains unclear whether devices with low resources or stale devices can make a meaningful
contribution that advances the global model. Especially in iid settings, current state-of-the-art
works do not compare themselves against trivial baselines such as dropping of devices (accepting a
smaller total share of data), which is the solution that current real-world FL applications like Google
GBoard employ. A second trivial baseline is deploying a low-complexity model for all devices [80],
which can already outperform some state-of-the-art techniques. A potential solution to maintaining
effectiveness for large-scale heterogeneity with fine-grained granularity could be the interplay of
system-level and NN-level approaches, as their favorable properties could complement each other.
For example, an NN-architecture subset technique [25, 41] could be complemented by system-level
client selection [75] or asynchronous aggregation [18, 87, 97] to increase granularity w.r.t. through-
put. However, while system and NN architecture level mechanisms are often orthogonal, it remains
unclear how this would affect the convergence and reachable accuracy.

Problem 2: Comparability: Current research lacks comparability w.r.t. the resource model. This
is especially the case in techniques using subsets, where some model resources in terms of power
usage [104], while others count the number of parameters [2, 25, 41, 79], the number of multiply-
accumulate-operations [41, 80], or the required training time [77]. Therefore, the supported scale of
heterogeneity by the techniques is not comparable. Similarly, also the granularity of heterogeneity
lacks discussion. While distillation-based approaches allow for different model architectures, only
a small number of model architectures are used in the experiments (e.g., ResNet20, ResNet32 [36],
and ShuffleNet [107] in FedDF [63]). The complexity differences in training these various types of
networks are not further evaluated. Other approaches support 2−5 groups of devices [12, 13, 41, 91],
which may lead to inefficient use of available resources, as discussed in Section 3.2. In general,
different scales and granularities of the heterogeneity have to be taken into account to address
real-world heterogeneity aspects such as varying peak performance and memory capacity, as well
as resource contention. For a broader deployment of FL solutions in real-world use cases, these
aspects require further discussion. Besides that scale of heterogeneity, also the number of devices
and their share of data influences the performance of the techniques. As of now, there is no standard
scenario. As a result, some approaches evaluate their techniques with over 1000 devices, while
others evaluate only a setting with 2 participants. Benchmark scenarios to compare FL techniques
have been proposed only recently [10]. However, these benchmarks do not represent the resource

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:21

constraints of devices as it is present in real-world applications. Additionally, available state-of-the-
art FL simulation frameworks like FLOWER2, FedML3, TensorFlow Federated4, or OpenFL5 do not
implement device heterogeneity specifically, memory, throughput, or energy constraints. To solve
this issue, firstly, a more device-representative benchmark for FL is required that more realistically
models the environments of IoT, smartphones, or sensor networks. Secondly, heterogeneity support
in popular FL frameworks is required.
Problem 3: Unexplored trade-offs and non-iid data scenarios: The objectives of the dis-

cussed techniques are mostly accuracy or convergence speed. Only a few consider energy efficiency
in heterogeneous settings, which is crucial in many embedded or IoT scenarios [24] where the
available energy is limited. While utilizing all devices up to their capabilities speeds up training
the most, it might not always be a very energy-efficient way to train the global model. Limited
energy leads to a trade-off between using the energy for communication or computation [91, 95],
which has not been explored in heterogeneous FL. Besides trade-offs between communication
and computation, also trade-offs between computation and memory exist, where intermediate
results can either be stored in memory or dynamically recomputed when needed [53], which are
unexplored in the context of resource-constrained FL.

Another rather unexplored problem in FL with computationally constrained devices is the effects
of non-iid data. A case currently not present in the literature is the case when the data distribution
is non-iid over the devices, but additionally, there is a correlation between the data and the devices’
resources. Yet, a scenario like this is expected to occur in real-world FL applications [68]. A first
example is a set of sensors with different power sources that sample environments that differ from
each other. Similar examples can be found in a smartphone FL application. To meet a price target
for certain markets, devices with different capabilities are manufactured. Different markets can lead
to differences in device usage, hence, differences in the collected data. This may lead to a non-iid
data scenario where weak devices hold a certain type of data that, due to fairness reasons, can
not be excluded and has to be incorporated into the global model. This kind of non-iid scenario
exacerbates the need to learn from any device available.
Further research is required to identify what the effect of these correlations is and how their

effects on the global model can be mitigated to enable a fair representation of any user group in
the global model.

