
SliceLens: Guided Exploration of Machine Learning Datasets
Daniel Kerrigan

kerrigan.d@northeastern.edu

Northeastern University

Boston, Massachusetts, USA

Enrico Bertini

e.bertini@northeastern.edu

Northeastern University

Boston, Massachusetts, USA

CBA

Figure 1: SliceLens on the Census Income (Adult) dataset. A) The left sidebar contains the controls for the visualization. B) The
main component is a visualization of the intersections of feature bins. Each square visualizes the label distribution of a subset
of the data. C) The right sidebar is for notes, which lets users document and revisit their findings.

ABSTRACT
SliceLens is a tool for exploring labeled, tabular, machine learning

datasets. To explore a dataset, the user selects combinations of fea-

tures in the dataset that they are interested in. The tool splits those

features into bins and then visualizes the label distributions for the

subsets of data created by the intersections of the bins. SliceLens

guides the user in determining which feature combinations to ex-

plore. Guidance is based on a user-selected rating metric, which

assigns a score to the subsets created by a given combination of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

features. The purpose of the metrics are to detect interesting pat-

terns in the subsets, such as subsets that have high label purity

or an uneven distribution of errors. SliceLens uses the metrics to

guide the user towards combinations of features that create po-

tentially interesting subsets in two ways. First, SliceLens assigns a

rating to each feature based on the subsets that would be created

by selecting that feature. This incremental guidance can help the

user determine which feature to select next. Second, SliceLens can

suggest combinations of features ranked according to the chosen

metric, which the user can then cycle through.

CCS CONCEPTS
• Human-centered computing→ Visualization systems and
tools; Visual analytics.

KEYWORDS
machine learning, visualization, visual analytics, guidance, explo-

ration

https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Kerrigan and Bertini

ACM Reference Format:
Daniel Kerrigan and Enrico Bertini. 2018. SliceLens: Guided Exploration

of Machine Learning Datasets. In Proceedings of ACM Conference (Confer-
ence’17). ACM, New York, NY, USA, 7 pages. https://doi.org/XXXXXXX.XX

XXXXX

1 INTRODUCTION
When exploring a labeled, tabular dataset that is used to train or

evaluate a machine learning model, the relationship between fea-

tures and labels is of key interest, since the features are the inputs

to the model and the labels are the desired or actual outputs of the

model. When both ground truth and predicted labels are available,

identifying where the model makes a high or low amount of errors

is also important. Both exploring the relationship between features

and labels and exploring where a model tends to make errors can

be supported by dividing the instances in the dataset into subsets

based on their values for specific features of interest. For exam-

ple, a data scientist may be exploring the Census Income (Adult)

dataset [4] and want to understand the impact that a person’s age

and education has on their income, which is represented as a binary

label of whether the person makes more or less than $50,000 in a

year. They can divide the dataset into subsets, such as young people

with high education, old people with high education, young people

with low education, etc. By comparing the distribution of labels in

each subset, they can get a sense of the relationship between age,

education, and income. Likewise, once the data scientist has trained

a model, they may be interested in comparing the model’s error

rates between these subsets in order to gain an understanding of

where the model is inaccurate.

This type of exploration can be continued by examining the

subsets created by different feature combinations. One difficulty

with this approach is that, in many datasets, there are too many

possible combinations of features to be able to exhaustively explore

all of them. In these cases, the data scientist will necessarily have

to focus on specific feature combinations, but they may not know

which ones are worth their attention.

To address this problem, we present SliceLens, which is a visual-

ization tool that guides users in exploring labeled, tabular, machine

learning datasets. Data exploration in SliceLens is driven by the

user selecting combinations of features. The tool bins the selected

features and visualizes the subsets of the data created by the inter-

sections of the bins; thus providing a simple interface for the user

to quickly explore relationships between combinations of features

and the labels. SliceLens provides guidance to the user to help them

determine which combinations of features to explore. Guidance in

SliceLens is based on a user chosen rating metric, which assigns

a score to the subsets created by a given combination of features.

