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ABSTRACT
We consider the problem of answering connectivity queries on a real
algebraic curve. The curve is given as the real trace of an algebraic
curve, assumed to be in generic position, and being defined by
some rational parametrizations. The query points are given by a
zero-dimensional parametrization.

We design an algorithm which counts the number of connected
components of the real curve under study, and decides which query
point lie in which connected component, in time log-linear in 𝑁 6,
where 𝑁 is the maximum of the degrees and coefficient bit-sizes of
the polynomials given as input. This matches the currently best-
known bound for computing the topology of real plane curves.

The main novelty of this algorithm is the avoidance of the com-
putation of the complete topology of the curve.

1 INTRODUCTION
This work addresses the problem of designing an algorithm for an-
swering connectivity queries on real algebraic curves in 𝑹𝑛 , defined
as real traces of algebraic curves of 𝑪𝑛 .

Motivation and problem statement. Consider a real field 𝑸1, its
real closure 𝑹 and its algebraic closure 𝑪 . For 𝑛 ≥ 1, let 𝑿 =

(𝑥1, . . . , 𝑥𝑛) be a sequence of indeterminates, and denote 𝑸 [𝑿 ]
and 𝑪 [𝑿 ] the rings of multivariate polynomials in the 𝑥𝑖 ’s, with
coefficients in resp. 𝑸 and 𝑪 . We define an algebraic set C ⊂ 𝑪𝑛

as the set of common zeros 𝑽 (𝑓1, . . . , 𝑓𝑝 ) of a sequence of poly-
nomials (𝑓1, . . . , 𝑓𝑝 ) ⊂ 𝑪 [𝑿 ]. 𝑰 (C ) ⊂ 𝑪 [𝑿 ] is the radical of the
ideal

〈
𝑓1 . . . , 𝑓𝑝

〉
generated by the 𝑓𝑗 ’s, that is the ideal of defini-

tion of C . The function ring 𝑪 [C ] of polynomial functions defined
on C is 𝑪 [𝑿 ]/𝑰 (C ). If 𝑰 (C ) ⊂ 𝑸 [𝑿 ], we also denote 𝑸 [C ] by
𝑸 [𝑿 ]/𝑰 (C ). Finally, C is an algebraic curve if 𝑰 (C ) is equidimen-
sional of dimension 1, and plane if contained in some plane of
𝑪𝑛 .

In this document, C is an algebraic curve such that 𝑰 (C ) ⊂
𝑸 [𝑿 ]. Given a generating system 𝒇 of 𝑰 (C ), Jac(𝒇 ) is the Jacobian
matrix of 𝒇 , sing(C ) the set of singular points of C (i.e. the points
where Jac(𝒇 ) has rank less than 𝑛 − 2; it is a finite subset of C ) and
reg(C ) = C − sing(C ). For all 𝒙 ∈ reg(C ),𝑇𝒙C is the right-kernel
of Jac(𝒇 ): it is the tangent line of C at 𝒙 . For 1 ≤ 𝑖 ≤ 𝑛 we let
𝜋𝑖 : 𝑪𝑛 → 𝑪𝑖 be the canonical projection on the first 𝑖 variables.
If C2 ⊂ 𝑪2 is the Zariski closure of 𝜋2 (C ), the set of apparent
singularities of C2 is app(C2) = sing(C2) −𝜋2 (sing(C )). These are
1Note that in Sections 2 and 3, 𝑸 can be any arbitrary field of characteristic 0.
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the singularities introduced by 𝜋2. A singular point of C2 is called
a node if it is an ordinary double point (see [31, §3.1]). We refer to
[48] for definitions and propositions about algebraic sets.

For any 𝜑 ∈ 𝑪 [C ], we denote byW◦ (𝜑,C ) the set of critical
points of 𝜑 on C , that is the set of points 𝒙 ∈ reg(C ) such that
𝑑𝒙𝜑 : 𝑇𝒙C → 𝑪 is not surjective. Then we note

K(𝜑,C ) =W◦ (𝜑,C ) ∪ sing(C )

the set of singular points of 𝜑 on C .
To satisfy some genericity assumptions, we will need to perform

some linear changes of variables. Given𝐴 ∈ GL𝑛 (𝑪), for 𝑓 ∈ 𝑪 [𝑿 ],
𝑓 𝐴 will denote the polynomial 𝑓 (𝐴𝑋 ). For 𝑉 ⊂ 𝑪𝑛 , we denote
by 𝑉𝐴 the image of 𝑉 by the map Φ𝐴 : 𝒙 ↦→ 𝐴−1𝒙 . Thus, for
𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊂ 𝑪 [𝑿 ] we have 𝑽 (𝒇𝐴) = Φ𝐴 (𝑽 (𝒇 )) = 𝑽 (𝒇 )𝐴 .

A semi-algebraic (s.a.) set 𝑆 ⊂ 𝑹𝑛 is the set of solutions of a finite
system of polynomial equations and inequalities with coefficients
in 𝑹. We say that 𝑆 is s.a. connected if for any𝒚,𝒚′ ∈ 𝑆 ,𝒚 and𝒚′ can
be connected by a s.a. path in 𝑆 , that is an injective continuous s.a.
function 𝛾 : [0, 1] → 𝑆 such that 𝛾 (0) = 𝒚 and 𝛾 (1) = 𝒚′. A s.a. set
𝑆 can be decomposed into finitely many s.a. connected components
which are s.a. connected s.a. sets that are both closed and open in
𝑆 . We refer to [4] and [8] for definitions and propositions about s.a.
sets and functions. In this work, the s.a. sets in consideration will
mainly be real traces of algebraic sets of 𝑪𝑛 (defined by polynomials
with coefficients in 𝑹). In particular, we will note e.g. C𝑹 and C2,𝑹 ,
respectively the real traces of C , C2. Then, e.g. K(𝜋1,C ) ∩ 𝑹𝑛 and
K(𝜋1,C2) ∩ 𝑹2 will be denoted by K(𝜋1,C𝑹 ) and K(𝜋1,C2,𝑹 ).

In this paper, we address the problem of designing an algorithm
for answering connectivity queries on real algebraic curves in
𝑹𝑛 , defined as real traces of algebraic curves of 𝑪𝑛 . More precisely,
given representations of an algebraic curve C and a finite set P
of points of C , we want to compute a partition of P, grouping the
points lying in the same s.a. connected component of C𝑹 .

It is a problem of importance in symbolic computation, and more
specifically, in effective real algebraic geometry. Indeed, using the
notion of roadmaps, introduced by Canny in [12, 13], one can reduce
connectivity queries in real algebraic sets of arbitrary dimension
to the such queries on real algebraic curves. Moreover, algorithms
computing such roadmaps, on input a real algebraic set, has been
continuously improved in a series of recent works [3, 5, 6, 46],
making now tractable challenging problems in applications such
as robotics [12, 14–16].

We say that 𝑓 ∈ ℤ[𝑥1, . . . , 𝑥𝑛] has magnitude (𝛿, 𝜏), if the total
degree of 𝑓 is bounded by 𝛿 and all coefficients have absolute values
at most 2𝜏 . This extends to a sequence of polynomials by bound-
ing all entries in the same way. Complexity results are expressed
with (𝛿, 𝜏) bounding the magnitude of the polynomials defining C .
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Moreover, we ignore logarithmic factors using the soft-Oh notation
𝑂̃ (𝑔) for denoting the class 𝑔 log(𝑔)𝑂 (1) .

Prior works. One can reduce our problem to a piecewise linear
approximation sharing the same topology as the curve under study.

Computing the topology of plane algebraic curves in ℝ2 is ex-
tensively studied: by subdivision algorithm [11, 43], variants of
Cylindrical Algebraic Decomposition methods [7, 17, 21, 22, 25–
27, 29, 35, 41, 42, 44, 47], or also a hybrid approach such as [1].
In particular, [22, 42] obtain the best-known complexity bound in
𝑂̃ (𝛿5 (𝛿 + 𝜏)), by computing quantitative bounds on (bivariate) real
root isolation of the considered polynomials.

The problem in ℝ3 has been less studied. This is done through
various approaches such as computing the topology of the projec-
tion on various planes [2, 18, 33] or lifting the plane projection by
algebraic considerations [23, 24, 31]. Yet, few of these papers give a
complexity bound for the computation of such topology [18, 24],
and [39] obtains the best-known complexity in 𝑂̃ (𝛿19 (𝛿 + 𝜏)).

Main result. Under genericity assumptions, we reduce the study
of a curve C in ℝ𝑛 to the one of the its image C3,𝑹 by the projec-
tion 𝜋3, as their real traces generically share the same connectivity
properties. Moreover, by refining the approach developed in [38]
(based on [31]), we show that one does not need to compute the
topology of C3,𝑹 in order to answer connectivity queries. More pre-
cisely, under genericity assumptions, that we made explicit below,
we first compute the topology of C2,𝑹 i.e. an isotopic graph. Next,
the connectivity of C3,𝑹 i.e. a homeomorphic graph, is deduced
from the topology of C2,𝑹 , adapting results from [31]. A geometric
outcome is that the topological analysis needed to be done at some
special points of C2,𝑹 , which are called nodes, can be much simpli-
fied when one only needs to answer connectivity queries. This has
a significant impact on the complexity.

Before providing our complexity result, let us introduce how our
geometric objects are encoded. For a univariate function 𝜑 , 𝜑 ′ is
its derivative. For a bivariate function𝜓 in the variables 𝑥1 and 𝑥2,
we let 𝜕𝑥1𝜓, 𝜕𝑥2𝜓 , 𝜕2𝑥1𝜓 , 𝜕

2
𝑥2𝜓 and 𝜕2𝑥1𝑥2𝜓 be respectively the simple

and double derivative with respect to the index variable(s).
To encode finite sets of points with algebraic coordinates over a

field 𝑸 , we use zero-dimensional parametrizations P = (Ω, 𝜆) such
that
• Ω = (𝜔, 𝜌1, . . . , 𝜌𝑛) ⊂ 𝑸 [𝑢] where 𝑢 is a new variable, 𝜔 is
a monic square-free polynomial, and deg(𝜌𝑖 ) < deg(𝜔);
• 𝜆 is a linear form 𝜆1𝑥1 + · · ·+𝜆𝑛𝑥𝑛 in 𝑸 [𝑥1, . . . , 𝑥𝑛] such that
𝜆1𝜌1 + · · · + 𝜆𝑛𝜌𝑛 = 𝑢𝜕𝑢𝜔 mod 𝜔 .