6 CONCLUSION
This survey provided an overview of FL under computation heterogeneity among the participating
devices, as it occurs in many practical scenarios. We analyzed the computational constraints in
smart devices that lead to heterogeneity and presented a categorization that groups the constraints
into hard constraints and soft constraints that vary over devices, rounds, and time and can lead to
heterogeneity of different scales with different granularities. We provided a comprehensive survey
on current research on FL under heterogeneous computation constraints and how the techniques
tackle the different proprieties of heterogeneity. Finally, we identify several open problems, such as
the lack of comparability, problems with the solutions’ effectiveness w.r.t. the heterogenities’ scale
and granularity, and unexplored trade-offs.

2https://flower.dev
3https://fedml.ai
4https://tensorflow.org/federated
5https://github.com/intel/openfl

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

https://flower.dev
https://fedml.ai
https://tensorflow.org/federated
https://github.com/intel/openfl

334:22 Pfeiffer, et al.

ACKNOWLEDGMENTS
This work is in parts funded by the Deutsches Bundesministerium für Bildung und Forschung
(BMBF, Federal Ministry of Education and Research in Germany).

REFERENCES
[1] Sawsan Abdulrahman, Hanine Tout, Hakima Ould-Slimane, Azzam Mourad, Chamseddine Talhi, and Mohsen Guizani.

2020. A survey on federated learning: The journey from centralized to distributed on-site learning and beyond. IEEE
Internet of Things Journal 8, 7 (2020), 5476–5497.

[2] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. FedRolex: Model-Heterogeneous Federated Learning with
Rolling Sub-Model Extraction. In Advances in Neural Information Processing Systems, Vol. 35. Curran Associates, Inc.,
New Orleans, United States, 158–171.

[3] M. M. Amiri and D. Gündüz. 2020. Federated Learning Over Wireless Fading Channels. IEEE Transactions on Wireless
Communications 19, 5 (2020), 3546–3557. https://doi.org/10.1109/TWC.2020.2974748

[4] Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brockman, and Ilya Sutskever. 2018. AI and
Compute. https://openai.com/blog/ai-and-compute/

[5] Giorgos Armeniakos, Georgios Zervakis, Dimitrios Soudris, and Jörg Henkel. 2022. Hardware Approximate Techniques
for Deep Neural Network Accelerators: A Survey. ACM Comput. Surv. 55, 4, Article 83 (nov 2022), 36 pages. https:
//doi.org/10.1145/3527156

[6] Paolo Bellavista, Luca Foschini, and Alessio Mora. 2021. Decentralised learning in federated deployment environments:
A system-level survey. ACM Computing Surveys (CSUR) 54, 1 (2021), 1–38.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon,
Jakub Konečný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In Proceedings of Machine Learning and
Systems, A. Talwalkar, V. Smith, and M. Zaharia (Eds.), Vol. 1. mlsys.org, Stanford, California, 374–388.

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. 2016. Practical secure aggregation for federated learning on user-held data.
arXiv:1611.04482 [cs.CR]

[9] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. 2018. Expanding the reach of federated
learning by reducing client resource requirements. online. arXiv:1812.07210 [cs.LG]

[10] S Caldas, P Wu, T Li, J Konecnỳ, HB McMahan, V Smith, and A Talwalkar. 2019. Leaf: A benchmark for federated
settings. Online. arXiv:1812.01097 [cs.LG]

[11] California. 2020. California Consumer Privacy Act. https://oag.ca.gov/privacy/ccpa/regs
[12] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou, Heiko Ludwig, Feng

Yan, and Yue Cheng. 2020. TiFL: A Tier-Based Federated Learning System. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC ’20). Association
for Computing Machinery, New York, NY, USA, 125–136. https://doi.org/10.1145/3369583.3392686

