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ABSTRACT

Building interactive data interfaces is hard because the design of an
interface depends on the data processing needs for the underlying
analysis task, yet we do not have a good representation for analysis
tasks. To fill this gap, this paper advocates for a Data Interface
Grammar (DIG) as an intermediate representation of analysis tasks.
We show that DIG is compatible with existing data engineering
practices, compact to represent any analysis, simple to translate into
an interface design, and amenable to offline analysis. We further
illustrate the potential benefits of this abstraction, such as automatic
interface generation, automatic interface backend optimization,
tutorial generation, and workload generation.

CCS CONCEPTS

• Information systems→Datamanagement systems; •Human-

centered computing → User interface design; Visualization.
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1 INTRODUCTION

Interactive data interfaces are essential for data exploration and
analysis [6, 12, 16, 19, 23]. However, designing a new interface is a
multi-step process that includes determining the queries that are
appropriate for the analysis task, as well as the parts of the queries
that users should be able to change. Once the analysis has been
determined, the interface designer can now choose the appropriate
visualizations, interactions, and layouts to design the interface.
These two steps are closely related and need to be kept in sync, yet
require distinctly specialized skill sets: to write complex queries
over complex data sources, and to design and implement a usable
and effective interface. Further expertise in system optimization is
needed to ensure that the resulting interface is responsive as the
data grows.

Is there an intermediate abstraction of an interface’s underlying
data needs that can decouple these tasks, so that data practitioners
can focus on expressing complex analysis tasks, visualization de-
signers can focus on interface design, and backend engineers can
focus on optimization?

Let us first examine the different ways a developer might build
an interface today. Figure 1 is a simplified subset of a drought in-
surance design tool used to protect rural farmers [15]. The simplest
approach is to predefine all possible queries in the application ahead
of time, and when the user interacts with the interface, we identify
which query to execute. Although the queries can be optimized
ahead of time, this requires enumerating a combinatorial number
of possible queries (e.g., 1332 = 2 for the dropdown * 666 for the
slider). Parameterized queries allow literals in the WHERE clause
to be wildcards. This compactly expresses the slider interaction and

Q = ‘SELECT year, payout1(*), ... ’
‘FROM ’ t
‘WHERE dekad BETWEEN ’ val:$s ‘ AND ’ val:$e

t:rel = ‘chirps’ | ‘evi’
val = { v:int | 1 ≤ v ≤ 36 }

Constraints:
s ≤ e

Figure 1: Subset of the Open Policy Kit interface to design

drought insurance policies for rural farmers [15]. The user

can choose from Chirps and EVI rainfall data sources, tune

the start of the measurement period, and see how different

payout calculations aligns with historical droughts and their

own expectations. The dropdown changes the underlying

query’s FROM clause, and the sliders change a range filter con-

dition. Each interaction issues a new query to the database,

whose result is rendered in the chart. The DIG code concisely

describes the interface’s data needs.

can be optimized offline [17], but cannot express arbitrary struc-
ture changes in the query (e.g., the dropdown). In short, there exist
tools to create and optimize very simple data interfaces where the
interactions largely correspond to filters or where the user simply
cannot express very much. Beyond this, the developer must resort
to constructing query strings in the application, which is highly
flexible but not amenable to analysis.

What criteria should an intermediate abstraction satisfy? We
believe that it should (C1) compactly represent any analysis task
that a developer may wish to express, (C2) have a well-defined cor-
respondence to interactive interfaces composed of charts, widgets,
and interactions, and (C3) be amenable to offline analysis for e.g.,
optimization, interface synthesis.

It is easy to see that existing approaches do not satisfy these
criteria. Predefining every query is neither compact nor expres-
sive, parameterized queries are compact but only express simple
query transformations, and programmatically constructing SQL is
expressive but not analyzable. Other works on interactive data in-
terface benchmarks [4, 11] model the interface in order to generate
query workloads but are limited to SPJA queries and cross-filter
interactions. Business Intelligence(BI) and visualization tools (e.g.,
Tableau [27], Power BI [5], Vega-lite [25, 26]) are primarily focused
on data cube-like operations.

