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FACTORIZATION AND ROOT-FINDING FOR POLYNOMIALS

OVER DIVISION QUATERNION ALGEBRAS

PRZEMYSLAW KOPROWSKI

Abstract. Polynomial factorization and root finding are among the most
standard themes of computational mathematics. Yet still, little has been
done for polynomials over quaternion algebras, with the single exception of
Hamiltonian quaternions for which there are known numerical methods for
polynomial root approximation. The sole purpose of the present paper is to
present a polynomial factorization algorithm for division quaternion algebras
over number fields, together with its adaptation for root finding.

1. Introduction

Polynomial factorization is one of the classical subjects in the realm of com-
putational algebra. Over the decades, numerous algorithms have been developed
for factoring polynomials over various base rings, like integers and rationals, fi-
nite fields, local and global fields, etc. Nonetheless, there are still many important
classes of rings for which there are no known methods for polynomial factorization.
One of these notable omissions is the class of quaternion algebras. Although quater-
nion polynomials are a classical subject that has been studied since the first half
of the 20th century, the algorithmic side of the theory is strongly underdeveloped.
To the best of our knowledge, the only algorithms developed so far concentrate
exclusively on polynomials over real quaternion algebras with an emphasis on the
Hamiltonian quaternions (see, e.g., [11, 12, 24, 29, 31] for root-finding algorithms,
or [21, 22, 30] for factorization algorithms). Unfortunately, the methods developed
for real quaternions cannot be applied in a general setting. The fundamental reason
is that the Hamiltonian quaternions admit the fundamental theorem of algebra. It
is not a case for general division quaternion algebras. The author is unaware of even
a single paper addressing the factorization of polynomials over general quaternion
algebras. Thus, the sole purpose of this paper is to partially remedy this situation
and to present algorithms for factoring polynomials over division quaternion alge-
bras over number fields (see Algorithm 3) and to compute roots of polynomials in
such algebras (see Algorithm 4).

There are a few different ways how one can define polynomials over a general
associative ring. If the ring is commutative, they all coincide, but no longer so
when the ring of coefficients is non-commutative. In this paper, we follow the most
classical approach, and by a polynomial, over an associative ring A, we understand
a sum p = a0 + a1x + · · · + anx

n, where the coefficients a0, . . . , an are taken from
A and the indeterminate x commutes with the coefficients. These are called left

polynomials in [9, 10] or unilateral polynomials in more recent sources like [8, 12, 31].
Throughout this paper, we use the following notational convention. Commu-

tative rings and their elements are typeset using the standard typeface, while for
non-commutative rings and their elements, we use fraktur letters. Further, K will
always denote a number field, i.e. a finite extension of the field Q of the rationals.
Recall that an algebra A over K is called a quaternion algebra if it has a basis of
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2 PRZEMYSLAW KOPROWSKI

the form {1, i, j, k} subject to the relations

i2 = α, j2 = β, ij = k = −ji,

for some nonzero elements α, β ∈ K. The algebra A is then denoted
(

α,β
K

)

. For an
in-depth presentation of the theory of quaternion algebras, we refer the reader to
[37] and [39]. We will always identify the base field K with the subalgebra K · 1
of A, which is known to form the center Z(A) of A. We shall write K× (respectively
A×) to denote the multiplicative group of nonzero elements of K (resp. invertible
elements in A).

Every quaternion algebra is equipped with a standard involution that will be
denoted by an overbar in what follows. For a quaternion a ∈ A, the product aa

is called the norm (in [18]) or the reduced norm (in [37, 39]) of a and will be
denoted Na. Likewise, the sum a + a is called the (reduced) trace of a, denoted

Tr a. The natural inclusion
(

α,β
K

)

[x] →֒
(

α,β
K(x)

)

let us extend the notion of the

norm and standard involution to quaternionic polynomials. In particular, if p =
a0 + a1x + · · · + anx

n, then p = a0 + a1x + · · ·+ anx
n and Np = pp. We will use

the same symbol N to denote also the standard norm in a field extension and its
natural prolongation to the polynomial rings. In case of ambiguity, we will indicate
the corresponding extension in the norm’s subscript.

A quaternion algebra is either a division algebra or is isomorphic to the 2 × 2
matrix algebra M2K (see, e.g., [39, Theorem 5.4.4]). The latter case happens if and
only if the 2-fold Pfister form 〈〈−α,−β〉〉 = x2

0 −αx2
1−βx2

2+αβx2
3 is isotropic (i.e.

it has a non-trivial zero). The quaternion algebra
(

α,β
K

)

is then said to be split.

2. Preliminaries

Observe that over a split quaternion algebra, every polynomial p ∈ K[x] has a
trivial factorization. Indeed, if we identify A with M2K and K with its subfield of
scalar matrices, we can write

(

p 0
0 p

)

=

(

p 0
0 1

)

·
(

1 0
0 p

)

=

(

p 0
0 1

)

·
(

p 0
0 1

)

.