[13] Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, andHuzefa Rangwala. 2021. FedAT: AHigh-Performance
and Communication-Efficient Federated Learning System with Asynchronous Tiers. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21, Vol. 1).
Association for Computing Machinery, New York, NY, USA, Article 60, 16 pages. https://doi.org/10.1145/3458817.
3476211

[14] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. 2019. Cronus: Robust and Heterogeneous
Collaborative Learning with Black-Box Knowledge Transfer. online. arXiv:1912.11279 [stat.ML]

[15] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2017. Revisiting Distributed Synchronous
SGD. online. arXiv:1604.00981 [cs.LG]

[16] Ling-Jyh Chen, Yao-Hua Ho, Hsin-Hung Hsieh, Shih-Ting Huang, Hu-Cheng Lee, and Sachit Mahajan. 2018. ADF:
An Anomaly Detection Framework for Large-Scale PM2.5 Sensing Systems. IEEE Internet of Things Journal 5, 2 (2018),
559–570. https://doi.org/10.1109/JIOT.2017.2766085

[17] Ling-Jyh Chen, Yao-Hua Ho, Hu-Cheng Lee, Hsuan-Cho Wu, Hao-Min Liu, Hsin-Hung Hsieh, Yu-Te Huang, and
Shih-Chun Candice Lung. 2017. An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access
5 (2017), 14441–14454. https://doi.org/10.1109/ACCESS.2017.2723919

[18] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. 2020. Asynchronous Online Federated Learning for Edge Devices
with Non-IID Data. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, online, 15–24. https:
//doi.org/10.1109/BigData50022.2020.9378161

[19] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. 2020. Fedhealth: A federated transfer learning
framework for wearable healthcare. IEEE Intelligent Systems 35, 4 (2020), 83–93.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

https://doi.org/10.1109/TWC.2020.2974748
https://openai.com/blog/ai-and-compute/
https://doi.org/10.1145/3527156
https://doi.org/10.1145/3527156
https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1812.07210
https://arxiv.org/abs/1812.01097
https://oag.ca.gov/privacy/ccpa/regs
https://doi.org/10.1145/3369583.3392686
https://doi.org/10.1145/3458817.3476211
https://doi.org/10.1145/3458817.3476211
https://arxiv.org/abs/1912.11279
https://arxiv.org/abs/1604.00981
https://doi.org/10.1109/JIOT.2017.2766085
https://doi.org/10.1109/ACCESS.2017.2723919
https://doi.org/10.1109/BigData50022.2020.9378161
https://doi.org/10.1109/BigData50022.2020.9378161

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:23

[20] Ayush Chopra, Surya Kant Sahu, Abhishek Singh, Abhinav Java, Praneeth Vepakomma, Vivek Sharma, and Ramesh
Raskar. 2021. AdaSplit: Adaptive Trade-offs for Resource-constrained Distributed Deep Learning. online. arXiv:2112.01637

[21] Bekir Sait Ciftler, Abdullatif Albaseer, Noureddine Lasla, and Mohamed Abdallah. 2020. Federated learning for
localization: A privacy-preserving crowdsourcing method. online. arXiv:2001.01911 [cs.NI]

[22] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017. EMNIST: an extension of MNIST to
handwritten letters. online. arXiv:1702.05373 [cs.CV]

[23] Li Deng. 2012. The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing
Magazine 29, 6 (2012), 141–142.

[24] Sauptik Dhar, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. 2021. A Survey of
On-Device Machine Learning: An Algorithms and Learning Theory Perspective. ACM Trans. Internet Things 2, 3,
Article 15 (jul 2021), 49 pages. https://doi.org/10.1145/3450494

[25] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and communication efficient federated
learning for heterogeneous clients. In International Conference on Learning Representations (ICLR), Vol. 1. ICLR, online,
1.

[26] Matthieu Dubarry, Vojtech Svoboda, Ruey Hwu, and Bor Yann Liaw. 2007. Capacity and power fading mechanism
identification from a commercial cell evaluation. Journal of Power Sources 165, 2 (2007), 566–572.