In this paper, we examine two observations. First, the queries
that an interface expresses can be compactly represented as a gram-
mar. A grammar is a set of production rules that define a valid
program; each production rule defines a set of choices that encode
the allowable program variations. That grammar may be a single
production rule that chooses from a small enumeration of prede-
fined queries, the entire language (e.g., SQL), or a language subset
specific to an analysis. Second, the design of a data interface has a
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direct correspondence to the grammar: interactions make choices in
the grammar, and when all choices in the grammar have been made,
the grammar is equivalent to a syntactically valid query string that
the database executes. In other words, interactions navigate the
space of syntactically valid queries expressible by the interface.

To this end, we propose DIG, a Data Interface Grammar that
extends Parsing Expression Grammars (PEG) with annotations
specific to data programs. For instance, the DIG program for Figure 1
is a query string (gray text) where nonterminals encode program
variations: t chooses the relation name, and val chooses an integer
between 1 and 36. t is annotated to be a relation name, and s ≤e. In
the interface, these choices are respectively bound by the dropdown
and range slider.

DIG satisfies our desired criteria. Since it extends a formal gram-
mar, it compactly express any set of queries useful for a task (C1),
and defines a direct correspondence to interactive interface designs
(C2). Finally, since DIG encodes the the entire space of possible
programs, it is amenable to offline analysis, and Section 4 outlines
examples such as interface synthesis and physical optimization(C3).

In the rest of this paper, we will first introduce Data Interface
Grammar (DIG) and illustrate its correspondence with interactive
interfaces. We further comment on its connections with existing
data pipeline and analysis representations (Section 2). We then
describe how DIG simplifies interface creation via real-world ex-
amples (Section 3), and finally highlight the benefits of the DIG
representation for solving a number of challenging data interface
problems (Section 4).

2 DATA INTERFACE GRAMMAR

A data interface helps the user navigate a space of useful data pro-
grams (e.g., SQL) through interactive controls. This section first
presents DIG, a Data Interface Grammar, to express this set of data
programs in a simple, analyzable manner, and then defines the set
of valid interfaces that express a given DIG program. These defini-
tions form the basis for useful applications like interface synthesis,
physical visualization optimization that we describe in Section 4.

2.1 DIG Definition

DIG is aData Interface Grammar that defines the syntactic structure
of queries that an interface wishes to express: the set of queries
parsable by the grammar. Given that existing data query languages
such as SQL, PRQL [2], and Pandas have well-established grammar
definitions, DIG is a superset of the widely-used Parsing Expression
Grammar (PEG). By extending PEG, we both build on decades of
research and tooling and simplify the ability to port existing PEG-
based languages to DIG.
We formally define DIG = {𝑁, Σ, 𝑃, 𝑒𝑆 ,𝐶} as follows, where the
sub-grammar rooted at each starting rule parses a set of queries:
• a finite set of nonterminals 𝑁 ;
• a finite set of terminals Σ that is disjoint from 𝑁 ;
• a finite set of parsing rules 𝑃 ;
• a finite set of starting rules 𝑒𝑆 , each not referenced by any other

rule;
• a set of constraints C.

Terminals. Similar to typical grammars, DIG matches terminals to
valid strings expressible by regular expressions. Although regular

expressions are useful for matching string literals, most interactions
(e.g., sliders, dropdowns, visualization selections) are typed and
limited to a domain of valid values that regular expressions cannot
distinguish. Thus, DIG also supports domain terminals that may
reference the underlying database.
• Predicate Domain: A = {var:type | <predicate>}.
• Query Domain: A = {SELECT QUERY}.
A predicate domain specifies a typed variable along with a boolean
expression that must evaluate to true for a value to be valid. For
instance, val = {x:int | x∈[1,36]} specifies the terminal as an inte-
ger between 1 and 36. Note that a regular expression pattern p is
expressible as a predicate domain {s:str | s matches p}.

