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Computing the Characteristic Polynomial of Endomorphisms of a finite

Drinfeld Module using Crystalline Cohomology
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We present a new algorithm for computing the characteristic polynomial of an arbitrary endomorphism of a finite Drinfeld module

using its associated crystalline cohomology. Our approach takes inspiration from Kedlaya’s ?-adic algorithm for computing the char-

acteristic polynomial of the Frobenius endomorphism on a hyperelliptic curve using Monsky-Washnitzer cohomology. The method is

specialized using a baby-step giant-step algorithm for the particular case of the Frobenius endomorphism, and in this case we include

a complexity analysis that demonstrates asymptotic gains over previously existing approaches.

CCS Concepts: • Computing methodologies→ Symbolic and algebraic algorithms.
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1 Introduction

Drinfeld modules were first introduced by Vladimir Drinfel’d in order to prove the Langlands conjecture for GL=

over a global function field [11]. Since then, Drinfeld modules have attracted attention due to the well established

correspondence between elliptic curves and the rank two case. Moreover, the rank one case, often referred to as Carlitz

modules, provides a function field analogy of cyclotomic extensions; the role played in class field theory over number

fields by elliptic curves with complex multiplication shows strong parallels with that of Drinfeld modules of rank two

for the function field setting. This has motivated efforts to translate constructions and algorithms for elliptic curves,

including modular polynomials [6], isogenies [6], and endomorphism rings [13, 27].

Naturally, cryptographic applications of Drinfeld modules have also been explored [28], but were long anticipated

to be vulnerable for public key cryptography based on isogenies [23, 36]. This question was finally put to rest by

Wesolowski who showed that isogenies between Drinfeld modules of any rank could be computed in polynomial

time [38].

Drinfeld modules of rank A > 2 do not have such a clear parallel, although an analogy exists between abelian surfaces

and so called C-modules [1]. Owing to this discrepancy, rank two Drinfeld modules have been studied far more closely

than the case of more general ranks.

The main goal of this work is to study a Drinfeld module analogue of ?-adic techniques such as Kedlaya’s algo-

rithm [25] for computing the characteristic polynomial of the Frobenius endomorphism acting on an elliptic or hy-

perelliptic curve over a finite field. Algorithms for elliptic curves compute the action of the Frobenius on a basis of a

particular subspace of the de Rham cohomology of a characteristic 0 lift of the curve, with coefficients in Q? . Our ap-

proach follows a very similar outline, but turns out to be remarkably simpler to describe, resting crucially on a suitable

version of crystalline cohomology for Drinfeld modules due Gekeler and Anglès [2].

More generally, the approach we present can be used to compute the characteristic polynomial of any Drinfeld

module endomorphism.
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2 Background and Main result

2.1 Basic Preliminaries

Let ' be any ring, A ∈ ', and f : ' → '′ a ring homomorphism. We will follow the notational convention that

writes f (A ) = fA = Af throughout this work. If ' is a polynomial ring and f acts on its coefficient ring, Af denotes

coefficient-wise application.

Let @ be a prime power, and let F@ denote a finite field of order @, fixed throughout. We also fix a field extension L

of F@ such that [L : F@] = =. Explicitly, L is defined as L = F@ [C]/(ℓ (C)) for some degree = irreducible ℓ (C) ∈ F@ [C],
so elements of L are represented as polynomials in F@ [C] of degree less than =. We will discuss below an alternative

representation, better suited for some computations.

2.2 Drinfeld Modules

In general, Drinfeld modules can be defined over a ring � consisting of the functions of a projective curve over F@

that are regular outside of a fixed place at infinity. For our purposes, we will restrict ourselves to the consideration of

Drinfeld modules defined over the regular function ring of P1 − {∞}; that is � = F@ [G].
We fix a ring homomorphism W : � → L and let p ∈ � the monic irreducible generator of kerW . Then Fp =

F@ [G]/(p) is isomorphic to a subfield of L; we let < = deg(p), so that < divides =. This gives us an isomorphism

L ≃ F@ [G, C]/(p(G), 6(G, C)), with 6 monic of degree =/< in C . It will on occasion be convenient to switch from the

representation of elements of L as univariate polynomials in C to the corresponding bivariate representation in G, C ; in

that case, for instance, WG is simply the residue class of G modulo (p(G), 6(G, C)). We assume that p and 6 are given as

part of the input.

To define Drinfeld modules, we also have to introduce the ring L{g} of skew polynomials, namely

L{g} = {* = D0 + D1g + · · · + DBgB | B ∈ N, D0, . . . , DB ∈ L},

where multiplication is induced by the relation gD = D@g , for all D in L.

Definition 1. A Drinfeld �-module of rank r over over (L,W) is a ring homomorphism q : �→ L{g} such that

qG = WG + Δ1g
1 + . . . + ΔAgA

with Δ8 in L for all 8 and ΔA ≠ 0.

For readers interested in the more general setting under which Drinfeld modules are typically defined, we recom-

mend the survey by Deligne and Husemöller in [9].

A Drinfeld module is defined over the prime field when L � Fp (that is,< = =). Algorithms for Drinfeld modules

in the prime field case tend to be algorithmically simpler, and we will often highlight the distinction with the more

general case.

Example 1. Let F@ = Z/5Z and = = 4. Set ℓ (C) = C4 + CG2 + 4C + 2 and L = F5 [C]/(ℓ (C)). Let WG = C mod ℓ (C), in which
case L = Fp. A rank two Drinfeld module is given by qG = g2 + g + C .