[27] Lukasz Dudziak, Stefanos Laskaridis, and Javier Fernandez-Marques. 2022. FedorAS: Federated Architecture Search
under system heterogeneity. arXiv:2206.11239 [cs.LG]

[28] Ahmed Roushdy Elkordy and A. Salman Avestimehr. 2020. Secure Aggregation with Heterogeneous Quantization in
Federated Learning. online. arXiv:2009.14388 [cs.IT]

[29] Ozan Erdinc, Bulent Vural, and Mehmet Uzunoglu. 2009. A Dynamic Lithium-Ion Battery Model Considering the
Effects of Temperature and Capacity Fading. In International Conference on Clean Electrical Power. IEEE, Capri, Italy,
383–386.

[30] EU. 2020. European Union’s General Data Protection Regulation (GDPR). https://gdpr.eu/
[31] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-Aware Multi-Tenant On-Device Deep Learning

for Continuous Mobile Vision. In Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking (New Delhi, India) (MobiCom ’18). Association for Computing Machinery, New York, NY, USA, 115–127.
https://doi.org/10.1145/3241539.3241559

[32] Dashan Gao, Ce Ju, Xiguang Wei, Yang Liu, Tianjian Chen, and Qiang Yang. 2019. Hhhfl: Hierarchical heterogeneous
horizontal federated learning for electroencephalography. online. arXiv:1909.05784 [eess.SP]

[33] N. Garg and R. Garg. 2017. Energy harvesting in IoT devices: A survey. In 2017 International Conference on Intelligent
Sustainable Systems (ICISS). IEEE, Palladam, India, 127–131. https://doi.org/10.1109/ISS1.2017.8389371

[34] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Group Knowledge Transfer: Federated Learning
of Large CNNs at the Edge. In Advances in Neural Information Processing Systems, Vol. 33. Curran Associates, Inc.,
Virtual, 14068–14080.

[35] Chaoyang He, Erum Mushtaq, Jie Ding, and Salman Avestimehr. 2022. FedNAS: Federated Deep Learning via Neural
Architecture Search. https://openreview.net/forum?id=1OHZX4YDqhT

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385 [cs.CV]

[37] Jörg Henkel, Heba Khdr, Santiago Pagani, and Muhammad Shafique. 2015. New trends in dark silicon. In Design
Automation Conference (DAC), Vol. 52. IEEE, Association for Computing Machinery, San Francisco, United States,
1–6.

[38] Jörg Henkel, Heba Khdr, and Martin Rapp. 2019. Smart Thermal Management for Heterogeneous Multicores. In
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, Grenoble, France, 132–137.

[39] Chan Yun Hin and Ngai Edith. 2021. FedHe: Heterogeneous Models and Communication-Efficient Federated Learning.
online. arXiv:2110.09910 [cs.LG]

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. online.
arXiv:1503.02531

[41] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and Nicholas Lane. 2021.
Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. In Advances in Neural
Information Processing Systems, Vol. 34. NeurIPS, online, 1–12.

[42] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. online.
arXiv:1704.04861 [cs.CV]

[43] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. online.
arXiv:1704.04861 [cs.CV]

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

https://arxiv.org/abs/2112.01637
https://arxiv.org/abs/2001.01911
https://arxiv.org/abs/1702.05373
https://doi.org/10.1145/3450494
https://arxiv.org/abs/2206.11239
https://arxiv.org/abs/2009.14388
https://gdpr.eu/
https://doi.org/10.1145/3241539.3241559
https://arxiv.org/abs/1909.05784
https://doi.org/10.1109/ISS1.2017.8389371
https://openreview.net/forum?id=1OHZX4YDqhT
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2110.09910
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861

334:24 Pfeiffer, et al.

[44] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour, Carole-Jean Wu, Hongyuan
Zhan, Pavel Ustinov, Harish Srinivas, et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceedings
of Machine Learning and Systems 4 (2022), 814–832.

[45] Ahmed Imteaj and M. Hadi Amini. 2021. FedAR: Activity and Resource-Aware Federated Learning Model for
Distributed Mobile Robots. arXiv:2101.03705 [cs.LG]

[46] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini. 2020. Federated Learning for Resource-
Constrained IoT Devices: Panoramas and State-of-the-art. online. arXiv:2002.10610

[47] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini. 2021. A survey on federated learning for
resource-constrained IoT devices. IEEE Internet of Things Journal 9, 1 (2021), 1–24.