A query domain specifies a query over the database; the terminal
must be an element in the query result. For instance, prods = {SELECT

name FROM products} ensures that the terminal is a valid product name.
The data types may be structured as well, for instance X = { SELECT

fname, lname FROM users } would choose from the first and last names
of existing users. This formulation serves as hints for the interface
to choose a good interaction for the rule, and as input validation
rules to guarantee syntactically correct programs.

Following second order languages like SchemaSQL [21], we ad-
ditionally support special string types to express relation names
(rel) and attribute of a relation (attr[str:rel]) where it is optionally
parameterized by a relation name. Thus the following restricts name

s to attribute names in two relations:
sources = { s:rel | s in ['usproducts', 'euproducts']}

name = { s:attr[sources] }

Rules. Each rule in 𝑃 is structured as 𝐴 = 𝑒 , where 𝐴 is a non-
terminal and 𝑒 is a parsing expression composed of a reference to a
non-terminal, a terminal (e.g., a string literal), or an expression com-
posed of either a sequence 𝑒1𝑒2, selection 𝑒1 |...|𝑒𝑛 , or zero-or-more
𝑒∗ operator1. Selection implicitly has a domain [1, 𝑛] that specifies
which subexpression is selected, and zero-or-more’s domain is the
natural numbers, which specifies the number of repetitions. Other
patterns, such as 𝑒+ and 𝑒?, are reducible to these operators.

A non-terminal𝐴 on the left side of a rule can optionally be typed
by adding the suffix :type. For instance, t:rel in Figure 1 specifies
that ‘chirps‘ and ‘evi‘ are relation names. Type violations result in
a parsing error.
Naming.Naming is necessary for defining constraints and interface
mappings next, thus we now introduce annotations and choice
variables. An annotation assigns a variable name to a non-terminal
reference by appending :$varname to the reference. For instance,
Figure 1 assigns the two val references to s and e. If a reference is
not annotated, DIG assigns a unique name by appending a unique
number to the non-terminal name (e.g., val1).

Unfortunately, variables alone are not sufficient because the
same non-terminal can be referenced multiple times. Consider the
following rules:

A = B:$v1 B:$v2 B = C:$v3 C = \d+

The variable v3 is ambiguous because both v1 and v2 reference it.
Thus, we define a variable’s fully qualified name as the path from
the root of the DIG to the variable, where each element in the path
is a non-terminal reference.

1PEG operators like AND and NOT can be omitted since DIG is not used for parsing.
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All variability in DIG is expressed by non-terminals that expand
to a predicate or query domain, selection expression, or zero-or-
more expression. We use the term choice variable to refer to the
fully qualified reference to such a non-terminal. For instance, v1, v2,
v1/v3, v2/v3 are the choice variables in the above example. Further,
let 𝐷𝑐 be the domain of a given choice variable, as defined in the
Terminals and Rules paragraphs above.

Constraints. The developer can specify boolean expressions over
choice variables; these constraints are evaluated when the user
performs an interaction to determine validity. For instance s ≤e in
Figure 1 ensures that start should be less than or equal to the end of
the range. Two terms assigned to the same variable name implies
an equality constraint. DIG handles equality constraints between
variables (e.g., s = e) in a special way: if one variable is bound to a
value 𝑣 , then the other is updated to 𝑣 as well; if both are updated
then we check if they are equal.

2.2 Valid Interfaces for a DIG

An interface renders query results and lets the user navigate the
space of valid queries. Since choice variables encapsulate all vari-
ability, a valid interface is one whose interactions can bind values
to the set of choice variables. Once they are all bound, the grammar
reduces to an executable query string, and the interface renders its
evaluation result(s). We will first define interactions and how they
cover choice variables, and then define the set of valid interfaces
for a DIG grammar. In practice, each starting rule in a grammar
represents a separate query, and the interface will render the results
of each query; this extension is straightforward and we assume a
single root for clarity.