Notice that both divisors of p constructed above have the same degree as the poly-
nomial p itself. This is due to the fact that all their coefficients, save the constant
terms, are zero-divisors. Consequently, in the rest of the paper, we concentrate
entirely on polynomials over division quaternion algebras.

Below we collect some known facts concerning polynomials over division quater-
nion algebras. They are all very classical but scattered throughout the literature
and sometimes expressed using different terminology. For a general introduction
to polynomial rings over division rings (including division quaternion algebras), we
refer the reader to [17, §16].

Theorem 1 (Ore). If A is a division quaternion algebra, then the ring A[x] of

quaternionic polynomials admits a right-hand division with a remainder and a right-

hand Euclidean algorithm.

In particular, for any two quaternionic polynomials p, q ∈ A[x], there exists
a unique monic greatest common right divisor (denoted gcrd(p, q) hereafter) and
the least common left multiple (denoted lclm(p, q)). In fact, [25, Theorem I.8]
provides an explicit formula for constructing the least common left multiple from the
sequence of the right reminders computed by the right-hand Euclidean algorithm.
However, we will not use this formula in the present paper.

Theorem 2 (Ore). If A is a division quaternion algebra, then every monic polyno-

mial p ∈ A[x] can be expressed as a product of irreducible quaternionic polynomials.

Every two such factorizations of p have the same number of factors.
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For proofs of the above two theorem see [25, Chapter I, §2 and Theorem II.1].
Of course, in general, a quaternionic polynomial may have infinitely many differ-
ent factorizations, even assuming that all the factors are monic. To observe this
phenomenon take any non-constant monic polynomial p ∈ K[x] with coefficients
in the ground field. Assume that p factors into a product p = pq of two monic
quaternionic polynomials pq ∈ A[x], not necessarily irreducible. Then for every
invertible quaternion a ∈ A we have

p = apa−1 = (apa−1)(aqa−1).

If only p, q /∈ K[x], this way we obtain another factorization of p, where apa−1 and
aqa−1 are again monic.

Proposition 3 (Beck). Let A be a division quaternion algebra over K. Then

every polynomial p ∈ A[x] can be uniquely expressed as a product p = c · q · p, where

c ∈ A× is the leading coefficient of p, p is a monic polynomial with coefficients in K
and q ∈ A[x] is a monic quaternionic polynomial not divisible by any non-constant

polynomial from K[x]. Moreover, if A[x] is treated as a free module of rank 4 over

K[x] with a basis {1, i, j, k}, then p is the greatest common divisor (in K[x]) of the

coordinates of p.

The polynomial p described in the last proposition is called the maximal central

factor of p. A proof of Proposition 3 can be found in [2, Résultat 4]. In view
of this proposition, it is clear that in order to factor quaternionic polynomials, it
suffices to have a procedure that factors in A[x] polynomials that are irreducible in
K[x], and another procedure that factors quaternionic polynomials not divisible by
polynomials from K[x].

Lemma 4. Let A =
(

α,β
K

)

be a division quaternion algebra over K and a, b ∈ A be

two quaternions. If ab ∈ Z(A) = K, then the following two conditions hold:

(1) ab = ba;

(2) there are scalars c, d ∈ K such that c · b = d · a

Proof. If a = 0 or b = 0, then the assertions hold trivially. Hence, without loss of
generality, we can assume that a, b ∈ A× and so their product d := ab is nonzero.
Compute

ba = a−1aba = a−1 · d · a = d · a−1a = ab.

This proves the first assertion. The second one follows immediately. Indeed, from
ab = d we infer

N(a) · b = N(a) · a−1 · d = d · a. �

Remark 1. The assumption that A is a division algebra is indispensable. To observe
that, take the split quaternion algebra A = M2K and let

a :=

(

0 0
0 1

)

and b :=

(

1 1
0 0

)

.

Then ab is the zero matrix, hence in particular ab ∈ Z(A) but

ba =

(

0 1
0 0

)

6= ab.

Proposition 5. Let A =
(

α,β
K

)

be a quaternion division algebra over K. Further,

let p ∈ K[x] be a monic irreducible polynomial with coefficients in K. Then either p
remains irreducible in A[x] or it factors into a product p = pp for some irreducible

quaternionic polynomial p ∈ A[x].
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Proof. Suppose that p is not irreducible in A[x]. Let p = pq be some factorization
of p with p, q ∈ A[x]. Applying the previous lemma to the quaternion algebra
(

α,β
K(x)

)

and using the fact that p, q and p are all polynomials we obtain that

p = pp · q
for some polynomial q ∈ K[x]. Since, the norm Np = pp also sits in K[x], it follows
from the irreducibility of p that deg q = 0, i.e. q ∈ K.

It remains to prove that p is irreducible in A[x]. Suppose that there are some
non-constant polynomials q, r ∈ A[x], such that p = qr. Therefore

p = qr · qr = q · rr · q = qq · rr.
But this contradicts the irreducibility of p as qq, rr ∈ K[x]. �

We may now present a criterion of irreducibility in A[x].