We may instead take WG = C3 + C2 + C + 3 mod ℓ (C) in which case p = G2 + 4G + 2 and Fp � F25. The field L admits the

representations

L = F5 [C]/(ℓ (C)) ≃ F5 [G, C]/(p(G), 6(G, C)),

with 6(G, C) = C2 + 4CG + 3C + G . A rank three Drinfeld module is given by qG = g3 + (C3 + 1)g2 + Cg + C3 + C2 + C + 3.
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Given Drinfeld �-modules q,k defined over (L,W), an L-morphism D : q → k is a D ∈ L{g} such that Dq0 = k0D

for all 0 ∈ �. The set EndL (q) is the set of L-morphisms q → q ; it is therefore the centralizer of qG in L{g}. It admits

a natural ring structure, and contains the Frobenius endomorphism g= .

2.3 Characteristic Polynomials

The characteristic polynomial of an endomorphism D ∈ EndL (q) can be defined through several points of view.

Through the action of q , � = F@ [G] and its fraction field  = F@ (G) can be seen as a subring, resp. subfield of the

skew field of fractions L(g) of L{g}. Then, End0
L
(q) = EndL (q) ⊗�  is the centralizer of qG in L(g); this is a division

ring that contains  in its center.

Definition 2. The characteristic polynomial CharPoly(D) of D ∈ EndL (q) is its reduced characteristic polynomial,

relative to the subfield  of End0
L
(q) [35, Section 9.13].

The characteristic polynomial of D has degree A and coefficients in� ⊂  , so that it belongs to�[/ ]. More precisely,

if deg(D) = 3 , CharPoly(D) has coefficients 00, . . . , 0A−1 ∈ � with deg(08) ≤ 3 (A − 8)/A for all 8 [27, Prop. 4.3] and

satisfies

DA +
A−1∑

8=0

q08D
8 = 0. (1)

Another definition of CharPoly(D) follows from the introduction of the Tate modules of q . The Drinfeld module q

induces an �-module structure on the algebraic closure L of L by setting 0 ∗ 2 = q0 (2) for 0 ∈ �, 2 ∈ L (defining

g8 (2) = 2@
8
). Then, for l ∈ �, the l-torsion module of q is defined as q [l] = {2 ∈ L | l ∗ 2 = 0}. Setting l to be any

irreducible element of � different from p, we can define the l-adic Tate module as )l (q) = lim←−−q [l
8 ].

Letting �l be the l-adic completion of �, )l (q) becomes a free �l-module of rank A and elements of EndL (q) in-
duce endomorphisms on )l (q). Then, for D ∈ EndL (q), the characteristic polynomial CharPoly�l

(D) of the induced
endomorphism D ∈ End�l

()l (q)) agrees with CharPoly(D) [2, 17].

Example 2. Let F@ , L be as in the context of example 1, and WG = C3 + 4C2 + C + 1 mod ℓ (C). A rank 5 Drinfeld module

is given by qG = (4C3 + C2 + 2)g5 + (C3 + 3C2 + C + 1)g4 + (4C + 3)g3 + (3C2 + 4C + 4)g2 + (4C3 + 4C2 + 4C)g + WG .
The characteristic polynomial of g= on q is /5 + 3/4 + (G3 + 4G2 + G)/3 + (2G2 + 4G + 3)/2 + (G3 + 2G2 + 4G + 2)/

+2G4 + 3G2 + 4G + 2

The results in this paper are based on another interpretation of CharPoly(D), as the characteristic polynomial of the

endomorphism induced by D in a certain crystalline cohomologymodule, due to Gekeler and Anglès [2]. Our first main

result is an algorithm for computing the characteristic polynomial of the Frobenius endomorphism.

Here, l is a real number such that two B × B matrices over a ring ' can be multiplied in $ (Bl ) ring operations in ';
the current best value is l ≤ 2.372 [12]. We will also let _ denote an exponent such that the characteristic polynomial

of an B × B matrix over a ring ' can be computed in $ (B_) ring operations in '. When ' is a field, this can be done

at the cost of matrix multiplication and therefore _ = l [32]. For more general rings, the best known value to date is

_ ≈ 2.7 [24].

Theorem 1. Let q be a rank A Drinfeld module over (L,W). There is a deterministic algorithm to compute the charac-

teristic polynomial of the Frobenius endomorphism g= with bit complexity

• (Al=1.5 log@ + = log2 @)1+> (1) for the prime field case (< = =)
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• ((A_/< + Al/
√
<)=2 log@ + = log2 @)1+> (1) for the general case< < =.

When A and @ are fixed, the runtime in the theorem is thus essentially linear in =2/
√
<, which is =1.5 in the prime

field case and gets progressively closer to =2 as< decreases. The best prior results [30] were limited to the case A = 2,

with runtimes essentially linear in =1.5 in the prime field case and =2 otherwise (for fixed @).

This first algorithm builds upon techniques for linear recurrences originating from [10], which are so far limited to

the particular case of the Frobenius endomorphism.

We also obtain two algorithms that can be applied to any D ∈ EndL (q). The complexity in this case partly depends

on that of multiplication and Euclidean division in L{g}, which we will denote SM(3,=,@) and which will be discussed

in more detail in Section 3.