We define the degree of such a parametrization P as the degree of
the polynomial 𝜔 , and we say that it encodes the finite set:

Z(P) =
{
(𝜌1/𝜕𝑢𝜔, . . . , 𝜌𝑛/𝜕𝑢𝜔) (𝜗) ∈ 𝑪𝑛 | 𝜔 (𝜗) = 0

}
.

Similarly, we encode algebraic curves with one-dimensional
parametrizations over 𝑸 , i.e. R = (Ω, (𝜆, 𝜇)) with:
• Ω = (𝜔, 𝜌1, . . . , 𝜌𝑛) ⊂ 𝑸 [𝑢, 𝑣] with 𝑢 and 𝑣 new variables, 𝜔
square-free and monic in 𝑢 and 𝑣 , and deg(𝜌𝑖 ) < deg(𝜔);
• 𝜆 = 𝜆1𝑥1 + · · · + 𝜆𝑛𝑥𝑛 , 𝜇 = 𝜇1𝑥1 + · · · + 𝜇𝑛𝑥𝑛 are linear forms

such that
{
𝜆1𝜌1 + · · · + 𝜆𝑛𝜌𝑛 = 𝑢𝜕𝑣𝜔 mod 𝜔
𝜇1𝜌1 + · · · + 𝜇𝑛𝜌𝑛 = 𝑣𝜕𝑣𝜔 mod 𝜔

Such a data-structure encodes the algebraic curve Z(R), defined

as the Zariski closure of the following locally closed set of 𝑪𝑛 :{
(𝜌1/𝜕𝑣𝜔, . . . , 𝜌𝑛/𝜕𝑣𝜔) (𝜗, 𝜂) ∈ 𝑪𝑛

��𝜔 (𝜗, 𝜂) = 0, 𝜕𝑣𝜔 (𝜗, 𝜂) ≠ 0
}
.

We define the degree of such a parametrization R as the degree
of 𝜔 , which coincides with the degree of Z(R). Note that such a
parametrization R of degree 𝛿 involves 𝑂 (𝑛𝛿2) coefficients.

We now give our aforementioned genericity properties, which
can be seen as a generalization of the ones in [31]: let C ⊂ 𝑪𝑛 be
an algebraic curve and P ⊂ reg(C ) finite. (C ,P) satisfies (H) if:
(H1) for 1 ≤ 𝑖 ≤ 𝑛, 𝑸 [C ] is integral over 𝑸 [C𝑖 ], where

C𝑖 = 𝜋𝑖 (C ) is an algebraic curve;
(H2) for all 𝒙 ∈ reg(C ), 𝜋2 (𝑇𝒙C ) is a tangent line to C2 at 𝜋2 (𝒙);
(H3) the restriction of 𝜋3 to C is injective;
(H4) if 𝒚 ∈ app(C2) then
(H4
′ ) 𝜋−12 (𝒚) ∩ C has cardinality 2;

(H4
′′) 𝒚 is a node of C2;

(H5) K(𝜋1,C2) ∪ 𝜋2 (P) is finite and 𝜋1 is injective on it;
(H6) 𝜋−12 (𝜋2 (𝒙)) ∩ C = {𝒙}, for all 𝒙 ∈ K(𝜋1,C ) ∪ P;
(H7) there is a one-dimensional parametrizationR = (Ω, (𝑥1, 𝑥2))

encoding C , with Ω = (𝜔, 𝑥1, 𝑥2, 𝜌3, . . . , 𝜌𝑛) ⊂ 𝑸 [𝑥1, 𝑥2].
We omit P when the context is clear. Also, (H) is satisfied up to a
generic linear change of coordinates over C (see Section 2).

Theorem 1.1. Let R ⊂ ℤ[𝑥1, 𝑥2] be a one-dimensional parametri-
zation encoding an algebraic curve C ⊂ ℂ𝑛 satisfying (H) and P ⊂
ℤ[𝑥1] a zero-dimensional parametrization encoding a finite subset
of C . Let (𝛿, 𝜏) and (𝜇, 𝜅) the magnitudes of R and P , respectively.

There exists an algorithm which, on input R and P , computes a
partition of the points of Z(P) ∩ℝ𝑛 lying in the same s.a. connected
component of C ∩ℝ𝑛 , using

𝑂̃ (𝛿6 + 𝜇6 + 𝛿5𝜏 + 𝜇5𝜅)
bit operations.

This is to be compared with the best complexity 𝑂̃ (𝛿19 (𝛿 + 𝜏))
known to analyze the topology of space curve. Note that the depen-
dency on 𝑛 in the complexity bound is “hidden” within the potential
degrees of the parametrizations and the corresponding algebraic
sets. Indeed, according to Bézout’s bound, an algebraic set, defined
by polynomials, of degree at most 𝐷 , can have degree at most 𝐷𝑛 .

Structure of the paper. After some preliminary results we prove
that up to a generic change coordinate, assumption (H) holds. Then,
under these assumptions, we describe two steps of our algorithm
that is identifying the finitely many points of the curve where there
is connectivity ambiguity and resolving these ambiguities. Finally,
we describe the main algorithm together with complexity bounds.

2 CURVES IN GENERIC POSITION
We now prove that (H) holds for an algebraic curve in generic
position C that is, there is an open dense subset 𝔄 of GL𝑛 (𝑪) such
that for any 𝐴 ∈ 𝔄 the sheared curve C𝐴 satisfies (H).

2.1 Generic projections of affine curves
The results below are well known in the case of smooth projective
curves (see e.g. [36, IV. Thm 3.10] or [45, §7B.] for 𝑪 = ℂ), and
have been generalized subsequently in e.g. [37, 40]. A version for
complex singular affine space curves is proved in [32, Prop 5.2]



Algorithm for ConnectivityQueries on Real Algebraic Curves Conference’17, July 2017, Washington, DC, USA

under regularity assumptions. We present here a generalization of
[32, Prop 5.2] for any singular (affine) algebraic curve, following the
proof and using more general objects and results from the literature.

Let 𝑛 ≥ 3, C ⊂ 𝑪𝑛 an affine algebraic curve and P ⊂ C a
finite subset. Denote ℙ𝑛 the projective space ℙ𝑛 (𝑪), of dimen-
sion 𝑛 over 𝑪 , and write [𝒙0 : · · · : 𝒙𝑛] its elements. Let H∞ =

{[𝒙0 : · · · : 𝒙𝑛] ∈ ℙ𝑛 | 𝒙0 = 0} be the hyperplane at infinity with
respect to the affine open chart given by ℙ𝑛 −H∞ (see e.g. [36, I.2])
We finally let C be the projective closure of C in ℙ𝑛 .

We denote by 𝔾(1, 𝑛) = 𝐺 (2, 𝑛 + 1) the Grassmanian of lines in
ℙ𝑛 , and, for 𝒙 ≠ 𝒚 in ℙ𝑛 , by L(𝒙,𝒚) ∈ 𝔾(1, 𝑛) the line containing
𝒙 and 𝒚. For distinct points 𝒙,𝒚 of C , the line 𝑠 = L(𝒙,𝒚) will be
called the secant line of C determined by 𝒙 and 𝒚. When 𝑠 intersects
C in a third point, distinct from 𝒙 and 𝒚, we call it a trisecant line
of C . If there are distinct 𝒙′,𝒚′ ∈ 𝑠 ∩ reg(C ) such that 𝑇𝒙′C and
𝑇𝒚′C are coplanar, then it will be called a secant line with coplanar
tangents of C . Then, we define Sec(C ), Tri(C ) and CoTg(C ) as the
sets of points in ℙ𝑛 that lie on respectively a secant, trisecant and
secant with coplanar tangents of C . Finally, we denote by Tg(C )
the set of points in ℙ𝑛 that lie on the tangent line 𝑇𝒙C for some
𝒙 ∈ reg(C ).

Lemma 2.1. The sets Sec(C ) and Tg(C ) are algebraic sets of di-
mension ≤ 3 and ≤ 2, respectively. If, in addition, C is not a plane
curve, then Tri(C ) and CoTg(C ) are algebraic sets of dimension ≤ 2.
Finally, none of these sets containsH∞.

Proof. Let C 1, . . . ,C𝑚 the irreducible components of C , 𝑖, 𝑗 ∈
{1, . . . ,𝑚}, possibly equal, and Σ𝑖, 𝑗 ⊂ 𝔾(1, 𝑛) the Zariski closure
of the image of C 𝑖 × C 𝑗 − {(𝒚,𝒚) | 𝒚 ∈ C 𝑖 ∩ C 𝑗 } through the
map (𝒚, 𝒛) ↦→ L(𝒚, 𝒛). As the image of a Cartesian product of two
irreducible curves, Σ𝑖, 𝑗 is an irreducible algebraic set. Such a secant
being uniquely determined by fixing two points in C 𝑖 and C 𝑗 , Σ𝑖, 𝑗
has dimension ≤ 2 by [48, Thm 1.25]. Then, if Σ =

⋃
𝑖, 𝑗 Σ𝑖, 𝑗 is

the secant variety of C , it has dimension ≤ 2 and contains the
secant lines in 𝔾(1, 𝑛). As elements of 𝔾(1, 𝑛) are algebraic sets of
dimension 1, Sec(C ) has Zariski closure of dimension ≤ 3.

Consider now, the subset Γ𝑖 ⊂ ℙ𝑛×C 𝑖 , consisting of points (𝒖,𝒚)
such that 𝒚 ∈ reg(C ) and 𝒖 ∈ 𝑇𝒚C , and consider the projections
𝜑𝑖 : Γ𝑖 → ℙ𝑛 and𝜓𝑖 : Γ𝑖 → C 𝑖 . For all 𝒚 in the Zariski open subset
reg(C ) ∩ C 𝑖 of C𝑖 ,𝜓−1𝑖

(𝒚) is exactly 𝑇𝒚C , which has dimension 1.
Hence, by [48, Thm 1.25], 𝜑𝑖 (Γ𝑖 ) has Zariski closure of dimension
≤ 2. Since Tg(C ) = ∪𝑖𝜑𝑖 (Γ𝑖 ), we are done.