Proposition 6. Let A =
(

α,β
K

)

be a division quaternion algebra over a number

field K. Further, let p ∈ K[x] be a monic irreducible polynomial and L := K[x]/(p).
Then p remains irreducible in A[x] if and only if A⊗ L does not split.

Proof. Proposition 5 asserts that p is irreducible in A[x] if and only if it does
not equal the norm Np = pp of any polynomial p ∈ A[x]. The latter condition
is equivalent to the one that p is not represented over K[x] by the Pfister form
〈〈−α,−β〉〉 = 〈1,−α,−β, αβ〉, which is the norm form of A. Now, since p is monic
by assumption, it follows from [26, Proposition 3] (or [27, Lemma 17.3]) that p is
not represented by this form if and only if L is not the splitting field for A. �

Remark 2. A procedure for testing if a quaternion algebra over a number field splits
is described in [38] and readily available in some computer algebra systems like
Magna [4] and Sage [33]. Hence, the above irreducibility test can be easily imple-
mented. An example implementation for the computer algebra system Magma [4]
was prepared by the author (see the closing section).

Comparing the degrees, we obtain the following immediate consequence of Propo-
sition 6 that can be used as a quick-exit in the procedure for testing the irreducibil-
ity.

Corollary 7. Let A be a division quaternion algebra and p ∈ K[x] be a monic,

irreducible polynomial of odd degree, then p remains irreducible in A[x].

To conclude this section, we present a complete irreducibility criterion for quater-
nionic polynomials that can be directly implemented in a computer algebra system.

Theorem 8. Let A be a division quaternion algebra over a number field K. Further,

Let p ∈ A[x] be a non-constant polynomial and p = c · q · p be its decomposition as

in Proposition 3.

(1) If q = 1, then p is irreducible in A[x] if and only if p is irreducible in K[x]
and A⊗ L does not split, where L := K[x]/(p).

(2) If p = 1, then p is irreducible in A[x] if and only if the norm Nq of q is

irreducible in K[x].
(3) If q 6= 1 and p 6= 1, then p is reducible in A[x].

Proof. The first assertion follows immediately from Proposition 6, while the third
one is trivial. We must prove only assertion (2). Without loss of generality, we
can assume that p is monic. Hence, p = q. If p is reducible, say p = p1p2 then
Nq = Np1 · Np2 is reducible in K[x], too. This proves one implication. Now,
suppose that p is irreducible but Nq has a factorization Nq = q1q2 for some non-
constant polynomials q1, q2 ∈ K[x]. The maximal central factor of p is trivial by
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assumption. Therefore, neither p nor p is divisible by any of the polynomials q1, q2.
But we have pp = Nq = q1q2. Therefore, [25, p. 494] says that p is right-divisible

by lclm(q2, p) · p−1 = q2. This contradiction implies that Nq must be irreducible,
proving assertion (2). �

3. Factorization of central polynomials

Our first task is to factor in A[x] an irreducible polynomial p with coefficients
in the base field K. Before we consider this problem in its full generality, we first
deal with a special case. If there is a maximal (commutative) subfield K∗ of A such
that K∗ embeds into L := K[x]/(p), then a factorization of p in A[x] is exceptionally
easy.

Lemma 9. Let A be a division quaternion algebra over a number field K and

p ∈ A[x] be a monic irreducible polynomial of degree deg p > 1. Let L := K[x]/(p). If

there is a maximal commutative subfield K∗ of A such that p = NK∗/K(q) for some

polynomial q ∈ K∗[x], then

(1) K∗ embeds into L;

(2) p has a non-trivial factorization in A[x];
(3) the quaternion algebra A⊗ L is split.

Proof. Let K∗ = K(
√
d) be such that p = NK∗/K(q) for some q ∈ K∗[x]. Write

q = q0 + q1
√
d. Then p = q20 − q21d. Let ai := qi + (p) ∈ L, for i ∈ {0, 1}. We have

0 = a20 − a21d

and so d is a square in L. This means that K∗ embeds into L. Now, p = (q0 +

q1
√
d)(q0 − q1

√
d), where q0, q1 ∈ K∗[x] ⊂ A[x]. Therefore, p has a non-trivial

factorization in A[x]. The third assertion follows now from Proposition 6. �

Algorithm 1. Let A be a division quaternion algebra over a number field K, and

let p ∈ K[x] be a monic irreducible polynomial. If there is a maximal commutative

subfield of A over which p factors, then this algorithm outputs a factorization of p
over A. Otherwise, it reports a failure.

(1) Build a field extension L := K[x]/(p).
(2) Construct all the subfields L1, . . . , Ln of L of degree 2 over K (see Remark 3

below).
(3) Repeat the following steps for every Li:

(a) Check if the quaternion algebra A ⊗ Li splits. If it does not, then

reiterate the loop.

(b) Find an embedding ϕ : Li →֒ A (see Remark 4 below) and let K∗ :=
ϕ(Li).

(c) Factor p in K∗[x] into the product p = q · q, where q ∈ K∗[x] ⊂ A[x].
(d) Output (q, q) and quit.

