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Éric Schost1 and Catherine St-Pierre2,1

1University of Waterloo, Cheriton School of Computer
Science,Waterloo Ontario,Canada

2Inria (MATHEXP), University Paris-Saclay, Palaiseau, France

Abstract

We present a p-adic algorithm to recover the lexicographic Gröbner
basis G of an ideal in Q[x, y] with a generating set in Z[x, y], with a com-
plexity that is less than cubic in terms of the dimension of Q[x, y]/〈G〉
and softly linear in the height of its coefficients. We observe that pre-
vious results of Lazard’s that use Hermite normal forms to compute
Gröbner bases for ideals with two generators can be generalized to a
set of t ∈ N+ generators. We use this result to obtain a bound on
the height of the coefficients of G, and to control the probability of
choosing a good prime p to build the p-adic expansion of G.

1 Introduction

There exists a rich literature dedicated to the solution of polynomial systems
in two variables [24, 19, 16, 1, 38, 4, 18, 7, 33, 5, 27, 34, 28, 6, 14, 11], due in
part to their numerous applications in real algebraic geometry and computer-
aided design. Our focus in this paper is on the complexity of computing the
lexicographic Gröbner basis of a zero-dimensional ideal in Q[x, y], specifically
by means of p-adic techniques based on Newton iteration. An important
aspect of this work is to give bit-size bounds for such a Gröbner basis, as
well as bounds on the number of primes of bad reduction.

p-adic techniques have been considered in the context of Gröbner basis
computations (in an arbitrary number of variables) for decades. In 1983 and
1984, Ebert and Trinks addressed the question of modular algorithms for
Gröbner bases [17, 43], specifically for systems without multiple roots; these
techniques were also used in geometric resolution algorithms [22, 21, 20, 23].
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The absence of multiple roots allows for simple and efficient algorithms; for
arbitrary inputs, the question is more involved.

Winkler gave the first p-adic algorithm to construct a Gröbner basis [45]
that applies to general inputs; Pauer refined the discussion of good prime
numbers [36], and Arnold revisited, and simplified, these previous construc-
tions in [2]. No complexity analysis was provided; these p-adic algorithms
remain complex (they not only lift the Gröbner basis, but also the transfor-
mation matrix that turns the input system into its Gröbner basis), and to
our knowledge, achieve linear convergence.

In the specific context of bivariate equations, p-adic techniques have
already been put to use in previous work, first in the particular case of non-
multiple roots [33], then to compute a set-theoretic description of all roots,
even in the presence of multiplicities [34]. However, in this case, the latter
algorithm does not reveal the local structure at multiple roots.

In [40], we presented a form of Newton iteration specifically tailored to
lexicographic Gröbner bases in two variables. It crucially rests on results
due to Conca and Valla [9], who gave an explicit parametrization of bivariate
ideals with a given initial ideal: our lifting algorithm works specifically with
the parameters introduced by Conca and Valla. Our contribution in this
paper is to build on [40] to give a complete p-adic algorithm: we quantify
bad primes, show how to initialize the lifting process, give bounds on the
size of the output, and analyze the cost of the whole algorithm.

The following theorem gives a slightly simplified form of our main result,
where the probability of success and the number of input polynomials are
kept constant (the more precise version is given in the last section). In
what follows, the height of a nonzero integer u is log(|u|); if G is a family of
polynomials in Q[x, y], we define deg(G) = dimQQ[x, y]/G and let h(G) be
the maximum height of the numerators and denominators of its coefficients.

Theorem 1. Let F = (f1, . . . , ft) be in Z[x, y], with degree at most d, height
at most h, and with finitely many common solutions in C2. Let G be the
lexicographic Gröbner basis of I for the order x ≺ y and write s = |G|,
δ = deg(G), b = h(G).

For P > 0, assuming P ∈ O(1) and t ∈ O(1), there is an algorithm that
computes G with probability of success at least 1 − 1/2P using a number of
bit operations softly linear in

d2h+ (dω+1 + δω) log(h) + (d2δ + dδ2 + s2δ2)(b+ log(h)).

With the notation in the theorem, the bitsize of the input is linear in
d2h, and that of the output is linear in sδb. If all solutions of F have
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multiplicity one, previous forms of Newton iteration achieve better runtimes,
softly linear in the output size [23, 39, 33, 12] (but instead of a Gröbner basis,
they compute a triangular decomposition of V (F), or change coordinates).
Hence, it makes sense to apply our techniques only to multiple solutions.

This is what provides the motivation for our second result, where we
compute the Gröbner basis of the 〈x, y〉-primary component J of I. As a
natural extension, one can consider combining this with [26], which shows
how to put an arbitrary primary component of I in correspondence with the
〈x, y〉-primary component of a related ideal in K[x, y] for a finite extension
K of Q.

Theorem 2. Let F = (f1, . . . , ft) be in Z[x, y], with degree at most d, height
at most h, with finitely many common solutions in C2. Let G0 be the lexi-
cographic Gröbner basis of the 〈x, y〉-primary component of I for the order
x ≺ y and write r = |G0|, η = deg(G0), c = h(G0). For P > 0, assuming
P ∈ O(1) and t ∈ O(1), there is an algorithm that computes G0 with prob-
ability of success at least 1 − 1/2P using a number of bit operations softly
linear in

d2h+ (dωη + ηω) log(h) + η2c.

Outlook. Inspired by Lazard [32], we prove in Section 2 that the Hermite
Normal form of an “extended Sylvester matrix” built from f1, . . . , ft gives
the coefficients of a detaching basis of the ideal I they generate. We also
present a variant of this result, where replacing the Hermite normal form by
the Howell normal form yields a Gröbner basis of a localization of I. We use
these results in two manners: to compute the initial Gröbner basis modulo
p, prior to entering Newton iteration, and to obtain bit-size bounds for the
output (over Q) and quantify bad choices of the prime p. The underlying
algorithms for the above theorems are in Section 5.

2 Using matrix normal forms

In this section, we assume I = 〈f1, . . . , ft〉 ⊂ K[x, y], for t ≥ 2, and we derive
the lexicographic Gröbner basis of I, or its primary component at the origin,
from either Hermite or Howell normal forms of matrices over K[x], for an
arbitrary field K. These results are direct extensions of previous work of
Lazard’s [32], who used Hermite forms in the case t = 2.

In what follows, for a subset S ⊂ K[x, y] and n ≥ 0, we let S<(.,n)

be the subset of all f in S with degy(f) < n; notation such as S≤(.,n) is
defined similarly. In particular, if S is an ideal of K[x, y], S<(.,n) is a free
K[x]-module of rank at most n. For S = K[x, y] itself, K[x, y]<(.,n) is a free
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K[x]-module of rank n, equal to
⊕

0≤i<nK[x]yi. For such an n, we also let
πn denote the K[x]-module isomorphism K[x, y]<(.,n) → K[x]n, which maps

f0 + · · · + fn−1y
n−1 to the vector [fn−1 · · · f0]

⊤.