Assume now, that C is not a plane curve then, by [40, Thm 2],
the set of trisecant lines of C is a subset of 𝔾(1, 𝑛) whose Zariski
closure has dimension ≤ 1. Then, as seen above, Tri(C ) has Zariski
closure of dimension ≤ 2. Now, let𝑀𝑖, 𝑗 be the subset of Σ𝑖, 𝑗 consist-
ing of secant lines intersecting C at points whose tangents are all
contained in the same plane. We are going to prove that the Zariski
closure of 𝑀𝑖, 𝑗 has dimension ≤ 1. Together with the dimension
bound on Tri(C ), this will bound the dimension of CoTg(C ). Sup-
pose first that C 𝑖 and C 𝑗 are not coplanar components. Then, there
is 𝒚 ∈ C 𝑖 − sing(C ) such that 𝑙 = 𝑇𝒚C and C 𝑗 are not coplanar. If
𝔭𝑙 : ℙ𝑛 → ℙ𝑛−2 denotes the projection of center 𝑙 , then 𝔭𝑙 (C 𝑗 ) is

not a point. As C 𝑗 is irreducible, and by [48, Thm 1.25], the Zariski
closure R of 𝔭𝑙 (C 𝑗 ) is an irreducible algebraic subset of ℙ𝑛−2 of
dimension 1. Hence, by [48, Thm 1.25] again, there is a finite set
𝐾1 ⊂ ℙ𝑛−2 such that for all 𝒘 ∈ R\𝐾1, 𝔭−1𝑙

(𝒘) ∩ C 𝑗 is finite. Be-
sides, by Sard’s Theorem [48, Thm 2.27], there exists a finite set
𝐾2 ⊂ ℙ𝑛−2 such thatR\𝐾2 does not contain any critical value of the
restriction of 𝔭𝑙 to C 𝑗 . Then, for𝒘 in R\[𝐾1 ∪ 𝐾2 ∪ 𝔭𝑙 (sing(C ))],

𝔭−1
𝑙
(𝒘) ∩ C 𝑗 = {𝒛1, . . . , 𝒛𝑘 }

with 𝑘 ≥ 1, and for all 1 ≤ 𝑖 ≤ 𝑘 , 𝒛𝑖 ∈ reg(C ) and 𝔭𝑙 (𝑇𝒛𝑖C )
has dimension 1. Hence, 𝒚 and 𝒛𝑖 have no coplanar tangents for
all 1 ≤ 𝑖 ≤ 𝑘 . In particular, the secant line L(𝒚, 𝒛1) contains two
points having no coplanar tangents so that L(𝒚, 𝒛1) ∈ Σ𝑖, 𝑗 −𝑀𝑖, 𝑗

and 𝑀𝑖, 𝑗 ⊊ Σ𝑖, 𝑗 . In conclusion, the Zariski closure of 𝑀𝑖, 𝑗 is a
proper algebraic subset, and since Σ𝑖, 𝑗 is irreducible, this closure
has dimension ≤ 1. If C 𝑖 and C 𝑗 are coplanar, Σ𝑖, 𝑗 is the Zariski
closure of 𝑀𝑖, 𝑗 and one of the following holds. If 𝑖 = 𝑗 and C 𝑖 is
a line, then Σ𝑖, 𝑗 is reduced to the line associated to C 𝑖 and has
dimension 0. Else, there exists a unique plane 𝑆𝑖, 𝑗 containing C 𝑖

and C 𝑗 , so that any line of Σ𝑖, 𝑗 must be contained in 𝑆𝑖, 𝑗 . In both
cases, Σ𝑖, 𝑗 , thus the closure of𝑀𝑖, 𝑗 , have dimension ≤ 1. Then, the
Zariski closure of the union𝑀 of all𝑀𝑖, 𝑗 for 𝑖, 𝑗 ∈ {1, . . . ,𝑚}, is an
algebraic subset of 𝔾(1, 𝑛) of dimension ≤ 1 as requested.

Remark now that a secant with coplanar tangents is either a
trisecant, or a secant intersecting C in exactly two regular points
with coplanar tangents. Hence, the set of secants with coplanar
tangents of C is contained in the union of𝑀 and the set of trisecant
lines of C . By the previous discussion, it has dimension ≤ 1, so that
the Zariski closure of CoTg(C ) has dimension ≤ 2.

Since C −H∞ can be identified with C , the former is a Zariski
open subset of C , so that C ∩ H∞ is finite. In particular, H∞
contains finitely many secant or tangent lines ofC and then, cannot
be contained in Sec(C ) or Tg(C ). Since Tri(C ) and CoTg(C ) are
contained in Sec(C ), they cannot containH∞ as well. □

In the following, for 0 ≤ 𝑟 ≤ 𝑛 − 1, we denote by 𝔾(𝑟, 𝑛 − 1) =
𝐺 (𝑟 + 1, 𝑛) the set of 𝑟 -dimensional projective linear subspaces of
H∞. Recall that using Plücker embedding (see e.g. [48, Example
1.24]), 𝔾(𝑟, 𝑛 − 1) can be embedded in ℙ(

𝑛
𝑟+1) −1 as an irreducible

algebraic set of dimension (𝑟 + 1) (𝑛 − 𝑟 ). The next lemma is then a
direct consequence of [48, Thm 1.25].

Lemma 2.2. Let𝑋 ⊂ H∞ be an algebraic set of dimension𝑚 ≤ 𝑛−1.
Then, for any 𝑖 ≥ 𝑚 there exists a non-empty Zariski open subset 𝔈𝑖
of 𝔾(𝑛 − 1− 𝑖, 𝑛 − 1) such that for every 𝐸 ∈ 𝔈𝑖 , the set 𝐸 ∩𝑋 is finite
and, if 𝑖 > 𝑚, it is empty.

Recall that P is a finite set of control points in C − sing(C ).

Proposition 2.3. If C is not a plane curve, then for all 1 ≤ 𝑖 ≤ 𝑛−1,
there exists a non-empty Zariski open subset 𝔈𝑖 of 𝔾(𝑛 − 1 − 𝑖, 𝑛 − 1)
such that for all 𝐸 ∈ 𝔈𝑖 , the following holds. Let 𝔭𝐸 : C → ℙ𝑖 be the
projection with center 𝐸, then 𝔭𝐸 is a finite regular map and

(𝑖) for all 𝒙 ∈ P, 𝔭𝐸 (𝑇𝒙C ) is a projective line of ℙ𝑖 .
If, in addition, 𝑖 ≥ 2 then,
(𝑖𝑖) item (𝑖) holds for any 𝒙 ∈ regC ;
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(𝑖𝑖𝑖) for any 𝒙 ∈ C , there exists at most one point 𝒙′ ∈ C , distinct
from 𝒙 , such that 𝔭𝐸 (𝒙) = 𝔭𝐸 (𝒙′);

(𝑖𝑣) there exists finitely many such couples (𝒙, 𝒙′), all satisfying
𝒙, 𝒙′ ∈ reg(C ) − P and 𝔭𝐸 (𝑇𝒙C ) ≠ 𝔭𝐸 (𝑇𝒙′C );

(𝑣) if 𝑖 ≥ 3, there is no such couple.

Proof. Fix 1 ≤ 𝑖 ≤ 𝑛 − 1 and suppose that C is not plane.
As a proper Zariski closed set of C , 𝑋1 := H∞ ∩ C is finite. By
Lemma 2.2, as 𝑖 > 0, there is a non-empty Zariski open subset𝔈1 of
𝔾(𝑛−1−𝑖, 𝑛−1) such that for all 𝐸 ∈ 𝔈1, 𝐸∩𝑋1 is empty. Moreover,
any (𝑛 − 𝑖)-dimensional space containing 𝐸 cannot contain an
irreducible component of C (it would be a line, intersecting 𝐸 at
some point of 𝐸∩C = 𝐸∩𝑋1, which is empty). Thus, the projection
with center 𝐸 ∈ 𝔈1 induces a finite map on C , regular by definition.

According to Lemma 2.1, the set of points lying on a tangent or a
trisecant line of C is an algebraic set of dimension ≤ 2. SinceH∞
contains finitely many such tangents or trisecants,

𝑋2 = (Tg(C ) ∪ Tri(C )) ∩ H∞

has dimension at most 1. By Lemma 2.2, as 𝑖 ≥ 1, there exists a
non-empty Zariski open subset𝔈2 of𝔾(𝑛−1−𝑖, 𝑛−1) such that any
𝐸 ∈ 𝔈2 intersects finitely many points of Tg(C ) ∪ Tri(C ). Besides,
there are finitely many tangents intersecting the finite set P, so
that by Lemma 2.2, up to intersecting 𝔈2 with a non-empty Zariski
open subset of 𝔾(𝑛−1− 𝑖, 𝑛−1), one can assume that none of these
tangents intersect P. This proves (𝑖).

Assume now 𝑖 ≥ 2. By Lemma 2.2, no 𝐸 ∈ 𝔈2 intersects points
in Tg(C ) ∪ Tri(C ). In particular, any (𝑛 − 𝑖)-dimensional space
containing 𝐸 cannot contain a tangent nor a trisecant, and, as seen
above, this means that no tangent, or three distinct points, are
mapped to one point. This proves respectively (𝑖𝑖) and (𝑖𝑖𝑖).

Then, by Lemma 2.1, the set 𝑋3 = Sec(C ) ∩ H∞ of points in
H∞, lying on a secant line of C , is algebraic of dimension ≤ 2. By
Lemma 2.2 (𝑖 ≥ 2), there is a non-empty Zariski open subset 𝔈3
of 𝔾(𝑛 − 1 − 𝑖, 𝑛 − 1) such that any 𝐸 ∈ 𝔈3 contains finitely many
points lying on a secant line of C i.e., as before, there are finitely
many couples of points which are mapped to the same point in
ℙ𝑖 . Besides, the set of secants intersecting sing(C ) ∪ P is a proper
algebraic subset of the secant variety of C . Hence, by Lemma 2.2,
up to intersecting 𝔈3 with a non-empty Zariski open subset of
𝔾(𝑛 − 1 − 𝑖, 𝑛 − 1), one can assume that none of these secants
intersect sing(C ) ∪ P. Finally, by Lemma 2.2, as CoTg(C ) ∩ H∞
has dimension ≤ 1. As seen above, up to intersecting 𝔈3 with a
non-empty Zariski open subset of𝔾(𝑛−1−𝑖, 𝑛−1), one can assume
that these secants intersect C at points with no coplanar tangents,
which cannot be mapped to the same line. All in all, for any 𝐸 ∈ 𝔈3,
(𝑖𝑣) holds.

By Lemma 2.2, if moreover 𝑖 ≥ 3, no 𝐸 ∈ 𝔈3 intersects points
in Sec(C ) that is, no two distinct points are mapped to the same
image. This proves (𝑣). Taking𝔈𝑖 = 𝔈1∩𝔈2∩𝔈3 ends the proof. □

We can now state the affine counterpart of Proposition 2.3.