[48] Yuang Jiang, Shiqiang Wang, Bong Jun Ko, Wei-Han Lee, and Leandros Tassiulas. 2019. Model pruning enables efficient
federated learning on edge devices. online. arXiv:1909.12326

[49] Ce Ju, Dashan Gao, Ravikiran Mane, Ben Tan, Yang Liu, and Cuntai Guan. 2020. Federated transfer learning for EEG
signal classification. In Engineering in Medicine & Biology Society (EMBC). IEEE, Montreal, Canada, 3040–3045.

[50] P. Kairouz, H. McMahan, B. Avent, Aurélien Bellet, Mehdi Bennis, A. Bhagoji, Keith Bonawitz, Z. Charles, Graham
Cormode, R. Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb, D. Evans, Josh Gardner, Zachary A. Garrett, A.
Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Z. Harchaoui, Chaoyang He, Lie He, Z. Huo, B. Hutchinson,
Justin Hsu, M. Jaggi, T. Javidi, Gauri Joshi, M. Khodak, Jakub Konecný, A. Korolova, F. Koushanfar, O. Koyejo, T.
Lepoint, Yang Liu, P. Mittal, M. Mohri, R. Nock, Ayfer Özgür, R. Pagh, Mariana Raykova, Hang Qi, D. Ramage, R.
Raskar, D. Song, Weikang Song, S. Stich, Ziteng Sun, A. T. Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu
Wang, L. Xiong, Zheng Xu, Q. Yang, F. Yu, Han Yu, and Sen Zhao. 2019. Advances and Open Problems in Federated
Learning. arXiv:1912.04977 [cs.LG]

[51] Latif U Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. 2021. Federated learning for internet
of things: Recent advances, taxonomy, and open challenges. IEEE Communications Surveys & Tutorials 32, 3 (2021),
1759–1799.

[52] Young Geun Kim and Carole-Jean Wu. 2021. AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated
Learning. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event, Greece)
(MICRO ’21). Association for Computing Machinery, New York, NY, USA, 183–198. https://doi.org/10.1145/3466752.
3480129

[53] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch, Tianqi Chen, and
Zachary Tatlock. 2020. Dynamic tensor rematerialization. online. arXiv:2006.09616 [cs.LG]

[54] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016.
Federated learning: Strategies for improving communication efficiency. online. arXiv:1610.05492

[55] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images.
[56] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. 2020. Survey of Personalization Techniques for Federated

Learning. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). IEEE,
London, UK, 794–797. https://doi.org/10.1109/WorldS450073.2020.9210355

[57] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. 2021. Oort: Efficient federated learning
via guided participant selection. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, Virtual, 19–35.

[58] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. 2022. PyramidFL: A fine-grained client selection framework
for efficient federated learning. In Proceedings of the 28th Annual International Conference on Mobile Computing And
Networking. Association for Computing Machinery, New York, NY, USA, 158–171. https://doi.org/10.1145/3495243.
3517017

[59] Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous Federated Learning via Model Distillation. In NeurIPS 2019
Workshop on Federated Learning for Data Privacy and Confidentiality, Vol. 33. NeurIPS, Vancouver, Canada, 1–4.

[60] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. 2020. Federated Learning: Challenges, Methods, and Future Directions.
IEEE Signal Processing Magazine 37, 3 (2020), 50–60. https://doi.org/10.1109/MSP.2020.2975749

[61] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Optimization in Heterogeneous Networks. In Proceedings of Machine Learning and Systems, Vol. 2. MLSys, Santa
Clara, California, 429–450.

[62] Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. 2019. Federated transfer reinforcement learning for
autonomous driving. online.

[63] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble Distillation for Robust Model Fusion in
Federated Learning. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., online, 2351–2363.