These metrics are used to identify feature combinations that re-

sult in subsets with potentially interesting patterns in their label

distributions, such as subsets that effectively group instances by

their label or subsets that have uneven error distributions. SliceLens

offers two forms of guidance. The first is feature ratings. Using the

chosen metric, SliceLens assigns a rating to each feature based on

the subsets that would be created by adding that feature to the

visualization. The feature ratings are updated as the user adds and

removes features from the visualization. The feature ratings pro-

vide incremental guidance and leave the user in control of what

features they select, allowing them to factor in their own interests.

The second form of guidance that SliceLens offers is by suggesting

feature combinations. SliceLens ranks combinations of one to three

features according to the chosen metric and enables the user to

easily cycle through the suggested combinations, thereby offering

a more automated form of guidance. SliceLens can be used to ex-

plore both classification and regression datasets. These datasets can

either have only ground truth labels or have both ground truth and

predicted labels.

2 RELATEDWORK
The visualization and interaction that SliceLens provides is similar

to Facets Dive [5], which is a visualization tool for exploring ma-

chine learning datasets and is a part of the What-If Tool [14]. Like

SliceLens, Facets Dive allows users to explore datasets by selecting

combinations of features and the tool then splits the dataset into

subsets and creates visualizations of the subsets. Facets Dive visu-

alizes each instance in the dataset, whereas SliceLens visualizes the

label distribution in each subset. A significant difference between

SliceLens and Facets Dive is that Facets Dive does not guide or assist

the user in determining what combinations of features to explore.

The user is on their own in deciding what visualizations to look

at. The guidance that SliceLens offers the user through the feature

ratings and feature combination suggestions is a key contribution.

There are many tools designed for visually analyzing the results

of a machine learning model. Squares [13] visualizes the perfor-

mance of multi-class classification models, but it does not incor-

porate feature-level information and does not support regression

models. Slice Finder [11] identifies data subsets where model per-

formance is poor, however, its only visualization is an interactive

scatter plot showing the size and effect size of the identified subsets.

It does not visualize the predictions in the subsets. Visual Audi-

tor [10] builds additional visualizations on top of the Slice Finder

algorithm that are designed for analyzing model bias, but do not

show label distributions of the subsets. MLCube Explorer [9] lets

the user compare the performance of different models across user-

defined subsets of the data. Unlike SliceLens, MLCube Explorer

does not guide the user in determining which subsets to explore.

FairVis [2] is particularly related to SliceLens, as they both seek to

help the user determine which subsets to explore when it is not

practical to explore them all. Similar to SliceLens, FairVis suggests

subsets to the user, which can be sorted based on different fairness

metrics. The suggested subsets are generated through K-means

clustering, which means that the subsets are not strictly defined

by specific feature values, as they are in SliceLens. FairVis places

primary emphasis on comparing subsets according to metrics such

as precision, recall, and accuracy, whereas SliceLens focuses on

comparing the subsets created by specific feature combinations

according to their label distributions. FairVis has limited support

for this type of comparison, since the user can compare the ground

truth labels between only two subsets at once. In addition, FairVis

is limited to binary classification datasets, whereas SliceLens also

supports multi-class and regression datasets. SliceTeller [15] iden-

tifies and visualizes under-performing subsets and estimates the

impact of prioritizing those subsets in model training. All of the

tools referenced in this paragraph are for analyzing the results

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SliceLens: Guided Exploration of Machine Learning Datasets Conference’17, July 2017, Washington, DC, USA

and performance of a model and therefore require that the model

already be trained. They do not support guiding the exploration

of training datasets before a model exists, like SliceLens does. For

example, a data scientist might use SliceLens to explore a dataset be-

fore training to familiarize themselves with it and to get a sense for

the key relationships between the features and labels and then re-

turn to SliceLens once the model is trained to explore its predictions

and the errors that it makes.