Corollary 2.4. There exists a non-empty Zariski open set 𝔄 of
GL𝑛 (𝑪) such that for all 𝐴 ∈ 𝔄 and 1 ≤ 𝑖 ≤ 𝑛, the following
holds: the restriction of 𝜋𝑖 to C𝐴 is a finite morphism, and
(𝑖) for all 𝒙 ∈ P𝐴 , 𝜋𝑖 (𝑇𝒙C𝐴) is a line of 𝑪𝑖 .

If, in addition, 𝑖 ≥ 2 then,
(𝑖𝑖) item (𝑖) holds for any 𝒙 ∈ reg(C𝐴);
(𝑖𝑖𝑖) the restriction of 𝜋𝑖 to C𝐴 is not injective at 𝒙 if, and only if,

𝑖 = 2 and 𝜋2 (𝒙) ∈ app(C𝐴
2 );

(𝑖𝑣) app(C𝐴
2 ) contains only nodes, with exactly two preimages

through 𝜋2, none of them being in P𝐴 ;

Proof. If C is a plane curve, it is straightforward. Suppose from
now on 𝑛 ≥ 3 and C not plane. If 𝑖 = 𝑛, there is nothing to prove,
so let 1 ≤ 𝑖 ≤ 𝑛 − 1. Let C be the projective closure of C , which is
not a plane either. Let 𝔈𝑖 be the non-empty Zariski open subset of
𝔾(𝑛 − 1 − 𝑖, 𝑛 − 1) given by Proposition 2.3. According to Plücker
embedding, there exists a surjective regular map from the set of 𝑖
linearly independent vectors 𝒂1, . . . , 𝒂𝑖 of 𝑪𝑛 to the set of (𝑛−1−𝑖)-
dimensional (projective) linear subspaces ofH∞, defined by 𝑥0 = 0
and 𝒂 𝑗,1𝑥1 + · · · + 𝒂 𝑗,𝑛𝑥𝑛 = 0 for 1 ≤ 𝑗 ≤ 𝑖 . Hence, there exists a
non-empty Zariski open set 𝔄𝑖 of GL𝑛 (𝑪) of matrices 𝐴 such that
the first 𝑖 rows of 𝐴−1 are mapped to some 𝐸 ∈ 𝔈𝑖 , through the
above map. Moreover, for any𝐴 ∈ 𝔄𝑖 the following holds. Consider,

𝐴̃ =

[
1 0
0 𝐴

]
,

and for 1 ≤ 𝑗 ≤ 𝑛, let 𝒂 𝑗 = (𝒂 𝑗,1, . . . , 𝒂 𝑗,𝑛) be the rows of 𝐴. If
𝐿0 = 𝑥0 and for 1 ≤ 𝑗 ≤ 𝑖 , 𝐿𝑗 = 𝒂 𝑗,1𝑥1 + · · · + 𝒂 𝑗,𝑛𝑥𝑛 , then the
equations 𝐿0, . . . , 𝐿𝑖 define a projective linear subspace 𝐸 of H∞,
such that 𝐸 ∈ 𝔈𝑖 and, by definition (see e.g. [48, Example 1.27]),

𝔭𝐸 : C
𝐴̃ → ℙ𝑖

𝒙 ↦→ [𝒙0 : · · · : 𝒙𝑖 ]
.

Therefore, the restriction of 𝔭𝐸 to the affine chart ℙ𝑛 −H∞ can be
identified with the restriction of 𝜋𝑖 to C𝐴 . According to Proposi-
tion 2.3, the restriction of 𝜋𝑖 to C𝐴 is a finite morphism satisfying
item (𝑖). Assume now that 𝑖 ≥ 2 then, assertion (𝑖𝑖) is a direct
consequence of item (𝑖𝑖) of Proposition 2.3.

Besides, let 𝒙 ∈ C𝐴 such that there is 𝒙′ ∈ C𝐴 satisfying 𝒙′ ≠
𝒙 and 𝜋𝑖 (𝒙) = 𝜋𝑖 (𝒙′). Then, by Proposition 2.3, (𝑖𝑖𝑖) to (𝑣), 𝒙′
is unique, both 𝒙, 𝒙′ ∉ sing(C𝐴) ∪ P𝐴 , and necessarily 𝑖 = 2.
Moreover, 𝑇𝒙C𝐴 and 𝑇𝒙′C𝐴 map to distinct lines of 𝑪2, crossing
at 𝜋2 (𝒙): it is a node. Hence, 𝒙 ∈ app(C𝐴

2 ) and 𝜋2 (𝒙) is a node,
with exactly two preimages, none of them being in P𝐴 . Conversely
from Proposition 2.3, (𝑖𝑖), all points of app(C𝐴

2 ) have at least two
preimages in C𝐴 . This proves (𝑖𝑖𝑖) and (𝑖𝑣). Taking 𝔄 =

⋂𝑛−1
𝑖=1 𝔄𝑖

concludes. □

2.2 Recovering (H)
Proposition 2.5. Let C ⊂ 𝑪𝑛 be an algebraic curve and a finite
subset P ⊂ reg(C ). There exists a non-empty Zariski open set 𝔄 ⊂
GL𝑛 (𝑪) such that, for any 𝐴 ∈ 𝔄, (C𝐴,P𝐴) satisfies (H).

Proof. Let 𝔄1 ⊂ GL𝑛 (𝑪) be the non-empty Zariski open subset
defined in Corollary 2.4 and let 𝐴 ∈ 𝔄1. For all 1 ≤ 𝑖 ≤ 𝑛, the
restriction of 𝜋𝑖 to C𝐴 is a finite morphism, so that C𝐴

𝑖
= 𝜋𝑖 (C𝐴)

is an algebraic curve. Since 𝑪 is integral over 𝑸 , the extension
𝑸 [C𝐴

𝑖
]↩→𝑸 [C𝐴] is integral as well: (H1) is satisfied. Applying

Corollary 2.4, for 𝑖 = 3 and 𝑖 = 2 shows that the curve C𝐴 satisfies
respectively (H3) on the one hand and (H2) and (H4) on the other.



Algorithm for ConnectivityQueries on Real Algebraic Curves Conference’17, July 2017, Washington, DC, USA

Let A = (𝔞𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 and 𝑡 be new indeterminates, the former
ones standing for the entries of a squarematrix of size𝑛×𝑛. Since𝔄1
is non-empty and Zariski open, there exists a non-zero polynomial
𝐹 ∈ 𝑪 [A], such that 𝐴 ∈ 𝔄1 if 𝐹 (𝐴) ≠ 0. Besides, according to [9,
§4.2] (or [35, §3.2]), there exists a non-zero polynomial 𝐺 ∈ 𝑪 [A, 𝑡]
such that, if 𝐹 (𝐴) ≠ 0 and 𝐺 (𝐴,𝑏) ≠ 0 then, for

𝐵 =

[1 𝑏 0
0 1 0
0 0 𝐼𝑛−2

]
,

the curve C 𝐵𝐴
2 is a plane curve in generic position in the sense of [9,

§4.2] and [31, Def 3.3]. In particular, 𝜋1 maps no tangent line of any
singular point of C2 to a point and its restriction of 𝜋1 to the finite
setW◦ (𝜋1,C 𝐵𝐴

2 ) is injective. Let P2 = 𝜋2 (P). As P2 ∪ sing(C2) is
finite, we can assume that 𝜋1 is injective on P𝐵𝐴

2 ∪ sing(C 𝐵𝐴
2 ) as

well. But, for any 𝒙 ∈ W◦ (𝜋1,C 𝐵𝐴
2 ), 𝜋1 (𝒙) is a point, so that 𝒙 is

neither in sing(C 𝐵𝐴
2 ) nor P

𝐵𝐴
2 , by genericity of C 𝐵𝐴

2 and item (𝑖)
of Corollary 2.4 respectively. Then, let 𝑏 ∈ 𝑪 such that𝐺 (A, 𝑏) is not
zero and let 𝐵 be as above. The subset 𝔄2 ⊂ GL𝑛 (𝑪) of elements
of the form 𝐵𝐴′ where 𝐹 (𝐴′)𝐺 (𝐴′, 𝑏) ≠ 0 is a non-empty Zariski
open subset. Moreover, for any 𝐴 ∈ 𝔄2, C𝐴 satisfies (H5).

Take 𝐴 ∈ 𝔄1 ∩ 𝔄2 and let 𝒙 ∈ K(𝜋1,C𝐴) ∪ P𝐴 and 𝒚 = 𝜋2 (𝒙).
Suppose there is 𝒙′ ∈ C𝐴 such that 𝒙′ ≠ 𝒙 and 𝜋2 (𝒙′) = 𝒚. By
(𝑖𝑖𝑖), 𝒙 ∈ W◦ (𝜋1,C𝐴) and 𝒚 is a node in app(C𝐴

2 ), with vertical
tangent line 𝜋2 (𝑇𝒙C𝐴): this is impossible by above (𝐴 ∈ 𝔄2, so that
C𝐴
2 is in generic position). Therefore, C𝐴 satisfies (H6).
We proceed similarly for (H7). Let 𝐴 ∈ 𝔄1. By (H1), C𝐴 is in

Noether position (for 𝜋1). Let D = (𝔡3, . . . , 𝔡𝑛) be new variables.
By [28, Cor 3.4 & 3.5], there is 𝐻 ∈ 𝑪 [A, D] non-zero such that, if
𝐹 (𝐴) ≠ 0 and 𝐻 (𝐴, 𝒅) ≠ 0, then the following holds: if 𝜇𝒅 = 𝑥2 +
𝒅3𝑥3+· · ·+𝒅𝑛𝑥𝑛 is a linear form, then there isR = (𝜔, 𝜌1, . . . , 𝜌𝑛) ⊂
𝑸 [𝑥1, 𝑣] such that (R, 𝑥1, 𝜇𝒅 ) is a one-dimensional parametrization
encoding C𝐴 . Let 𝒅 ∈ 𝑪𝑛−1 such that 𝐻 (A, 𝒅) is not zero and

𝐶 =

[1 0 0
0 1 𝒅
0 0 𝐼𝑛−2

]
.

The subset𝔄3 ⊂ GL𝑛 (𝑪) of elements, of the form𝐶𝐴′, where 𝐹 (𝐴′)
and 𝐻 (𝐴′, 𝒄) are both not zero, is a non-empty Zariski open subset
where C𝐴 satisfies (H7).

Finally, for 𝐴 ∈ 𝔄 := 𝔄1 ∩ 𝔄2 ∩ 𝔄3, C𝐴 satisfies (H). □

3 DETECT APPARENT SINGULARITIES
We generalize the criterion of [31] used to identify apparent sin-
gularities in plane projection of space curve. We keep notations
given in Section 1, and assume for the rest of the document
that (C ,P) satisfies (H). We start by an adapted version of [31,
Lemma 4.1] (the equivalence relation modulo 𝑰 (C ) is denoted ≡).