[64] Boyi Liu, Lujia Wang, and Ming Liu. 2019. Lifelong federated reinforcement learning: a learning architecture for
navigation in cloud robotic systems. IEEE Robotics and Automation Letters 4, 4 (2019), 4555–4562.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

https://arxiv.org/abs/2101.03705
https://arxiv.org/abs/2002.10610
https://arxiv.org/abs/1909.12326
https://arxiv.org/abs/1912.04977
https://doi.org/10.1145/3466752.3480129
https://doi.org/10.1145/3466752.3480129
https://arxiv.org/abs/2006.09616
https://arxiv.org/abs/1610.05492
https://doi.org/10.1109/WorldS450073.2020.9210355
https://doi.org/10.1145/3495243.3517017
https://doi.org/10.1145/3495243.3517017
https://doi.org/10.1109/MSP.2020.2975749

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:25

[65] Boyi Liu, Lujia Wang, Ming Liu, and Cheng-Zhong Xu. 2019. Federated imitation learning: A privacy considered
imitation learning framework for cloud robotic systems with heterogeneous sensor data. online.

[66] Detian Liu and Yang Cao. 2021. Federated Neural Architecture Search Evolution and Open Problems: An Overview.
In International Conference on Bio-Inspired Computing: Theories and Applications, Vol. 16. Springer, Taiyuan, China,
330–345.

[67] Sin Kit Lo, Qinghua Lu, Chen Wang, Hye-Young Paik, and Liming Zhu. 2021. A systematic literature review on
federated machine learning: From a software engineering perspective. ACM Computing Surveys (CSUR) 54, 5 (2021),
1–39.

[68] Kiwan Maeng, Haiyu Lu, Luca Melis, John Nguyen, Mike Rabbat, and Carole-Jean Wu. 2022. Towards Fair Fed-
erated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity. online.
arXiv:2206.02633 [cs.LG]

[69] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs, Jacques Bughin, and Dan Aharon.
2015. Unlocking the Potential of the Internet of Things. McKinsey Global Institute.

[70] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-
efficient learning of deep networks from decentralized data. In 20th International Conference on Artificial Intelligence
and Statistics. PMLR, Ft. Lauderdale, FL, USA, 1273–1282.

[71] Yiqun Mei, Pengfei Guo, Mo Zhou, and Vishal Patel. 2022. Resource-Adaptive Federated Learning with All-In-One
Neural Composition. In Advances in Neural Information Processing Systems, Vol. 35. Curran Associates Inc., New
Orleans, United States, 1–10.

[72] J. Mills, J. Hu, and G. Min. 2020. Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT.
IEEE IoT Journal 7, 7 (2020), 5986–5994. https://doi.org/10.1109/JIOT.2019.2956615

[73] Xiaopeng Mo and Jie Xu. 2021. Energy-Efficient Federated Edge Learning with Joint Communication and Computation
Design. Journal of Communications and Information Networks 6, 2 (2021), 110–124. https://doi.org/10.23919/JCIN.
2021.9475121

[74] Erum Mushtaq, Chaoyang He, Jie Ding, and Salman Avestimehr. 2021. SPIDER: Searching Personalized Neural
Architecture for Federated Learning. arXiv:2112.13939 [cs.CV]

[75] T. Nishio and R. Yonetani. 2019. Client Selection for Federated Learning with Heterogeneous Resources in Mobile
Edge. In IEEE International Conference on Communications (ICC), Vol. 53. IEEE, Shanghai, China, 1–7.

[76] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Vol. 32. Curran Associates,
Inc., Vancouver, Canada, 8024–8035.

[77] Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jörg Henkel. 2022. CoCo-FL: Communication-and Computation-Aware
Federated Learning via Partial NN Freezing and Quantization. online. arXiv:2203.05468 [cs.LG]

[78] Jason Posner, Lewis Tseng, Moayad Aloqaily, and Yaser Jararweh. 2021. Federated Learning in Vehicular Networks:
Opportunities and Solutions. IEEE Network 35 (2021), 1–12.

[79] Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and Nicholas Donald Lane.
2022. ZeroFL: Efficient on-device training for federated learning with local sparsity. In International Conference on
Learning Representations (ICLR), Vol. 9. OpenReview, virtual, 1–10.