3 INTERFACE
3.1 Overview
Users explore tabular datasets in SliceLens by selecting combina-

tions of features that they are interested in. SliceLens then splits

the dataset into subsets according to the selected features. This is

done by binning the values in each feature. By default, quantitative

features are split into three equal-width bins. Categorical features

have one bin per category. If the feature has more than five cate-

gories, then there is one bin for each of the top four categories and

the remaining categories are grouped in an “Other” bin. The user

can edit the default bins for a feature. The data subsets are created

by the intersections of the bins for the selected features. The tool

then produces a visualization showing how the labels distribute

across the generated data subsets.

For example, Figure 1 shows the Census Income (Adult) dataset

with the age, number of hours worked per week, and education

level features selected. In this case, the age and number of hours

worked per week features both have three bins and the education

feature has four bins. The result is a visualization that shows the

subsets for all 36 possible combinations of the bins for age, number

of hours worked per week, and education level. In SliceLens, a

maximum of four features can be selected at once. This restriction

is supported by Halford et al., whose findings suggest that humans

can effectively process the interactions between no more than four

variables at a single time [7].

The user interface for SliceLens contains three primary parts

(Figure 1). The main section of the tool is a visualization of the

selected features (Figure 1B). The left sidebar contains the controls

for the visualization (Figure 1A). The right sidebar allows the user

to take notes and save states of the visualization (Figure 1C).

The center section of SliceLens (Figure 1B) contains a visualiza-

tion of the data subsets that are created by the intersections of the

selected features’ bins. The visualization always includes every in-

stance in the dataset by default, though the user can filter instances

according to specific feature values. The label distribution in each

subset is visualized with a square. If one feature is selected, then

the squares are arranged horizontally. If two features are selected,

then the squares are arranged in a matrix, where the columns are

the bins of the first selected feature and the rows are the bins of the

second selected feature, as shown in Figure 2. Adding a third feature

creates nested columns. For example, you can see a hierarchy of

columns in Figure 1. The first feature, education, is at the top of

the column hierarchy. There is one top-level column for each bin

of the education feature (Grammar school, High school, College,

and Graduate school). Each of these top-level columns is divided

into three columns for the bins of the age feature (17-31, 31-44, and

44-90). When a fourth feature is selected, nested rows are created in

a similar manner. The subset visualizations are discussed in more

detail in Section 3.2 and Section 3.3.

At the top of the left sidebar (Figure 1A), the user can import

their dataset in CSV format. The bottom of the left sidebar contains

a list of the currently selected features and a list of all of the features

in the dataset. These lists enable the user to select, remove, and

re-order features in the visualization. Clicking a feature’s edit icon

brings up a modal that lets the user control how the feature is

split into bins. For categorical features, the user can group the

feature values into any number of bins and rename and sort the

bins. For quantitative features, the user can specify the number of

bins and choose between equal-width, equal-frequency, and custom

user-specified bins. Equal-width bins divide the feature’s domain

into intervals that have the same size. Equal-frequency bins use

quantiles to split the feature’s values, which attempts to put roughly

the same number of instances into each bin.

The right sidebar is for note taking (Figure 1C). Users can create

notes and link them to the state of the visualization. This allows

users to revisit their findings in the visualization at a later point or

to export them in order to share the findings with others.

SliceLens is an open-source
1
web application built using Svelte [8]

and D3 [1].

3.2 Classification Dataset Visualization
SliceLens supports both classification and regression datasets. Fig-

ure 1 shows predicted labels for the binary Census Income dataset.

For classification datasets, each subset is represented by a square.

Each square has one layer for each class in the dataset, where the

height of a layer is proportional to the number of instances in that

subset with that class. The layers are colored according to their

class. The user can choose whether they visualize the ground truth

class labels or the predicted class labels, if available. When color

encodes predicted labels, stripes represent incorrect predictions.

The number of classes that SliceLens supports is limited by the use

of color hue to distinguish between the classes in the visualization,

therefore it works best with binary or few-class datasets. By de-

fault, the area of the square encodes the number of instances in the

subset. The user can choose to make all of the squares the same size

in order to make comparing distributions easier. Hovering over a

square shows a tooltip, which provides details about the data subset

(Figure 1B).