Lemma 3.1. Let (𝛼, 𝛽) be a node of C2. There are exactly two power-
series 𝑦1, 𝑦2 ∈ 𝑪 [[𝑥1 − 𝛼]] such that for 𝑖 = 1, 2, if 𝑧𝑖 =

𝜌3 (𝑥1,𝑦𝑖 )
𝜕𝑥2𝜔 (𝑥1,𝑦𝑖 )

then:
(1) 𝜔 (𝑥1, 𝑦𝑖 ) ≡ 0 and 𝑦𝑖 (𝛼) = 𝛽 but 𝑦′1 (𝛼) ≠ 𝑦

′
2 (𝛼);

(2) ℎ(𝑥1, 𝑦𝑖 , 𝑧𝑖 ) ≡ 0 for any ℎ ∈ 𝑰 (C ) ∩ 𝑸 [𝑥1, 𝑥2, 𝑥3]
and 𝑧𝑖 ∈ 𝑪 [[𝑥1 − 𝛼]].

Proof. According to (H5) and (H7), C2 is in generic position
in the sense of [35, Def 3.1]. As (𝛼, 𝛽) is a node of C2 = 𝑽 (𝜔), then
𝛽 is a double root of 𝜔 (𝛼, 𝑥2) by [35, Prop 2.1 & Thm 3.1]. From
the Puiseux theorem (see e.g. [30, Cor 13.16]), there are exactly two
Puiseux series 𝑦1, 𝑦2 of C2 at (𝛼, 𝛽). And for 𝑖 = 1, 2, from [31, §3.2],
𝑦𝑖 ∈ 𝑪 [[𝑥1 − 𝛼]], hence, 𝜔 (𝑥1, 𝑦𝑖 ) ≡ 0 and 𝑦𝑖 (𝛼) = 𝛽 . Besides, as
(𝛼, 𝛽) is a node, we have 𝑦′1 (𝛼) ≠ 𝑦

′
2 (𝛼). This concludes the proof

of assertion (1).
Let ℎ ∈ 𝑰 (C ) ∩ 𝑸 [𝑥1, 𝑥2, 𝑥3]. By Euclidean division, there are

𝑢, 𝑟 ∈ 𝑸 [𝑥1, 𝑥2] and𝑚 ≥ 0 such that

(𝜕𝑥2𝜔)𝑚 · ℎ = 𝑢 (𝜕𝑥2𝜔 · 𝑥3 − 𝜌3) + 𝑟 .
Since 𝑰 (C ) ∩ 𝑸 [𝑥1, 𝑥2] = ⟨𝜔⟩, 𝜔 divides 𝑟 in 𝑸 [𝑥1, 𝑥2], so that,

(𝜕𝑥2𝜔 (𝑥1, 𝑦𝑖 ))𝑚 · ℎ(𝑥1, 𝑦𝑖 , 𝑧𝑖 ) ≡ 0,

for 𝑖 = 1, 2. As 𝜕𝑥2𝜔 (𝑥1, 𝑦𝑖 ) cannot be identically zero - K(𝜋1,C2)
is finite by (H5), ℎ(𝑥1, 𝑦𝑖 , 𝑧𝑖 ) ≡ 0.

Finally, by (H1), 𝑸 [C3] is integral over 𝑸 [C2], so that there is

ℎ0 ∈ 𝑰 (C3) = 𝑰 (C ) ∩ 𝑸 [𝑥1, 𝑥2, 𝑥3]
monic in 𝑥3. From above, for 𝑖 = 1, 2, ℎ0 (𝑥1, 𝑦𝑖 , 𝑧𝑖 ) ≡ 0 and 𝑧𝑖 is
integral over 𝑪 [[𝑥1 − 𝛼]]. As 𝑪 is an algebraically closed field of
characteristic 0, 𝑪 [[𝑥1 − 𝛼]] is integrally closed [30, Cor 13.15].
Thus, as a fraction, 𝑧𝑖 ∈ 𝑪 [[𝑥1 − 𝛼]]. □

Proposition 3.2. The following assertions are equivalent:
(1) 𝒚 ∈ app(C2);
(2) 𝒚 is a node of C2 and

(𝜕2𝑥2𝜔 · 𝜕𝑥1𝜌3 − 𝜕
2
𝑥1𝑥2𝜔 · 𝜕𝑥2𝜌3) (𝒚) ≠ 0. (1)

Proof. Assume that 𝒚 = (𝛼, 𝛽) is a node. We first prove that
if (1) holds then, there are two distinct points of C that project
on 𝒚. By Lemma 3.1, there exist 𝑦1, 𝑦2 ∈ 𝑪 [[𝑥1 − 𝛼]] such that
𝑦′1 (𝛼) ≠ 𝑦′2 (𝛼) and 𝑦𝑖 (𝛼) = 𝛽 and 𝜔 (𝑥1, 𝑦𝑖 ) ≡ 0, for 𝑖 = 1, 2. For
𝑖 = 1, 2 let 𝑧𝑖 =

𝜌3 (𝑥1,𝑦𝑖 )
𝜕𝑥2𝜔 (𝑥1,𝑦𝑖 )

. By Lemma 3.1,

𝜕𝑥2𝜔 (𝑥1, 𝑦𝑖 ) · 𝑧𝑖 ≡ 𝜌3 (𝑥1, 𝑦𝑖 ).
Since 𝑧𝑖 ∈ 𝑪 [[𝑥1 − 𝛼]], by derivation and evaluation in 𝑥1 = 𝛼 ,(
𝜕2𝑥1𝑥2𝜔 (𝒚) + 𝑦

′
𝑖 (𝛼)𝜕

2
𝑥2𝜔 (𝒚)

)
𝑧𝑖 (𝛼) = 𝜕𝑥1𝜌3 (𝒚) + 𝑦′𝑖 (𝛼)𝜕𝑥2𝜌3 (𝒚) . (2)

By Lemma 3.1, 𝜔 (𝑥1, 𝑦𝑖 ) ≡ 0. Differentiating twice and evaluating
in 𝛼 , we get

𝜕2𝑥1𝜔 (𝒚) + 2𝑦
′
𝑖 (𝛼)𝜕

2
𝑥1𝑥2𝜔 (𝒚) + 𝑦

′
𝑖 (𝛼)

2𝜕2𝑥2𝜔 (𝒚) = 0.

Since 𝑦′1 (𝛼) ≠ 𝑦
′
2 (𝛼) by Lemma 3.1, they are simple roots of

𝜕2𝑥1𝜔 (𝒚) + 2𝑈 𝜕
2
𝑥1𝑥2𝜔 (𝒚) +𝑈

2𝜕2𝑥2𝜔 (𝒚) ∈ 𝑪 [𝑈 ] .
Therefore,

𝜕2𝑥1𝑥2𝜔 (𝒚) + 𝑦
′
𝑖 (𝛼)𝜕

2
𝑥2𝜔 (𝒚) ≠ 0. (3)

Now let 𝐻 : 𝑪 → 𝑪 such that for all 𝑡 ∈ 𝑪

𝐻 (𝑡) =
𝜕𝑥1𝜌3 (𝒚) + 𝑡 · 𝜕𝑥2𝜌3 (𝒚)
𝜕2𝑥1𝑥2𝜔 (𝒚) + 𝑡 · 𝜕2𝑥2𝜔 (𝒚)

.

Using (2) and according to (3), 𝐻 (𝑦′
𝑖
(𝛼)) = 𝑧𝑖 (𝛼) for 𝑖 = 1, 2. But

𝐻 is either bijective or constant, whether (1) respectively holds or
not. As 𝑦′1 (𝛼) ≠ 𝑦

′
2 (𝛼), (1) holds if, and only if, 𝑧1 (𝛼) ≠ 𝑧2 (𝛼). By

Lemma 3.1, (2), 𝒛1 = (𝛼, 𝛽, 𝑧1 (𝛼)) and 𝒛2 = (𝛼, 𝛽, 𝑧2 (𝛼)) are points
of C3 projecting on 𝒚. From (H3), there are 𝒙, 𝒙′ in C that project
on resp. 𝒛1 and 𝒛2. They are distinct if, and only if, (1) holds.
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We can now prove the equivalence statement. We just proved
that, if 𝒚 is a node and (1) holds then, 𝒚 is the projection of two
distinct points, that cannot be singular by (H5). Conversely, either
𝒚 is not a node, and we conclude by (H4) or, by the above discussion,
it is the projection of a point of C , with two distinct tangent lines
(that project on the ones of 𝒚). Hence, 𝒚 is the projection of a
singular point and then, not in app(C2), by definition. □

4 CONNECTIVITY RECOVERY
We now investigate the connectivity relation between C𝑹 and C2,𝑹 .
The following lemma is partly adapted from [31, Lemma 6.2].

Lemma 4.1. Let 𝒙 = (𝒙1 . . . , 𝒙𝑛) ∈ K(𝜋1,C ), then 𝒙 ∈ 𝑹𝑛 if and
only if 𝒙1 ∈ 𝑹, and K(𝜋1,C2) − app(C2) = 𝜋2

(
K(𝜋1,C )

)
.

Proof. The second point is a direct consequence of (H2), as the
non-singular critical points of C project to the ones of C2.

Let 𝒙 ∈ K(𝜋1,C ), and assume 𝒙1 ∈ 𝑹. By [35, Prop 3.1], as C
is in generic position, computing sub-resultant sequences gives a
rise to 𝜎2 ∈ 𝑸 [𝑥1] such that 𝒙2 = 𝜎2 (𝒙1) ∈ 𝑹. By (H6), the line
𝑽 (𝑥1 −𝒙1, 𝑥2 −𝒙2) intersects C at exactly one point. Hence, by [20,
Thm 3.2], computing a Gröbner basis of the ideal

𝑰 (C ) + ⟨𝑥1 − 𝒙1, 𝑥2 − 𝒙2⟩ ⊂ 𝑹 [𝑿 ]
with respect to the lexicographic order 𝑥1 ≺ · · · ≺ 𝑥𝑛 gives a
rise to 𝑛 − 2 polynomials 𝜎3, . . . , 𝜎𝑛 such that 𝜎𝑖 ∈ 𝑹 [𝑥1, . . . , 𝑥𝑖−1]
and 𝜎𝑖 (𝒙1, . . . , 𝒙𝑖−1) = 𝒙𝑖 , for 3 ≤ 𝑖 ≤ 𝑛. Hence, the triangular
system formed by the 𝜎𝑖 ’s raises polynomials 𝜏2, . . . , 𝜏𝑛 ∈ 𝑹 [𝑥1]
such that 𝒙𝑖 = 𝜏𝑖 (𝒙1) for 𝑖 ≥ 2, thus 𝒙 ∈ 𝑹𝑛 . The converse is
straightforward. □

The following lemma shows that, except at apparent singularities,
the real traces of C and C2 share the same connectivity properties.