[80] Martin Rapp, Ramin Khalili, Kilian Pfeiffer, and Jörg Henkel. 2022. DISTREAL: Distributed Resource-Aware Learning
in Heterogeneous Systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. AAAI, Vancouver,
Canada, 1–12.

[81] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. 2020. FedPAQ: A
Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization. In Twenty Third
International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 108),
Silvia Chiappa and Roberto Calandra (Eds.). PMLR, online, 2021–2031.

[82] Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, and Ramtin Pedarsani. 2020. Straggler-
Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity. online.
arXiv:2012.14453 [cs.LG]

[83] Farzad Samie, Lars Bauer, and Jörg Henkel. 2019. From Cloud down to Things: An Overview of Machine Learning in
Internet of Things. IEEE IoT Journal 6, 3 (2019), 4921–4934.

[84] Yuris Mulya Saputra, Dinh Thai Hoang, Diep N Nguyen, Eryk Dutkiewicz, Markus Dominik Mueck, and Srikathyayani
Srikanteswara. 2019. Energy demand prediction with federated learning for electric vehicle networks. In 2019 IEEE
Global Communications Conference (GLOBECOM). IEEE, Big Island, Hawaii, USA, 1–6.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

https://arxiv.org/abs/2206.02633
https://doi.org/10.1109/JIOT.2019.2956615
https://doi.org/10.23919/JCIN.2021.9475121
https://doi.org/10.23919/JCIN.2021.9475121
https://arxiv.org/abs/2112.13939
https://arxiv.org/abs/2203.05468
https://arxiv.org/abs/2012.14453

334:26 Pfeiffer, et al.

[85] Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang Huang, Pan Zhou, Kun Kuang, Fei Wu, and Chao Wu. 2020.
Federated Mutual Learning. online. arXiv:2006.16765 [cs.LG]

[86] Yuanming Shi, Kai Yang, Tao Jiang, Jun Zhang, and Khaled B. Letaief. 2020. Communication-Efficient Edge AI:
Algorithms and Systems. IEEE Communications Surveys Tutorials 22, 4 (2020), 2167–2191. https://doi.org/10.1109/
COMST.2020.3007787

[87] Michael R. Sprague, Amir Jalalirad, and Marco Scavuzzo. 2018. Asynchronous Federated Learning for Geospatial
Applications. In ECML PKDD Workshops. Springer International Publishing, Dublin, Ireland, 21–28.

[88] Sebastian U. Stich. 2019. Local SGD Converges Fast and Communicates Little. In International Conference on Learning
Representations, Vol. 7. ICLR, New Orleans, USA, 1–12.

[89] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In
International Conference on Machine Learning (ICML), Vol. 36. ICML, Long Beach, California, 6105–6114.

[90] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. 2022. Fedproto: Federated
prototype learning over heterogeneous devices. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36.
AAAI, Vancouver, Canada, 1–12.

[91] Nguyen H Tran, Wei Bao, Albert Zomaya, Minh NH Nguyen, and Choong Seon Hong. 2019. Federated learning over
wireless networks: Optimization model design and analysis. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, Vol. 38. IEEE, Paris, France, 1387–1395.

[92] Victor M Van Santen, Javier Martin-Martinez, Hussam Amrouch, Montserrat Maqueda Nafria, and Jörg Henkel. 2017.
Reliability in Super-and Near-Threshold Computing: A Unified Model of RTN, BTI, and PV. IEEE Transactions on
Circuits and Systems I: Regular Papers (TCAS-I) 65, 1 (2017), 293–306.

[93] Cong Wang, Yuanyuan Yang, and Pengzhan Zhou. 2020. Towards efficient scheduling of federated mobile devices
under computational and statistical heterogeneity. IEEE Transactions on Parallel and Distributed Systems 32, 2 (2020),
394–410.

[94] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. 2020. Federated
Learning with Matched Averaging. In International Conference on Learning Representations (ICLR), Vol. 8. ICLR, virtual,
1–12.

[95] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan. 2019. Adaptive Federated Learning in
Resource Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Communications 37, 6 (2019),
1205–1221. https://doi.org/10.1109/JSAC.2019.2904348

[96] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and H Vincent
Poor. 2020. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on
Information Forensics and Security 15 (2020), 3454–3469.