2.1 Detaching bases

Let I be an ideal in K[x, y] and let G = (g0, . . . , gs) be its reduced minimal
Gröbner basis for the lexicographic order induced by y ≻ x, listed in decreas-
ing order; we write ni = degy(gi) for all i (so these exponents are decreasing).
We define polynomials A0, A1, . . . as follows: for 0 ≤ i < ns, Ai = 0, and
if there exists k in {0, . . . , s} such that nk = i, Ai = gk; otherwise, Ai is
obtained by starting from yAi−1, and reducing all its terms of y-degree less
than i by G.

For example, if I has a Gröbner basis of the form (y − f(x), g(x)), the
polynomials Ai are given by A0 = g, A1 = y − f and for i ≥ 2, Ai =
yi − (f i mod g) (see [3] for a previous discussion).

Lemma 1. For i ≥ ns, degy(Ai) = i.

Proof. This is true for i of the form nk. For i in nk, . . . , nk−1−1, we proceed
by induction, with the remark above establishing the base case (for k = 0,
we consider all i ≥ n0). Assume degy(Ai−1) = i−1, so that degy(yAi−1) = i.
Because we use the lexicographic order x ≺ y, the reduction of the terms
of y-degree less than i in yAi−1 does not introduce terms of y-degree i or
more.

Lemma 2. For n ≥ ns, the K[x]-module I≤(.,n) is free of rank n − ns + 1,
with basis Ans

, . . . , An.

Proof. The polynomials Ans
, . . . , An are all nonzero, with pairwise distinct

y-degrees, so they are K[x]-linearly independent. They all belong to I≤(.,n),
so it remains to prove that they generate it as a K[x]-module. This is done
by induction on n ≥ ns. Take f in I≤(.,n), and write it as f = fny

n + g,
with fn in K[x] and g in K[x, y]≤(.,n−1). Let h ∈ K[x] be the polynomial
coefficient of yn in An, so that An = hny

n + Bn, with Bn in K[x, y]≤(.,n−1).
Write the Euclidean division fn = qhn+ r in K[x], with degx(r) < degx(hn):

f = (qhn + r)yn + g = qhny
n + ryn + g = qAn − qBn + ryn + g.

The polynomial −qBn+ ryn+ g is in I, so its normal form modulo G is zero.
The terms −qBn + g have y-degree less than n, so their normal form has
y-degree less than n as well; since ryn is already reduced modulo G, it must
be zero. It follows that f = qAn + g − qBn, with g − qBn in I≤(.,n−1). If
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n = ns, this latter polynomial must vanish, proving the base case. Else, by
induction assumption, it is a K[x]-linear combination of Ans

, . . . , An−1.

For n ≥ n0, the detaching basis of I in degree n is the sequence (Ans
, . . . , An).

Because we take n ≥ n0, this is (in general) a non-minimal Gröbner basis
of I, and we can recover G from it by discarding redundant entries (that is,
all polynomials whose leading term is a multiple of another leading term).

2.2 Using Hermite normal forms

Given F = (f1, . . . , ft) in K[x, y], we prove that the Hermite normal form
of a certain Sylvester-like matrix associated to them gives a lexicographic
detaching basis of the ideal I they generate. In [32], Lazard covered the case
t = 2, under an assumption on the leading coefficients (in y) of the fi’s.

We extend his work (in a direct manner) to situations where such as-
sumptions do not hold. First, to polynomials F = (f1, . . . , ft) in K[x, y], we
associate an integer ∆(F), defined as follows.

Definition 1. Let F = (f1, . . . , ft) ∈ K[x, y]t, with (Ans
, . . . , An0

) as detach-
ing basis in degree n0, with n0 and ns the maximal, resp. minimal y-degree
of the polynomials in the lexicographic Gröbner basis of 〈f1, . . . , ft〉, for the
order x ≺ y.

We let ∆(F) be the minimal integer ∆ such that for i = ns, . . . , n0,
there exist wi,1, . . . , wi,t in K[x, y]t, all of y-degree less than ∆, and such
that Ai = wi,1f1 + · · ·+ wi,tft.

The following proposition gives the basic result using this definition, al-
lowing us to extract a detaching basis from a Hermite form computation.
We use column operations, with Hermite normal forms being lower triangu-
lar. The first nonzero entry in a nonzero column is called its pivot, its index
being called the pivot index. Pivots are monic in x.

Proposition 1. Let F = (f1, . . . , ft) be in K[x, y], for t ≥ 2, of y-degree at
most dy, and assume that they generate an ideal I = 〈f1, . . . , ft〉 of dimension
zero. For i = 1, . . . , t, write fi = fi,0 + · · ·+ fi,dyy

dy , with all fi,j in K[x].
For D ≥ ∆(F), let c1, . . . , cK be the nonzero columns of the Hermite

normal form H of S = [S1 · · ·St] ∈ K[x](dy+D)×tD, where

Si =

















fi,dy
...

. . .

fi,0 fi,dy
. . .

...
fi,0

















∈ K[x](dy+D)×D.
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Then, there exists K ′ ≤ K such that π−1
dy+D(cK ′) is monic in y; with K ′ the

largest such integer, π−1
dy+D(cK), . . . , π−1

dy+D(cK ′) is a detaching basis of I.

Thus, while we do not know the y-degrees ni of the elements in the
Gröbner basis of I, as long as D ≥ ∆(F), it is enough to consider the last
nonzero columns of H, stopping when we find (through π−1

dy+D) a polynomial
that is monic in y.

Proof. Let D ≥ ∆(F) be as in the proposition. Let us index the columns of
each block Si by yD−1, . . . , y, 1, and its rows by ydy+D−1, . . . , y, 1. Then, Si

is the matrix of the map K[x, y]<(.,D) → K[x, y]<(.,dy+D) given by wi 7→ wifi.
The matrix S itself maps a vector (w1, . . . , wt), with all entries of y-degree
less than D, to

∑t
i=1wifi ∈ I<(.,dy+D).

Let G = (g0, . . . , gs) be the lexicographic Gröbner basis of I = 〈f1, . . . , ft〉,
fi ≻ fi+1, with degy(gi) = ni for all i. Since we assume that I has dimension
zero, we have ns = 0, and g0 is monic in y.

Let A0, . . . , An0
be the detaching basis of I in degree n0. We denote

by c1, . . . , cK the nonzero columns of the Hermite form H of S, and we
let Hi = π−1

dy+D(ci), for i = 0, . . . , n0. We will prove that Ai = HK−i for
i = 0, . . . , n0. Since g0 is the only polynomial in A0, . . . , An0

which is monic
in y, this will establish the proposition, with K ′ = K − n0.