Interfaces and Interactions. An interface 𝑈 𝐼 = (𝑉 , 𝐼 ) consists
of a view 𝑉 (e.g., a table, a visualization, a paragraph) that renders
the output of the starting rule and a set of interactions 𝐼 . We model
an interaction 𝑖 = (𝑇𝑖 , 𝐷𝑖 ) ∈ 𝐼 by the state it can express. 𝑇𝑖 is
its type (e.g., dropdown, slider) and 𝐷𝑖 (𝑎1, ...) is its domain with
schema (𝑎1, ...). For instance, the domain for a dropdown with 𝑛

options is [0, 𝑛]; for a text box is the set of all strings (perhaps up
to a specified length); for a slider is the set of numbers between
the min and max; and for a 2-D brush interaction in a scatter plot
is the set of bounding boxes in the chart. An interaction’s devel-
oper is responsible for defining its domain. Note that our interface
model supports arbitrary layout because layout does not affect the
interface’s expressiveness2

Let a mapping 𝑀𝑖,𝑐 = {𝑎𝑖 → 𝑎𝑐 |𝑎𝑖 ∈ 𝑠𝑐ℎ𝑒𝑚𝑎(𝐷𝑖 ) ∧ 𝑎𝑐 ∈
𝑠𝑐ℎ𝑒𝑚𝑎(𝐷𝑐 )}map attributes in the interaction’s domain to attributes
in the choice variable’s domain, and the mapping’s projection
𝜋𝑀 (𝐷𝑖 ) be the subset of attributes in the interaction’s domain
that have a mapping. An interaction 𝑖 is said to cover a choice vari-
able 𝑐 if 1) every attribute in 𝐷𝑐 is mapped to in 𝑀𝑖,𝑐 , and 2) the
interaction’s domain is a superset of the choice variable’s domain:
𝜋𝐷 (𝐷𝑖 ) ⊇ 𝐷𝑐 . These ensure that all possible assignments to 𝑐 can
be expressed in the interface. Given these definitions, we are now
ready to define a interface validity.

2Chart layout (e.g., faceting/small multiples) may affect the set of interactions the
chart can express, but is encapsulated by the chart.

Definition 1 (Valid Interface). An interaction𝑈 𝐼 is valid for a
DIG grammar𝐺 if every choice variable in𝐺 is covered by at least of
interaction in𝑈 𝐼 , and every root rule is rendered by at least one view.

Example 1. Figure 1 contains two interactions and two mappings.
The dropdown maps its selected index to the choice variable t; since
the dropdown is initialized with set of choices in t (e.g., “chirps”, “evi”),
their domains will be identical - [1, 2]. The range slider maps the left
slider handle to s and the right slider handle to e; the slider’s domain is
{(𝑙, 𝑟 ) |𝑙 ∈ [1, 36] ∧ 𝑟 ∈ [1, 36]}, which matches the predicate domain
and constraints over s and e.

Text Inputs and Parsing. Text inputs are a special type of in-
teraction because they can, in principle, produce arbitrary strings
that are interpreted as query substrings rather than string literals.
For instance, Figure 2 is a query builder where the user types in
predicate expressions, and clicks on “add pred” to add additional
conjunctive clauses. The text input is parsed by the pred rule, which
implicitly binds the attribute, operator, and value.

For these reasons, a text input3 can map to any term 𝑡 in a DIG
grammar. Any input string will first be parsed and validated by the
subgrammar rooted at 𝑡 . The parsing process implicitly binds all
of the choice variables in the subgrammar, and all parsing errors
or constraint violations are passed to the interaction in order to
surface as error messages.

