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Many commercially available memory chips are fabricated worldwide in untrusted facilities. Therefore, a
counterfeit memory chip can easily enter into the supply chain in different formats. Deploying these counterfeit
memory chips into an electronic system can severely affect security and reliability domains because of their
sub-standard quality, poor performance, and shorter lifespan. Therefore, a proper solution is required to
identify counterfeit memory chips before deploying them in mission-, safety-, and security-critical systems.
However, a single solution to prevent counterfeiting is challenging due to the diversity of counterfeit types,
sources, and refinement techniques. Besides, the chips can pass initial testing and still fail while being used in
the system. Furthermore, existing solutions focus on detecting a single counterfeit type (e.g., detecting recycled
memory chips). This work proposes a framework that detects major counterfeit static random-access memory
(SRAM) types by attesting/identifying the origin of the manufacturer. The proposed technique generates a
single signature for a manufacturer and does not require any exhaustive registration/authentication process.
We validate our proposed technique using 345 SRAM chips produced by major manufacturers. The silicon
results show that the test scores (F; score) of our proposed technique of identifying memory manufacturer
and part-number are 93% and 71%, respectively.
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1 INTRODUCTION

With the globalization of the semiconductor supply chain and the growth of the semiconductor
market value, counterfeit ICs have become an established threat to the semiconductor community.
In the modern horizontal semiconductor supply chain, multiple facility centers are involved in the
manufacturing process and facilitate different stages of chip production. In this supply chain model
(Fig. 1), a chip may be designed in one place and fabricated in different places. Because of these trav-
eling IPs (intellectual properties) in different formats, the device can be easily counterfeited in many
different ways and may easily get introduced to the consumer market. Recent studies show that the
global market share of counterfeit integrated circuits (ICs) worth $169 billion [23, 27], and ~17% of
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those counterfeited ICs are memory chips [21, 23, 27]. Moreover, another ~28% of the counterfeit
chips are contributed by programmable logic (CPLDs, FPGAs), microcontrollers, and microproces-
sors [21]. However, most of the modern programmable logic and microcontrollers/microprocessors
are integrated with memory (e.g., BRAM in FPGA, cache in microcontrollers/microprocessors).
Therefore, identifying counterfeit memory should be able to capture the majority of these coun-
terfeit programmable logic and microcontrollers/microprocessors. Counterfeit chips are classified
into the following major categories [23]: (i) recycled, (ii) remarked or forged documentation, (iii)
tampered (iv) cloned, (v) reverse-engineered, (vi) out-of-spec/defective, and (vii) overproduced.
Table 1 shows various types of counterfeitings along with examples [21, 23]. A counterfeit chip
suffers inferior quality and, therefore, can impact the safety, security, and reliability of a system
[43]. For example, Russia’s recent Fobos-Grunt mission to Mars was canceled due to a counterfeit
SRAM memory chip [50]. Unfortunately, identifying counterfeit chips is tricky as they can pass the
initial functional test but may fail prematurely due to their lower life expectancy than authentic
chips.

Cloned

Remarked

| Design |—>| Fabrication |—>| Assembly Dtlzt;t::il:tn I| Em:-(jé“fe

Overproduced, Defective

Recycled, Remarked

Overproduced, Defective, Cloned

Fig. 1. Device counterfeiting at different stages of the horizontal semiconductor supply chain [64].

Table 1. Different types of counterfeiting [21, 23].

Counterfeit Definition
Types
Recycling chips from old PCB and selling them as new. In a more sophisticated
recycling process, the plastic/ceramic encapsulation of the chip die is removed
Recycled . .
and repackaged to make its appearance new. Recycled chips shares >80% of
the counterfeit market [21].
Remarked | Inferior quality chips are marked as the superior one.
Forged . . . . . . .
documented Faking the chip documentation (e.g., faking safety and security certification).
Reverse Recover the functional netlist from the chip by an electro-chemical process.
Engineered | Counterfeiter may use this netlist to avoid the R&D cost.
The untrusted fabrication facility can copy the chip design (netlist, GDSII);
Cloned X .
later, they can produce unauthorized chips.
Overproduced Untrusted fabrication facility can produce and market chips outside of the
P contract, i.e., without authorization of the IP (intellectual properties) owner.
Tampered Tampering the original chip design. For example, untrusted physical design
P house can insert hardware trojan in the netlist and create a security backdoor.
Out-of- Selling chips that are failed in the functionality test (manufacturer name and
spec/defective| part-number are removed and replaced with a superior one).

To combat the recent trend of increasing fake parts, the U.S. Government passed the National
Defense Authorization Act (NDAA) in August 2018 [14]. Section 818 of this Act requires defense
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contractors to tighten supply chain traceability and parts procurement to minimize counterfeit risk
[29]. Researchers and industries have developed several techniques to detect and avoid counterfeit
electronic components, such as physical inspections, imaging techniques, electrical testings, etc.
[22-24, 27, 28, 71, 72]. Unfortunately, most solutions focus on identifying a single type of counterfeit
chips, e.g., detecting recycled memory chips [26-28]. Furthermore, many of those techniques require
either hardware modification, complex supply chain management, complex authentication schemes,
or unique laboratory facilities [2, 24, 25, 40, 54, 59]. Hence, those are not suitable for low-cost
memory chips.Deploying counterfeit chips into an electronic system can severely compromise
system security and reliability because of their sub-standard quality, poor performance, and shorter
life span. Unfortunately, identifying counterfeit chips is tricky as they can pass the initial functional
test but may fail prematurely due to their lower life expectancy than authentic chips.

Our recent studies [64] show that analyzing latency-based error patterns can capture manufac-
turers’ information and DRAM module specifications. In this paper, we present a more generalized
technique to detect and avoid major counterfeit SRAM types. In our proposed technique, we attest
and identify the origin of SRAM chips (i.e., manufacturer and specification) by characterizing
the start-up behavior of SRAM chips. Attesting and identifying memory manufacturers and spec-
ifications might be a powerful tool in avoiding the remarked, defective, tampered, and cloned
memory chips. We find that the start-up behavior of SRAM chips varies from one manufacturer to
another manufacturer and from one set of specifications to another set specifications because of
intentional architectural/layout differences and the manufacturing process variations. Furthermore,
we show that a similar analysis of SRAM start-up data can be used to identify recycled SRAM
chips as the SRAM start-up behavior is directly correlated with its usage time. We also explore the
robustness of our proposed technique and provide a guideline for practical implementation. The
major contributions of this paper include:

e We have extracted a set of features from the start-up state of SRAM chips to capture the architec-
tural, layout, and process variations. We found that our proposed set of features can be used to
identify the memory manufacturer and part-number?.

e We have tested the robustness of our proposed method by varying operating temperature and
testing platforms.

e We have also compared the extracted features between the fresh and aged (recycled) chips. The
practical aging state of SRAM memory has been emulated by stressing the memory chip under
high-temperature and supply-voltage conditions.

e We have validated our proposed technique with the data collected from 345 commodity SRAM
chips (produced by five major manufacturers).

e We have provided a practical guideline to improve the accuracy of our proposed method with a
realistic demonstration.

The rest of the paper is organized as follows- in Sec. 2, we have briefly discussed SRAM structure,
the aging effect on SRAM chips, and existing anti-counterfeit techniques. In Sec. 3, we have proposed
our method of extracting an appropriate set of features from SRAM start-up data. In Sec. 4, we
have presented our experimental results and analyzed them. We have highlighted the scope and
limitations of this work along with the future work in Sec. 5. We have concluded our work in Sec. 6.