Since both Ai and HK−i are in I, to prove that they are equal, it is
enough to prove that for all i, Ai − HK−i is reduced with respect to the
Gröbner basis G of I. Because D ≥ ∆(F), we deduce that A0, . . . , An0

are
in the column span of S. Since they have respective y-degrees 0, . . . , n0, we
see that degy(HK−i) = degy(Ai) = i for all i = 0, . . . , n0. In addition, for

all such i, we can write Ai =
∑i

j=0 ai,jHK−j, for some ai,j in K[x].
However, Lemma 2 shows that for the same index i, we can writeHK−i =

∑i
j=0 bi,jAj , for some bi,j in K[x]. Because both Ai and HK−i have leading

y-coefficients that are monic in x, it follows that bi,i = ai,i = 1 for all i.
This proves that Ai and HK−i have the same coefficient of y-degree i (call
it Mi ∈ K[x]), and thus that Ai −HK−i has y-degree less than i.

By the definition of a detaching basis, all terms of y-degree less than i
in Ai are reduced with respect to G. On the other hand, by the property
of Hermite forms, for j < i, the coefficient of y-degree j in HK−i is reduced
with respect to Mj . Since we saw that Mj is also the coefficient of yj in Aj,
this proves that all terms of y-degree less than i in HK−i are reduced with
respect to A0, . . . , Ai−1, and thus with respect to G. Altogether, Ai−HK−i

itself is reduced with respect to G, which is what we set out to prove.
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We call HermiteGroebnerBasis(F ,D) a procedure that takes as in-
put F = (f1, . . . , ft) and D, and returns the lexicographic Gröbner basis of
I = 〈f1, . . . , ft〉 obtained by computing the Hermite normal form of S as
above, extracting the Gröbner basis of I from its detaching basis. Here, we
take for dy the maximum degree of the fi’s, and we assume that we have
D ≥ ∆(F) and D ≥ dy.

The assumption that the ideal I has dimension zero implies that it con-
tains a non-zero polynomial in K[x]; as a result, its detaching basis has
entries of y-degrees 0, 1, . . . , so that the Hermite form of S is lower trian-
gular with dy + D non-zero diagonal entries. In other words, S has rank
dy +D (seen as a matrix over K(x)).

If t = 2 and D = dy, this matrix is square, but in general, it may
have more columns than rows (recall that we assume D ≥ dy). Using the
algorithm of [30], we can permute the columns of S to find a (dy +D)× tD
matrix S′ whose leading (dy +D) × (dy + D) minor is nonzero; this takes
O (̃tDωd) operations in K, with d the maximum degree of the fi’s. Let us
define the tD × tD square matrix

Ssq =

[

S′

0(t−1)D−dy ,dy+D I(t−1)D−dy ,(t−1)D−dy

]

(1)

together with its Hermite form Hsq; the first dy +D rows of it give us the
Hermite form H of S. The Hermite form of Ssq is computed in O (̃tωDωd)
operations in K [31]. This gives the overall cost of computing the lexico-
graphic Gröbner basis of I, assuming an upper bound on ∆(F) is known.
To our knowledge, not much exists in the literature on complete cost analy-
sis for bivariate ideals, apart from Buchberger’s algorithm, with cost 3

2(t +
2(d+ 2)2)4 [8].

The following proposition gives various bounds on ∆(F), whose strength
depends on the assumptions we make on F . The first one is a direct exten-
sion of Lazard’s [32, Lemma 7], and is linear in the y-degree of the input.
The others are based on results from [29, 15], which involve total degree
considerations.

Proposition 2. Let F = (f1, . . . , ft) be in K[x, y] of degree at most d ≥
1, and y-degree at most dy, and let I = 〈f1, . . . , ft〉 ⊂ K[x, y]. Set d′ =
max(d, 3). Then:

• if there exists i in {1, . . . , t} such that the coefficient of yd in fi is a nonzero
constant, ∆(F) ≤ ∆1(dy) = dy

• if t = 2 and I has finitely many zeros over K, ∆(F) ≤ ∆2(d) = 2d′2+d′ ∈
O(d2)
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• if I has finitely many zeros over K, ∆(F) ≤ ∆3(d) = 16d′4 + 2d′2 + 2d′ ∈
O(d4)

First item. In what follows, without loss of generality, we assume that the
coefficient of ydy in ft is 1. We prove a slightly more general claim: any
polynomial f in I<(.,2dy) can be written as f = w1f1 + · · · + wtft, with all
wi in K[x, y]<(.,dy). This is enough to conclude since all entries Ans

, . . . , An0

in the detaching basis of I in degree n0 have y-degree at most dy ≤ 2dy − 1
(because we use a lexicographic order with x ≺ y).

Let thus f be given in I<(.,2dy). There is a family w = (w1, . . . , wt) in

K[x, y] such that f =
∑t

i=1 wifi, since f is in I. For such a family w, we
define Sw = {i | degy(wi) ≥ dy}. For any w such that Sw is not empty, we
further set νw = min(Sw) ∈ {1, . . . , t}, and we let ν be the maximal value of
these νw’s. It is well-defined, since there is a vector w for which Sw is not
empty (we can replace (wt−1, wt) by (wt−1 + gft, wt − gft−1) for any g in
K[x, y]).

Let w be such that ν = νw. We claim that Sw 6= {t}: otherwise we
would have degy(wtft) ≥ 2dy, while degy(wifi) < 2dy for all other i’s; this
would contradict the assumption degy(f) < 2dy. This shows that ν < t. Let
us further refine our choice of w, by taking it such that, among all those
vectors for which Sw is not empty and νw = ν, the y-degree of wν is minimal.
Let us then write e = degy(wν) (so that e ≥ dy) and let c ∈ K[x] be the
coefficient of ye in wν . We can use it to rewrite f as

f =
t

∑

i=1

wifi + cye−dyfνft − cye−dyftfν .

If we set

w′
i =











wν − cye−dyft when i = ν;

wt + cye−dyfν when i = t;

wi otherwise,

we still have f =
∑t

i=1w
′
ifi. By construction, degy(w

′
i) = degy(wi) < dy for

all i < ν, so none of 1, . . . , ν − 1 is in Sw′ . If ν is in Sw′ , then the inequality
degy(w

′
ν) < degy(wν) contradicts the choice of w, so that ν is not in Sw′ .

This shows that Sw′ is empty, since otherwise its minimum element would
be greater than ν.

For the second and third items, we use results from [15], for which we
need total degree bounds on the input polynomials F = (f1, . . . , ft) and
the elements A0, . . . , An0

in the detaching basis (here ns = 0 since I having
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finitely many solutions implies that it contains a nonzero polynomial in K[x]).
For the inputs fi, we have the degree bound deg(fi) ≤ d ≤ d′. For the Ai’s,
we have the bounds degx(Ai) ≤ d2 (by Bézout’s theorem) and degy(Ai) ≤ d
for i ≤ n0, so their total degree is at most D = d′2 + d′.

Second item. When t = 2 and I has dimension zero (that is, has a finite,
nonzero number of solutions in K), f1, f2 are in complete intersection, so
that we have Ai = wi,1f1 + wi,2f2, with degy(wi,j) ≤ D + d′2 for all i, j, by

Theorem 5.1 in [15]. Overall, the resulting degree bound is 2d′2 + d′. If we
assume that I = K[x, y], we know that there are g1, g2 in K[x, y] such that
g1f1 + g2f2 = 1, with deg(gi) ≤ d′2 [29]. Multiplying this by Aj, for j ≤ n0,

we obtain the expression (g1Aj)f1+(g2Aj)f2 = Aj , with degy(giAj) ≤ d′2+d
in this case.