Theorem 2. With assumptions as in Theorem 1, there are deterministic algorithms to compute the characteristic poly-

nomial of an endomorphism D of degree 3 with bit complexities

•
(min(3A 2,(3+A )Al−1)

< (3 +<)= log@ + A_=(3 +<)/< log@ + = log2 @
)1+> (1)

• (ASM(3 + A, =,@) + A_=(3 +<)/< log@ + = log2 @)1+> (1) .

Again, it is worth considering the situation with A and @ fixed. In this case, the runtimes we obtain are, respectively,

essentially linear in 3 (3 +<)=/< and SM(3,=, @). In the next section, we review known values for SM; for the best

known value of l , and fixed @, it is (31.69=)1+> (1) for 3 ≤ =0.76, and (3=1.52)1+> (1) otherwise. In the case 3 = Θ(=), the
runtimes are thus essentially linear in =3/< and =2.53, respectively (so which is the better algorithm depends on the

value of<). For D = g= , the algorithm in the previous theorem is of course superior.

3 Computational Preliminaries

The key element in our complexity analyses is the cost of the following operations in L: addition/subtraction, multi-

plication, inverse and (iterated) Frobenius application.

Some of the algorithms we use below (multiplication and Euclidean division in L{g} from [7, 34]) assume that all

these operations can be done using $˜(=) operations in F@ . For the representation of L we use, this is however not

known to be the case; Couveignes and Lercier proved the existence of “elliptic bases” that satisfy these requirements [8],

but conversion to our representation does not appear to be obvious.

This explains why in our main result, we do not count operations in F@ , but bit operations instead (our complexity

model is a standard RAM); we explain below how this allows us to bypass the constraints above.

Using FFT based algorithms, polynomials of degree at most = with coefficients in F@ can be multiplied in boolean

time (= log@)1+> (1) [5, 20]. It follows that elementary field operations (addition, multiplication, inversion) in L =

F@ [C]/(ℓ (C)) can be done with the same asymptotic cost.

Conversions between univariate and bivariate representations for elements of L take the same asymptotic runtime.

Denote by U the isomorphism L = F@ [C]/(ℓ (C)) → F@ [G, C]/(p(G), 6(G, C)); then, given 5 of degree less than = in F@ [C],
we can compute the image U ( 5 mod ℓ (C)) in (= log@)1+> (1) bit operations; the same holds for U−1 [22, 33].

The last important operation is the application of the @-power Frobenius in L. Recall that given polynomials 5 , 6, ℎ ∈
F@ [G] of degree at most =, modular composition is the operation that computes 5 (6) mod ℎ. As showed in [15], for 2

in L = F@ [C]/(ℓ (C)), 2@ can be computed in the same asymptotic time (up to logarithmic factors) as degree = modular

composition, following a one-time precomputation that takes (= log2 @)1+> (1) bit operations. This then extends to
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arbitrary powers (positive and negative) of the Frobenius. We should point out that modular composition techniques

also underlie the algorithms for switching between the two representations of the elements in L mentioned above.

In [26], Kedlaya and Umans proved that modular composition in degree = can be computed in (= log@)1+> (1) bit op-
erations (see also the refinement due to van der Hoeven and Lecerf [22]), whence a similar cost for (iterated) Frobenius

in L. Here, the fact that we work in a boolean model is crucial: Kedlaya and Umans’ algorithm is not known to admit

a description in terms of F@-operations.

From this, we can directly adapt the cost analyses in [7, 34] to our boolean model. In particular, following the latter

reference (which did so in an algebraic cost model), we let SM(3,=, @) be a function such that

• degree 3 multiplication and right Euclidean division in L{g} can be done in $ (SM(3,=, @)) bit operations
• for =,@ fixed, 3 ↦→ SM(3,=,@)/3 is non-decreasing.

The latter condition is similar to the super-linearity of multiplication functions used in [14], and will allow us to stream-

line some cost analyses. Unfortunately, there is no simple expression for SM(3,=,@): on the basis of the algorithms

in [7, 34], the analysis done in [7] gives the following upper bounds:

• for 3 ≤ = (5−l)/2, we can take SM(3,=,@) in (3 (l+1)/2= log@)1+> (1)

• else, we can take SM(3,=,@) in (3=4/(5−l) log@)1+> (1)

For instance, with 3 = =, this is (= (9−l)/(5−l) log@)1+> (1) .
With l = 2.37, the cost is (31.69= log@)1+> (1) for 3 ≤ =0.76, and (3=1.52 log@)1+> (1) otherwise; the exponent for

3 = = is 2.53. For completeness, we point out that these algorithms heavily rely on Frobenius applications, and as such,

require spending the one-time cost (= log2 @)1+> (1) mentioned previously.

One should also keep in mind that these asymptotic cost analyses are not expected to reflect practical runtimes. To

the authors’ knowledge, software implementations of the Kedlaya-Umans algorithm achieving its theoretical complex-

ity, or of matrix multiplication with exponent close to 2.37, do not currently exist. For practical purposes, implementa-

tions of modular composition use an algorithm due to Brent and Kung [4], with an algebraic complexity of$ (= (l+1)/2)
operations in F@ . Revisiting skew polynomial algorithms and their analyses on such a basis is work that remains to be

done.

4 Prior Work

The question of computing the characteristic polynomial, particularly of the Frobenius endomorphism, was studied in

detail in [18] for the rank two case only.