(4) Report a failure.

Proof of correctness. Let K∗ is a maximal (commutative) subfield of K such that p
has a non-trivial factorization in K∗[x], then (K∗ : K) = 2 and so K∗ embeds into L
by Lemma 9. Hence, K∗ is isomorphic to one of the fields L1, . . . , Ln constructed
in step (2) of the algorithm. Therefore, a proper factorization of p is returned in
step (3d). Conversely, assume that Li is a subfield of L, quadratic over K, and
such that A⊗Li is split. Then, [37, Theoreme I.2.8] asserts that Li embeds into A.
Hence, up to an isomorphism, it is a maximal subfield of A. �

Remark 3. The problem of finding all the subfields of some fixed degree in a given
field extension L/K is an active area of research. Algorithms for solving this prob-
lem can be found in [7, 13, 14, 32, 35, 36].
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Remark 4. Let M be a quadratic extension of K such that A ⊗M splits. Fix an
element d ∈ K, which is a square in M but not in K. Then M = K(

√
d). Now,

[37, Theoreme I.2.8] asserts that M embeds in A. Therefore, d is a square of some

pure quaternion a ∈ A. Then a+ b
√
d 7→ a+ ba is an embedding of M into A. The

quaternion a can be directly constructed by solving two norm equations (see, e.g.,
[16]).

Remark 5. All the algorithms presented in this paper rely on our ability to fac-
tor polynomials over number fields, either the base field K or its quadratic ex-
tension K∗. Fortunately, the factorization of polynomials over number fields is a
well-studied subject. We may refer the reader to [1, 3, 19, 20, 23, 28].

We will now develop the main procedure of this section that takes a polynomial
p ∈ K[x], irreducible in every commutative subfield of A, and constructs a quater-
nionic polynomial p such that p = pp. The general idea is to use the fact (see
Proposition 6) that the existence of a non-trivial factorization of p in A[x] implies
that A ⊗ L splits, where as before L := K[x]/(p). We can then use a zero-divisor
of A ⊗ L to find a polynomial p ∈ A[x] such that pp = pq for some extraneous
factor q. This can be thought of as an “approximate factorization” of p. We will
then successively improve this “approximation”, reducing the degree of q. First, we
show some preliminary lemmas.

Lemma 10. Let p, q ∈ K[x] and p ∈ A[x] be polynomials and let r ∈ A[x] be the

reminder of p modulo q. If pq = pp, then q divides the polynomials rr and pr.

Proof. We have p = q · q + r for some quaternionic polynomial q ∈ A[x]. Compute

rr = (p− q · q)(p− q · q)
= pp− pq · q − qp · q + qq · q2

= pq − pq · q − qp · q + qq · q2

= (p− pq− qp+ qq · q) · q.
This proves the first assertion. For the second one, write

pr = (q · q + r) · r = qr · q + rr.

Now, it follows from the previous part of the proof that the right-hand side of the
above formula is divisible by q and so is pr, as claimed. �

Lemma 11. Keep the assumptions of the previous lemma and let q := pr · q−1 ∈
A[x]. Then p divides qq.

Proof. Compute

qq = (pr · q−1)(pr · q−1)

= prrp · q−2

= pp · rr · q−2

= pq · rr · q−2

= (rr · q−1) · p.
The assertion follows now from the preceding lemma. �

Lemma 12. Keep the assumptions of Lemmas 10 and 11. Denote r := qq · p−1 ∈
K[x]. Then deg r < deg q.

Proof. We have the following relations between the degrees of the polynomials in
question:

• deg r = 2 · deg q− deg p, since r = qq · p−1;
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• deg q = deg p+ deg r− deg q, since q = pr · q−1;
• 2 · deg p = deg p+ deg q, since pq = pp;
• deg r < deg q, since r is the reminder of p modulo q.

Combining these four conditions, we obtain the following:

deg r = 2deg q− deg p

= 2deg p+ 2deg r− 2 deg q − deg p

= deg p+ deg q + 2deg r− 2 deg q − deg p

= 2deg r− deg q

< 2 deg q − deg q = deg q. �

We are now ready to present an algorithm that factors in A[x] an irreducible
polynomial p with coefficients in K.

Algorithm 2. Let A =
(

α,β
K

)

be a division quaternion algebra over a number

field K. Given a monic irreducible polynomial p ∈ K[x], this algorithm outputs its

irreducible factors in A[x].

(1) Construct the field extension L = K[x]/(p).
(2) Check if the quaternion algebra A ⊗ L splits. If it does not split, output p

and quit.

(3) Execute Algorithm 1. If it returns a factorization (p, p) of p, then output

(p, p) and quit.

(4) Find a zero-divisor a = a0 + a1i+ a2j+ a3k ∈ A⊗ L (see Remark 6).
(5) Let p ∈ A[x] be an inverse image of a under the natural homomorphism

A[x] → A⊗K[x]/(p), i.e. p := q0+q1 · i+q2 · j+q3 · k, where q0, . . . , q3 ∈ K[x]
are polynomials such that qi + (p) = ai for i ≤ 3.