Third item. [15, Corollary 3.4] gives equalities Ai = wi,1f1 + · · · + wi,tft,

with degy(wi,j) ≤ D + 16d′4 + d′2 + d′ for all i, j.

2.3 Using the Howell form

We now investigate how using another matrix normal form, the Howell
form [25], yields information about certain primary components of an ideal
I as above. Howell forms are defined for matrices with entries in a principal
ideal ring A; below, we will take A = K[x]/xk, for an integer k. Again, we
consider column operations then an n ×m matrix H over A = K[x]/xk is
in Howell normal form if the following (taken from [42, Chapter 4]) hold:

1. let r ≤ m be the number of nonzero columns in H; then these nonzero
columns have indices 1, . . . , r

2. H is in lower echelon form: for i = 1, . . . , r, let ji ∈ {1, . . . , n} be the
index of the first nonzero entry in the ith column; then, j1 < · · · < jr

3. all pivots Hji,i, for i = 1, . . . , r, are of the form xci

4. for i = 1, . . . , r and k = 1, . . . , i− 1, Hji,k is reduced modulo Hji,i

5. for i = 0, . . . , r, any column in the column span of H with at least ji
leading zeros is an A-linear combination of columns of indices i+1, . . . , r
(here, we set j0 = 0)

For any M in An×m, there is a unique H in Howell normal form in
An×m, and a not necessarily unique invertible matrix U in Am×m such that
H = MU . The matrix H is the Howell normal form of M .
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Given f1, . . . , ft as before, we are interested here in computing the lex-
icographic Gröbner basis of J = 〈f1, . . . , ft, x

k〉, for a given integer k. In
particular, if (0, 0) is in V (f1, . . . , ft), and no other point (0, β) is, for β 6= 0,
J is the 〈x, y〉-primary component of I = 〈f1, . . . , ft〉, if k is large enough.

The following proposition shows how to reduce this computation to a
Howell normal form calculation. In what follows, the canonical lift of an
element in A = K[x]/xk to K[x] is its unique preimage of degree less than
k; this carries over to vectors and matrices (and in particular to the output
of the Howell form computation). Contrary to what happens for Hermite
forms, there is no guarantee that the polynomials extracted from the Howell
form are a detaching basis, as we may be missing the first polynomial (that
belongs to K[x]) and its multiples. The proposition below restores this by
considering a few extra columns, if needed.

Proposition 3. Let f1, . . . , ft be in K[x, y], for t ≥ 2, of y-degree at most
dy, and assume that they generate an ideal of dimension zero. Let k be a
positive integer and A = K[x]/xk.

For D ≥ ∆(f1, . . . , ft, x
k), let B ∈ A(dy+D)×tD be the Howell normal

form of S̄ = S mod xk, with S as in Proposition 1, and let Blift be its
canonical lift to K[x](dy+D)×tD.

Let h1, . . . , hL be the nonzero columns of Blift, and let r ∈ {1, . . . , dy+D}
be the pivot index of hL. Set L′′ = L+ dy +D− r and, for i = L+1, . . . , L′′

let hi = [0 · · · 0 xk 0 · · · 0]⊤, with xk at index r+i−L ∈ {r+1, . . . , dy+D}.
Then, there exists L′ ≤ L such that π−1

dy+D(hL′) is monic in y; with L′

be the largest such integer, π−1
dy+D(hL′′), . . . , π−1

dy+D(hL′) is a detaching basis

of 〈f1, . . . , ft, x
k〉.

Proof. Let Γ = (Γ0, . . . ,Γσ) be the lexicographic Gröbner basis of J =
〈f1, . . . , ft, x

k〉, listed in decreasing order, with Γi of y-degree νi for all i;
since xk is in J , νσ = 0. Then, let C0, . . . , Cν0 be the detaching basis of J
in degree ν0, with degy(Ci) = i for all i.

We know that the first polynomials in the detaching basis are of the form
C0 = xℓ, C1 = yxℓ, . . . , Cνσ−1−1 = yνσ−1−1xℓ, for some ℓ ≤ k. If ℓ = k, they
all vanish modulo xk, but the next polynomial Cνσ−1

does not. If ℓ < k,
none of them vanishes modulo xk. Thus, we define ρ = νσ−1 in the former
case and ρ = 0 in the latter.

Let further D ≥ ∆(f1, . . . , ft, x
k) be as in the proposition. If we consider

the extended Sylvester matrix T ∈ K[x](dy+D)×(t+1)D built from f1, . . . , ft, x
k,

the assumption on D shows that each πdy+D(Ci) is in the column span of T .
For i = 0, . . . , ν0, we let vi be the column vector πdy+D(Ci) mod xk ∈ Ady+D;
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the previous paragraph shows that the nonzero vectors vi are precisely
vρ, . . . , vν0 . By reduction modulo xk of the membership relations above,
we see that vρ, . . . , vν0 are in the A-span of the columns of S̄.

Lazard’s structure theorem [32, Theorem 1] shows that every polynomial
Γj in the reduced Gröbner basis of J is of the form Γj = xmjγj , with γj
monic in y and mj ≤ ℓ (the inequality is strict, except for j = 0). It follows
that for i = ρ, . . . , ν0, the pivot in vi is also a power of x, at index dy+D− i
(precisely, it is xmj , for j the largest integer such that νj ≤ i).

Let η1, . . . , ηL be the nonzero columns in the Howell form B of S̄. By
definition of the Howell form, the former observation implies that for i =
ρ, . . . , ν0, vi is in the A-span of those ηj ’s starting with at least dy+D− i−1
zeros. For such an i, since the entry at index dy + D − i in vi is nonzero,
there exists (exactly) one ηj with pivot index dy+D− i. We now prove that
the pivot in ηL is at index dy +D − ρ. Recall that we write h1, . . . , hL for
the canonical lifts of η1, . . . , ηL to K[x]dy+D; in particular, the pivot index
r of hL, as defined in the proposition, is also the pivot index of ηL, so our
claim is r = dy+D−ρ. Suppose that the pivot in ηL is at an index different
from dy+D−ρ. By the previous discussion, it can only lie at a larger index,
say m > dy +D − ρ; this may happen only if ρ > 0, in which case we saw
that ρ = νσ−1 = degy(Γσ−1) and Γσ = xk.

Let H1, . . . ,HL be obtained by applying π−1
dy+D to h1, . . . , hL. It follows

that HL has y-degree dy +D−m < ρ = degy(Γσ−1), and x-degree less than
k = degx(Γσ). Thus, HL is reduced with respect to the Gröbner basis Γ of
J . On the other hand, because ηL is in the column span of S̄, its canonical
lift hL is in the column space of S, up to the addition of a vector with
entries in xkK[x]. In other words, HL is in J , so that HL must be zero, a
contradiction.