The most general approach constructs a linear system based on the degree constraints of the coefficients 08 =
∑= (A−8)/A
9=0 08, 9G

9 . Evaluating the characteristic polynomial at the Frobenius element and equating coefficients gives a

linear system based on

g=A +
A−1∑

8=0

= (A−8)
A∑

9=0

= (A−8)∑

:=0

08, 9 59,:g
:+=8 = 0, (2)

with 59,: the coefficients ofqG 9 . Letting MinPoly(g=) denote theminimal polynomial ofg= (as an element of the division

algebra End0
L
(q) over the field  = F@ (G)), the solution of the preceding system is unique and yields the characteristic

polynomial if and only if MinPoly(g=) = CharPoly(g=).
Garai and Papikian gave an algorithm for computing the characteristic polynomial [13, §5.1] valid for the prime

field case only. As with the previous approach, this relies on the explicit computation of qG8 , which is the dominant
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computational step. This can be done by $ (=2) evaluations of the recurrence

58+1, 9 = W
@ 9

G 58, 9 +
A∑

C=1

Δ
@ 9−C

C 58, 9−C .

Thus the bit complexity of computing all of qG , qG2 , . . . , qG= is (A=3 log(@))1+> (1) .
Further study of algorithms for the specific case of the Frobenius endomorphism in rank A = 2 was done in [31]

and [30]. The latter focused on the complexity of the algorithms and used the same computational model that will

be used here. As we reported after Theorem 1, the best known runtime to date was quadratic in =, except in the case

where MinPoly(g=) = CharPoly(g=), or in the prime field case where a bit cost of (=1.5 log@+= log2 @)1+> (1) is possible
[10]. To our knowledge, no previous analysis is available for an arbitrary endomorphism D .

In the context of elliptic curves, Kedlaya’s algorithm [25] computes the characteristic polynomial of a matrix rep-

resentation of the lift of the Frobenius action to a subspace of the Monsky-Washnitzer cohomology, up to some finite

precision. Our algorithm follows the same high-level approach: we compute a matrix for the endomorphism acting on

the crystalline cohomology with coefficients in a power series ring analogue to Witt vectors. The induced endomor-

phism turns out to be quite simple to describe in terms of skew-polynomial multiplication, which eliminates the need

for a complicated lifting step.

5 Crystalline Cohomology

In this section, we first review the construction of the crystalline cohomology of a Drinfeld module and its main

properties; this can be found in [2], where the definition is credited to unpublished work of Gekeler. Then, we introduce

truncated versions of these objects, which reduce the computation of characteristic polynomials of endomorphisms of

a Drinfeld module to characteristic polynomial computations of matrices over truncated power series rings.

5.1 Definition

The contents of this subsection is from [2, 16]. The set of derivations � (q,L) of a Drinfeld module q is the set of

F@-linear maps [ : �→ L{g}g satisfying the relation

[01 = W0[1 + [0q1 , 0,1 ∈ �

Let then ~ be a new variable. The set � (q,L) can be made into an L[~]-module in the following manner.

Definition 3. [2, Section 2] The set � (q,L) is an L[~]-module under (2~8 ∗ [)0 = 2[0qG8 , for [ in � (q, L), 2 in L,
8 ≥ 0 and 0 in �.

Let further � be the ideal of L[~] generated by ~ − WG ; for : ≥ 1, we set

,: = L[~]/�:

and

, = lim←−− ,: � L[[~ − WG ]] .

Thus, comes equipped with projections c: :, →,: obtained by truncation of a power series, written as sum of

powers of (~ − WG ), in degree : . We have canonical ring homomorphisms ]: : � → ,: given by ]: (G) = ~ mod �: .

They lift to an inclusion ] : �→, , simultaneously commuting with each c: , which represents elements of� via their

� -adic expansion.
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The crystalline cohomology � ∗crys(q,L) of q is the, -module, ⊗L[~ ] � (q, L), that is, the completion of � (q,L) at
the ideal � = (~ − WG ) of L[~].

Gekeler proved that � (q,L) is a projective, hence free, L[~]-module of rank A [16], with canonical basis [̂ (8) such

that [̂ (8) (G) = g8 for 1 ≤ 8 ≤ A . From this, it follows that � ∗crys(q,L) is a free, -module of rank A as well, as pointed

out in [2].

Remark 1. In that reference, � is not necessarily a polynomial ring, and L[~] is replaced by �L := L ⊗F@ A. In this

case, � (q,L) is a projective �L-module of rank A , the definition of ideal � changes, but it remains maximal in �L, so the

completion, of �L at � is still a local ring and �
∗
crys(q,L) is still free of rank A over, .

An endomorphism D ofq induces an L[~]-endomorphism D∗ of� (q,L), defined as (D∗([))G = [GD , for [ in � (q,L);
the same holds for the completion � ∗crys(q,L). Following [2], using the fact that � ∗crys(q,L) is free over, , one can

then define the characteristic polynomial CharPoly, (D∗) in the usual manner.

Recall now that CharPoly(D) denotes the characteristic polynomial of D , as defined in Section 2.3. The following

theorem due to Anglès [2, Thm. 3.2] relates this characteristic polynomial to that of the induced endomorphism on

� ∗crys(q,L), where ] below acts coefficient-wise.

Theorem 3. For D in EndL (q), CharPoly(D)] = CharPoly, (D∗).