This functionality is helpful for several reasons. First, DIG can
automatically perform parsing and validation such that any text
input is guaranteed to be syntactically correct and naturally pre-
vents issues such as SQL injection. Second, every DIG statement
is guaranteed at least one valid interface: one where a text input
maps to the root of the grammar, which is equivalent to a typical
console-based interface. Third, it enables a progressive interface
design process, where starting from the default text-based interface,
more specialized interactions are added to the interface to “carve
out” more and more choice variables.

age > Add Predstate = ‘CA’

preds = pred (‘AND’ pred)*
pred = attr op val
attr = { s:attr | s matches \w.* }
op = ‘=’ | ‘<’ | ...
val = stringliteral | number

q = ‘SELECT a FROM ’ src
‘WHERE ’ preds

src = table | q
table = { s:rel }

profits

Add Predstate = ‘CA’

subquerytable name

subquerytable name

Figure 2: A valid interface for aDIG grammarwith text inputs

and recursion. The pred rule parses each predicate text box to

bind attr, op, and val. The radio button chooses between a base

table or subquery as the source, and choosing the subquery

instantiates a recursive copy of the interface.

Recursive Rules. So far, we have implicitly assumed that the DIG
grammar is hierarchical and non-recursive. However, DIG allows
recursion in the rule set. For instance, SQL allows nested queries

3In general, this can be any interaction whose domain is all strings.
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anywhere a value or relation is expected. How does recursion map
to a valid interface? We outline three categories of approaches.

The first approach is to simply map the first external reference
of the recursive rule set to a text input. However, this may reduce
the interface to a single text box. The second approach is to enforce
a maximum recursion depth and “unroll” the recursion; this effec-
tively produces a new grammar without this recursion that we can
map to a valid interface. The third approach is inspired by existing
query builder interfaces that support nested queries: they typically
instantiate a “new” query builder interface to represent the nested
query. In DIG, we first ignore the expression 𝑒𝑟 that introduces
the recursion and determine a valid interface 𝑈 𝐼 for the remaining
rules in the recursive rule set. We then map a button to 𝑒𝑟 that,
when clicked, instantiates a new instance of𝑈 𝐼 in the interface.

Figure 2 illustrates recursion in the src rule, which specifies a
table name or a subquery with the same structure. The interface
lets the user choose between the options using a radio button. If the
user chooses table name, they fill a text box with the relation name
(e.g., “profits”), which is validated by the table rule. Otherwise, we
instantiate a nested interface containing the radio buttons and set
of predicates.

2.3 Cross-filter Example

We now use the popular cross-filter visualization [1] to illustrate
DIG end-to-end on a real-world example. Each bar chart in cross-
filter renders an aggregation grouped on one attribute in the under-
lying dataset. For instance, Figure 3 shows three bar charts grouped
on arrival time, airtime, and date, respectively. Brushing over a
chart grouped on attr adds a predicate that filters over attr to the
other charts; the filtered aggregates are rendered as an overlay,
while the unfiltered results are gray in the background.

The following DIG grammar describes the rules to render the
arrival (q1) and airtime (q2) charts; it omits constraints and the rules
for the date chart.

q1_bg = 'SELECT arrival, count() FROM flights GROUP BY arrival '
q2_bg = 'SELECT airtime, count() FROM flights GROUP BY airtime '

...
q1 = 'SELECT arrival, count() FROM flights WHERE '

p_airtime:$pair ' AND ' p_date:$pd 'GROUP BY arrival'
q2 = 'SELECT airtime, count() FROM flights WHERE '

p_arrival:$parr ' AND ' p_date:$pd 'GROUP BY airtime'
...

p_arrival = true | 'arrival BETWEEN ' arr:$arrs ' AND ' arr:$arre
p_airtime = true | 'airtime BETWEEN ' air:$airs ' AND ' air:$aire

p_date = true | 'date BETWEEN ' date:$s ' AND ' date:$e
arr = { SELECT arrival FROM flights }
air = { SELECT airtime FROM flights }

date = { SELECT date FROM flights }

The _bg starting rules define the background unfiltered results, while
q1 and q2 define the overlay filtered queries. Each query is filtered by
a conjunction of predicate rules (e.g., p_airtime); and each predicate
such as p_airtime either evaluates to true, meaning the airtime chart
is not brushed, or a BETWEEN clause, meaning that the airtime chart
is brushed and the start and end of the brush range map to airs and
aire. Notice that p_date in q1 and q2 are both named pd to ensure that
their bindings are identical.