Thus, the pivot index of ηL is exactly dy+D−ρ, that is, the same as that
of vρ. Our previous discussion on the pivots in the vectors ηi then implies
that for i = ρ, . . . , ν0, the pivot index of ηL+ρ−i is dy + D − i, that is, the
same as that of vi. This implies that

vi =

i
∑

j=ρ

αi,jηL+ρ−j , (2)

for some coefficients αi,j in A = K[x]/xk. On the other hand, all polyno-
mials HL, . . . ,HL+ρ−ν0 are in J (by the argument we used for HL). By
Lemma 2, we deduce that for i = ρ, . . . , ν0, HL+ρ−i can be written as
HL+ρ−i =

∑i
j=ρ βi,jCj, for some coefficients βi,j in K[x]. Applying πdy+D

and reducing modulo xk, this gives
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ηL+ρ−i =
i

∑

j=ρ

β̄i,jvj , (3)

with β̄i,j = βi,j mod xk for all i, j. We know that the pivots of both vi and
ηL+ρ−i are powers of x (the latter, by the properties of the Howell form), so
Eq. (2) and Eq. (3) show that the pivots in vi and ηL+ρ−i are the same, for
i = ρ, . . . , ν0.

Back in K[x, y], we deduce that Ci and HL+ρ−i have the same coefficient
in yi, for i = ρ, . . . , ν0. As in the proof of Proposition 1, we deduce that we
actually have Ci = HL+ρ−i for i = ρ, . . . , ν0: we observe that their terms of
y-degree less than i are reduced with respect to Γ; it follows that Ci−HL+ρ−i

is both in J and reduced with respect to its lexicographic Gröbner basis, so
it vanishes.

Taking i = ν0, we deduce in particular that HL+ρ−ν0 is monic in y
(and no Hi of larger index has this property), so the index L′ defined in the
proposition is L′ = L+ρ−ν0; the corresponding polynomials are Cν0 , . . . , Cρ.
Since we saw that r = dy+D−ρ, the integer L′′ in the proposition is L′′ = L+
ρ, and through π−1

dy+D, the columns hL+1, . . . , hL+ρ become yρ−1xk, . . . , xk

(there is no such column if ρ = 0). These are precisely the polynomials
Cρ−1, . . . , C0 that were missing if ρ > 0.

We call HowellGroebnerBasis(F , k,D) a procedure that takes as
input F = (f1, . . . , ft), k and D, and returns the lexicographic Gröbner
basis of 〈f1, . . . , ft, x

k〉 obtained from the Howell form of S̄, taking for dy
the maximum of the degrees of f1, . . . , ft, and choosing for D the integer
prescribed by Proposition 2. In this case, there is no need to make S̄ square:
the algorithm of [42, Chapter 4] computes its Howell form using O (̃tDωk)
operations in K.

The main application we will make of Howell form computation is to
obtain the Gröbner basis of the 〈x, y〉-primary component of an ideal such
as I = 〈f1, . . . , ft〉. In order to do so, we will assume that we are in “nice”
coordinates, in the sense that the projection on the first factor V (F) → K

is one-to-one.

Lemma 3. Let F = (f1, . . . , ft) be in K[x, y], and suppose that the projection
on the first factor V (F) → K is one-to-one. Let further J be the 〈x, y〉-
primary component of I = 〈f1, . . . , ft〉, with m the smallest integer such that
xm is in J . Then: the smallest power of x in the ideal H = 〈f1, . . . , ft, x

k〉
is xmin(m,k), and for k ≥ m, H = J .

Proof. First, we establish that J = 〈f1, . . . , ft, x
m〉. For one direction, all

fi’s, as well as xm, are in J by definition. Conversely, the assumption on
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V (F) implies that we can write 〈f1, . . . , ft〉 = JJ ′, with J ′ having no solution
above x = 0; in particular, there exist polynomials u, v with uxm + v = 1
and v in J ′. From this, we get J = (uxm + v)J , and every element in uxmJ
is a multiple of xm, while every element in vJ is in 〈f1, . . . , ft〉.

Suppose k ≥ m. We now have polynomials u′, v′ with u′xk−m+v′ = 1 and
v′ in J ′. Multiplying by xm shows that xm is in the ideal H = 〈f1, . . . , ft, x

k〉,
so that H = J (this proves the last claim in the lemma). In this case, the
smallest power of x in H is thus xm.

Suppose k ≤ m. In this case, we prove that the minimal power of x in
H = 〈f1, . . . , ft, x

k〉 is xk. First, note that in this case, H = 〈f1, . . . , ft, x
m, xk〉 =

J+〈xk〉, and let xe be the minimum power of x in H; suppose e < k, so that
e < m. It follows that xe is the normal form of a polynomial of the form fxk,
modulo the Gröbner basis G of J . However, Lazard’s structure theorem [32,
Theorem 1] implies that through reduction modulo such a Gröbner basis, no
term of x-degree less than k can appear; a contradiction.

This allows us to design an algorithm GroebnerBasisAtZero that
computes the Gröbner basis of J (under the position assumption in the
lemma), even though we do not know m in advance: we call Howell-

GroebnerBasis with inputs the polynomials (f1, . . . , ft, x
k), for k = 2i,

with i = 0, 1, . . . , until the output does not contain xk. Indeed, the lemma
shows that if xk is in the Gröbner basis of H = 〈f1, . . . , ft, x

k〉, we have
k ≤ m, while if it is not, we have reached k > m, and the output is the
Gröbner basis of J .

Altogether, we do O(log(m)) calls to HowellGroebnerBasis, with
k ≤ 2m. With d the maximum degree of f1, . . . , ft, the runtime is O (̃tDωm)
operations in K, with D in {∆1(dy),∆2(d),∆3(d)}, depending on our as-
sumptions on f1, . . . , ft (recall that dy and d are the maximum y-degree,
resp. degree, of the input).

3 Coefficient size and bad reductions

Our goal now is to give height bounds on the elements in the lexicographic
Gröbner basis of some polynomials F = (f1, . . . , ft), working specifically
over K = Q. In this section, we assume that the input polynomials have
integer coefficients.

The height u ∈ Z − {0} is simply log(|u|). The key quantity H(F),
together with a nonzero integer βF ∈ Z, are defined as follows.

Definition 2. Consider polynomials F = (f1, . . . , ft) in Z[x, y], let I be
the ideal they generate in Q[x, y], with lexicographic Gröbner basis G =
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(g0, . . . , gs). We define H(F) as the smallest integer such that there exists
βF nonzero in Z for which we have:

• the polynomials βFg0, . . . , βFgs are in Z[x, y]

• all coefficients of βFg0, . . . , βFgs (which include in particular βF itself)
have height at most H(F)

• for any prime p in Z, if p does not divide βF , G mod p is the lexicographic
Gröbner basis of 〈f1 mod p, . . . , ft mod p〉 in Fp[x, y].