5.2 Truncated Cohomology

Recall now that p ∈ � is the minimal polynomial of WG ∈ L over F@ . For : ≥ 1, we are going to define an F@-linear

homomorphism j: such that the following diagram commutes:

,

� ,:

F@ [~]/(p(~): )

c:

\: :5 (G) ↦→5 (~) mod p(~):

]:

]

j:

There exists an isomorphism

): : F@ [G,~]/(p(G), (~ − G): ) → F@ [~]/(p(~): );

see e.g. [29, Lemma 13]. On the other hand, recall that L = F@ [C]/(ℓ (C)) is isomorphic to

F@ [G, C]/(p(G), 6(G, C)),

for some 6 in F@ [G, C], monic of degree =/< in C ; in this representation of L, WG is simply (the residue class of) G . As a

result, we get

,: = F@ [C, ~]/(ℓ (C), (~ − WG ): )

≃ F@ [G, C, ~]/(p(G), 6(G, C), (~ − G): )

≃ F@ [~, C]/(p(~): ,�: (~, C)), (3)

for a certain polynomial �: ∈ F@ [~, C], monic of degree =/< in C .
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We can then define j: :,: → F@ [~]/(p(~): ) by

j: :
∑

0≤8<=/<
28C
8 ↦→ 20,

and we verify that it satisfies our claim. The details of how to compute this homomorphism are discussed in Section 6.

For : ≥ 1, we further define the precision : cohomology space � ∗
:
(q,L) as the,: -module

� (q, L)/�: � (q, L) ≃ � ∗crys(q,L)/�: � ∗crys(q,L).

It is thus free of rank A , and an endomorphism D of q induces a,: -linear endomorphism D∗
:
of � ∗

:
(q,L).

Remark 2. In [16], Gekeler introduced de Rham cohomology of Drinfeld modules; this is the case : = 1 in this con-

struction (in which case,: = L).

In the following claim, recall that for a polynomial % and for any map j acting on its coefficient ring, we let % j

denote coefficient-wise application of j to % .

Corollary 4. For D in EndL (q) and : ≥ 1, CharPoly(D)\: = CharPoly,:
(D∗
:
)j: .

Proof. Apply j: ◦ c: coefficient-wise to the equality in Theorem 3. �

If D has degree 3 in g , we know that all coefficients of CharPoly(D) have degree at most 3 , so they can be recovered

from their reductions modulo p: for : = ⌈3+1< ⌉ ∈ $ ((3 +<)/<). In the prime field case, where < = =, and for the

special case D = g= , the above formula gives : = 2, but we can take : = 1 instead; this is discussed in Section 6.4.

Note also that if we take : = 3 + 1, there is no need to consider the map j: : on the representation of,3+1 as

,3+1 = F@ [G, C, ~]/(p(G), 6(G, C), (~ − G)3+1),

for 5 of degree up to 3 , ]: ( 5 ) is simply the polynomial 5 (~), so we can recover 5 from ]: ( 5 ) for free. We will however

refrain from doing so, as it causes : to increase.

6 Main Algorithms

We will now see how the former discussion can be made more concrete, by rephrasing it in terms of skew polynomials

only. The evaluation map [ ↦→ [G gives an additive bijection � (q, L) → L{g}g . This allows us to transport the L[~]-
module structure on � (q, L) to L{g}g : one verifies that it is given by (2~8 ∗[) = 2[qG8 , for [ in L{g}g , 2 in L and 8 ≥ 0,

and that B = (g, . . . , gA ) is a basis of L{g}g over L[~].
Further, an endomorphism D ∈ EndL (q) now induces an L[~]-linear endomorphism D★ : L{g}g → L{g}g simply

given byD★(E) = ED for E inL{g}g . Reducingmodulo the ideal �: ⊂ L[~], we denote byD★
:
the corresponding,: -linear

endomorphism on the quotient module L{g}g/�:
L
L{g}g ≃ � ∗

:
(q,L).

We can then outline the algorithm referenced in Theorems 1 and 2; its correctness follows directly from Corollary

4 and the bound on : given previously.

(1) Set : = ⌈3+1< ⌉, with 3 = degg (D), except if = =< and D = g= (in which case we can take : = 1)

(2) Compute the coefficients D8,1, . . . , D8,A ∈,: of g8D mod �: on the basis B, for 8 = 1, . . . , A

(3) Using the coefficients computed in step 2, construct the matrix for D★
:
acting on L{g}g/�:

L
L{g}g and compute

its characteristic polynomial CharPoly,:
(D★
:
) ∈,: [/ ]

(4) Apply the map j: to the coefficients of CharPoly,:
(D★
:
) to recover CharPoly(D)\: , and thus CharPoly(D).
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In Subsections 6.1 to 6.3, we discuss how to complete Step 2: we give two solutions for the case of an arbitrary

endomorphism D , and a dedicated, more efficient one, for D = g= . We freely use the following notation:

• for 2 in L and C ∈ Z, let 2 [C ] denote the value of the Cth power Frobenius applied to 2 , that is, 2 [C ] = 2@
C

• for 5 in L[~], 5 [C ] ∈ L[~] is obtained by applying the former operator coefficient-wise, so deg( 5 ) = deg( 5 [C ] )
• for " = (<8, 9 )1≤8≤D,1≤ 9≤E in L[~]D×E ," [C ] is the matrix with entries (< [C ]8, 9 )1≤8≤D,1≤ 9≤E .

Finally, we define ` = (~ − WG ): ∈ L[~] (with the value of : defined above); it generates the ideal �: in L[~].