(6) Set q := pp · p−1.

(7) While q is non-constant do:

(a) Compute the reminder r of p modulo q.
(b) Update p setting p := pr · q−1.

(c) Update q setting q := pp · p−1.

(8) Let c := lc p be the leading coefficient of p.

(9) Output (p · c−1, c−1 · p).
Proof of correctness. Proposition 6 asserts that p is irreducible in A[x] if and only
if A ⊗ L does not split. This proves the correctness of step (2). Assume that the
algorithm does not terminate at step (2) or (3). This means that A⊗ L splits (i.e.
it is isomorphic to M2L) and so it contains a zero-divisor a = a0 + a1i+ a2j+ a3k.
Now, a is a zero-divisor if and only if its norm vanishes (see, e.g., [39, Exercise 3.7]):

Na = a20 − αa21 − βa22 + αβa23 = 0.

Let the polynomial p ∈ A[x] be defined as in step (5). The previous formula reads
now as

pp+ (p) = q20 − αq21 − βq22 + αβq23 + (p) = 0.

Therefore, p divides pp and so q is a well defined polynomial satisfying the condition
pq = pp. Lemma 10 says that q divides pr, where r is the reminder of p modulo q.
Hence, updating p in step (7b), we again obtain a (quaternionic) polynomial. It fol-
lows from Lemma 11 that p divides the norm Np = pp of the updated polynomial p.
Consequently, after updating q in step (7c) once again, we have a polynomial, and
it clearly satisfies the condition pq = pp. Further, Lemma 12 asserts that the de-
gree of q diminishes after every iteration of the loop. It follows that the loop stops
after finitely many iterations, and so the algorithm terminates. After the loop is
finished we have pq = pp where q is a constant. Since p is monic by assumption,
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the leading coefficient of the left-hand side is lc(pq) = q ∈ K, while the leading
coefficient of the right-hand side equals lc(p) · lc(p) = cc. Therefore, cc = q and so
p = p · q−1 · p = (p · c−1)(c−1 · p) is a factorization of p. �

Remark 6. It is well known (see [38, Section 4]) that finding a zero-divisor in a

(necessarily split) quaternion algebra
(

α,β
L

)

is equivalent to finding an L-rational

point on a projective conic curve given by αx2+βy2−αβz2 = 0. This can be done
either by a variant of a Lagrange descent (see [6, 34] and [5, §127.5]) or by solving
a norm equation (see [15]). In particular, it is always possible to find a zero-divisor
which is a pure quaternion, i.e. it has a form a = a1i+ a2j+ a3k.

Example 1. We will illustrate how the above algorithm works using the following
toy example. Fix the quaternion algebra A :=

(

−1,−1
Q

)

over the rationals and let

p = x4 + 11x2 + 16x+ 6.

The field L = K[x]/(p) splits A, hence p factors in A[x]. The polynomial p constructed
in step (5) has a form p = 0 + q1i+ q2j+ q3k, where:

q1 = 19x3 − 12x2 + 211x+ 154,

q2 = 13x3 − 11x2 + 136x+ 97,

q3 = 53.

It follows that initally the polynomial q = pp · p−1 equals

q = 530x2 − 742x+ 5989.

In this particular example, the loop is executed only once, and after it stops, we
have

p =

(

29

50
+

11

25
k

)

· x2 +

(

11

25
− 13

10
i+

19

10
j− 29

50
k

)

· x+
11

25
− 18

25
i+

73

50
j− 29

50
k.

Dividing p on the right by its leading coefficient, we obtain the sought factor of p:

q0 := p · lc(p)−1 = x2 − (3i− j+ k) · x− 2i+ j− k

It can be verified by a direct computation that p = q0q0.

4. Factoring general polynomials

We will now present an algorithm that factors an arbitrary quaternionic poly-
nomial. First, we prove the following auxiliary lemma that may, to some extent,
mitigate inconveniences caused by the lack of commutativity.

Lemma 13. Let p, q ∈ A[x] be irreducible monic polynomials. If the norm Np and

Nq are relatively prime in K[x], then there are irreducible polynomials p1, q1 ∈ A[x]
such that Np1 = Np, Nq1 = Nq and pq = q1p1.

Proof. The polynomials Np and Nq are relatively prime by assumption. Hence, by
Bézout identity, there are polynomials p, q ∈ K[x] such that

p ·Np+ 1 = q ·Nq.

Set p∗ := p · p and q∗ := q · q. Then

p∗p+ 1 = qq∗.

This means that q is right-invertible1 modulo p. Set

p1 := a · lclm(p, q∗) · q−1
∗

,

1Notice that q is also left-invertible modulo p. However, to prove the latter assertion it suffices
to use a weaker asumption that gcrd(p, q) = 1 together with [25, Theorem I.5].
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where the quaternion a is selected in such a way that p1 is monic. Rearranging the
term (see [25, Theorem I.13]) we obtain

p = lclm(p1, q) · q−1.