2.4 Tool Compatibility

A benefit of DIG is that it is compatible with existing data engi-
neering practices. For instance, data pipelines and analyses are

Figure 3: Cross-filter renders histograms over different di-

mensions. Brushing over a chart adds a filter to the other

charts based on the selected range.

increasingly expressed as a DAG of SQL views using tools like
DBT [10]. This is useful because data engineers can define these
DAGs, while business analysts and data consumers can use these
views in visualization and data science tools. Each DAG node is
called a model and expressed as a Jinja template that, when eval-
uated, returns a SQL string. The template can reference custom
variables and call logic to change the query by assigning values to
the variables in a configuration file.

For instance, the following model uses the variables region to
choose the input table (specified using the ref() function), and age

to change the filter. region may be set to USA or EUR, themselves are
names of other models.

SELECT cty, sum(profit) FROM {{ref(var("region"))}}
WHERE age > {{var("age")}}

DBT models that ref(), variable, and branching logic can auto-
matically translate into DIG grammars. ref() translates into non-
terminal reference to either a base relation/view or the starting
rules for grammars translated from other models; a variable trans-
lates into a terminal rule; and branching logic translates into a
selection rule (e.g., e1 | e2 | ..) with one option for each branch;
if the condition expression references a variable, we evaluate the
expression dynamically to decide which branch to choose.

For instance, the above model translates into the following,
where we assume usa and eur are the starting rules for their re-
spective DBT models.

q = 'SELECT cty, sum(profit) FROM ' t ' WHERE age > ' age
t = usa | eur usa = ... eur = ...

age = { n:int | n > 0 }

3 VISION: DIG-BASED INTERFACE CREATION

So far, we have described DIG as a compact and expressive abstrac-
tion that naturally maps to interactive interfaces. How can such
an abstraction change how we design, implement, and use new
data-oriented interfaces? Here, we sketch a potential development
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cycle that DIG can enable. The next section sketches our progress
towards this vision.

Design. Barb wants to create a new data interface to analyze user
signup flows, and decides to use DIG. One option is to manually
write a DIG grammar. Alternatively, she might induce a grammar
from existing user signup analyses by extracting queries from e.g.,
Jupyter notebooks, DBMS query logs, or other database-backed
applications, or by translating a natural language description of her
analysis goals into a DIG grammar.

Her design tool then automatically synthesizes a custom interac-
tive interface. She likes the overall design, but resizes the canvas to
fit a smaller screen, and specifies that the interface should be more
expressive. The synthesized interface updates, and she re-positions
the charts and widgets to fine-tune the layout.

Implementation. Barb now connects the design tool to the the
user signups database. If her dataset is small, the design tool can
load the database into memory and either run the interface, or
export to a web application. However, if the dataset might grow
over time or if it resides in a cloud database (which optimizes for
throughput rather than query latency), then Barb potentially needs
to engineer an entire client-server system. However, Barb does not
have the time, desire, nor expertise to make all of the decisions
about which DBMS, data structures, and optimization techniques
to employ so that the interface is responsive.

Instead, Barb gives the design tool her budget, and specifies her
desired responsiveness for the different interactions. The tool uses
metadata about the underlying database to estimate how much
resources are needed to meet her responsiveness goals. The pro-
posed architecture requires materializing and caching 7GB of data
structures [14, 24] in server-side memory, which costs $35/month.
Barb thinks it’s too expensive, and moves part of the interface re-
lated to post-signup actions to a separate page; this relaxes some
of the interactivity constraints, and reduces the sizes of the data
structures to 2GB and costs to $15/month. When she accepts the
recommendation, and the design tool allocates a cloud server, in-
stantiates the data structures and execution plans, and hosts an end
point for the new interface.