6.1 Using a Recurrence Relation

The following lemma is a generalization of a recurrence noted by Gekeler [19, Section 5] for A = 2. Recall that we write

qG = WG + Δ1g
1 + . . . + ΔAgA , with all Δ8 ’s in L; in the expressions below, we write Δ0 = WG .

Lemma 1. For any C ≥ 1, the following relation holds in the L[~]-module L{g}g :
A∑

8=0

Δ
[C ]
8 gC+8 = ~ ∗ gC . (4)

Proof. This follows directly from the module action of L[~] on L{g}g , by commuting gC across the defining coeffi-

cients Δ8 of q :

~ ∗ gC = gCqG = gC
A∑

8=0

Δ8g
8 =

A∑

8=0

Δ
[C ]
8 gC+8 . �

For 8 = 0, . . . , A − 1, let Λ8 = − Δ8
ΔA

and define the order C companion matrix for the recurrence, AC ∈ L[~]A×A , as

AC =



Λ
[C ]
A−1 Λ

[C ]
A−2 . . . Λ

[C ]
1 Λ

[C ]
0 +

~

Δ
[C ]
A

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



(5)

For C ≥ 1, let ^C ∈ L[~]1×A denote the coefficient vector of gC with respect to the standard basis B. Then, we have the
following relation between A × A matrices over L[~]:



^C+A
^C+A−1
...

^C+1



= AC



^C+A−1
^C+A−2
...

^C



(6)

For : ≥ 1, these relations can be taken modulo `, to give equalities over,: = L[~]/`; below, we will write ¯̂C =

^C mod ` ∈, 1×A
:

.

Starting from ¯̂C , . . . , ¯̂C+A−1, we obtain ¯̂C+A−1 using $ (A ) operations (divisions, Frobenius) in L to obtain the coeffi-

cients appearing on the first row ofAC , followed by $ (:A ) operations in L to deduce the entries of ¯̂C+A .
Below, we will need ¯̂1, . . . , ¯̂3+A . Altogether, computing them takes ((3 +A ):A= log@)1+> (1) bit operations; with our

chosen value of : , this is also

((3 + A )(3 +<)A=/< log@+)1+> (1) .
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Let us then write D = D0 + · · · + D3g3 . For 8 = 1, . . . , A , we have

g8D = D
[8 ]
0 g8 + · · · + D [8 ]3 g3+8 ,

so the coefficient vector [D8,1 · · ·D8,A ] ∈,: of g8D mod �: on the basis B is given by the product

[D [8 ]0 · · · D [8 ]
3
]



¯̂8

¯̂8+1
...

¯̂8+3



∈, 1×A
:

.

Each such operation takes $ (3:A=) operations in L, for a total of (3 (3 +<)A2=/< log@)1+> (1) bit operations if done
independently of one another (this is the dominant cost in the algorithm).

In cases when 3 is not small compared to A , we can reduce the cost slightly using matrix arithmetic, since all

coefficient vectors we want can be read off an A × (3 + A ) × A matrix product,



D
[1]
0 · · · D

[1]
3

0 · · · · · · 0

0 D
[2]
0 · · · D

[1]
3

0 · · · 0

. . .
. . .

0 · · · · · · 0 D
[A ]
0 · · · D

[A ]
3





¯̂1

¯̂8+1
...

¯̂3+A



∈, A×A
:

.

This takes ((3 + A )(3 +<)Al−1=/< log@)1+> (1) bit operations.

6.2 Using Euclidean Division

This section describes an alternative approach to computing the coefficients of an endomorphism D on the canonical

basis B. Computations are done in L[~] rather than,: = L[~]/` (we are not able to take reduction modulo ` into

account in the main recursive process).

The algorithm is inspired by a well-known analogue for commutative polynomials [14, Section 9.2]: for a fixed

0 ∈ L[~] of degree A , we can rewrite any 5 in L[~] as 5 =
∑
0≤8<A 58 (0)~8 , for some coefficients 50, . . . , 5A−1 in L[~].

This is done in a divide-and-conquer manner.

This approach carries over to the non-commutative setting. We start by showing how 5 of degree 3 in L{g} can be

rewritten as

5 =
∑

8

58q
8
G ,

for some 58 of degree less than A in L{g}. If we let  be such that 3 <  A ≤ 23 , with  a power of 2, index 8 in the sum

above ranges from 0 to  − 1.
If  = 1, we are done. Else set  ′ =  /2, and compute the quotient 6 and remainder ℎ in the right Euclidean division

of 5 by q 
′

G , so that 5 = 6q 
′

G + ℎ. Recursively, we compute 60 . . . , 6 ′−1 and ℎ0, . . . , ℎ ′−1, such that

6 =
∑

0≤8< ′
68q

8
G and ℎ =

∑

0≤8< ′
ℎ8q

8
G .

Then, we return ℎ0, . . . , ℎ ′−1, 60, . . . , 6 ′−1. The runtime of the whole procedure is $˜(SM(3,=,@)) bit operations,
with SM as defined in Section 3 (the analysis is the same as the one done in the commutative case in [14], and uses the

super-linearity of SM with respect to 3).
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From there, we are able to compute the coefficients of 5 ∈ L{g}g on the monomial basis B. This essentially boils

down to using the procedure above, taking care of the fact that 5 is a multiple of g . Factor g on the left, writing 5 as

g6: if 5 = �g , 6 = � [−1] . Apply the previous procedure, to write 6 =
∑

0≤8≤B 68q
8
G , with all 6′8 of degree less than A and

B ≤ 3/A .
This gives 5 = g6 =

∑
0≤8≤B (6

[1]
8 g)q8G , with all coefficients 6 [1]8 g supported on g, . . . , gA . Extracting coefficients of

g, . . . , gA , we obtain polynomials�1, . . . ,�A of degree at most B in L[g] such that 5 =
∑
1≤8≤A �8 ∗ g8 .