Lemma 4.2. The restriction of 𝜋2 to C𝑹 − 𝜋−12 (app(C2)) is a s.a.
homeomorphism of inverse 𝜑2, defined on C2,𝑹 − app(C2) such that

for all 𝒚 ∉ K(𝜋1,C2), 𝜑2 (𝒚) =
(
𝒚,

𝜌3 (𝒚)
𝜕𝑥2𝜔 (𝒚)

, . . . ,
𝜌𝑛 (𝒚)
𝜕𝑥2𝜔 (𝒚)

)
.

Proof. Consider 𝒚 ∈ C2,𝑹 − app(C2). As C2 = 𝑽 (𝜔), either
𝜕𝑥2𝜔 (𝒚) is non-zero or 𝒚 ∈ K(𝜋1,C2,𝑹 ) − app(C2). In the latter
case, according to Lemma 4.1

𝜋−12 (𝒚) ∩ C ⊂ K(𝜋1,C𝑹 ).
By (H6) there is a unique 𝒙 ∈ K(𝜋1,C𝑹 ) −𝜋−12 (app(C2)) such that
𝜋2 (𝒙) = 𝒚. Let 𝜑2 : C2,𝑹 − app(C2) → 𝑹𝑛 be defined as:
▷ if 𝒚 ∈ K(𝜋1,C2) − app(C2), then 𝜑2 (𝒚) is the unique 𝒙

satisfying 𝜋2 (𝒙) = 𝒚;
▷ else 𝜑2 (𝒚) =

(
𝒚, (𝜌3/𝜕𝑥2𝜔) (𝒚), . . . , (𝜌𝑛/𝜕𝑥2𝜔) (𝒚)

)
.

Since its graph is a s.a. set by construction,𝜑2 is a s.a. map according
to [4, §2.5.2]. Moreover, if 𝒚 ∈ C2,𝑹 − app(C2), then 𝜑2 (𝒚) is the
unique element of C𝑹 − 𝜋−12 (app(C2)) such that 𝜋2 (𝜑2 (𝒚)) = 𝒚.

Since 𝜕𝑥2𝜔 (𝒚) does not vanish on this set, 𝜑2 is continuous on
C2,𝑹 − K(𝜋1,C2). We prove that it is continuous everywhere. Let
𝒚 ∈ K(𝜋1,C2,𝑹 ) − app(C2) and suppose there is a s.a. path 𝛾 :
[0, 1] → C2,𝑹 , such that 𝛾 (0) = 𝒚 and 𝛾 (𝑡) ∈ C2,𝑹 − K(𝜋1,C2), for
all 𝑡 > 0. Consider the s.a. path 𝜏 : 𝑡 ∈ (0, 1] ↦→ 𝜑2 (𝛾 (𝑡)) ∈ C𝑹 .
Since 𝜋2 is a proper map by (H1), 𝜏 is bounded. Thus, by [4, Prop
3.21], 𝜏 can be continuously extended in 𝑡 = 0 and by continuity,

𝜏 (0) ∈ C𝑹 and 𝜋2 (𝜏 (0)) = 𝜋2 (𝜑2 (𝒚)) = 𝒚. Hence, by uniqueness
𝜏 (0) = 𝜑2 (𝒚) and, by [4, Prop 3.6 & 3.20], 𝜑2 is continuous in 𝒚.
Since K(𝜋1,C2) is finite, no such path 𝛾 exists if, and only if, both
𝒚 and 𝒙 are isolated points so that 𝜑2 is trivially continuous at 𝒚.

In conclusion, 𝜑2 is a s.a. map, continuous on C2,𝑹 − app(C2), of
inverse the restriction of 𝜋2 to C𝑹 − 𝜋−12 (app(C2)) by Lemma 4.1.
Hence, this latter restriction is a s.a. homeomorphism, as stated. □

It remains to investigate how the connectivity of the real traces of
C and C2 are related close to apparent singularities. Recall that an
(ambient) isotopy of 𝑹𝑛 is a continuous mapH : 𝑹𝑛 × [0, 1] → 𝑹𝑛

such that 𝒚 ↦→ H (𝒚, 0) is the identity map and 𝒚 ↦→ H (𝒚, 𝑡) is a
homeomorphism for 𝑡 ∈ [0, 1]. Then two subsets 𝑌 and 𝑍 of 𝑹𝑛
are isotopy equivalent if there is an isotopy H of 𝑹𝑛 such that
H(𝑌, 1) = 𝑍 .

Recall also that a graph G is the data of a set V of vertices,
together with a set E of edges {𝒗, 𝒗′}, where 𝒗, 𝒗′ ∈ V . For any
𝒚,𝒚′ ∈ 𝑹2, we will denote by [𝒚,𝒚′], the closed line segment {(1 −
𝑡)𝒚 + 𝑡𝒚′, 𝑡 ∈ [0, 1]}. Then, ifV ⊂ 𝑹2, we call the piecewise linear
curve, denoted CG , associated to G the union of [𝒗, 𝒗′] for all
{𝒗, 𝒗′} ∈ E. In the following, we note P2 = 𝜋2 (P).

Definition 4.3. Let G2 = (V2, E2) be a graph, withV2 ⊂ 𝑹2. Then
we say that G2 is a real topology graph of (C2,P2) if

(1) C2,𝑹 is isotopy equivalent to CG2 ;
(2) the points of K(𝜋1,C2,𝑹 ) ∪ P2,𝑹 are embedded inV2;
(3) no two points of K(𝜋1,C2,𝑹 ) have adjacent vertices in G .

For the rest of this section, let G2 be a real topology graph of
(C2,P2),H the induced isotopy and, for 𝑡 ∈ [0, 1],H𝑡 : 𝒚 ∈ 𝑹2 →
H(𝒚, 𝑡), so thatH1 (CG2 ) = C2,𝑹 .

Consider s.a. paths 𝛾1, . . . , 𝛾4 in 𝑹2, all starting from a unique
point 𝒑 ∈ 𝑹2, and not intersecting each other elsewhere (see Fig-
ure 1), so that the 𝛾𝑖 ’s can be pairwise associated with respect to
their unique opposite branch at 𝒑: given an orientation of 𝑹2 and a
sufficiently small circle centered at 𝒑, we arrange the 𝛾 ′

𝑖
𝑠 around 𝒑

with respect to their unique intersection with this circle [8, Thm
9.3.6]; we then pairwise associate them to the one after next in the
above arrangement (it does not depend on the chosen orientation).
Up to reindexing, say that (𝛾1, 𝛾3) and (𝛾2, 𝛾4) are the unique couples
of opposite branches at 𝒑.

The next lemma follows directly from classical results in knots
and braids theory, see [10, Prop 1.9-10] for the key arguments.

Lemma 4.4. Let the 𝛾𝑖 ’s as above, and any isotopy H̃ of 𝑹2. The
curves (H̃1 (𝛾1), H̃1 (𝛾3)) and (H̃1 (𝛾2), H̃1 (𝛾4)) do not intersect each
other, except at H̃1 (𝒑). They are the unique couples of opposite
branches at this point.

This property allows us to deduce relations between edges of
G2, from relations between the associated branches of C2,𝑹 .

Lemma 4.5. Let 𝒚 = (𝛼, 𝛽) ∈ app(C2,𝑹 ). There are exactly five
distinct vertices 𝒗0, . . . , 𝒗4 ∈ V2 such that H1 (𝒗0) = 𝒚 and for 1 ≤
𝑖 ≤ 4:

(1) {𝒗0, 𝒗𝑖 } ∈ E2 andH1 (𝒗𝑖 ) ∉ app(C2);
(2) if 𝑒𝑖 = [𝒗0, 𝒗𝑖 ], the 𝑒′𝑖 𝑠 do not cross each other except at 𝒗0;



Algorithm for ConnectivityQueries on Real Algebraic Curves Conference’17, July 2017, Washington, DC, USA

Figure 1: The left figure illustrates the context of Lemma 4.4 with
two possible ordering of the branches; the braid structure appears
clearly. On the right, an illustration shows how NodeResolution
(Definition 4.6) modifying G2 at vertices of Vapp; dotted and solid
lines representing respective edges of G2 and G .

(3) there exists unique s.a. paths 𝜏1, . . . , 𝜏4 such that for

𝜏𝑖 : [0, 1] → C𝑹 ,

{
𝜋2 (𝜏𝑖 ( [0, 1])) = H1 (𝑒𝑖 )
𝜋2 (𝜏𝑖 (0)) = 𝒚

(4) assume that (𝑒1, 𝑒3) and (𝑒2, 𝑒4) are the two unique couples
of opposite edges of G2 at 𝒗0. Then, there exist 𝒙1 ≠ 𝒙2 in
𝜋−12 (𝒚) ∩ C𝑹 , such that 𝒙1 = 𝜏1 (0) = 𝜏3 (0) and 𝒙2 = 𝜏2 (0) =
𝜏4 (0).

Proof. Let 𝒗0 = H−11 (𝒚). As 𝒚 is a node, there are exactly four
distinct vertices 𝒗1, . . . , 𝒗4 ∈ V2 such that {𝒗0, 𝒗𝑖 } ∈ E2, for 1 ≤
𝑖 ≤ 4. Indeed, for 1 ≤ 𝑖 ≤ 4, let

𝑒𝑖 : 𝑡 ∈ [0, 1] ↦→ 𝒗0 + 𝑡 (𝒗𝑖 − 𝒗0) ∈ 𝑹2

and𝛾𝑖 = H1◦𝑒𝑖 . Then the𝛾𝑖 ’s are the four branches ofC2,𝑹 incident
in 𝒚. Remark that, by the third item of Definition 4.3, none of the
H1 (𝒗𝑖 )’s lie in K(𝜋1,C2,𝑹 ), sinceH1 (𝒗0) = 𝒚 does. Besides, by the
second item, the 𝛾𝑖 ’s do not intersect K(𝜋1,C2), except in 𝒚.

In particular, the 𝛾 ′
𝑖
𝑠 do not contain points of app(C2) and inter-

sect each other only at 𝒚. Hence, by Lemma 4.4, throughH1, the
𝑒𝑖 ’s intersect each other only at 𝒗0.