2 BACKGROUND AND MOTIVATIONS

This section briefly describes SRAM architecture, the aging effect on SRAM cells, and the existing
approach to detect counterfeit memory chips.

1A unique part-number is usually assigned to a group of electronic components that possess a similar set of specifications.
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2.1 SRAM, Process Variations, and Aging

SRAM cell, volatile memory that stores one-bit data, consists of two cross-coupled inverters and
two access transistors (see Fig. 2) [15, 27]. The cross-coupled inverters are symmetrically laid out to
maximize the static noise margin (SNM) [15, 27]. SNM is defined as the maximum allowable noise
that can tolerate an SRAM cell without flipping its value [49]. However, the inevitable random
dopant fluctuation (RDF) effect leads to threshold voltage variation and introduces asymmetricity
between SRAM inverters [42]. Therefore, during power-up, these two inverters race each other and
settle to “1" or “0" [15, 27]. A significant difference between inverters’ strength generates a strong
“0" or a strong “1". On the other hand, a smaller difference between the two inverters generates
weak “0" or weak “1". Furthermore, the smallest difference between the two inverters creates a
noisy start-up value.

M;

BL

GND —

Fig. 2. SRAM cell structure.

Moreover, two well-known phenomena, negative and positive bias temperature instability (NBTI,
PBTI), can also cause transistor threshold voltage to shift [26]. NBTI and PBTI are the direct
consequence of transistor aging [26]. Previous research suggests that the SNM of the SRAM
decreases by >9% within three years of usages [51].

2.2 Memory Supply Chain Vulnerabilities

Globalization of the semiconductor supply chain has allowed worldwide fabrication of authentic
and counterfeit chips [7, 23]. In an established global semiconductor supply chain, several un-
trusted parties (foundry, assembly, third-party IPs, etc.) are involved, any of whom can pirate IP
(intellectual property), insert hardware trojan, and/or include recycled, re-marked, overproduced,
out-of-spec/defective, cloned, and forge-documented chips [7, 64]. In this global supply chain, the
IC or memory manufacturer can (i) fabricate all memory chips or ICs in a single manufacturer-
owned foundry or (ii) can send the Graphic Design System (GDSII) file (a file format that contains
the final-layout information) to several foundries of their own (but in different geolocation) or
third-party foundries to save on the cost per unit or to meet the target timeline [64]. A counterfeiter
can sell fake memory chips as authentic ones, recycled or used memory chips as new ones through
repackaging, low-quality chips as high-grade ones by mislabeling, and defective or out-of-spec
chips without the manufacturer’s consent. An adversary in an untrusted foundry can insert a
hardware trojan in the form of addition, deletion, or modification of memory cell, memory array,
or peripheral logic [67], which changes the memory layout/architecture [67].

2.3 Existing Countermeasures and Limitations

There have been several techniques to detect counterfeit chips. Some existing approaches rely on
generating signatures from individual chips [15, 27, 34]. One chip can not be cloned to another chip
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because of the signatures’ uniqueness due to the process variation. These memory signatures vary
from chip to chip, even if they are fabricated in the same silicon wafer. Such signatures are well-
known as physical unclonable functions (PUF). The signature from the individual chip is collected
and stored in the database during the registration process. During authentication, signatures
are collected from the memory under test (MUT) and compared with the database. A device is
considered authentic if its signature matches with the expected stored signature. The database
can store memory fingerprints from a single measurement. However, the memory signatures are
noisy and can be affected by operating conditions. Recently, Guo et al. propose measuring memory
signature at both room temperature and high temperature to compute a more robust signature [27].
However, the PUF-based method suffers from several limitations:
e Bit-aliasing: Bit-aliasing measures the uniqueness and correlation among signatures (PUFs)
[55]. It quantifies the distribution of “0" or “1" on a specific memory cell. The bit aliasing can be

quantified with Eq. 1.
N

Bi= o )RS 1)
p=1

Here, N is the total number of devices needed to be identified uniquely, where each device is
equipped with an [-bit PUF. R;;l is the PUF response recorded from the ith bit of the pth PUF.
In an ideal case, the mean occurrence of logic “0" or “1" from a specific bit location should be
50% (i.e., bit-aliasing should be 50%). The ideal bit-aliasing of 50% minimizes the number of bits
required to identify all devices uniquely. For example, in an ideal case, to identify 4 SRAM chips
uniquely, we need only a 2-bit PUF response (i.e., “00", “01", “10", and “11"). In such a case, the
occurrence of “1" or “0" on the first-bit position or the second-bit position is 50%. However, if the
average occurrence deviates from 50%, we might need more than 2-bits to authenticate those
four SRAM chips. In practice, the bit-aliasing always deviates from 50% and requires more bits
than it needed theoretically.

o Exhaustive registration process: The signature-based chip authentication requires registering
each memory chip before distributing them in the market. This extra step of registration increases
both cost and lead time to market.

e Robustness: Device signature also may vary depending on the operating condition. A slight
variation on temperature or operating voltage might alter the device characteristics and flip
some bits on the device signature. Although different Error Correcting Codes (ECC) [10, 57] are
proposed as a solution; however, the ECC overhead increases quadratically with the number of
errors [57].

Other countermeasures such as SST, hardware metering, blockchain-based traceability, split
manufacturing, IC camouflaging, Electronic Chip ID (ECID), On-chip sensor, DNA marking, etc.,
might be used to prevent counterfeiters [2, 3, 19, 21, 23, 25, 31, 32, 36, 38, 40, 54, 58, 59, 74, 75];
however, these techniques suffer from different drawbacks. For example, SST and hardware metering
techniques provide control over post-fabrication, but it requires a change in traditional fabrication
flow. Furthermore, this technique requires exhaustive communication between the foundry and
the manufacturer. On the other hand, ECID tags each chip with a unique ID by adding a one-time
programmable (OTP) memory. Nevertheless, this method is not suitable for all kinds of chips. For
an SRAM chip, the overhead of adding an extra memory component will be very high. With an
on-chip sensor, each chip is equipped with an additional hardware component, which modifies
its properties due to aging. These properties can be used to detect recycled chips. However, on-
chip sensor-based countermeasures need additional hardware overhead and are not feasible for
inexpensive systems. In DNA marking, each memory component is marked with a unique DNA
sequence. DNA marking suffers from impracticality as it requires a complex authentication scheme.
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Other techniques, such as blockchain-based traceability, split manufacturing, IC camouflaging, etc.,
require modified fabrication flow or design techniques that are not suitable for low-cost memory
chips.

Physical inspection-based schemes [1, 23, 33, 69], such as X-Ray imaging and scanning electron,
can detect counterfeit/recycled chips. However, these techniques require expensive equipment
and not viable for inexpensive chips. Moreover, Expensive equipment and complex authentication
schemes are also not suitable for general users who want to verify their purchased products’
authenticity.

This paper proposed a technique to detect counterfeit SRAM chips that do not suffer from the
above limitations.

3 PROPOSED METHOD

By analyzing the internal signatures of the SRAM memory chips, our proposed technique will
identify major types of counterfeit chips by- (i) attesting the origin of the memory chip manufacturer
and the specification (i.e., the part-number) of each memory chip and (ii) detecting recycled memory
chips. This section describes sources of distinguishable factors, unique features that isolate one
part-number with another or identify the same part-number, and our proposed framework.