In order to give upper bounds on H(F), we introduce two functions
B(n, d, h) and C(t, d,D, h). The first one is defined by

B(n, d, h) = (N + 1)h+N log(N) + log(n(d+ 1)),

with N = n2d− nd+ n, whereas C(t, d,D, h) is defined by

C(t, d,D, h) = B(tD, d, h) + h+ log(2).

In particular, B(n, d, h) is in O (̃n2dh) and C(t, d,D, h) is in O (̃t2D2dh).

Proposition 4. Let F = (f1, . . . , ft) be in Z[x, y], for t ≥ 2, such that
the ideal I = 〈f1, . . . , ft〉 ⊂ Q[x, y] has dimension zero. Suppose that all fi’s
have y-degree at most dy, degree at most d, and coefficients of height at most
h.

(i) if there exists i in {1, . . . , t} such that the coefficient of ydy in fi is a
nonzero constant, H(F) ≤ C(t, d,∆1(dy), h) ∈ O (̃t2d3h)

(ii) if t = 2, H(F) ≤ C(2, d,∆2(d), h) ∈ O (̃d5h)

(iii) in general, H(F) ≤ C(t, d,∆3(d), h) ∈ O (̃t2d9h).

The proposition will follow from height bounds for Hermite forms of
matrices due to Storjohann, with the results in the previous section. We do
not have a direct equivalent for Howell forms (we are not aware of previous
work about height bounds or primes of bad reduction in this context): if we
are interested in the primary component of I at the origin, we may apply
the results above to the polynomials f1, . . . , ft, x

k, for a large enough k.
To our knowledge, no comparable bounds were given in this setting.

Several previous results discussed the case of radical ideal with finitely many
solutions. If their Gröbner basis G is a triangular set, the results in [13] show
that the polynomials in G have coefficients with numerator and denominator
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of height O (̃d3h + d4). Our result does not feature the term d4, but this
might be due to the proof techniques of [13], which are not limited to systems
in two variables. If we keep the radicality assumption, but allow arbitrary
leading terms, the best previous bound we are aware of is O (̃d7h + d8),
from [10].

We start the proof with a result due to Storjohann.

Proposition 5 ([41, Section 6.2]). Let A be in Z[x]n×n, with nonzero de-
terminant and entries of degree at most d > 0 and height at most h. Let
further H be the Hermite normal form of A. Then, there exists α nonzero
in Z such that all entries of αH are in Z[x], α and the coefficients of all
entries of αH have height at most B(n, d, h), and for any prime p, if p
does not divide α, then H mod p is the Hermite normal form of A mod p
in Fp[x]

n×n.

Let then f1, . . . , ft be as in Proposition 4. First, we define integers γ
and D through the following case discussion. If we are in case (i), we know
that at least one of the fi’s has a coefficient of y-degree dy in Z − {0}; let
γ be such a coefficient. We let D = ∆1(dy) from Proposition 2. In case (ii)
or (iii), we let γ = 1, and we take respectively D = ∆2(d) or D = ∆3(d),
with notation as above. In any case, we know that ∆(F) ≤ D, so we can
apply Proposition 1; it shows that we can recover the (minimal, reduced)
lexicographic Gröbner basis of I = 〈f1, . . . , ft〉 from the columns of the
Hermite form of the Sylvester-like matrix S defined in that proposition.

As in the previous section, there is a (dy +D)× tD matrix S′ obtained
by permuting the columns of S whose leading (dy +D)× (dy +D) minor is
nonzero. Consider again the tD × tD square matrix Ssq of Eq. (1) and its
Hermite form Hsq; the first dy + D rows of Hsq are the Hermite form H

of S.
Since Ssq has nonzero determinant, we let α be the nonzero integer

associated to it by Proposition 5, and set β = αγ. Then, all entries of
βHsq, and thus of βH, are in Z[x], the latter having coefficients of height
at most C(t, d,D, h). By Proposition 1, these bounds apply in particular to
the Gröbner basis (g0, . . . , gs) of I.

Suppose that p is a prime that does not divide β. Because p does not
divide α, Proposition 5 shows that H̄sq = Hsq mod p is the Hermite normal
form of S̄sq = Ssq mod p. Considering only the first tD rows, we see that
H̄ = H mod p is the Hermite normal form of S̄ = S mod p. Now, let us
prove that we still have ∆(F̄) ≤ D.

• If we are in case (i), since p does not divide γ, at least one of the polyno-
mials f̄i = fi mod p has its coefficient of y-degree dy a nonzero constant
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in Fp. Since all f̄i’s have y-degree at most dy, we deduce ∆(F̄) = dy in
this case (first item of Proposition 2)

• If we are in case (ii) or (iii), the discussion above shows that ḡ0 and
ḡs are in the ideal 〈f̄1, . . . , f̄t〉, so that this ideal admits finitely many
solutions in an algebraic closure of Fp. Using the second and third items
of Proposition 2 gives our claim.

We can then apply Proposition 1 to F̄ = (f̄1, . . . , f̄t), and deduce that the
columns of the Hermite form of S̄ give a detaching basis, and in particular
the lexicographic Gröbner basis of 〈f̄1, . . . , f̄t〉. This proves the proposition.

4 Applying changes of coordinates

Now, we quantify changes of coordinates that ensure desirable properties.
We write γ for a 2 × 2 matrix γ = [γi,j]1≤i,j≤2 with entries in Q, and we
identity M2(Q) with Q4 through γ 7→ [γ1,1, γ1,2, γ2,1, γ2,2]. For γ in GL2(Q)
as above and f in Q[x, y], we write fγ = f(γ1,1x+ γ2,1y, γ1,2x+ γ2,2y).

For F = (f1, . . . , ft) as in the previous sections, the best degree and
height bounds ∆(F) and H(F) apply when the input equations have a
particular property: at least one fi has a term of maximal degree that
involves y only. Geometrically, this means that the curve V (fi) ⊂ Q2 has no
vertical asymptote; we also say that it is in Noether position. The following
lemma is straightforward.

Lemma 4. Take f in Q[x, y] of degree d. Then there exists a hypersurface
Y1 ⊂ Q4 of degree at most d such that if γ is in Q4 − Y1, the coefficient of
yd in fγ is nonzero.

Another favorable situation, illustrated when we dealt with Howell forms,
occurs when the projection V (F) → Q given by (α, β) 7→ α is one-to-one.
Again, the proof is standard (see e.g. [37]), once we see that V (F) has
cardinality at most d2.

Lemma 5. Let F = (f1, . . . , ft) be in Q[x, y] of degrees at most d, and
suppose that V (F) is finite. Then there exists a hypersurface Y2 ⊂ Q4 of
degree at most d4 such that if γ is invertible and in Q4 − Y2, the projection
on the first factor V (fγ)→ Q is one-to-one.