Besides, let 𝑖 ∈ {1, . . . , 4}, and for 0 < 𝑡 ≤ 1, let 𝜏𝑖 (𝑡) = 𝜑2 (𝛾𝑖 (𝑡)),
where 𝜑2 is defined in Lemma 4.2. It is a well-defined s.a. path by
the above discussion. Moreover, by Lemma 4.2, 𝜏𝑖 (𝑡) ∈ C𝑹 and
𝜋2 (𝜏 (𝑡)) = 𝛾 (𝑡) = H1 (𝑒𝑖 (𝑡)), for all 0 < 𝑡 ≤ 1. Since 𝜋2 is a proper
map by (H1), [4, Prop 3.21] implies that 𝜏𝑖 can be continuously
extended in 𝑡 = 0. Moreover, by continuity, 𝜋2 (𝜏𝑖 (0)) = 𝒚.

Finally, 𝒚 being a node, there exist points 𝜃1 ≠ 𝜃2 in 𝑹2 and
1 ≤ 𝑖1, 𝑖2, 𝑖3, 𝑖4 ≤ 4 such that,

𝜃1 = 𝛾
′
𝑖1
(0) = 𝛾 ′𝑖3 (0) and 𝜃2 = 𝛾

′
𝑖2
(0) = 𝛾 ′𝑖4 (0) .

This means that the branches (𝛾𝑖1 , 𝛾𝑖3 ) and (𝛾𝑖2 , 𝛾𝑖4 ) are the two cou-
ples of opposite branches of C2 at 𝒚. Then, by Lemma 4.4, (𝑒𝑖1 , 𝑒𝑖3 )
and (𝑒𝑖2 , 𝑒𝑖4 ) are the two couples of opposite edges of G2 at 𝒚. For
the sake of clarity assume, without loss of generality that 𝑖𝑘 = 𝑘

for all 1 ≤ 𝑘 ≤ 4. By continuity, there exist 𝜗1 ≠ 𝜗2 in 𝑹𝑛 such that

𝜗1 = 𝜏
′
1 (0) = 𝜏

′
3 (0) and 𝜗2 = 𝜏

′
2 (0) = 𝜏

′
4 (0),

and 𝜏𝑖 (0) ∈ 𝜋−12 (𝒚) ∩ C𝑹 for 1 ≤ 𝑖 ≤ 4. But as 𝒚 ∈ app(C2),
𝜋−12 (𝒚) ∩ C contains two distinct non-singular points, of distinct
tangent lines, by (H2) and (H4). Since the 𝜏 ′𝑖 (0)’s are tangent lines
of C , necessarily, 𝜏1 (0) and 𝜏3 (0) are equal to one of these points,
while 𝜏2 (0) and 𝜏4 (0) are equal to the other one (if multiple branches

converge at a point or the tangent lines differ, it becomes singular).
□

IfVapp = H−11 (app(C2)) ⊂ V2 is the subset of apparent nodes,
then Lemma 4.5 provides a procedure to compute a new graph G ,
from which we can deduce connectivity queries on C .

Definition 4.6. Let NodeResolution be the procedure that takes
as input G2 andVapp as above and outputs the graph G = (V, E)
as follows (we keep notations of Lemma 4.5).

1. For all 𝒗 ∈ Vapp, compute the adjacent vertices 𝒗1, . . . , 𝒗4 of
𝒗, indexed such that (𝑒1, 𝑒3) and (𝑒2, 𝑒4) are opposite edges.

2. Remove 𝒗 fromV2 and replace the four edges ({𝒗, 𝒗𝑘 })1≤𝑘≤4
by the two edges ({𝒗 𝑗 , 𝒗 𝑗+2})𝑘=1,2, as depicted in Figure 1.

We say that 𝒗, 𝒗′ ∈ V are connected in a graph G = (V, E) if
there exists an ordered sequence (𝒗0, . . . , 𝒗𝑁+1) of vertices in V
such that 𝒗0 = 𝒗, 𝒗𝑁+1 = 𝒗′ and {𝒗𝑖 , 𝒗𝑖+1} ∈ E, for all 0 ≤ 𝑖 ≤ 𝑁 .

Proposition 4.7. Let G = (V, E) be the graph output by NodeRes-
olution, on input G2 andVapp. Then,

(1) 𝜋2 (P𝑹 ) ⊂ H1 (V);
(2) 𝒚,𝒚′ ∈ P𝑹 are s.a. connected inC𝑹 if, and only if,H−11 (𝜋2 (𝒚))

andH−11 (𝜋2 (𝒚
′)) are connected in G .

Proof. (H5) and (H6) imply 𝜋2 (P) ∩ H1 (Vapp) = ∅. Then
P2,𝑹 = 𝜋2 (P𝑹 ) as 𝜋2 is injective onP, and, by definition,P2,𝑹 ⊂ V .

We now deal with the second statement. Let 𝒙, 𝒙′ ∈ P𝑹 and

𝒗 = H−11 (𝜋2 (𝒙)) and 𝒗′ = H−11 (𝜋2 (𝒙
′))

inV . Assume first that 𝒗 and 𝒗′ are connected inG . Then there exist
𝒗1, . . . , 𝒗𝑁 ∈ V such that, if 𝒗0 = 𝒗 and 𝒗𝑁+1 = 𝒗′, then {𝒗𝑖 , 𝒗𝑖+1} ∈
E andH1 (𝒗𝑖 ) ∉ app(C2) for 0 ≤ 𝑖 ≤ 𝑁 + 1. Fix 𝑖 ∈ {0, . . . , 𝑁 }. By
Lemma 4.2, 𝒙𝑖 = 𝜑2 (H1 (𝒗𝑖 )) and 𝒙𝑖+1 = 𝜑2 (H1 (𝒗𝑖+1)) are well-
defined in C𝑹

If {𝒗𝑖 , 𝒗𝑖+1} ∈ E2 then, H1 ( [𝒗𝑖 , 𝒗𝑖+1]) ∩ app(C2) = ∅, and, by
Lemma 4.2, 𝒙𝑖 and 𝒙𝑖+1 are s.a. connected in C𝑹 through 𝜑2. Oth-
erwise, {𝒗𝑖 , 𝒗𝑖+1} ∉ E2, and, by construction of G , there exists
𝒘 ∈ Vapp such that {𝒗𝑖 ,𝒘} and {𝒘, 𝒗𝑖+1} are in E2. However, since
{𝒗𝑖 , 𝒗𝑖+1} ∈ E, then, according to the construction of G ,

𝑒𝑖 = [𝒘, 𝒗𝑖 ] and 𝑒𝑖+1 = [𝒘, 𝒗𝑖+1]
are opposite edges ofG2 at𝒘 . Hence, by items (2) and (3) of Lemma 4.5,
there exists a s.a. path 𝜏 : [−1, 1] → C𝑹 connecting 𝒙𝑖 to 𝒙𝑖+1. All
in all, by transitivity, 𝒙0 = 𝒙 and 𝒙𝑁+1 = 𝒙′ are s.a. connected in
C𝑹 , and we are done.

Conversely, suppose that 𝒙 and 𝒙′ are s.a. connected in C𝑹 and
let 𝜏 : [0, 1] → C𝑹 be a s.a. path such that 𝜏 (0) = 𝒙 and 𝜏 (1) = 𝒙′.
Let 𝛾 = 𝜋2 ◦ 𝜏 , and

{𝑡1, . . . , 𝑡𝑁 } = 𝛾−1
(
H1 (V2)

)
⊂ (0, 1)

such that 𝑡1 < . . . < 𝑡𝑁 . Let 𝑡0 = 0, 𝑡𝑁+1 = 1 and for 0 ≤ 𝑖 ≤ 𝑁 + 1,
𝒗𝑖 = H−11 (𝛾 (𝑡𝑖 )) ∈ V2. By assumption, {𝒗𝑖 , 𝒗𝑖+1} ∈ E2 for all
𝑖 ∈ {0, . . . , 𝑁 }. Let us prove by induction that for 0 ≤ 𝑖 ≤ 𝑁 + 1,
either 𝒗𝑖 ∈ Vapp or 𝒗𝑖 is connected to 𝒗0 in G . If 𝑖 = 0, there is
nothing to prove, so let 1 ≤ 𝑖 ≤ 𝑁 and suppose that the statement
holds for all 0 ≤ 𝑗<𝑖 .

Assume 𝒗𝑖+1 ∉ Vapp. Then, either 𝒗𝑖 ∉ Vapp, and, by induc-
tion hypothesis, 𝒗𝑖+1 and 𝒗0 are connected, through 𝒗𝑖 , in G . Ei-
ther 𝒗𝑖 ∈ Vapp and, by Lemma 4.5, there are exactly four distinct
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𝒘1,𝒘2,𝒘3,𝒘4 ∈ V − Vapp such that {𝒗𝑖 ,𝒘 𝑗 } ∈ E2, for 1 ≤ 𝑗 ≤ 4.
Assume, without loss of generality, that 𝒗𝑖+1 = 𝒘1. Then, there is
𝑗1 ∈ {2, 3, 4} such that 𝒗𝑖−1 = 𝒘 𝑗1 . Using the notation of Lemma 4.5,
assume, without loss of generality, that 𝑒3 = [𝒗𝑖 ,𝒘3] is the op-
posite branch of 𝑒1 = [𝒗𝑖 ,𝒘1] in G2 at 𝒗𝑖 . Then, by items (2) and
(3) of Lemma 4.5, we have 𝑗0 = 3, since 𝜏 ( [𝑡𝑖−1, 𝑡𝑖 ]) is connected
to 𝜏 ( [𝑡𝑖 , 𝑡𝑖+1]). By construction of G , 𝒘1 = 𝒗𝑖+1 is connected to
𝒘3 = 𝒗𝑖−1 in G , so that, by induction, 𝒗𝑖+1 is connected to 𝒗0,
through 𝒗𝑖−1. Hence, 𝒗 = 𝒗𝑁+1 and 𝒗′ = 𝒗0 are connected in G ,
proving the converse. □

Proposition 4.7 also implies that G and C𝑹 share the same num-
ber of s.a. connected components. Therefore, by computing G , one
can determine this number and answer connectivity queries on P𝑹 .

5 ALGORITHM
We now provide an algorithm for solving connectivity queries over
real algebraic curves, whose different steps correspond sequentially,
except for one, to the different sections of this document.

Given a sequence of polynomials defining an algebraic curve, the
first step is to perform a linear change of variable, generic enough
to ensure assumption (H), and to compute a one-dimensional pa-
rametrization encoding it. Answering connectivity queries on the
sheared curve is equivalent to do so on the original curve. By [34,
Thm 6.18] (or [46, Prop 6.3]), computing such a parametrization
has complexity cubic in the degree of the curve, thus bounded by
our overall complexity. Besides, according to [46, § J], changing
variables in zero and one-dimensional parametrizations has similar
complexity. Hence, for the sake of clarity, we omit these two steps.