We considered representing each subset with a bar chart instead

of with a square. One benefit of bar charts is that bar length is amore

precise encoding than area [3]. However, we see a few issues with

using bar charts that lead us to stick with the squares. First, the bars

must be oriented either vertically or horizontally. When multiple

features are selected, the subset visualizations are arranged in a

grid. Having horizontally or vertically oriented bars would promote

a specific reading direction on the data (e.g., horizontal bar charts

would promote reading columns of subsets over rows). Choosing

to orient the layers in the squares either horizontally or vertically

also promotes a specific reading direction, but we believe that the

centrally aligned squares lessens this effect. Second, despite being

more precise, we find that the bar charts scale less effectively than

the squares, particularly when a subset contains a small percent

1
https://github.com/nyuvis/SliceLens

https://github.com/nyuvis/SliceLens

Conference’17, July 2017, Washington, DC, USA Kerrigan and Bertini

of the dataset. Lastly, we believe that the squares communicate

the part-to-whole relationship of the labels in a subset better than

the bar charts. With bar charts, the user may be more inclined to

compare specific bars between subsets rather than comparing the

overall distributions.

For classification datasets, the user has the option to highlight

how the distribution of each subset differs from the distribution of

the entire dataset (Figure 1B). If a subset has a higher percentage of

a given class than the dataset as a whole, then there is a bar to the

right of that class’s layer in the square. The height of the bar encodes

the percentage point increase of the class in the subset compared

to the entire dataset. When visualizing a group of subsets, these

bars make it easier to tell which subsets have a relative increase

or decrease for a given class when compared to the entire dataset.

When analyzing a group of subsets without showing these bars,

the user would have to remember the label distribution of the

whole dataset and compare that to the distribution of each subset

in order to understand how they differ. This becomes easier when

the difference is directly shown with the bars. They are particularly

helpful when the dataset has imbalanced labels.

3.3 Regression Dataset Visualization
Figure 2 contains visualizations of the Bike Rentals regression

dataset [6, 4]. As with classification datasets, each subset of a regres-

sion dataset is visualized by a square, where the size of the square

represents the number of instances in the subset and the layers of

the square show the label distribution. When showing ground truth

labels (Figure 2A), the continuous labels are discretized into approx-

imately twenty equal-width bins. To help better visualize skewed

distributions, the user may also choose to use equal-frequency bins

instead. A sequential color scale is used to visualize the distribution

of the binned labels. If the user chooses to show predictions (Fig-

ure 2B), then SliceLens calculates the difference between the ground

truth label and the predicted label for each instance. These delta

values are then similarly discretized into approximately twenty

bins. A diverging color scale is used to visualize the distribution of

the binned delta values in order to differentiate between over and

under predictions.

We considered using histograms to visualize the subsets rather

than squares. Our reasons for preferring squares over bar charts

for classification datasets also apply to preferring squares over

histograms for regression datasets. One additional reason relates to

space efficiency. A histogram includes space for each bin regardless

of whether or not that bin is empty. The squares, however, do not

use any space to show empty bins.

4 GUIDANCE
In a dataset with twenty features, there are 1350 unique combina-

tions of one to three features. This exemplifies that exhaustively

exploring the subsets created by all possible combinations of fea-

tures is not practical. Therefore, the user will necessarily focus

on certain combinations of features. To help the user determine

which combinations of features are worth focusing on, SliceLens

offers two forms of guidance: feature ratings and suggested feature

combinations. The goal of the guidance is to direct the user towards

combinations of features that result in subsets with interesting label

distributions. To do this, both forms of guidance use a user-selected

rating metric to assign a score to the subsets created by a given

combination of features. The metrics seek to capture potentially

interesting patterns in the subsets’ labels.