5 Main algorithms

We can finally present our main algorithms, where we use Newton iteration
to compute lexicographic Gröbner bases: we are given F = (f1, . . . , ft) in
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Z[x, y], and we compute either the Gröbner basis G = (g0, . . . , gs) of I =
〈f1, . . . , ft〉, or the Gröbner basis G0 = (g00 , . . . , g

0
r ) of the 〈x, y〉-primary

component of I using p-adic approximation, for a prime p. In what follows,
we give details for the computation of G; we will mention what modifications
are needed if we want to compute G0.

The algorithm is randomized; it takes a parameter P ≥ 1, our goal being
to obtain the correct output with probability at least 1−1/2P . Throughout,
we assume that f1 has maximum degree among the fi’s (we write d =
deg(f1)) and that I has dimension zero. Let δ = deg(I) = dimQQ[x, y]/I,
δ ≤ d2 and let b be the maximum height of the numerators and denominators
of the coefficients in G. Each polynomial in G has at most δ+1 coefficients,
so the total bit-size of the output is O(sδb).

5.1 Overview

We start by presenting the main steps of the algorithm, leaving out some
details of the analysis for the next subsection. Runtimes are given in terms of
bit operations; here, we use the fact that operations (+,×) modulo a positive
integer M take O (̃log(M)) bit operations, as does inversion modulo M if
M is prime [44].

Introducing a change of coordinates. We first choose a change of vari-
ables γ with coefficients in Z. Applying it to the input equations F gives
polynomials H = (h1, . . . , ht), which we do not need to compute explicitly
(as they may have large height). We let B = (B0, . . . , Bσ) be the lexico-
graphic Gröbner basis of these polynomials in Q[x, y] (as with H, we do not
compute it explicitly).

We assume that γ satisfies the assumptions of Lemmas 4 and 5, so that
their conclusions hold.

Computing Gröbner bases modulo p. Next, we choose two primes p, p′,
and compute the Gröbner bases Bp of (H mod p), and Bp′ of (H mod p′). We
assume that neither p nor p′ divides the integers βF and βH from Definition 2
applied to F and H, respectively. In particular, all denominators in B are
invertible modulo p and p′, and Bp = B mod p and Bp′ = H mod p′.

To compute Bp and Bp′, the algorithm reduces the O(td2) coefficients of
F modulo p and p′. Then, we apply γ to the results, to obtain H mod p and
H mod p′. Due to Lemma 4, the coefficient of yd in h1 is a nonzero constant;
if this is still the case modulo p and p′, we use HermiteGroebnerBasis

with D = d to get Bp and Bp′ ; otherwise, we raise an error.

Changing coordinates in Bp and Bp′. Using the Gröbner bases Bp and
Bp′ of (H mod p) and (H mod p′), we compute the Gröbner bases of (F mod
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p) and (F mod p′). This is done using the algorithm of [35]. Since pp′ does
not divide βF , we deduce that we obtain G1 = G mod p and G′1 = G mod p′.

Computing Gk. At each step of the main loop, we start from Gk/2 = G mod

pk/2, and we compute Gk = G mod pk. For this, we first need F mod pk; then,
we use procedure LiftOneStepGroebner from [40, Remark 7.3] to obtain
Gk.

Rational reconstruction. We next attempt to recover all rational coeffi-
cients of G, given those of Gk = G mod pk. For each coefficient α of Gk, we
attempt to recover a pair (η, θ) in Z× N, with |η| < pk/2/2 and θ ≤ pk/2, θ
invertible modulo p and α = η/θ mod pk.

By assumption, all nonzero coefficients of G have numerators and denom-
inators of height at most b, it follows that if pk/2 > 2eb, we will succeed and
correctly recover the corresponding coefficient in G [44, Theorem 5.26]. For
smaller values of k, rational reconstruction may find no solution (in which
case we reenter the lifting loop at precision 2k), or may already terminate;
in this case, its output Grec may be different from G.

Testing for correctness. The final step in the loop is a randomized test,
using G′1 = G mod p′ as a witness to detect those cases where rational recon-
struction returned an incorrect result. We attempt to reduce Grec modulo
our second prime p′ (Gred); if this fails (because p′ divides one of the de-
nominators in it), we reenter the lifting loop at precision 2k. We simply
compare Gred and G′1 = G mod p′. If they coincide, we return Grec, otherwise,
we reenter the lifting loop.

5.2 Analysis

We assume that choosing a random integer in a set {0, . . . , A} (uniform
distribution) uses O (̃log(A)) bit operations. We assume that we have an
oracle O, which takes as input an integer C, and returns a prime number
in I = [C + 1, . . . , 2C], uniformly distributed within the set of primes in I,
using O (̃log(C)) bit operations.

Parameters choice. The change of variables γ needs to avoid a hyper-
surface Y ⊂ Q4 of degree at most A1 = d4 + d. We choose its entries
uniformly at random in {0, . . . , 2P+2A1}; the cost of getting γ is negligi-
ble. Then, by the De Millo-Lipton-Schwartz-Zippel lemma, the probability
that γ lies on Y is at most 1/2P+2. In what follows, we assume that this
is the case, so all polynomials H = Fγ have coefficients of height at most
h′ = h+ d(P + 5 + log(A1)) ∈ O (̃h+ dP ).

Let βF and βH be the nonzero integers from Definition 2 applied to
respectively F and H, and define
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Algorithm 1 GroebnerBasis(F)

Require: F = (f1, . . . , ft) in Z[x, y], d = max{deg fi},
Ensure: the lexicographic Gröbner basis of F in Q[x, y]
1: choose γ in M2(Z)
2: choose two different primes p, p′; do steps 3-6 for i ∈ {p, p′}
3: if γ mod i is not invertible then raise an error
4: Hi ← ChangeCoordinates(F mod i,γ mod i)
5: if the coefficient of yd in Hi(1) is zero then raise an error
6: Bi ← HermiteGroebnerBasis(Hi, d)
7: G1 ← ChangeCoordinatesGroebner(Bp,γ

−1 mod p)
8: G′1 ← ChangeCoordinatesGroebner(Bp′ ,γ

−1 mod p′)
9: k ← 1

10: repeat

11: k ← 2k
12: Gk ← LiftOneStepGroebner(F mod pk,Gk/2)
13: error,Grec ← RationalReconstruction(Gk)
14: if not error then error,Gred ← Grec mod p′

15: until not error and Gred = G′1
16: return Grec

CF = C(t, d,∆3(d), h) ∈ O (̃t2d9h)

CH = C(t, d,∆1(d), h
′) ∈ O (̃t2d4hP ).

Proposition 4 proves height(βF ) ≤ CF and height(βH) ≤ CH. In particular,
the height bound b on the coefficients of G satisfies b ≤ CF , so b is in
O (̃t2d9h). Let µ1 be the coefficient of yd in h1, which has height at most
h′. Our first requirement on p and p′ is that neither of them divides µ =
βFβHµ1. This is a nonzero integer, with height(µ) ≤ A2, where we set
A2 = CF + CH + h′ ∈ O (̃t2d9hP ).