From the assumption gcd(Np, Nq) = 1 we infer gcrd(p, q) = 1. Hence, the norms
of p and p1 coincide. We have

pq = lclm(p1, q) · q−1 · q = lclm(p1, q).

Therefore, the product pq is right-divisible by p1. Take q1 := pq · p−1
1 . It is clear

that Nq1 = Nq and q1p1 = pq. �

Algorithm 3. Let it A be a division quaternion algebra over a number field K.

Given a nonzero polynomial p ∈ A[x], this algorithm outputs a quaternion c ∈ A

and a list L = (q1, . . . , qn) of monic irreducible quaternionic polynomials such that

p = c · q1 · · · qn.

(1) Let c := lc(p) and update p setting p := c−1 · p. Initialize L := ().
(2) Let p0, . . . , p4 ∈ K[x] be the coordinates of p with respect to the basis

{1, i, j, k} of A[x] treated as a free module over K[x].
(3) Compute the maximal central factor p := gcd(p0, . . . , p4) of p and set q :=

p · p−1.

(4) Factor p in K[x] into the product p = re11 · · · remm of irreducible polynomials

r1, . . . , rm ∈ K[x].
(5) Factor every polynomial ri in A[x] using Algorithm 2. Append ei copies of

the output of that algorithm to the list L .

(6) Factor the norm Nq = qq in K[x] into the product Nq = qε11 · · · qεkk of monic

irreducible polynomials q1, . . . , qk ∈ K[x].
(7) Repeat the following steps as long as the polynomial q remains non-constant:

(a) Compute the greatest common right divisor r := gcrd(q, qk).
(b) Update the list L prepending r to it at the beginning.

(c) Update the polynomial q setting q := q · r−1.

(d) Decrement the exponent εk by 1.
(e) If εk = 0, then decrement the index k by 1.

(8) Output c and the list L .

Proof of correctness. Fix a nonzero polynomial p ∈ A[x]. Proposition 3 asserts that
p can be uniquely expressed as p = c · q · p, where p is the greatest common divisor
(in K[x]) of the coordinates of p, constructed in step (2) of the algorithm. It is clear
that by factoring q and p into products of irreducible quaternionic polynomials, we
obtain a factorization of the original polynomial p. Factorization of p is performed
in steps (4–5) using Algorithm 2. It remains to factor q. Assume that q = r1 · · · rl
is some factorization of q. Then Nq = Nr1 · · ·Nrl is a factorization in K[x] of the
norm of q. But now, K[x] is a (commutative) unique factorization domain, hence
every Nri must equal precisely one of the irreducible factors q1, . . . , qk ∈ K[x]
of Nq. Repeatedly applying Lemma 13 we see that there is another factorization
q = q1 · · · ql such that Nql = qk. Consequently, we can extract the right-most factor
ql = gcrd(q, qk). A simple induction shows that the loop in step (7) will eventually
produce all the irreducible factors. �

Remark 7. One may wonder why we have to use a dedicated method when dealing
with polynomials having coefficients in the center of the algebra. The reason is that
the norm of a central polynomial p ∈ K[x] is just its square Np = p2. Consequently
gcrd(p,Np) = gcd(p, p2) = p. Hence, even if p factors in A[x] into a product
p = pp, step (7a) of Algorithm 3 cannot extract its factors. The same phenomenon
is observed when factoring polynomials in a finite field extension using Trager’s
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algorithm. Say, L = K(ϑ) is a finite extension of K and p ∈ L[x]. In Trager’s
algorithm, to factor p, we “shift” it and compute the norm of p(x + kϑ) for some
k ∈ Z. Unfortunately, in the case of quaternionic polynomials, this trick no longer
works due to the lack of commutativity. That is why we need to recourse to the more
complex method described in Section 3. Therefore, factorization of polynomials
over division quaternion algebras (hence algebras of degree two) is much more
time-consuming than factorization over degree two field extensions. Nonetheless,
detailed complexity analysis needs to be a subject of further research.

Example 2. We will illustrate Algorithm 3 with another toy example. Take again
the quaternion algebra A =

(

−1,−1
Q

)

and let

p := (1 + k) · x8 + (−2 + i− j− 2k) · x7 + (9 + 11k) · x6

+ (−6 + 12i− 6j− 2k) · x5 + (−45 + 10i− 18j− 27k) · x4

+ (−44 + 17i+ 49j+ 32k) · x3 + (21− 50i+ 58j+ 53k) · x2

+ (48− 90i− 2j+ 8k) · x+ 18− 36i− 12j− 6k.

Then p = (1 + k) · (p0 + p1i+ p2j+ p3k), where

p0 = x8 − 2x7 + 10x6 − 4x5 − 36x4 − 6x3 + 37x2 + 28x+ 6,

p1 = 3x5 − 4x4 + 33x3 + 4x2 − 46x− 24,

p2 = −x7 − 9x5 − 14x4 + 16x3 + 54x2 + 44x+ 12,

p3 = x6 + 2x5 + 9x4 + 38x3 + 16x2 − 20x− 12.