3.1 Sources of Distinguishable Factors

Our proposed technique relies on the fact that SRAM chips of different specifications differ with
architectural, layout, and process parameters, which leads to unique GDSIL All these factors can be
used to generate a unique signature from each group of SRAMs.

o Architectural variations: Manufactures may optimize the SRAM structure in different ways to
support the requirement [6, 12, 13, 60]. Among different structures, the symmetric 6-Transistor
(6T) SRAM structure is the most common one (Fig. 2) for on-chip SRAM array (e.g., processors
cache). 4T SRAM cells are also common for off-chip SRAM memory. However, 4T SRAM chips can
not be implemented on-chip as they need different technology and complex process. Theoretically,
the symmetric structure of SRAM cells should produce a uniform distribution of logic “0" and
logic “1". On the other hand, to suppress the noise (e.g., read disturbance, half-select disturbance,
etc.), other SRAM architecture such as 5T, asymmetric 6T, 7T, 8T, 9T, 10T structure is also available
[6, 12, 13, 60]. However, due to these configurations’ asymmetric structure, each SRAM cell on
the memory array may be biased to a specific logic at start-up. Furthermore, to reduce the bitline
noise, the bitlines are often twisted in different configurations [70]. The difference in bitline
configuration also may affect the start-up logic locality.

e Layout Variations: The layout variation in SRAM cell structure may also cause a variation in
start-up characteristics. For example, Apostolidis et al. [4] reported six different layout designs
for symmetric 6T SRAM structure, and each of them has different pros and cons. For example,
they have different power utilization, delay, and noise characteristics. In addition to this, some
implementing and resource constrain may introduce some asymmetric nature in memory cells,
leading to slight bias to a specific logic at device start-up. For example, using multiple metal
layers may introduce unmatched wiring between the inverter pair. Moreover, the difference in
CAD tools’ configurations may also introduce variations in memory layout.

e Process variations: The intrinsic process variation can be either random or systematic [11, 41].
The random process variation can be considered the noise and can be varied among the chips
fabricated in a single wafer. However, the systematic process variation can be introduced by
the quality of the fabrication plant (foundry), microarchitectural locality, and pattern. For the
symmetric layout design of the symmetric 6T SRAM cell, the layout of one inverter is the mirror to
the other one. However, the fabrication plant may have different set of rules for mirrored patterns

ACM J. Emerg. Technol. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



A Non-invasive Technique to Detect Authentic/Counterfeit SRAM Chips 111:7

[46]. Hence, a mirrored layout may be reffed as a different pattern when fabricated. Hence, even
with the perfectly symmetric layout design, the two coupled inverters may have slightly different
characteristics after fabrication. Additionally, a recent study shows that the founder-dependent
channel length and threshold voltage variations impact the IC delay characteristics [69].

IC packaging: Chip die is encapsulated inside a protected “package” to prevent corrosion and
physical damage. The difference in IC packaging may also alter some device characteristics.
Usually, manufacturers introduce different kinds of die packaging and wire bonding to trade-off
among cost, noise immunity, and supporting different operating conditions [39]. The impact of
die packaging is minimal compared to other factors, as the IC packaging only impacts external
influences (such as noise induced by external temperature). However, the die packaging may
influence some device characteristics and, therefore, may impact some of our selected features
(see Sec. 3.3). For example, the chips with gold/copper wire bonding should be more robust
against external temperature variation than those with aluminum wire bonding. Therefore, the
noise magnitude in SRAM start-up data should be smaller with gold/copper wire bonding.
Aging: Usually, the SRAM signature (PUF) can be characterized by PSNM,,5is. (PUF SNM noise)
[15, 47]. The PSNM,,ise measures how easily an SRAM cell can be initiated to logic “0" or “1".
A larger value of PSNM,,;s. ensures more robust SRAM signatures. However, the PSN M,;se
heavily depends on SRAM transistors’ threshold voltage [15]. Hence, the SRAM PSNM,;,;se can
be changed over its usages (see Sec. 2.1) due to the change in its transistors’ threshold voltage.

Depending on SRAM usage data pattern, the change in PSN M, can affect the SRAM start-up
signature: (i) a noisy signature bit might get biased to “0" or “1", (ii) a weak “0" or “1" might
become strong “0" or “1", (iii) a stable signature bit can be flipped (stable “0" to stable “1" or stable
“1" to stable “0"), and (iv) a stable signature bit can become a noisy one. Hence, the change in
PSNM,0i5e will affect the overall distribution of logic “0" and “1" on SRAM signature. The first
three factors will increase the total number of stable signature bits; whereas, the fourth factor
will produce more noisy signature bits. However, the cumulative impact of the first three factors
dominates the fourth factor. Hence, the total number of noisy signature bits will reduce with
device usage (which does not indicate the PUF will be more robust with aging [55]). Minimizing
the mismatch between two inverters can strengthen the impact of the fourth factor, which is
difficult to achieve. The equalization of transistors’ threshold voltage requires a calculative usage
data pattern during the entire chip lifetime [51].

In an ideal case, the percentage of 0’s or 1’s should be identical in a new symmetric SRAM chip.
One of the recent methods suggests that the skewed distribution of 0’s and 1’s at power-up state
can be used to detect recycled SRAM memory [26]. With a typical usage pattern, an SRAM cell
experiences more logic “0" bits than the logic “1" bits [68]. Such usages pattern creates more
stress on “M4" pMOS (Fig. 2). Hence, over time, the threshold voltage difference of “M4" and
“M2" PMOS increases due to the NBTI effect and causes the SRAM cell to be biased with “1"
at power-up state. Note that this method of detecting recycle memory is a special case of our
proposed technique.

3.2 Assumptions

Our proposed technique extracts a set of features from memory signatures and uses them to train
a statistical model and identify manufacturer/part-number. Although our method uses a simple
authentication protocol, we make the following set of assumptions which are practical for most
usage scenarios.
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e Defining features: Manufacturers/trusted third-parties are responsible for defining a set of
features that defines their product best. Prior knowledge of memory architecture might enable
them to define a better set of features.

e Feature extraction: The feature extraction process should be independent and straightforward
enough to be extracted on the user’s system; hence, it relaxes the requirement of any special
tool or environment requirement. We also assume that the user does not have any knowledge of
memory architecture; only general information available from manufacturers should enable a
user to extract the features.

e Memory Class: Two memories are from separate classes if they have a different manufacturer
and/or a different set of specifications (i.e., speed, size, temperature range, power rating, data-
width, die package, die generation, etc.). A change in specification and/or manufacturer lead
to different GDSII and/or packaging; hence, it will impact start-up data, as discussed in Sec. 3.
Although a manufacturer may send the same GDSII to multiple fabrication facilities, we assume
that fabrication plants with the same GDSII maintain the same design rule to keep uniformity.
We also assume that a manufacturer may produce memories with a different specification but
with the same set of fabrication plants or design memories with a slight change in specifications
(for example, only change in the die package). In such a case, these memories may have two sets
of features with subtle variation, which leads to a complex classification problem to identify the
memory correctly.

e Classification: Classifying memory (authentic vs. counterfeit) can be done in either manufac-
turer end or consumer end, depending on the application. For example, if the manufacturer is
reluctant to release the statistical model publicly, it might ask for the features from memory
under test (MUT) to verify the authenticity. On the other hand, to reduce the communication
overhead and complexly, the manufacturer may release the statistical model publicly, and the
MUT can be verified on the user’s system.

3.3 Feature Selection

The accuracy and efficiency of any machine learning algorithm heavily rely on the features that
are used for the algorithm. Hence, in this step, we proposed a set of SRAM start-up-based features
that can effectively capture the architectural, layout, and process variations. A good feature should
obtain (i) the similarities of chips with the same specification and (ii) the discrepancy between
chips manufactured with different specifications.