The cost of left-factoring g in 5 , and of multiplying all coefficients of6 back by g , is (3= log@)1+> (1) , so the dominant

cost is $˜(SM(3,=, @)) bit operations from the divide-and-conquer process. To obtain the matrix of an endomorphism

D of degree 3 , we apply A times this operation, to the terms g8D , 8 = 1, . . . , A . The runtime is then dominated by

$˜(ASM(3 + A, =, @)). Finally, reducing the entries of the matrix modulo ` = (~ − WG ): takes softly linear time in the

size of these entries, so can be neglected.

6.3 Special Case of the Frobenius Endomorphism

In the particular case where D = g= , we may speed up the computation using a baby-step giant-step procedure, based

on the approach used in [10]. As a first remark, note that for D = g= , 3 = = and : in $ (=/<).
In this case, it is enough to compute the vectors ¯̂=+1, . . . , ¯̂=+A . They are given by



¯̂=+A
¯̂=+A−1
...

¯̂=+1



= Ā= . . . Ā1, (7)

with ĀC the image of AC modulo ` = (~ − WG ): for all C . To compute the matrix product Ā = Ā= . . . Ā1, we slightly

extend the approach used in [10] (which dealt with the case : = 1). Consider the following element of L[~]A×A :

B =



ΛA−1 ΛA−2 . . . Λ1 Λ0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



+



0 0 . . . Δ
−1
A

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0



~. (8)

It follows in particular that for C ≥ 1,

AC = B [C ] and ĀC = B [C ] mod `,

with reduction applied coefficient-wise.

Write =∗ = ⌈
√
=:⌉ ∈ $ (=/

√
<), and let = be written as = = =∗=1 + =0 with 0 ≤ =0 < =∗, so that =1 ≤

√
=/:. Setting

C = B [=∗+=0 ] · · · B [=0+1]

and

C0 = B [=0 ] . . .B [1] ,

the matrixA is the product

A = C [ (=1−1)=∗ ] · · · C [=∗ ]CC0 .
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1: procedure CharPolyFrobenius

2: Input A field extension L of degree = over F@ , (Δ1, . . . , ΔA ) ∈ LA representing a rank A Drinfeld module q over
(L,W).

3: Output 08 ∈ � such that the characteristic polynomial of the Frobenius is - A +∑A−18=0 08-
8 .

4: =∗, =1, =0 ← ⌈
√
=:⌉, ⌊=/=∗⌋, = mod =∗.

5: B as in (8)
6: C ← B [=∗+=0 ] . . .B [=0+1] .
7: C̄0 ← B [=0 ] . . .B [1] mod `
8: C̄ [8=∗ ] ← (C mod ` [−8=

∗ ]) [8=∗ ] for 0 ≤ 8 < =1.

9: Ā ←
( =1−1∏

8=0

C̄ [8=∗ ]
)
C̄0

10: 0̄8 ← coefficient of / 8 in det(Ā − /� )
11: return 08 = j: (0̄8) for 0 ≤ 8 < A

Our goal is to compute Ā = A mod `, without computing A itself.

Any Frobenius application (of positive or negative index) in L takes (= log@)1+> (1) bit operations. In particular,

computing all matrices B [8 ] that arise in the definitions of C and C0 takes (A=2/
√
< log@)1+> (1) bit operations.

Once they are known, the next stage of the algorithm computes C and C0 in L[~]. This is done using a ma-

trix subproduct-tree algorithm [14, Chapter 10], using a number of operations in L softly linear in Al=∗. This is

(Al=2/
√
< log@)1+> (1) bit operations.

To deduce the shifted matrices

C [ (=1−1)=∗ ] mod `, . . . , C [=∗ ] mod `,

we use the following lemma.

Lemma 2. For 5 in L[~] and C ≥ 0,

5 [C ] mod ` = ( 5 mod ` [−C ] ) [C ]

Proof. Let 6 = 5 mod ` [−C ] , so that we have an equality of the form 5 = 0` [−C ] + 6 in L[~]. We raise this to the

power @C coefficient-wise; this gives 5 [C ] = 0 [C ]` +6 [C ] . Since 6, and thus 6 [C ] , have degree less than : , this shows that
6 [C ] = 5 [C ] mod `. �

Applying this entry-wise, we compute C [8=∗ ] mod ` by reducing all entries of C modulo ` [−8=
∗ ] , then raising all

coefficients in the result to the power @8=
∗
, for 8 = 1, . . . , (=1 − 1).

Matrix C has degree $ (=/
√
<), and the sum of the degrees of the moduli ` [−C ] is :=1, which is $ (=/

√
<) as well.

Altogether, this takes $ (A2=/
√
<) applications of Frobenius in L, together with $ (A2=/

√
<) arithmetic operations in

L to perform all Euclidean divisions [14, Chapter 10]. Thus, the runtime is (A2=2/
√
< log@)1+> (1) bit operations.

Finally, we multiply all matrices C [8=∗ ] mod ` and C0 mod `. This takes (Al=2/
√
< log@)1+> (1) bit operations.