4.1 Rating Metrics
The purpose of a rating metric is to assign a score to the set of

subsets that are created by a given combination of features. The

metrics are designed to give a higher rating to feature combinations

that create subsets that have label distributions that the user may

potentially find to be interesting. For example, when analyzing a

training dataset that has ground truth labels, we anticipate that

users will be interested in finding combinations of features whose

subsets effectively group together instances with the same label

(or similar labels in the case of regression datasets), as this could

indicate that the features may be particularly informative for a

model’s prediction. When analyzing a validation dataset that has

both ground truth and predicted labels, we anticipate that users

will be interested in where the model makes errors and how those

errors distribute across certain subsets. For example, they may be

interested in identifying feature combinations where the model

makes more or worse errors in one subset than another. These are

the types of patterns that we seek to capture through the rating

metrics. SliceLens has six predefined rating metrics that the user

can choose from, which are split between metrics for classification

datasets and metrics for regression datasets. Only a single rating

metric is used for guidance at a time. The input to each metric is the

set of subsets that are created by a given feature combination. In

order to prevent the rating metrics from being overly influenced by

subsets that are too small to be significant, the user can set a subset

size threshold to filter out small subsets from the calculations.

4.1.1 Classification Metrics. For classification datasets, the user

can choose between one of four metrics: purity, error deviation, error
count, and error percent.

The purity metric is useful for guiding users to features that do

better jobs at separating the instances into subsets by their ground

truth label. The metric gives higher ratings to subsets that have a

lower weighted average entropy, based only on the ground truth

labels. This is similar to how entropy is used in building decision

trees when deciding how to best split a given node [12].

We define a dataset 𝐷 to be a set of 𝑁 labeled instances. Let𝐶 be

the set of unique labels in 𝐷 . For a given subset 𝑆 ⊂ 𝐷 , we define

the entropy of 𝑆 in (1), where 𝑝𝑐 is the percent of instances in 𝑆

whose ground truth label is 𝑐 .

entropy(𝑆) = −
∑︁
𝑐∈𝐶

𝑝𝑐 log2 𝑝𝑐 (1)

If we split 𝐷 into a set of disjoint subsets 𝑇 , then we define

the purity metric for the set of subsets in (2). A lower weighted

average entropy indicates that the subsets are more pure, therefore

we negate this value so that a higher rating corresponds to purer

subsets.

purity(𝑇) = −
∑︁
𝑆∈𝑇

|𝑆 |
𝑁

entropy(𝑆) (2)

SliceLens: Guided Exploration of Machine Learning Datasets Conference’17, July 2017, Washington, DC, USA

(A) Ground truth labels. (B) Difference between ground truth and predicted labels.

Figure 2: Visualizations of subsets created by the temperature and humidity features in the Bike Rentals dataset, using equal-
frequency binning for the color scales. The target label in this dataset is the number of bikes rented from a bike share system.

The error deviation metric seeks to identify sets of subsets that

have uneven distribution of errors. An even distribution of errors

across the subsets would mean that each subset has the same per-

centage of errors. With an uneven distribution of errors, some

subsets have a disproportionately high or low amount of errors.

The error deviation metric gives higher ratings to sets of subsets

with higher standard deviation of percent error. For a given set of

subsets, the error deviation metric calculates the error rate for each

subset and then takes their standard deviation.

In (3), we define a function that counts the number of errors in

a subset. Assume that “ground” and “predicted” are functions that

return the ground truth label and predicted label of an instance.

numErrors(𝑆) =
∑︁
𝑥∈𝑆

[ground(𝑥) ≠ predicted(𝑥)] (3)

We can then define the error deviation metric in (4), where 𝜎 is

the standard deviation function.

errorDeviation(𝑇) = 𝜎 ({numErrors(𝑆)
|𝑆 | |𝑆 ∈ 𝑇 }) (4)

The error count and error percent metrics can guide users towards

an individual subset that has a high number or percent of errors.