Following the state of the art of curve topology computation,
we consider polynomials with integer coefficients, so that 𝑸 = ℚ,
𝑹 = ℝ and 𝑪 = ℂ. Moreover, we denote by ⪯1 the preorder on
points of ℝ𝑛 w.r.t. the first coordinate, when they are distinct.

5.1 Subroutines
We assume that R = (𝜔, 𝜌3, . . . , 𝜌𝑛) has coefficients in ℤ and
magnitude (𝛿, 𝜏), and consider a zero-dimensional parametriza-
tion P = (𝜆, 𝜗2, . . . , 𝜗𝑛), with coefficients in ℤ and magnitude
(𝜇, 𝜅) encoding P. Note that R2 = (𝜔, 𝜌2) and P2 = (𝜆, 𝜗2) are
parametrizations encoding respectively C2 and P2. We denote fur-
ther 𝑅 = Res𝑥2 (𝜔, 𝜕𝑥2𝜔). Since, by (H7), 𝜔 is monic in 𝑥2, its roots
are exactly the abscissas ofK(𝜋1,C2). From (H5), points of app(C2)
can be identified by their abscissa, which, following Proposition 3.2,
can be reduced to gcd computations.

Proposition 5.1. There exists an algorithm ApparentSingularities
taking as input R, as above, and computing a square-free polynomial
𝑞app ∈ ℤ[𝑥1], of magnitude (𝛿2, 𝑂̃ (𝛿2 + 𝛿𝜏)) such that

app(C2) = {(𝛼, 𝛽) ∈ K(𝜋1,C2) | 𝑞app (𝛼) = 0},

using 𝑂̃ (𝛿6 + 𝛿5𝜏) bit operations.

Proof. Let (𝛼, 𝛽) ∈ K(𝜋1,C2). According to [31, Thm 3.2.(ii)],
since C satisfies (H), (𝛼, 𝛽) is a node if, and only if, 𝛼 is a double
root of 𝑅, i.e. if, and only if, 𝛼 is a root of

𝑞 = gcd(𝑅∗, 𝑅′)/gcd(𝑅∗, 𝑅′, 𝑅′′),

where 𝑅∗ is the square-free part of 𝑅. Moreover, let (sr1, sr1,0) be
the first subresultant sequence of (𝜔, 𝜕𝑥2𝜔). By [35, Thm 3.1], if
𝑞(𝛼) = 0 then, sr1 (𝛼) ≠ 0, and

sr1 (𝛼) · 𝛽 = − sr1,0 (𝛼) .
Let 𝐴(𝑥1, 𝑥2) be the polynomial on the left-hand side of (1) in

Proposition 3.2, and 𝑢 be a new indeterminate. Let 𝐴̃(𝑥1, 𝑥2, 𝑢) be
the homogenization of 𝐴 in 𝑥2, and 𝐵 = 𝐴̃(𝑥1,− sr1,0, sr1). Then,
from Proposition 3.2, the square-free polynomial

𝑞app = 𝑞/gcd(𝑞, 𝐵)
vanishes at 𝛼 if, and only if, (𝛼, 𝛽) ∈ app(C2), as required.

We now deal with the quantitative bounds. By [44, Lemma 14],
𝑅, 𝑅∗, sr1 and sr1,0 have magnitude (𝛿2, 𝑂̃ (𝛿2 + 𝛿𝜏)) and can be
computed using 𝑂̃ (𝛿6 + 𝛿5𝜏) bit operations. Hence, by [49, Cor
11.14] and [44, Lemma 12], computing gcd(𝑅∗, 𝑅′), gcd(𝑅∗, 𝑅′, 𝑅′′)
and then 𝑞 can be done using 𝑂̃ (𝛿4 + 𝛿3𝜏) bit operations. Moreover,
by [44, Lemma 11], 𝑞 has magnitude (𝛿2, 𝑂̃ (𝛿2 + 𝛿𝜏)).

Besides, 𝐴̃ has magnitude (𝑂 (𝛿), 𝑂̃ (𝜏)), so that 𝐵 has magnitude(
𝑂̃ (𝛿3), 𝑂̃ (𝛿3 + 𝛿2𝜏)

)
.

Hence, by [49, Cor 11.14] computing, gcd(𝑞, 𝐵) requires 𝑂̃ (𝛿6+𝛿5𝜏)
bit operations. From this, computing𝑞app costs 𝑂̃ (𝛿4+𝛿3𝜏) bit opera-
tions, by [22, Prop 2.15]. Finally,𝑞app hasmagnitude (𝛿2, 𝑂̃ (𝛿2+𝛿𝜏)),
by [44, Lemma 11]. □

Suppose now that the polynomial 𝑞app, from Proposition 5.1, has
been computed. We can compute a real topology graph of (C2,P2),
while identifying the vertices corresponding to app(C2) and P2.

Proposition 5.2. There exists an algorithm Topo2D taking as input
R,P2 and 𝑞app as above and computing G = (V, E), a real topology
graph of (C2,P2), of size at most 𝑂 (𝛿3 + 𝛿𝜇), using

𝑂̃ (𝛿6 + 𝛿5𝜏 + 𝜇6 + 𝜇5𝜅)
bit operations. It also outputs ordered sequences Vapp and VP , of
elements ofV , that are in one-to-one correspondence with resp. the
points of app(C2,ℝ) and P2,ℝ, ordered with respect to ⪯1.

Proof. According to [42, Thm 14], and more recently [22, Thm
1.1], there is an algorithm that computes a planar graph G , whose
associated piecewise linear curve CG , is isotopy equivalent to C2,ℝ,
using 𝑂̃ (𝛿6 + 𝛿5𝜏) bit operations. Under slight modifications, these
algorithms can compute the claimed output of Topo2D, within the
same complexity bounds. For clarity, we only consider the algorithm
of [22], that we roughly describe.

Let 𝛼1 < · · · < 𝛼𝑁 be the abscissas of the points of K(𝜋1,C2,ℝ).
They are distinct by (H5). [22, Prop 2.24] first computes disjoint
isolating intervals for each 𝛼𝑖 . Then, [22, Prop 3.13] isolates the
ordinates of the points above each 𝛼𝑖 . This process gives rise to
isolating boxes, which stand for vertices in the final graph. The
algorithm eventually connects these boxes to separating vertices
above regular values in the intervals (𝛼 𝑗 , 𝛼 𝑗+1). The latter is done
by counting the number of incoming left and right branches in each
box. For points of K(𝜋1,C2,ℝ), it is tackled by [22, §4.2-4], while
for others it is straightforward (exactly one branch from each side).

The above process computes a graph G = (V, E), such that CG

is isotopy equivalent to C2,ℝ. Remark thatV contains a subsetVK
of vertices associated to the unique point of K(𝜋1,C2,ℝ) above the
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𝛼𝑖 ’s, all separated by vertices associated to regular points. Moreover,
by Proposition 5.1,Vapp is exactly the subset ofVK , associated to
the 𝛼𝑖 ’s where 𝑞app vanishes. Then, according to [22, Prop 2.24]
and Proposition 5.1, one can compute disjoint isolating intervals of
the roots of 𝑅 and 𝑞app and identify all common roots, using

𝑂̃ (𝛿6 + 𝛿5𝜏)
bit operations. This gives Vapp.

Hence, it remains to show that introducing vertices for control
points P2,ℝ (together with those above and below) can be done
in the claimed bound. First, recall that D = (𝜆, 𝜗2) encodes P2.
According to [22, Prop 2.24] again, we can compute disjoint isolating
intervals for all distinct (by (H5)) real roots of 𝜆 and 𝑅, using at
most

𝑂̃ (𝛿6 + 𝛿5𝜏 + 𝜇6 + 𝜇5𝜅)
bit operations. Next, let 𝑔(𝑥1, 𝑥2) = 𝜆′ · 𝑥2 − 𝜗2. It is a bivariate
polynomial with magnitude (𝜇, 𝜅). Then, according to [22, Prop
3.14], for each root 𝛽 of 𝜆, we can compute isolating intervals
for all roots 𝒙2 of (𝜔 · 𝑔) (𝛽, 𝒙2), and identify the unique common
roots, within the same complexity bound. This gives VP . Moreover,
since P ∩K(𝜋1,C2,ℝ) = ∅, as seen above, the connection step for
the introduced vertices is straightforward, and does not affect the
complexity bound.

Finally, since we consider at most 𝛿2 + 𝜇 fibers, each of them
containing at most 𝛿 points then, taking in account the regular
separating fibers, we get at most𝑂 (𝛿3 +𝛿𝜇) vertices and edges. □

5.2 The algorithm
Let IndConnectComp be an algorithm taking as input a graph
G = (V, E), and an ordered sequence V = (𝒗1, . . . , 𝒗𝑁 ) of vertices
of G . It outputs a partition 𝐼1, . . . , 𝐼𝑠 of {1, . . . , 𝑁 }, grouping the
indices of the 𝒗𝑖 ’s lying in the same connected components of G .
By [19, §22.2], this has a bit complexity linear in the size of G .

Algorithm 1 ConnectCurve

Input: R = (𝜔, 𝜌3, . . . , 𝜌𝑛) ⊂ ℤ[𝑥1, 𝑥2] encoding an algebraic
curve C ⊂ ℂ𝑛 and P = (𝜆, 𝜗2, . . . , 𝜗𝑛) ⊂ ℤ[𝑥1] encoding
points 𝒑1 ⪯1 · · · ⪯1 𝒑𝜇 of Cℝ, such that (C ,P) satisfies (H).

Output: a partition of {1, . . . , 𝜇} grouping the indices of the 𝒑𝑖 ’s
lying in the same s.a. connected component of Cℝ.

1: P2 ← (𝜆, 𝜗2);
2: 𝑞app ← ApparentSingularities(R)
3:

[
G2, Vapp, VP

]
← Topo2D

(
R, P2, 𝑞app

)
;

4: G ← NodeResolution(G2, Vapp);
5: return IndConnectComp(VP , G );

Correction, and complexity estimate, of Algorithm 1, follow
directly from Propositions 5.1, 5.2 and 4.7. This proves Theorem 1.1.

As mentioned before, the number of connected components
of the graph G computed equals the number of s.a. connected
components of Cℝ. As an extension, for curves given as unions,
Algorithm 1 can be applied to each curve, where query points
are extended to include pairwise common intersection points. The
resulting subsets are then merged based on their shared points.
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