Use. Barb knows that learning to use the new interface can be hard
for users, so she records herself performing some example analyses.
A new user plays with the interface for a bit, gets confused, and
then watches a recording. Half way through, he wonders how he
can get to that point without reloading the interface and starting
from scratch. He clicks a “show me how” button, and the interface
dynamically creates a tutorial from where he currently is to the
point in the recording. After following the tutorial, he asks “show
user flows for only adults above 50” in natural language; it automati-
cally aligns this with the grammar’s structure, translates the natural
language input into the appropriate choice variable bindings, and
the interface walks through the interactions needed to perform this
request.

4 PROGRESS SO FAR

DIG introduces novel problems to improve how interfaces are cre-
ated, optimized, and used. We now outline for example problems
that we have explored in current or prior work.

a=1 
b=1co

un
t

p

a b
1 2

(a) (b)

Q = ‘SELECT p, count FROM T
WHERE ’ filter

filter:str = ‘a=1’|‘b=1’|‘a=2’|
‘b=2’

Q = ‘SELECT p, count FROM T
WHERE ’ attr ‘=’ var

attr:str = ‘a’|‘b’
var:num = ‘1’|‘2’

co
un
t

p

a=2 
b=2 

Figure 4: Transforming the DIG grammar changes the set of

valid interfaces.

4.1 Automatic Interface generation

Section 2 defined the set of valid interfaces that can be mapped
from a Data Interface Grammar , and enables the potential to au-
tomatically explore and generate valid interfaces for a given DIG
grammar. It is also possible to transform the grammar to induce
new sets of valid interfaces. Consider the following example based
on our recent work called Precision Interfaces 2 (PI2) [9]:

Example 2 (Interface Generation). Figure 4(a) is an initial
DIG grammar and a corresponding valid interface. The grammar
expresses four queries that each differs in the filter predicate string;
the interface simply selects one of the predicate strings using radio
buttons. We can rewrite the grammar to the equivalent grammar in
Figure 4(b) by factoring out the “ =” character from each predicate and
creating separate rules for the left and right sides. The corresponding
interface has two sets of radio buttons, one to choose the attribute
and one to choose the value. Although this appears trivially similar,
we might now apply generalization rules to e.g., let var match any
number, or to lift attr to an attribute type. These rules increase the
expressiveness of the resulting grammar, and consequently, the set of
valid interfaces that a cost model might pick from.

Where Do DIGs Come From? There are many ways to generate
a DIG grammar. In our prior work, we have explored a sequence
of SQL queries from database logs [8, 9], analyses in notebooks
[28], or query models in DBT [10]. Alternatively, it can also be
generated from a large language model [7], as LLMs are proficient at
generating text. For instance, in Figure 4, the DIG could be generated
from a natural language query such as "How is the total count for
different p when a is one versus when b is two?"

4.2 Automatic Backend Optimization

Users care about interactivity, and can detect even milliseconds of
interaction delay [18]. As a result, designers must make complex
trade-offs between the interface design, levels of responsiveness for
different interactions, and the systems and resource implications
to guarantee those levels of responsiveness.

Ideally, a designer can label different interactions with their
latency constraints and allow an automated tool to check their
feasibility and resource requirements. This is not straightforward
today. Physical database advisors [3] take a sample of queries as
input, but individual nor sets of queries do not map directly to
interactions because, as we have shown, interactions transform
targeted portions of a query.
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In contrast, DIG naturally models interactions based on the non-
terminals they bind; annotating each interaction with latency ex-
pectations is now straightforward. This further offers a complete
picture of the interface’s data processing requirements, as this anno-
tated DIG grammar expresses the universe of possible queries along
with their latency requirements. Given this annotated grammar, we
can identify visualization-specific physical data structures to mate-
rialize and maintain, along with a placement and query execution
plan that spans the client, server, and cloud DBMS, that guaran-
tees these latency requirements. We term this problem Physical
Visualization Design (PVD).