In our proposed method, we collected n sets of start-up data ({Dy, D», - - -, D, }) from each SRAM
chip. We constructed a unified data, D, based on majority Voting2 cast by {Dy, Dy, - - -, D, }. SRAM
memory cells are generally arranged in a 2-D array of size r X ¢ (r = number of rows and
¢ = number of columns). If each word of a SRAM chip consists of wy bit data, then, for simplicity,
we can assume that there is a total of w; 2-D array of single bit contributing 1-bit data to each data
word. So, the data D should be 3-D data of size r X ¢ X w;. However, to reduce the complexity, we
rearrange the whole data in a 2-D array of size n,, X w; (= dim(D)), where n,, = r X ¢ is the number
of words in the memory. Now we extract the following seven features from the start-up data D
[64]:

e Feature 1 (®;): This feature quantifies the “cell biasness" by counting the number of logic “1"
bits in the start-up data. The evaluation of @, is illustrated in Fig. 3. In this example, we presented
start-up data from an 4x8 (n,, X w;) SRAM chip containing four 8-bit words. In this figure, 16
bits contain logic “1" out of 32 bits. Hence, according to our definition, ®; = 16/32 = 0.5. Cell

2In the majority voting technique, each signature bit is sampled multiple times, and the value of that signature bit is assigned
as the majority of the samples [61].
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bias qualitatively measures the asymmetricity of the cross-coupled inverters (see Sec. 2.1). For
an ideally symmetric SRAM cell structure, this value should be 0.5 (i.e., no “cell bais"). However,

in practice, this value is usually deviated from 0.5 because of the different variations discussed
previously (see Sec. 3.1).

=
i 0 1 0 0 1 0 1 1 =4/8=0500
& =
o] 1 1 1 1 0 1 0 0f=5/8=0625 ]
* o
W 0 01 1 1 1 0 0f=4/8=0500 §
o
a 0 1 0 1 0 0 0 1§=3/8=0375

n " 1} n " 1} 1 1l

geRepRer ¥

B L T S n

L | | | | R | A | | o

O O O O o © o o =

NN LN e NG %

v un © U1 O O un o

Fig. 3. llustration of @1, ®3, and @3 (4X8 SRAM).

o Feature 2 (®;): An SRAM chip of word size w; can be assumed as a series of w; 2-D SRAM arrays.
We counted a fraction of “1" from each 2-D array for this feature and took the standard deviation
as the feature ®,. If each of the 2-D arrays follows similar data distribution, and the ®, should be
close to 0. In Fig. 3, each 2-D array is rearranged in a single-dimensional vector for visualization
purposes and presented along each column. Now, to evaluate ®;, we computed the fraction of
logic “1" along each column, and then standard deviation is calculated using those values. ®, can
capture different physical properties of the SRAM chips. For example, if the area constraint is too
tight, all 2-D memory arrays can be located in close proximity or may be fused together. In that
case, they may have a smaller difference in logic distribution due to smaller process variations.
Feature 3 (9;): The fraction of logic bit “1" is counted in each word of data D; then, the standard
deviation of those values was taken as the feature ®;. ®; is also illustrated using Fig. 3. In
this figure, we first calculated the fraction of logic “1" from each word (along the row), and
then @5 is estimated by computing the standard deviation of those values. In an ideal case, the
distribution of logic bit “1" from each data word should be normally distributed with a mean of
50%. Our experimental results demonstrate that the mean is close to ®;. However, the standard
deviation of distribution may vary from chip to chip depending on memory specification (i.e., for
some memory chips, the distribution can be flatter than other chips of different specifications).
®3 quantifies the symmetricity of the SRAM cell array. For example, each SRAM cell might
experience different systematic process variations due to the local layout patterns®; hence, data

words from different address locations might experience different logic distribution at start-up. A

larger variation on local logic distribution will result in a larger value of ®;.

o Feature 4 (D4): The compression ratio (r, where, r > 1) of the start-up data is selected as one
of the features. A start-up data with regular patterns have larger data redundancy and can be
significantly compressed without any information loss. However, start-up data with randomly
distributed zeros and ones can be squeezed very little and causes a smaller value of compression

ratio (closer to 1). @4 can capture the impact of the random process variation on SRAM chips.
The compression ratio is defined as Eq. 2.

Sy
r=s, (2)

3Local layout patterns might be different from one cell to another, e.g., memory cells near the sense amplifier vs. memory
cells at the middle of the SRAM array.
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Where,

Sy = size of the uncompressed data

S; = size of the compressed data < S,

For data compression, we use the standard ZLIB library [16]. ZLIB library ensures the least
resource utilization during data compression.

e Feature 5 (®5): All data words from each SRAM chip are split into multiple blocks to extract
this feature, where each block consists of 512 consecutive data words. Then we compute the
fractional value (P;) of each block of data that exhibits logic “1". We, then, calculate the standard
deviation of P; calculated from each block. We select this standard deviation as feature ®s. This
feature captures the spatial locality of logic “0" and logic “1" of start-up data. A higher value of
s signifies a larger spatial locality. Although we select the block size of 512, the manufacture
may wish to select a different size that describes the best structural granularity in memory space.
A smaller value of the block size might capture more spatial details; however, the ®5 will also
be largely influenced by the local noise if the block size is too small. We experimented with
different block sizes and found that 512 provided the best result for memory classification. It is
worth mentioning that @5 is similar to ®s, where the block size of ®5 is only one word. Hence,
d; captures finer grain spatial information more effectively. However, ®; may also capture the
local noise information.

e Feature 6 (®¢): For each memory cell, we have collected SRAM data a total of 20 times and
mark those memory cells as noisy if logic “1" is observed 8 to 12 times. We marked those cells
as noisy signature bits. For this feature, we counted the percentage of noisy signature bits. In a
well-designed SRAM memory cell, the coupled inverters are highly matched, and corresponding
signature bits are largely affected by the external/internal noises (e.g., voltage fluctuation, thermal
noise, etc.). Furthermore, we believe that this feature can contribute highly to detect recycled
memory chips. Over the usage, there will be more cells with large threshold voltage mismatch in
recycled memory chips [26] and will produce large PSNM,,0;se (see Sec. 3.1). Hence, a recycled
SRAM chip should produce less noisy signature bits and reduce the value of & over time.

e Feature 7 (9;): In this feature, instead of accounting for the theoretical normal data distribution,
we made a (w; + 1)-bin histogram. If a data-word (€ D) occupies a total ¢ bit of logic “1", and then
it is placed in tth histogram bin. The standard deviation of the bin size quantifies as the feature
;. If the distribution is normal (or Gaussian), then ®3; and ®; should be approximately the same
(also well-known as the normal approximation for probability histogram). Hence, the ®; measures
the skewness on word (€ D) distribution from the normal distribution.

We extract all these seven features from both fresh (i.e., new) and aged (i.e., recycled) SRAM chips.
Then we show that these features form visually separated clusters in feature space depending on
the SRAM module type (manufacturer “A" vs. Manufacturer “B", Part-number “X" vs. Part-number
“Y", fresh vs. aged/recycled).

In addition to above features, manufacturers may choose a different feature-set that describe their
chips more concisely. Furthermore, the manufacturer may prefer a different set of data (e.g., error
pattern by reducing latency parameters) to extract the more appropriate features [64]. However,
when the manufacturer itself does not define the features and assign the responsibility to a third-
party, one or few features might not obtain the exact electrical characteristics as intended due
to the special modification at the architectural or layout level (which might not be known to the
third-party). For example, bit-level scrambling in the data word may limit the usefulness of feature
®, [18]. Nevertheless, this problem can be avoided by using conventional feature selection and
dimension reduction techniques to select the most appropriate feature-set [20, 63, 76].
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It is worth mentioning that the features described above only provide qualitative information of
different physical properties of the SRAM chips; however, they do not provide any quantitative
information. Furthermore, each feature described above might be impacted by combined information
from multiple physical properties. For example, although ®s primarily varies from one memory
class to another due to spatial variation, ®; might also be impacted by the address scrambling
caused by the architectural difference in the address decoder [66].