[97] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2020. Asynchronous Federated Optimization. online. arXiv:1903.03934
[98] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. 2021. Asynchronous federated learning on heterogeneous

devices: A survey. online. arXiv:2109.04269 [cs.DC]
[99] Zirui Xu, Zhao Yang, Jinjun Xiong, Jianlei Yang, and Xiang Chen. 2019. Elfish: Resource-aware federated learning on

heterogeneous edge devices. online. arXiv:1912.01684 [cs.LG]
[100] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and

Françoise Beaufays. 2018. Applied Federated Learning: Improving Google Keyboard Query Suggestions. online.
arXiv:1812.02903 [cs.LG]

[101] Dezhong Yao, Wanning Pan, Yao Wan, Hai Jin, and Lichao Sun. 2021. FedHM: Efficient Federated Learning for
Heterogeneous Models via Low-rank Factorization. online. arXiv:2111.14655

[102] Dixi Yao, Lingdong Wang, Jiayu Xu, Liyao Xiang, Shuo Shao, Yingqi Chen, and Yanjun Tong. 2021. Federated Model
Search via Reinforcement Learning. In 2021 IEEE 41st International Conference on Distributed Computing Systems
(ICDCS). IEEE, Curran Associates Inc., Virtual, 830–840.

[103] Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2021. A comprehensive survey of privacy-preserving federated learning:
A taxonomy, review, and future directions. ACM Computing Surveys (CSUR) 54, 6 (2021), 1–36.

[104] R. Yu and P. Li. 2021. Toward Resource-Efficient Federated Learning in Mobile Edge Computing. IEEE Network 35, 1
(2021), 148–155. https://doi.org/10.1109/MNET.011.2000295

[105] Binhang Yuan, Song Ge, and Wenhui Xing. 2020. A federated learning framework for healthcare IoT devices. online.
arXiv:2005.05083 [cs.LG]

[106] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman Khazaeni.
2019. Bayesian Nonparametric Federated Learning of Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning (ICML) (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). ICML, Long Beach, California, 7252–7261.

[107] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

https://arxiv.org/abs/2006.16765
https://doi.org/10.1109/COMST.2020.3007787
https://doi.org/10.1109/COMST.2020.3007787
https://doi.org/10.1109/JSAC.2019.2904348
https://arxiv.org/abs/1903.03934
https://arxiv.org/abs/2109.04269
https://arxiv.org/abs/1912.01684
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/2111.14655
https://doi.org/10.1109/MNET.011.2000295
https://arxiv.org/abs/2005.05083

Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey 334:27

IEEE, San Juan, PR, USA, 6848–6856.
[108] Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter Glynn, Yinyu Ye, Li-Jia Li, and Li Fei-Fei. 2018.

Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go?. In 35th International
Conference on Machine Learning, Vol. 80. ICML, Stockholmsmässan, Stockholm Sweden, 5970–5979.

ACM Comput. Surv., Vol. 55, No. 14s, Article 334. Publication date: July 2023.

	Abstract
	1 Introduction
	1.1 Scope and Contribution

	2 Basics of Federated Learning
	2.1 Problem Formulation
	2.2 Baseline Federated Averaging (FedAvg)
	2.3 Client Selection in FedAvg
	2.4 Asynchronous FedAvg
	2.5 Distillation for Federated Learning
	2.6 Split Learning

	3 Computation Heterogeneity in Federated Learning
	3.1 Computational Resources in End-Devices
	3.2 Categorization of Constraints and Heterogeneity
	3.3 Communication Heterogeneity
	3.4 Data Quantity Heterogeneity

	4 Computation Heterogeneity-Aware Federated Learning
	4.1 Categorization of Techniques
	4.2 NN Architecture Heterogeneity based on FedAvg
	4.3 NN Architecture Heterogeneity based on Distillation
	4.4 NN Architecture Heterogeneity based on Other Techniques
	4.5 System Level Awareness Through Client Selection and Flexible Aggregation
	4.6 System-Level Awareness Through Asynchronous Aggregation

	5 Open Problems and Future Directions
	6 Conclusion
	Acknowledgments
	References