Example 3 (Physical Visualization Design). Consider the in-
terface in Figure 1. The designer specifies that the slider shold respond
in 10ms and dropdown in 100ms, and that the client and server mem-
ory constraints are set to 5GB and 50GB, respectively.

Figure 5 shows two potential physical designs. The first suggestion
(a) might be to materialize BTree data structures over the chirps and
evi datasets on the client in order to execute the slider range interac-
tions as index lookups. If the estimated data structure sizes are less
than 5GB, then this option is desirable. If their sizes grow too large,
then moving their placement to the server may be preferable (b). This
incurs network communication latencies, but the index lookups may
be faster due to a faster server CPU.

(b)(a)

client

Btree(chirps, key=dekad)

Btree(evi, key=dekad)

server

Btree(chirps, key=dekad)

Btree(evi, key=dekad)

bindingsresults

Figure 5: Two physical designs for the interface in Figure 1.

4.3 Tutorial Generation

When encountering a new interface, the user must both learn how
the interface works and use it to achieve different tasks [13, 20,
22]. DIG offers the potential to automatically generate interactive
tutorial walkthroughs because it manages all of the interface state
and explicitly represents its correspondence to interactions in the
UI. Thus, given a start and end interface state—expressed as the
states of the UI interactions and their corresponding set of bindings
in the DIG grammar—we can automatically identify the sequence
of user interactions necessary to go from start to end state, and use
this sequence to generate an interactive, static, or video tutorial.

Example 4 (Tutorial Generation). Consider again the interface
in Figure 1 as the starting state and the following end state:
SELECT year, payout1(*), ... FROM evi WHERE dekad BETWEEN 1 AND 2

To transition to the end state, we simply need to re-bind the choice
variables t (using the dropdown) and s,e (using the slider). The order
of interactions may be determined by e.g., a user cost model that
estimates the amount of effort to perform different sequences.

More complex interface may contain data dependencies—where
one choice variable 𝑣𝑑 may be a descendant of another 𝑣𝑎 . Given
the DIG grammar, we can easily infer that the user must interact
with 𝑣𝑎 before 𝑣𝑑 .

4.4 Workload Generation

Visualization benchmarks [4, 11] are designed to help evaluate data
processing systems that power interactive data interfaces by se-
quences of query workloads that simulate what an interface would
produce during a user’s analysis process. However, existing bench-
marks are limited in expressiveness—to SPJA query structures and
parameterized filters. Even simple transforms like changing the
input relation (Figure 1) are not supported.

In contrast, DIG can express arbitrary query structures, arbitrary
transformations, and models a direct correspondence between user
interactions and their query transformations. As such, simply de-
veloping different user models—say, training a markov model or
using a large language model to simulate an agent—can easily gen-
erate diverse query workloads and timings that reflect real data
interfaces, queries, and user needs.

5 CONCLUSIONS

In this paper, we propose DIG, a Data Interface Grammar that ex-
tends Parsing Expression Grammars (PEG) with annotations spe-
cific to data programs. DIG satisfies all three desired criteria: (C1) it
can compactly express any set of queries useful for a task; (C2) it has
a well-defined correspondence to interactive interfaces composed
of charts, widgets, and interactions; (C3) it is amenable to offline
analysis. We also demonstrate the compatibility with existing data
engineering practices - DBT [10]. We further illustrate the potential
benefits of this abstraction, such as automatic interface generation,
automatic interface backend optimization, tutorial generation, and
workload generation. Addtionally, we describe how DIG simplifies
interface creation via real-world examples.
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