3.4 ldentifying Authentic Memory Chips

Usually, memory chips with the same manufacturer and specification are labeled with a unique

part-number; hence, to identify a memory authenticity, we need to identify the memory part-

number. We propose a machine learning-based approach to classify the memory part-number after
extracting features from the start-up data. However, the classification can be done with two different

approaches- a) learning a binary classifier (positive vs. negative) for each class, and b) learning a

one-class classifier for each class. In the first approach, we learn a binary classifier for each class to

differentiate between positive samples and negative samples (i.e., authentic vs. counterfeit). This
approach is only applicable when both positive and negative sample is available while training
the classifier. Nonetheless, it is not a practical approach due to the enormous diversity in negative
samples. Collecting negative samples from whole statistical distribution is not cost-effective and
time-efficient. In the second approach, we do not need any samples from the negative class, and

only positive samples are sufficient to learn the classifier. Recent studies show that [1, 35, 56, 62, 64],

a one-class classifier is preferable for counterfeit IC detection as the statistical diversity of the

counterfeit chips (negative class) is too large, and they can be introduced from a large number of

sources (see Sec. 2.2). Unfortunately, one-class classification is a complex statistical problem and
might reduce the accuracy. Hence, we propose a two-step approach to solve this issue:

(1) Identifying manufacturer: Different vendors use different memory cell designs, design flow,
and possibly fabrication facilities. Furthermore, they may integrate different peripheral inside the
memory; for example, altering row-decoder may alter apparent start-up data locality seen from
outside of the memory. Hence, multiple sources may contribute to start-up data variation among
SRAMs manufactured by different vendors. In other words, SRAMs for different manufacturers
appeared to have a larger difference in their features (large inter-manufacturer feature distance),
which ease identifying the SRAM manufacturer (e.g., manufactured by vendor “A" or not).
However, while training a binary-classifier, it is impossible to learn all the negative samples
that the target vendor does not manufacture. Therefore, we propose a one-class learner (e.g.,
one-class Neural Network, one-class SVM, SVDD, etc. [1, 35, 56, 62, 64]) only to identify the
manufacturer information. However, one may choose to train a binary-class classifier with all
available negative samples along with a one-class classifier to improve the accuracy.

(2) Identifying part-number: A manufacturer usually produces different memory chips with
different specifications with different part-numbers. However, they may use the same design
facility and similar peripherals for all of them, leading to a more subtle feature difference among
memories. Fortunately, we can assume that a manufacturer can easily access all memories that
they manufacture. Therefore, once the manufacturer is identified, the target manufacturer can
easily provide a binary (target class vs. others) or a multi-class classifier to identify each memory
part-number produced by them. As we mentioned earlier, the one-class classifier is a complex
learning task; hence we should avoid it when we have access to the negative samples from the
whole statistical distribution. In this particular scenario, one-class learning is more difficult as
we have a smaller feature distance among part-numbers produced by the same manufacturer.

In summary, for manufacturer identification, we recommend using a one-class classifier as it is
difficult to collect samples from all manufacturers. However, for identifying part-number, we can
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safely assume that the manufacturer has access to samples from all part-number manufactured by
itself. Therefore, we recommend using a binary (target class vs. others) or a multi-class classifier
for identifying part-number. The one-class classifier is a complex statistical problem and requires
large train samples. Unfortunately, we have only access to a limited number of samples from five
major manufacturers. Therefore, for demonstration purposes, we avoid the one-class classifier for
manufacturer identification and use a binary classifier for both manufacturer and part-number
identification.

3.5 Proposed Framework

We propose a machine learning-based algorithm that uses the device signature to verify the
manufacturer and the part-number. Fig. 4 represents the detailed framework of our proposed
technique. Our proposed framework consists of eleven steps, and the order of the steps is numbered
in Fig. 4. The steps provided in the yellow and red regions must be performed by the OEM and device
owner (user/consumer), respectively. However, steps in the green region can be performed either
by the user or by the manufacturer. Our proposed framework starts by defining a set of features (as
explained in Sec. 3.3). Then, using a golden set* of sample memory chips, the manufacturer needs
to extract the feature set and train classifiers to identify counterfeit chips. The manufacturer can
train the classifier in two steps: (i) learning manufacturer-specific property (C,,) and (ii) learning
part-number-specific property (C,). Manufacturing-specific property can be learned by a one-class
classifier (i.e., only learning the target manufacturer) and might be assisted by a binary classifier (i.e.,
target manufacturer vs. others). For the second step, the manufacturer can train either a multi-class
classifier for all part-numbers or a multiple binary (one vs. all) classifier for each part-number.
By using publicly available information provided by the manufacturer, a user should be able to
collect the signature from his sample and extract the feature-set. If the classifier information is
available, the user can verify the chip authenticity by himself. Otherwise, the user can send the
extracted feature-set to the manufacture, and the manufacturer can verify the authenticity of the
test memory chip (verify on request). The start-up data collection process can vary depending on
the evaluation platform and application; therefore, we leave the detailed implementation of the
start-up data collection routine to the OEM/user. Note that our proposed protocol may be adjusted
to meet the evaluation platform/manufacturer requirements.

3.6 Identifying Recycled Memory Chips

Although identifying memory manufacturer and part-number can prevent many types of counter-
feitings [64], identifying memory manufacturer and part-number does not capture the recycled
memory chips. Fortunately, the features we described in Sec. 3.3 can also be used for identifying
recycled memory chips. For example, the distribution of the 0’s and 1’s can be skewed over time
due to the skewed distribution of 0’s and 1’s in functional memory usage, which can be easily
captured by Feature 1 [26]. Additionally, we observe that the distribution of other features may

“In the presence of an untrusted foundry, it is still possible to construct a golden sample set. An untrusted foundry can
cause three types of possible counterfeiting- (i) introduce defective chips as fully functional, (ii) tamper the GDSII and
introduce hardware trojan or security backdoor, and (iii) sell overproduced chips. While choosing the golden samples, it is
easy to avoid defective chips if the design follows standard DFT (design for testing) and memory testing (such as memory
built-in self-test or MBIST) techniques. On the other hand, tempering the GDSII requires R&D effort to understand and
modify the original design without altering the main chip functionality. Therefore, tampered chips can only be supplied
to manufacturers (by the untrusted foundry) if the allowed GDSII to fabrication time is very long. Lastly, our proposed
technique is not effective in identifying overproduced chips (see Sec. 5.1). As the feature-set extracted from the overproduced
chips (with unmodified GDSII) should be the same as the authentic chip, there will be no impact on the classifier if the
overproduced chips are used to train it.
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Fig. 4. Proposed protocol to identify counterfeit SRAM.

help to identify recycled SRAM chips in extreme cases, i.e., when only the symmetric data patterns
are used over functional memory usage (see Sec. 4.3).

4 RESULT AND ANALYSIS

In our experiment, we have collected SRAM start-up signatures to demonstrate our proposed
technique °. Typically, the success of any machine learning (ML) model relies on the sample quality
and sample size. However, it is difficult to collect data from a large set of sample chips in a lab
environment and imitate all possible operating conditions. Therefore, we divide the data collection
process into the following tasks:

(1) We used Arduino Due board [5] for collecting start-up data from SRAM chips. We have used 345
4-Mbit (256K%x16) SRAM chips from 5 different manufacturers and 23 different part-numbers
(i.e., 23 memory classes). All of these 23 part-numbers are tabulated in Table 2. From now on,
we will use the “tag" (specified in Table 2) to recall a specific memory part-number/class. We
have used 230 SRAM chips to train ML models (10 chips from each class) and 115 chips to test
the model (5 chips from each class).