The error count metric computes the number of errors in each subset

and takes the maximum value (5). Similarly, the error percent metric

computes the error rate for each subset and takes the maximum

value (6).

errorCount(𝑇) = max({numErrors(𝑆) |𝑆 ∈ 𝑇 }) (5)

errorPercent(𝑇) = max({numErrors(𝑆)
|𝑆 | |𝑆 ∈ 𝑇 }) (6)

4.1.2 Regression Metrics. For regression datasets, the user can

choose between one of two metrics: similarity and MSE deviation.
The similarity metric guides users in finding subsets that group

instances with similar labels, akin to the purity metric for clas-

sification datasets. The similarity metric calculates the standard

deviation of the ground truth labels in each subset and takes their

weighted average (7, 8). A low standard deviation of the ground

truth labels in a subset indicates that the subset contains instances

with similar labels. For example, the subset might contain instances

that all have low label values. In contrast, a subset with a higher

standard deviation may contain both instances with low label val-

ues and high label values. There is a leading negative sign in (8) so

that lower deviations correspond to higher similarity ratings.

labelStdDev(𝑆) = 𝜎 ({ground(𝑥) |𝑥 ∈ 𝑆}) (7)

similarity(𝑇) = −
∑︁
𝑆∈𝑇

|𝑆 |
𝑁

labelStdDev(𝑆) (8)

Similar to the error deviationmetric for classification datasets, the

MSE deviationmetric guides users towards sets of subsets that have

uneven error distributions. That is, it can help the user find feature

combinations that result in subsets where some subsets have worse

errors than others. To calculate theMSE deviationmetric for a given

set of subsets, SliceLens computes the mean-squared error for each

subset and takes their standard deviation, as in (9) and (10).

MSE(𝑆) = 1

|𝑆 |
∑︁
𝑥∈𝑆

(predicted(𝑥) − ground(𝑥))2 (9)

mseDeviation(𝑇) = 𝜎 ({MSE(𝑆) |𝑆 ∈ 𝑇 }) (10)

Conference’17, July 2017, Washington, DC, USA Kerrigan and Bertini

4.2 Feature Ratings
The first form of guidance that SliceLens offers is assigning a rating

to each feature. The rating for a feature is calculated according to

the chosen rating metric using the subsets that would be created by

adding the feature to the visualization. This means that the ratings

take into account features that are already selected. For example,

suppose that we have a dataset about people with two discrete

features: age (young, middle, or old) and height (short or tall). If

there are no selected features, then the rating for the age feature is

calculated based on the three data subsets created by the feature’s

bins. Likewise, the rating for the height feature is calculated based

on the two data subsets created by the feature’s bins. If we select the

age feature and add it to the visualization, then the rating for the

height feature is recalculated based on the six data subsets created

by the intersections of the bins for age and height. The rating of

each feature is updated when a feature is selected, removed, or

edited, when the dataset is filtered, or when the rating metric is

changed.

In the left sidebar of the user interface, the ratings are visualized

with gray bars behind the feature names (Figure 1A). The length of

a bar encodes the feature’s rating. Regardless of the metric chosen,

the feature ratings are normalized to be between 0 and 1. Features

that are already selected are not assigned a rating.

4.3 Feature Combination Suggestions
The individual feature ratings can tell the user which feature they

can add to their current selection in order to maximize (or minimize)

their chosen metric. They provide incremental guidance to the user

in order to support them as they explore the dataset. However, since

the user is adding features one-by-one, these ratings do not tell the

user from the start what combinations of features maximize the

metric. To address this limitation, the second form of guidance that

SliceLens offers is suggesting combinations of one to three features

that rank highly according to the chosen metric.

We decided to not suggest combinations of four features for sev-

eral reasons. First, the more features that are in a combination, the

more difficult it is to reason about the relationship between those

features. For example, Halford et al. found a significant decrease in

performance when participants were processing the interactions

between four variables when compared to their performance for

three variables [7]. The visualization also becomes more complex

with more features. For example, with four features selected, in

the worst default case, each feature could have five bins, resulting

in 5
4 = 625 subsets. We wanted to avoid recommending feature

combinations that may result in visualizations that are excessively

difficult for the user to read. In addition, not considering feature

combinations with more than three features simplifies the algorith-

mic problem and enables us to evaluate more combinations of one

to three features in a given amount of time than we could if we also

had to evaluate larger combinations.