6.4 Other Operations

Once the coefficients of the skew polynomials g8D on the basis B are known modulo `, we compute the characteristic

polynomial of the matrix formed from these coefficients. This can be done with a bit cost of (A_:= log@)1+> (1) when
the matrix has entries in,: , with _ the exponent defined in Section 2.3.

At this stage, we have all coefficients of CharPoly,:
(D★
:
) in,: . It remains to apply the map j: to each of them to

recover CharPoly(D).
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Elements of,: = F@ [C, ~]/(ℓ (C), (~ − WG ): ) are written as bivariate polynomials in C, ~, with degree less than = in C

and less than : in ~. To compute their image through j: , we first apply the isomorphisms

,: = F@ [C, ~]/(ℓ (C), (~ − WG ): )
�:−−→ F@ [G, C, ~]/(p(G), 6(G, C), (~ − G): )
�:−−→ F@ [~, C]/(p(~): ,�: (~, C))

from (3), with p(~): of degree :< and �: of degree =/< in C .

We mentioned in Section 3 that for 2 in L = F@ [C]/(ℓ (C)), we can compute its image U (2) in F@ [G, C]/(p(G), 6(G, C)
using (= log@)1+> (1) bit operations. Proceedings coefficient-wise with respect to ~, this shows that for� in,: , we can

compute �: (�) in (:= log@)1+> (1) bit operations.
The tangling map of [21, §4.5] provides an algorithm for computing the isomorphism F@ [G, ~]/(p(G), (~ − G): ) →

F@ [~]/(p(~): ) in (:< log@)1+> (1) bit operations (this could also be done through modular composition, with a similar

asymptotic runtime, but the algorithm in [21] is simpler and faster). Applying it coefficient-wise with respect to C ,

this allows us to compute �: (�: (�)) in (:= log@)1+> (1) bit operations again. At this stage, the mapping j: is simply

extraction of the degree-0 coefficient in C .

We apply this procedure A times, for a total cost of (A:= log@)1+> (1) bit operations. This can be neglected in the

runtime analysis.

When using precision : = 1 for the prime field case, for D = g= , it is necessary to compute the constant coefficient

00 separately. This is done using the formula 00 = (−1)= (A+1)+A#L/F@ (WΔA
)−1p from [13] and takes (= log@)1+> (1) bit

operations.

Summing the costs seen so far for the various steps of the algorithm finishes the proof of our main theorems.

6.5 Example

Let F@ = Z/2Z, = = 3 and set ℓ (C) = C3 + C + 1 and L = F2 [C]/(ℓ (C)). Let WG = C + 1 mod ℓ (C), so that

p = G3 + G2 + 1 = ℓ (G + 1),

and L � Fp = F@ [G]/(p(G)), with the isomorphism given by 5 (C) ↦→ 5 (G + 1). Consider the rank 4 Drinfeld module

qG = Cg4 + (C2 + C)g3 + g2 + C2g + C + 1. We proceed to compute the characteristic polynomial using the de Rham

cohomology, that is, crystalline cohomology truncated in degree : = 1. In other words, all computations are done over

L

The recurrence of equation (4) becomes g:+4 = (C + 1)2: g (:+3) + (C2 + 1)2: g:+2 + C2: g:+1 + (1 + C1−2: )g: . Running
the recurrence for = = 3 iterations gives:

• g5 = (C2 + 1)g4 + (C2 + C + 1)g3 + C2g2 + C2g1

• g6 = (C2 + 1)g4 + (C2 + 1)g3 + (C2 + C)g2 + g1

• g7 = g4 + Cg3 + (C + 1)g2 + g1

A matrix for the Frobenius endomorphism can be inferred to be



1 C C + 1 1

C2 + 1 C2 + 1 C2 + C 1

C2 + 1 C2 + C + 1 C2 C2

1 0 0 0



.
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It has characteristic polynomial /4 + (C + 1)/2 + (C + 1)/ . Using the expression for 00 which is valid in the prime field

case, the Frobenius norm can be inferred to be 00 = G3 + G2 + 1.
To recover the final coefficients, observe that C ↦→ G + 1 gives the required map j1 : ,1 = L → Fp. Finally, we

conclude that the characteristic polynomial of g= is /4 + G/2 + G/ + G3 + G2 + 1.

7 Experimental Results

An implementation of the algorithmof section (6.3) was created in SageMath [37] and is publicly available at https://github.com/ymusleh/drinfeld-module.

An implementation in MAGMA [3] is also publicly available at https://github.com/ymusleh/drinfeld-magma and was

used to generate the experimental results included in this work. Our implementation differs from our theoretical ver-

sion in a few ways.

• The Kedlaya-Umans algorithm is most likely not used by MAGMA for computing Frobenius mappings of ele-

ments of L.

• To compute the images of coefficients under the map j: , we leverage a simpler procedure using reduction

modulo bivariate Gröbner bases, rather than the tangling map of van der Hoeven and Lecerf. In any case, this

does not impact the run times presented.
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Run Times for< = 10 @ = 25 in seconds
= = 100 = = 150 = = 200 = = 300 = = 400 = = 500 = = 600

A = 5 0.400 2.260 42.190 86.830 269.760 635.170 1099.110
A = 9 0.790 4.210 78.860 157.100 481.090 1129.670
A = 12 1.170 6.080 104.630 220.430 658.950 1531.580
A = 18 2.300 11.360 170.790 366.690 1074.840 2451.530
A = 23 3.820 17.580 240.100 525.670 1518.370
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