(2) We have collected data from both test chips and train chips at a nominal voltage (3.3V) and room
temperature (25°C). We used two different Arduino boards to emulate the platform variation
among different embedded systems and utilized them to collect start-up signatures from test
samples®.

(3) We have used a one-vs-all binary classifier (positive vs. negative) for both manufacturer identi-
fication and part-number identification. As we explained in Sec. 3.4, the one-classifier would
be the best for the manufacturer identification. However, the one-class classification task is a
complex statistical problem and might require a large number of samples to train the model.

(4) Data noise can impact the classification models severely. To reduce noise, we collected start-up
data from the same SRAM chips 20 times. We maintained a constant sampling interval of 2
minutes. We have shorted the power pin (Vo) and other control pins of the SRAM chip with
the ground within this time interval We maintained such settings using relay circuits (also
controlled by the same Arduino Due board). This experimental setup should be sufficient to

SWe have made our data publicly available at: https://sourceforge.net/projects/authentimem/files/

%We have not observed any visible impact from platform variation. Such observation is expected as the two testing platforms
only differed by operating voltage (within 3.3+35mV), which is within the range of SRAM normal operating voltage (3.0 to
3.6 mV). Most modern chips are equipped with a voltage clamp circuit and can control the internal voltage as long as the
external voltage is within the range [45].
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avoid the potential discharge inversion effect on the SRAM start-up state [44]. We combined
those 20 sets of data in a single set using the majority voting technique [61].

Table 2. List of SRAM chips in experiment.
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(5) The variance error is expected when the sample size is too small [53]. A model with high
variance provides too much attention to the data that are trained with and prone to overfitting.
Hence, to reduce the variance error in the trained model, we segmented the SRAM signature data
in 16 chunks and virtually increased the sample count by treating each segment as an individual
memory chip (i.e., extracting an individual set of features from each segment). However, in the
inference phase, the class of a test sample is determined by the majority voting method using
all 16 segments. If the same number of votes supports multiple class labels, the tie is broken by
comparing the cumulative posterior probabilities® of all 16 segments.

(6) To examine the temperature sensitivity of our proposed technique, we collected data from test
samples at high temperatures (~ 45°C) and validated the same trained model learned in task 3.

4.1 Visualizing Features

The accuracy and efficiency of an ML algorithm largely depend on the quality of the features.
Hence, to demonstrate the feature-merit (explained in Sec. 3.3), we have presented the feature
distribution of train chip across different manufacturers and different part-numbers in Fig.5. The
figure shows that most features are normally distributed (median is centered), and in many cases,
at least one feature distribution of a particular class produces a clear visible separation with other
classes (i.e., manufacturer “A" vs. all and part-number “X" vs. all). For example, in Fig. 5a, the SRAM
chips manufactured by Renesas Electronics are readily separable by the distribution of feature
®s. Similarly, Fig. 5b demonstrates that SRAM chips from CY4 are easily distinguishable from the
distribution of feature ®,. Unfortunately, in our case, many of the classes can not be separated
from other classes based on their feature distribution due to the complex interaction among those
features. For example, feature ®; (number of 1’s) and @, (compression ratio) might have a close
relation; for instance, if the signature data is highly random, the ®; should be close to 0.5, and @,
should be close to 1.

For such cases, the class separability can still be visualized if the current feature-space (®-
space) is transferred to a new feature-space (¢-space), where the ¢; = f(®1, ®,,--- , ;). In our

’CY: Cypress Semiconductor; IDT: Integrated Device Technology; ISSI: Integrated Silicon Solution, Inc.; AMI: Alliance
Memory, Inc.; REA: Renesas Electronics.
8The posterior probability quantifies the confidence level of inferencing a sample to a particular class [30].
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Fig. 5. Visualizing feature distribution by- (a) vendor, and (b)-(f) part-number.

experiment, we have used generalized discriminant analysis (GDA) [8] to transform the ®-space
to p-space, where data points are linearly separable at ¢-space. GDA® is a supervised machine
learning technique to find a reduced set of features that preserves the maximum separability
among the classes. This reduced set of features is related to the old feature space by a non-linear
kernel function. In our experiment, we have used an RBF kernel function [64]. The RBF functions’
parameter (y) is determined by the 10-fold cross-validation method and ensured minimum Euclidean
distance between samples and corresponding centroids [9]. Fig. 6 represents the test memory chips
in ¢-space (in 2D projection) and demonstrates the manufacturer and part-number separability.
Each dot in Fig. 6 represents each memory segment as explained in task-5. Those two figures
demonstrate that memory classes (manufacturer “A" vs. “B" and part-number “X" vs. “Y") are fairly
distinguishable in at least one 2D projection of the ¢-space. While transforming the feature-space
of a K-class problem, it is worth mentioning that at most K — 1 dimensions are required in the new
feature-space without losing any information of class separability [30]. However, for IDT, adding
more than three dimensions (Fig. 6d) only adds very small details on class separability (which is
not recognizable from visual appearance). However, we have used K — 1 dimensional new space for
a K-class problem for other cases in Fig. 6.

9The reference implementation of GDA is available at: https://github.com/mhaghighat/gda
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Fig. 6. Representation of SRAM memory in feature-space, clustered by- (a) vendor, and (b)-(f) part-number.

Note that some overlapping between multiple classes is still visible in the ¢-space due to the
random process variation. However, such overlapping can be reduced by further optimizing the
RBF parameters, given that more train samples are available (we have only ten samples from each
part-number). While classifying the test memory chips, the impact of such overlap is minimized by
assigning equal weight on all 16 segments of the chip and casting a “vote" from each segment.

4.2 Labeling Test Memory Chips

Although the GDA can be used for both visualization and classification tasks, GDA is not ideal for a
small sample size. Fortunately, the ensemble learning technique can still perform reasonably better
even with a small set of samples [17]. In the ensemble technique, multiple base models are learned
with different configurations, and then the output label of the test sample is determined based on
the vote cast by each model. Although several ensemble algorithms are available, we have used
the bagging (bootstrap aggregating) method in our experiment. The bagging method is similar to
other ensemble methods, except the base model is trained with a different set of train data (sampled
with replacement). The bagging method has the inherent ability to reduce the variance error of the
trained model and can out-perform other ML algorithms when the train sample size is small [73].
The detailed construction of the algorithm is out of the scope of this paper.

In our experiment, we have trained multiple ensemble models using different base classifiers
(e.g., SVM, Decision Tree, Naive Bayes, Discriminant Analysis, Kernel, etc.), and the best model
is chosen based on the 10-fold cross-validation score. Then we generated the test score based on
our test samples. We represented the test score in Table 3 and 4. The table presents four types of
test scores: Precision (P), Recall (R), F; score, and accuracy, which are defined by Eq. 3, 4, 5, and
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6, respectively. P quantifies the trained model’s accuracy out of all predicted positives, and the R
computes the fraction of positives that the model captures correctly. On the other hand, F; score is
the harmonic mean of the P and R. For an ideal case, all of these test scores should be close to 1.
Note that, the accuracy is not a very useful metric when the test samples from the positive and
negative classes are not equal (unbalanced data). In our experimental setup, the number of test
samples for binary (one vs. all) classifiers is unbalanced; hence, we emphasize the P, R, and F; score
in our discussion.

tp
Precision (P) = 3)
tp+fp
tp
Recall (R) = 4
ccall (R) = P @
2
Fi=—— 5
ECEE O o
tp+in
= P2 __ ©)
tp+tn+fp+fn
Where,
tp = True positive;  tn = True negative;  fp = False positive; ~ fn = False negative

We have trained our binary model by utilizing the samples from the target class and the samples
from the outlier class (i.e., not belong to the target class). Target class implies manufacturer (or
part-number), which is targeted to separate from other manufacturers (or part-numbers). Note that
we can either consider the target class as the positive class or the outlier class as the positive class
in Eq. 3, 4, 5, and 6. Depending on the definition of positive class, the P, R, and F; score can be
different for unbalanced test samples. We focus on the test scores produced by considering the
target class as the positive class as it delivers the worse set of test scores.