The algorithm to generate these feature combinations first sorts

the features in the dataset according to the chosen metric and takes

the top 𝐾 , where 𝐾 is set by the user. These 𝐾 individual features

are added to the list of suggested combinations. The algorithm

then calculates the rating for all pairs of the top 𝐾 features. In

order for a pair to be added to the list of suggested combinations,

it must have a rating that is higher than the median rating of the

top 𝐾 features. The rationale for this is that adding an additional

feature makes the visualization more complex, therefore it must

offer an improvement in rating to be included. Following this, the

algorithm then calculates the rating for all triplets of the top 𝐾

features. A triplet is added to the list of suggested combinations

if its rating is higher than the median rating of the pairs in the

suggested combinations list. Finally, the algorithm sorts the list of

suggested feature combinations by rating.

In the left sidebar of the user interface, the user can generate

the suggestions via the “Suggest Combos” button (Figure 1A). The

user can then click the arrow buttons or use the arrow keys on

their keyboard to cycle through the visualizations of the suggested

feature combinations. This lets the user quickly explore combina-

tions of features without having to manually add and remove each

feature. However, at any point, the user can still add, remove, or

edit features in the suggested combinations.

5 LIMITATIONS AND FUTUREWORK
One limitation of SliceLens is the slow performance of the feature

combination suggestion algorithm as the number of instances and

features in the dataset grows. The current approach to run this

algorithm in reasonable time for datasets with many features is to

not consider feature combinations that contain features that rank

outside of the top 𝐾 for the chosen metric. This is not ideal, because

these lowly ranked features may combine with other features to

create high rating subsets, but such combinations are not found

by the current algorithm. We are interested in receiving feedback

from the HILDA community on how to improve the performance

of the algorithm without having to exclude features.

An additional limitation of SliceLens is its handling of features

that have heavily skewed distributions. The default equal-width

bins can result in some subsets containing many instances and

other subsets containing few. The equal-frequency bins can result

in better splits in these cases, but they might still be ineffective

if one value of the feature appears much more often than others.

Therefore, the user may have to determine effective custom bin

thresholds, which takes time away from their exploration of the

data. One possible improvement is that SliceLens could suggest

bin thresholds or provide smarter defaults, possibly based on the

chosen rating metric. For example, the tool could suggest thresholds

that would lead to the purest bins for the feature.

While binning quantitative features is a good approach to evalu-

ate model performance across different data subsets, it is not the

best approach to understand the relationship between the dataset’s

features and labels, since information is lost when discretizing

quantitative features. In future work, we are interested in focusing

on guiding users in exploring machine learning datasets before

they train a model, without also supporting exploring the perfor-

mance of the model across different subsets after training. This

would enable us to more effectively guide users in understanding

the feature-label relationships in datasets that only have ground

truth labels, as we would not need to do subset analysis and split

quantitative features into bins. This would let us use more standard

visualizations, such as scatter plots.

SliceLens: Guided Exploration of Machine Learning Datasets Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven

documents. IEEE Transactions on Visualization and Computer Graphics, 17, 12,
(Dec. 2011), 2301–2309. doi: 10.1109/TVCG.2011.185.

[2] Á. A. Cabrera, W. Epperson, F. Hohman, M. Kahng, J. Morgenstern, and D. H.

Chau. 2019. Fairvis: visual analytics for discovering intersectional bias in ma-

chine learning. In 2019 IEEE Conference on Visual Analytics Science and Tech-
nology (VAST), 46–56.

[3] William S. Cleveland and Robert McGill. 1984. Graphical perception: theory,

experimentation, and application to the development of graphical methods.

Journal of the American Statistical Association, 79, 387, 531–554. http://www.jst
or.org/stable/2288400.

[4] Dheeru Dua and Casey Graff. 2017. UCI machine learning repository. (2017).

http://archive.ics.uci.edu/ml.

[5] [SW], Facets 2017. url: https://pair-code.github.io/facets/, vcs: https://github

.com/PAIR-code/facets.

[6] Hadi Fanaee-T and Joao Gama. 2013. Event labeling combining ensemble de-

tectors and background knowledge. Progress in Artificial Intelligence, 1–15. doi:
10.1007/s13748-013-0040-3.