Computing the greatest common divisor of these four polynomials, we obtain the
maximal central factor of p:

p := gcd(p0, . . . , p4) = x4 + 11x2 + 16x+ 6.

The polynomial p is precisely the one that was factored already in the previous
example. It remains to factor the polynomial q := (1 + k)−1 · p · p−1, that is not
divisible by any polynomial with coefficients in K. The norm of q factors in K[x]
into a product Nq = q1q2q3, where

q1 = x2 + 1,

q2 = x2 − 4x+ 5,

q3 = x4 − 3x2 + 5.

Computing the successive greatest common right divisors, we obtain factors of q:

q3 := gcrd(q, q3) = x2 + ix− 2− k,

q2 := gcrd(q · q−1
3 , q2) = x− 2− j,

q1 := gcrd(q · q−1
3 · q−1

2 , q1) = x− i.

This yields a factorization p = (1 + k) · q1q2q3 · q0q0, where q0 is the factor of p
constructed in Example 1.

5. Root finding

Polynomial factorization is closely related to the problem of root finding. For
quaternionic polynomials, the latter question was studied already 80 years ago by
Niven in the case of Hamiltonian quaternions (see [24]) and 40 years ago by Beck for
arbitrary quaternion algebras (see [2]). Nevertheless, so far, computational methods
have concentrated exclusively on Hamiltonian quaternions (see, e.g., [11, 12, 24, 29,
31]). In this section, we show how to adapt Algorithm 3 to find roots in A of a
polynomial p ∈ A[x], where A is a division quaternion algebra over a number field.
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It is known that the Fundamental Theorem of Algebra holds for the Hamiltonian
quaternions (see, e.g., [12, 24, 29]). Hence, every non-constant polynomial with

coefficients in H =
(

−1,−1
R

)

has a root in H. This property no longer holds if we
replace H by a split quaternion algebra over the reals. Similarly, it is completely
unsurprising that, in the situation considered in this paper, there are polynomials
with coefficients in division quaternion algebras over number fields that do not have
roots in their rings of coefficients. If it is the case, then the algorithm must of course
return an empty set.

In a commutative world, finding roots in L ⊇ K of a polynomial p ∈ K[x] is
equivalent to finding linear factors of p in L[x]. It no longer works when we leave
the commutative playpen and consider polynomials over non-commutative division
rings. Here we encounter two immediate obstacles. First, a quaternionic polynomial
may have infinitely many zeros. Secondly, the evaluation map A[x] → A, p 7→ p(a)
for some fixed a is no longer a ring homomorphism if a /∈ Z(A). In particular,
p = qr and q(a) = 0 does not yet imply that p(a) = 0. Fortunately, both these
inconveniences are easy to overcome. First, however, for the reader’s convenience,
let us cite two very classical facts concerning the roots of quaternionic polynomials.
Recall that two nonzero quaternions a, b are said to be conjugate if there is a
quaternion c ∈ A× such that a = cbc−1. Clearly, conjugacy is an equivalence
relation.

Theorem 14 (Gordon–Motzkin). Let A be a division quaternion algebra and p ∈
A[x]. Then:

(1) A quaternion a ∈ A is a root of p if and only if p is right-divisible by x− a.

(2) At most deg p conjugacy classes of A contains roots of p.

(3) If p = (x− a1) · · · (x− an), then every root of p is conjugate to some ai.

(4) If a conjugacy class of A contains more than one root of p, then p has

infinitely many roots in this class.

For a proof of the above theorem we refer the reader to [10] or [17, §16]. For a
nonzero quaternion a ∈ A we denote its characteristic polynomial by χa = N(x −
a) = x2 − Tr(a) · x + N(a) ∈ K[x]. It is obvious that χa = χa = χb for every
conjugate b of a. Conversely, Dickson’s theorem (see e.g., [17, Theorem 16.8])
asserts that χa = χb implies that a and b are conjugate. The next theorem is taken
from [2].

Theorem 15 (Beck). Let A be a division quaternion algebra and p ∈ A[x] a non-

constant polynomial. Then:

(1) A quaternion a is conjugate to a root b of p if and only if χa divides Np in

K[x] if and only if a is a root of Np.

(2) If χa divides p, for some a ∈ A× then every conjugate of a is a root of p.

Fix a nonzero quaternionic polynomial p ∈ A[x]. Write it again as a product
p = c · q · p, where c is the leading coefficient, p the maximal central factor of p,
and q is not divisible by any non-constant polynomial from K[x]. In view of the
above two theorems, it is clear that to find roots of p, all we need to do is to find its
linear right factors. To this end, it suffices to consider just the linear and quadratic
factors of p together with the quadratic factors of Nq. Moreover, since p may have
infinitely many roots, the best we can do is to enumerate roots up to conjugacy
relation. This is precisely what Algorithm 4 does. First, however, we need to state
the following lemma, which is widely known, but we are not aware of any convenient
reference.