Table 3 and 4 presents a single accuracy score and two sets of P, R, and F; score for manufacturer
and part-number identification considering both objectives as discussed above. In Table 3, the 1°*
row represents the target manufacturer, and the 2" row represents the corresponding accuracy
score. Row 3, 4, and 5 represent the P, R, and F; score considering the target class as the positive
class. Similarly, row 6, 7, and 8 represent the P, R, and F; score considering the outlier class as the
positive class. Column 2-6 represents the classifier score for each manufacturer, and column 7 (u")
represents the average classification score considering all manufacturers. The table shows that
the average test scores are > 0.92% (positive class = target class), which is promising considering
such a small number of samples. However, the classification score is a little lower for CY and AMI
than the other manufacturers, resulting from the fact that CY and AMI slightly overlap in feature
space (blue and red dots in 6a). However, the classification scores can be improved by adding more
samples and further optimization of the classifiers.

Table 3. Classification scores (at nominal temperature) for SRAM manufacturer identification.

Manufacturer | CY |IDT |ISSI| AMI|REA | x"

A 0.93]1.00{0.99| 0.97 | 0.99 | 0.98
P 10.87(1.00|1.00| 0.87 | 1.00 | 0.95
Target Class [ R |0.80 | 1.00 [ 0.96 | 0.87 | 0.95 |0.92
F;{0.83]/1.00/0.98|0.87 | 0.97 |0.93
P 10.98(1.00{0.99| 0.98 | 0.99 |0.98
Outlier R 10.98(1.00|1.00| 0.98 | 1.00 | 0.99
F;{0.98]1.00/0.99|0.98 | 0.99 | 0.99
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Table 4. Classification scores (at nominal temperature) for SRAM part-number identification.
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In Table 4, we have presented the classification score for the part number identification, where the
2"? row represents the target part-number. Note that, ™ represents the average classification score
over the corresponding manufacturer, and the ;" columns represents the average classification score
over all manufacturers. Similar to Table 3, rows 4-9 of table 4 represent two sets of P, R, and F; scores.
Unlike manufacturer identification, the part-number classification score for some manufactures
is not up to the mark; especially, the P or the R (and corresponding F; score) scores to identify
a few part-numbers of IDT, REA, and AMI are unacceptably low (shown in red). Nevertheless,
such low test scores can be explained from multiple perspectives. For example, the model used to
classify manufacturers trained based on 40-60 samples per class; however, due to the extremely
limited number of samples from each part-number (10 from each), it is harder to learn part-number
classifiers. Besides, the differences among a few memory part-numbers, especially from IDT, REA,
and AMI, are not well-understood from their electrical characteristics mentioned in the datasheets.
For example, the only noticeable difference between IDT2 and IDT5 is how they are packed during
shipping (tube/tray vs. tape/reel). Hence, these two part-numbers might be equivalent based on
their electrical characteristics. Similarly, the following pair of the part-numbers- (IDT3, IDT6),
(REA1, REA2), and (REA3, REA4) do not have any recognisable difference other than their packing
method. Hence, to extract the perfect set of features to differentiate those chips (IDT2 vs. IDT5, IDT3
vs. IDT6, REA1 vs. REA2, and REA3 vs. REA4), we might require more detailed information about
the chip characteristics. On the other hand, the IDT1 and IDT4 memory chips are only differed by
the temperature grade, and possibly have only difference in their die packaging along with some
minor fabrication imperfections [48]. Hence IDT1 and IDT4 may have very subtle differences due to
the possible similarity in die architectural, layout, and systematic process variation. We found the
similar problem for AMI1 and AMI2, which are also only differed by the temperature grade 1°. Note
that, the difference between IDT1 and IDT4 (or, between AMI1 and AMI2) might still be captured
by using more train samples. Additionally, if we have more detailed information on chip design, we
may be able to identify the subtle difference due to die packaging. For example, the die packaging
and wire bonding should impact the characteristics of chips IOs; therefore, the peripheral circuitry
of memory chips communicating with IOs should have more impact due to the difference in die

OIDT1 and AMI1 are commercial grade (supports 0° to +70°C operating temperature); whereas, the IDT4 and AMI2 are
industrial grade (supports —40° to +85°C operating temperature).
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packaging. Hence, a feature that captures the memory peripheral characteristics should be more
suitable to capture the subtle variation due to die package variation. Unfortunately, understanding
the memory peripheral characteristics requires detailed design information on peripheral design,
which is only available to memory manufacturers.

In Table 5, we have also presented the summary result (only average test score) by changing the
operating temperature of the test samples to ~ 45°C. The 2" and last row of Table 5 represents the
average score for the manufacturer and part-number detection (respectively) from all manufacturers.
On the other hand, rows 3-7 represent the average score for part-number detection from the
corresponding manufacturer and the row 8 represents the average score for part-number detection
over all manufacturers. From Table 3, 4 and 5, it is apparent that our proposed technique is not
very sensitive to temperature. The temperature insensitivity of our selected features is reasonable;
previous work shows that varying +60°C only changes the SRAM start-up data by ~ 12% [52].

Table 5. Arithmetic mean of classification scores (at high temperature)

Classification A Target Class Outlier

goal P R F, P|R|F

Manufacturer (4”) | 0.97 [ 0.93 | 0.94 | 0.93 [0.99]0.98{0.98
CY (yM) 0.97 10.93 | 0.96 | 0.9310.99|0.97 | 0.98
IDT (yM) 0.8110.54|0.47|0.430.90|0.88 | 0.88
ISSI (,uM) 0.9510.93|0.88|0.870.97]0.97|0.97
AMI (/JM) 0.8210.76 | 0.73 | 0.72 10.89 | 0.87 | 0.86
REA (yM) 0.7310.58|0.55|0.480.85]0.78 | 0.81

u” 0.86 0.740.71 | 0.68 | 0.92 | 0.90| 0.91

Part-number

With the temperature increase, the average test score for manufacturer identification almost retain
the same score as of the nominal temperature. However, the average part-number identification
across all manufacturers is slightly degraded (presented in red in Table 5); for example, the F; score
to identify the target class reduced from 0.71 to 0.68 (presented in red in Table 5). Especially, the
SRAM chips from IDT and REA are affected most while we have increased the temperature. For IDT,
the average F; score for part-number identification is reduced by 19% (0.53 to 0.43), and for REA, the
F score is degraded by 9%. For IDT and REA, we expected such results as the features associated
with those part-numbers are very closely distributed (as explained in the previously). Hence, a
slight thermal noise on start-up data impacted the corresponding classifiers heavily. Interestingly,
the classification score improved by a little margin for AMI, although chips from AMI1 and AMI2
are closely located in feature-space (Fig. 6f). With closer observation, we have found that the
features from AMI1 impacted heavily at higher temperatures and shifted away from the AMI2,
which provided a relatively better separation between AMI1 and AMI2. The temperature sensitivity
of AMI1 is not surprising as AMI1 possesses a lower temperature grade than AMI2.