[7] Graeme S. Halford, Rosemary Baker, Julie E. McCredden, and John D. Bain.

2005. Howmany variables can humans process? Psychological Science, 16, 1, 70–
76. PMID: 15660854. eprint: https://doi.org/10.1111/j.0956-7976.2005.00782.x.

doi: 10.1111/j.0956-7976.2005.00782.x.

[8] [SW] Rich Harris, Svelte 2016. url: https://svelte.dev, vcs: https://github.com

/sveltejs/svelte.

[9] Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. 2016. Visual ex-

ploration of machine learning results using data cube analysis. In Proceedings
of the Workshop on Human-In-the-Loop Data Analytics (HILDA ’16) Article 1.

Association for Computing Machinery, San Francisco, California, 6 pages. isbn:

9781450342070. doi: 10.1145/2939502.2939503.

[10] David Munechika, Zijie J. Wang, Jack Reidy, Josh Rubin, Krishna Gade, Krish-

naram Kenthapadi, and Duen Horng Chau. 2022. Visual Auditor: Interactive

Visualization for Detection and Summarization of Model Biases. In 2022 IEEE
Visualization and Visual Analytics (VIS). (Oct. 2022), 45–49. doi: 10.1109/VIS54
862.2022.00018.

[11] Neoklis Polyzotis, Steven Whang, Tim Klas Kraska, and Yeounoh Chung. 2019.

Slice finder: automated data slicing for model validation. In Proceedings of the
IEEE Int’ Conf. on Data Engineering (ICDE), 2019. https://arxiv.org/pdf/1807.06
068.pdf.

[12] J. R. Quinlan. 1986. Induction of decision trees. Machine Learning, 1, 1, 81–106.
isbn: 1573-0565. doi: 10.1007/BF00116251.

[13] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D.Williams.

2017. Squares: supporting interactive performance analysis for multiclass clas-

sifiers. IEEE Transactions on Visualization and Computer Graphics, 23, 1, 61–70.
doi: 10.1109/TVCG.2016.2598828.

[14] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fer-

nanda Viégas, and Jimbo Wilson. 2020. The what-if tool: interactive probing

of machine learning models. IEEE Transactions on Visualization and Computer
Graphics, 26, 1, 56–65. doi: 10.1109/TVCG.2019.2934619.

[15] Xiaoyu Zhang, Jorge Piazentin Ono, Huan Song, Liang Gou, Kwan-Liu Ma,

and Liu Ren. 2022. SliceTeller : A Data Slice-Driven Approach for Machine

Learning Model Validation. IEEE Transactions on Visualization and Computer
Graphics, 1–11. doi: 10.1109/TVCG.2022.3209465.

Received 30 March 2023

https://doi.org/10.1109/TVCG.2011.185
http://www.jstor.org/stable/2288400
http://www.jstor.org/stable/2288400
http://archive.ics.uci.edu/ml
https://pair-code.github.io/facets/
https://github.com/PAIR-code/facets
https://github.com/PAIR-code/facets
https://doi.org/10.1007/s13748-013-0040-3
https://doi.org/10.1111/j.0956-7976.2005.00782.x
https://doi.org/10.1111/j.0956-7976.2005.00782.x
https://svelte.dev
https://github.com/sveltejs/svelte
https://github.com/sveltejs/svelte
https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1109/VIS54862.2022.00018
https://doi.org/10.1109/VIS54862.2022.00018
https://arxiv.org/pdf/1807.06068.pdf
https://arxiv.org/pdf/1807.06068.pdf
https://doi.org/10.1007/BF00116251
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1109/TVCG.2022.3209465

	Abstract
	1 Introduction
	2 Related Work
	3 Interface
	3.1 Overview
	3.2 Classification Dataset Visualization
	3.3 Regression Dataset Visualization

	4 Guidance
	4.1 Rating Metrics
	4.2 Feature Ratings
	4.3 Feature Combination Suggestions

	5 Limitations and Future Work