Lemma 16. A quaternion a ∈ A\K is a root of a polynomial p ∈ K[x] if and only

if χa divides p.
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Proof. Assume that p(a) = 0. Then [17, Theorem 16.6] asserts that p = q · χa for
some polynomial q ∈ A[x]. But p and χa sit in K[x], hence also q ∈ K[x] (see e.g.,
[17, Exercise 16.1]). The opposite implication is trivial. �

We are now ready to present the root finding algorithm, which is an easy adap-
tation of the factorization procedure presented in Algorithm 3.

Algorithm 4. Given a nonzero polynomial p ∈ A[x], this algorithm outputs a set

R ⊂ A such that every element of R is a root of p and every root of p is conjugate

to a unique element of R.

(1) Let c := lc(p) and update p setting p := c−1 · p.
(2) Let p0, . . . , p4 ∈ K[x] be the coordinates of p with respect to the basis

{1, i, j, k} of A[x] treated as a free module over K[x].
(3) Compute the maximal central factor p := gcd(p0, . . . , p4) of p and set q :=

p · p−1.

(4) Factor p in K[x] into the product p = re11 · · · remm of irreducible polynomials

r1, . . . , rm ∈ K[x].
(5) Initialize R to be the set of roots (in K) of all the linear factors of p:

R :=
{

a ∈ K : ri = x− a for some i ≤ k
}

.

(6) For every polynomial ri of degree 2:
(a) Execute Algorithm 1 with input ri, if it reports a failure, then reiterate

the loop.

(b) Otherwise, if Algorithm 1 returns a factorization ri = (x− ai)(x− ai),
then check if R contains an element conjugate to ai.

(c) If it does not, then add ai to R.

(7) Factor the norm Nq = qq in K[x] into the product Nq = qε11 · · · qεkk of monic

irreducible polynomials q1, . . . , qk ∈ K[x].
(8) For every polynomial qj of degree 2:

(a) Compute the greatest common right divisor x− bj = gcrd(qj , q).
(b) Check if R contains an element conjugate to bj.

(c) If it does not, then add bj to R.

(9) Output the set R.

Proof of correctness. Fix a quaternionic polynomial p = c · q · p and let R be the
set constructed by the algorithm. First, we will prove that every element of R

is a root of p. If an element a ∈ R was constructed in step (5), then it is clear
that p(a) = p(a) = 0. Likewise, if ai ∈ R was constructed in step (6b), then
χai

= (x − ai)(x − ai) divides p. Hence, ai is again a root of p (and so are all its
conjugates by Theorems 15). Now, take an element bj ∈ R constructed in step (8a).
Then x− bj , being the greatest common right divisor of q and qj , is, in particular,
a right divisor of p, since p is central. It follows that bj is a root of p.

Conversely, we will now show that every root of p is conjugate to some element
of R. Assume that a ∈ A is a root of p. Then x − a is a right divisor of p, by
Theorem 14. We need to consider three cases. If a sits in K, then x − a divides p
and so a is one of the elements constructed in step (5) of the algorithm. Hence,
without loss of generality, we can assume that a /∈ K. If x − a divides p, then the
characteristic polynomial χa of a divides p, by Lemma 16. Thus, χa is one of the
factors ri of degree 2 considered in step (6). Consequently, either a is added to R,
or a is added to R, or R already contains an element conjugate to one of these two.
But, a and a are conjugate by Dickson’s theorem (see e.g., [17, Theorem 16.8]).
Therefore, either way, R contains an element conjugate to a.

Finally, assume that x−a does not divide p. It follows that x−a must be a right
divisor of q since p is central. But then the norm N(x−a) = χa is irreducible in K[x]
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and divides Nq. Consequently, χa = qj for some j ≤ k and so x − a = gcrd(q, qj).
Therefore, either a itself is added to R in step (8c) or R contains an element
conjugate to a. This way, we have proved that every root of p is conjugate to some
element of R. This element is uniquely determined since the elements of R are
pairwise non-conjugate. �

6. Conclusion and further studies

We have presented an explicit algorithm for factorization of unilateral poly-
nomials with coefficients in division quaternion algebras over number fields. As
mentioned earlier, in general, a quaternionic polynomial may have infinitely many
different factorizations into irreducible factors. The algorithm presented in the pa-
per outputs just one of these factorizations. This fact makes the complexity of the
algorithm rather tricky. It has been empirically observed by the author that the
output can be “suboptimal” in the sense that the sizes of coefficients can become
arbitrarily large. This phenomenon occurs mostly when factoring central polyno-
mials since Algorithm 2 may suffer from the explosive growth of coefficients that is
typical to Euclidean-like algorithms over polynomial rings. Methods to overcome
this obstacle by selecting factors with small coefficients (or restricting the growth
of the coefficients) should be a subject for further studies.

The algorithms introduced in the paper were implemented by the author in a
package `qP̀o˝l›y for the computer algebra system Magma. The package is distributed
under the MIT license and can be freely downloaded from the author’s web page
http://www.pkoprowski.eu/qpoly.
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