In Table 3, 4 and 5, we trained the classifier using only one entropy source (i.e., all features are
extracted from start-up data at nominal voltage). Our proposed technique can be further improved
if more features can be extracted from different entropy sources. For example, we collected three
sets of start-up data at low voltage (3.0V), nominal voltage (3.3V), and high voltage (3.6V) from
all IDT chips. Then, we only extracted feature ®;, ®4, ®4, and ®; from all of those three datasets
and concatenated them in a single feature set (total 12 features). We trained ML models from
train samples as we have done earlier and used the model to identify part-numbers from IDT. The
outcome of the experiment was aligned with our expectation; The average F; score of part-number
identification is improved to 0.6 from 0.53 (presented in cyan in Table 4).
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4.3 Identifying Recycled Memory Chips

As we explained in Sec. 3, the recycled (aged) and fresh (aged) SRAM chip can be distinguished
by only observing the number of 1’s in start-up data [26]. As our method also uses the number of
1’s as a feature (), our method is more generalized. Moreover, identifying the recycled chips by
observing the number of 1’s is only possible if the SRAM chips experience more logic “1" than the
logic “0" (skewed data distribution). Although such a scenario is practical over the natural usage
of the SRAM chips, we conducted an experiment without making the assumption of skewed data
distribution.

Il Fresh [ ]Aged

0.505

(a) Cypress Semiconductor (CY) (b) Integrated Device Technology (IDT)

Fig. 7. Visualizing feature distribution: fresh vs. aged.

Our experiment used the “accelerated aging" [27] method by continuously writing random bits
on SRAM chips. In accelerated aging, we exposed the memory chips in high voltage (3.6V) and high
temperature (80°C) for 1 hour and continuously wrote different random numbers (with the normal
distribution of 0’s and 1’s). The temperature of the chip was controlled by a thermostream system
[65]. We collected start-up data before and after the aging process and extracted features from
them. The aging process is time-consuming, and we had limited access to the thermostream system;
hence, we were only able to experiment with a limited number of chips. Our experiment used used
2 SRAM chips from each part-number of CY and IDT (10 CY chips and 12 from IDT). Although
this small number of chips is not sufficient for the ML algorithm, our experiment demonstrates the
impact of the aging process on features that are selected in Sec. 3.3.

We presented the distribution of the features from fresh chips and aged chips in Fig. 7. Fig. 7a and
7b represent feature distribution for CY and IDT, respectively. Because of using random numbers
(uniform distribution of 0’s and 1’s) to age the device, we have an unpredictable shift on the ®;
(number of 1’s) distribution, which is used in previously proposed method to identify recycled
SRAM chips [26]. However, we observed some other features might be extremely useful even with
the presence of the uniform data pattern. For example, the distribution of ®; (number of noisy
signature bits) always tends to shift towards 0. With sufficient aging, the distribution of ®; from the
fresh and aged chips will be completely separable. During the aging process with the random data
pattern, the number of 0’s or 1’s experienced by each memory cell will be a normal distribution.
Hence, some of the noisy signature bits (located at distribution tail) will experience more 0’s or
1’s than others. With the same argument presented in [26], we can argue that this will bias those
noisy signature bits either toward “1" or “0" and reduce the total number of noisy signature bits
(see Sec. 3.1 for details). Note that, even with the biased data pattern (dominate by “0" or “1"), the
number of the noisy signature bits will also be reduced (noisy signature bits will achieve either
stable “1" or “0").

We also observe a shift in the distribution of other features. For example, now the compression
ratio is closer to 1 (distribution of ®,). This is also understandable as the random distribution on
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the data pattern biased the SRAM cells randomly and randomizes the start-up data. However, this
distribution might shift upward if the usage data pattern is biased towards either “0" or “1" (i.e.,
start-up data will have more “1" or “0" after usages). Hence, imposing a boundary condition on @,
distribution might also be helpful to identify recycled SRAMs.

4.4 Evaluation Time

Our proposed method is aimed to identify counterfeit memory chips from the consumer end (or
at least start-up signature should be collected at consumers’ end (See Fig. 4)). Nevertheless, our
proposed method can also be scaled up for bulk testing. A single FPGA or high-speed embedded
system can be used to collect and analyze data for bulk testing purposes. The average access time
for a Commercial off-the-shelf (COTS) SRAM is <15ns/word. Hence the total access time for a 4Mb
(256Kx16) SRAM is <4ms (=15nsx256K). In our experiment, we have collected start-up data 20
times. Additionally, to avoid the discharge inversion effect, the sampling interval of 10s should
be more than sufficient [44]. The inference time of the machine learning model is very negligible
compared to the data collection process (order of us). Hence, the total time required to test an
SRAM chips’ authenticity is ~3min (x19x10s+20x4ms), which is the time required for collecting
the SRAM start-up data.

5 DISCUSSION
5.1 Scope and Limitations

Identifying memory manufacturer and part-number are useful for identifying many counterfeitings,
which might be introduced at a different supply chain stage. In our proposed method, we extracted a
set of features to capture the architectural, layout, and process variations among the memory chips
manufactured by different manufacturers with different specification sets. Although identifying
manufacturer/part-number does not identify recycled chips directly, our proposed feature-set can
differentiate between new and recycled chips, as the device properties are changed over time
(explained in Sec 3.1 and 4.3). The tampered and out-of-spec/defective memory chips usually have
some fundamental differences at the silicon level, either intentionally introduced by the untrusted
facility center or due to the fabrication imperfection. Therefore, feature-set extracted from these
types of counterfeit chips should have different characteristics from the authentic chips. For reverse-
engineered chips, the counterfeiter usually recovers the functional netlist by depackaging the chip
by some electrochemical process and inspecting the chip die by some imaging techniques [21, 23].
Once the netlist is constructed, the counterfeiter can use it for layout design and fabricating new
chips without incurring any R&D cost on developing the netlist. The reverse-engineered memory
chips are usually differed by layout design and process variation. Therefore, our proposed feature
set should be able to capture this type of counterfeiting. In cloned counterfeit type, the counterfeit
chips are at least differed by the process variation, i.e., the final GDSII is cloned by the counterfeiter
but fabricated in a different fabrication facility. Therefore, the cloned chips can also be identified
by our proposed technique. Finally, the remarked chips are completely different from the authentic
chips, where the manufacturer name and the part-number are altered; therefore, our proposed
method can also identify the cloned chips. Unfortunately, our proposed method might not be able to
identify the forged documented and overproduced chips as they are usually designed and fabricated
with the same entity; hence, they usually have similar architectural, layout, and process variations.

5.2 Future Work

In our future work, we aim to explore more robust entropy sources across the temperature and
voltage variation but are sensitive to usage. Additionally, ML model accuracy largely depends on
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feature selection/extraction techniques; hence, we emphasize exploring more features to improve
our algorithm. For instance, many well-known features that work well with the binary image
classification [37] might also be used to extract features from binary memory signature. We also like
to explore the correlation between the feature-set and the technology node, which might provide
some deeper insight into features that can add value to our feature selection technique.

6 CONCLUSION

This article presents a non-invasive and low-cost technique to (i) identify the memory manufacturer
and part-number and (ii) recycled SRAM chips without requiring any additional hardware. This
proposed framework has potential to use for other volatile and nonvolatile memory chips and help
stop spreading them in the supply chain. Finally, to train a more practical and accurate ML model,
we need more train samples which might require an industry scale setup and crowd-sourcing.
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