Finally, we want to ensure that in the verification step, if Grec and G
differ, their reductions modulo p′, called Gred and G′1, differ as well. Below,
we let k0 be the first k which is a power of two and such that, at step k,
rational reconstruction correctly computes Grec = G. For this, it suffices that
pk/2 > 2eb, and one verifies this implies that k0 ≤ 8b ∈ O (̃t2d9h). Since
all indices k we go through are powers of two, there are at most log2(8b)
incorrect indices k.

Suppose then that at step k < k0, we have found Grec with rational
coefficients; they all have numerators and denominators at most pk/2 ≤ 2eb;
on the other hand, the coefficients of G have numerators and denominators
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at most eb. If Grec and G differ, there exists a monomial whose coefficients
in Grec and G are different; it suffices that p′ does not divide the numerator
of their difference. This number has an absolute value of at most 4e2b.

Taking all k < k0 into account, our last requirement is that p′ also
not divide a certain nonzero integer µ′ (that depends on p). This integer
µ′ has height at most log2(8b)(2b + log(4)), so that height(µ′) ≤ A3, with
A3 = log2(8CF )(2CF + log(4)) ∈ O (̃t2d9h).

To summarize, once γ avoids Y , it suffices that p does not divide µ and
p′ does not divide µµ′ to ensure success. We can then finally make our
procedure for choosing p and p′ explicit:

• Let B = 2P+3⌈A2⌉. We use the oracle O to obtain a uniformly sampled
prime number in [B + 1, . . . , 2B]. There are at least B/(2 log(B)) primes
in this interval, and at most log(µ)/ log(B) of them can divide µ, so the
probability that p does is at most 2 log(µ)/B, which is at most 1/2P+2.

• Let B′ = 2P+3⌈A2 + A3⌉. We use the oracle O to pick p′ in the interval
[B′ + 1, . . . , 2B′], and as a result, the probability that p′ divides µµ′ is at
most 1/2P+2.

Altogether, the probability that γ avoids H, p does not divide µ and p′

does not divide µµ′ (and thus that the algorithm succeeds) is thus at least
1− 3/2P+2 ≥ 1− 1/2P .

Complexity. To find Bp and Bp′ : reducing the coefficients, changing co-
ordinates and HermiteGroebnerBasis uses O (̃td2(log(pp′)), O (̃td2(h +
log(pp′))) [44, Corollary 9.16] and O (̃tωdω+1(log(pp′))) bit operations, re-
spectively. Inverting the γ on Bp and Bp′ takes O (̃δ3) operations in Fp′,
which is O (̃δ3 log(p′)) bit operations. To compute Gk: coefficients reduction
takes O (̃td2(h+k log(p))) bit operations. Algorithm LiftOneStepGroeb-

ner takes a one-time cost of tδω log(p) bit operations, plus for

O (̃s2n0ms + tδ(d2 + dms + sδ))k log(p))

bit operations per iteration. Here, n0 = degy(g0) and ms = degx(gs).
Rational reconstruction takes O (̃k log(p)) bit operations per coefficient, for
a total of O (̃sδk log(p)). For the test: reduction modulo p′ takes O (̃b +
log(p′)) bit operations per coefficient, for a total of O (̃sδ(b+ log(p′)).

Furthermore, both log(p) and log(p′) are in O (̃P + log(tdh)). Besides,
the definition of k0 implies that at all lifting steps, k log(p) is in O (̃b+log(p)),
that is O (̃b + P + log(tdh)). After some straightforward simplifications,
the runtime becomes softly linear in td2h, (tωdω+1 + δω)(P + log(tdh)) and
(s2n0ms + tδ(d2 + dms + sδ))(b+ P + log(tdh)).
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In order to get a better grasp on this runtime, let us assume that P and
the number of equations t are fixed constants, and use the upper bounds
n0,ms ≤ δ. This gives a total bound softly linear in

d2h+ (dω+1 + δω) log(h) + (d2δ + dδ2 + s2δ2)(b+ log(h)).

The first term is the input size, the second describes computations done
modulo small primes, and the last one computations are done modulo higher
powers of p. The output size O(sδb) bits.

5.3 Computing the 〈x, y〉-primary component

Finally, we describe how to modify the algorithm if we are only interested in
the Gröbner basis G0 = (G0

0, . . . , G
0
r) of the 〈x, y〉-primary component J of

I. In what follows, we let η be the degree J , and c be the maximum height
of the numerators and denominators of the coefficients of G0 : the output
total size is O(rηc) bits.

As before, we use a change of coordinates γ, and we call B0 the Gröbner
basis of Jγ . Then, we use GroebnerBasisAtZero instead of Hermite-

GroebnerBasis, modulo p and p′. Since we are in generic coordinates, we
can use degree D = d, so the runtime is O (̃tdωm log(pp′)) bit operations,
where m is the maximal x-degree of the polynomials in B0. We will use the
bound m ≤ η.

Then LiftOneStepPunctualGroebnerBasis from [40, Rk 7.3] can
be used with an initial cost (bit operations) ofO (̃tηω log(p)) andO (̃tη2k log(p))
at the kth iteration. The rest of the algorithm is unchanged except for a
slight difference in conditions of success.

Now, γ has to avoid a hypersurface Y ′ of degree at most d4 + d, in
order to guarantee that Jγ satisfies Lemmas 4 and 5. The primes p and
p′ should divide the denominator of no coefficient in G0 and B0; besides,
these polynomials reduced modulo p (resp. p′) should still define the 〈x, y〉-
primary components of f1 mod p, . . . , ft mod p and fγ

1 mod p, . . . , fγ

t mod p
(resp. modulo p′).

The 〈x, y〉-primary component of 〈f1, . . . , ft〉 is the ideal generated by
F ′ = (f1, . . . , ft, x

d2 , yd
2

); similarly for H = (fγ

1 , . . . , f
γ

t ), giving us poly-
nomials H′. It is then sufficient that neither p nor p′ divides the integers
βF ′βH′ from Definition 2. Their heights are in O (̃t2d6h) and O (̃t2d6h′),
where h′ is the height bound on H.

The rest of the analysis is conducted as before. Given a fixed integer P ,
we deduce that we can compute the Gröbner basis G0, with a probability of
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success of at least 1− 1/2P , using

O (̃td2h+ (tdωη + ηω)(P + log(tdh)) + tη2(c+ log(tdh)))

bit operations. Assuming t and P are fixed, this is softly linear in d2h +
(dωη + ηω) log(h) + η2c. To wit, the input size is linear in dh and that the
output size is in O(rηc) ⊂ O(η2c), with r the number of polynomials in G0

η its degree and c the bit-size of its coefficients.
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Comp., 14(5):471–482, 1992.

[37] F. Rouillier. Solving zero-dimensional systems through the Rational
Univariate Representation. Applicable Algebra in Engineering, Com-
munication and Computing, 9(5):433–461, 1999.

[38] F. Rouillier. On solving systems of bivariate polynomials. In ICMS,
volume 6327 of Lecture Notes in Computer Science, pages 100–104, New
York, NY, USA, 2010. Springer.
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