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ABSTRACT
Log data is a crucial resource for recording system events and states
during system execution. However, as systems grow in scale, log
data generation has become increasingly explosive, leading to an
expensive overhead on log storage, such as several petabytes per
day in production. To address this issue, log compression has be-
come a crucial task in reducing disk storage while allowing for
further log analysis. Unfortunately, existing general-purpose and
log-specific compression methods have been limited in their ability
to utilize log data characteristics. To overcome these limitations,
we conduct an empirical study and obtain three major observations
on the characteristics of log data that can facilitate the log com-
pression task. Based on these observations, we propose LogShrink,
a novel and effective log compression method by leveraging com-
monality and variability of log data. An analyzer based on longest
common subsequence and entropy techniques is proposed to iden-
tify the latent commonality and variability in log messages. The
key idea behind this is that the commonality and variability can be
exploited to shrink log data with a shorter representation. Besides,
a clustering-based sequence sampler is introduced to accelerate
the commonality and variability analyzer. The extensive experi-
mental results demonstrate that LogShrink can exceed baselines in
compression ratio by 16% to 356% on average while preserving a
reasonable compression speed.
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1 INTRODUCTION
Recording system events and status during runtime execution is
important for maintaining and troubleshooting software systems.
The usage of log data spans a wide range of scopes, including
software testing prior to system deployment [1, 2], real-time system
performance monitoring [3, 4], and root-cause analysis [5, 6, 7, 8, 9].
As the scale of a system expands, the volume of log data can increase
exponentially. Recent reports show that the volume of log data
generated from software systems has grown significantly in recent
years. A modern software system can produce log data at rates of
100 TB to several PB per day [10, 11]. In many scenarios like forensic
analysis, log data is stored for a long period for backtracking and
understanding security issues. For example, system logs must be
stored for up to 180 days in AliCloud [11]. The cost of storing such a
vast volume of log data can be prohibitively expensive. To illustrate,
consider a cloud provider that needs to store 1 PB of log data per
day, and the cost of logging storage is $0.50/GiB [12] per month. The
monthly bill can reach up to $465.7k, posing a significant financial
burden on storage costs for cloud providers.

To address the challenge of log storage, there are two possible
solutions: reducing log generation and compressing log files. Some
studies [13, 14, 15] propose to generate log messages on demand to
reduce the volume of console logs. However, the amount of logs
after the reduction process is still significant and often reaches
petabyte-level outputs per day (e.g., reducing from 19.7 PB to 12.0
PB per day [14]). Therefore, log compression is essential to archive
large volumes of log data and saves disk storage space while pre-
serving the opportunities for further analysis. Achieving a high
compression ratio is critical in practice, as it can result in significant
savings in disk space costs.

The most straightforward way to perform log compression is
to apply general-purpose data compression algorithms such as
lzma [16], gzip [17] and bzip2 [18]. They can obtain a relatively
small log file compared to the original log file. These algorithms
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analyze log files character-by-character, identify the repeated char-
acters in log data, and replace them with a shorter representation.
However, they cannot fully disclose the redundancy of log files,
which are well formatted and might enable more effective com-
pression [19, 20]. To overcome this limitation, some log-specific
compression methods [10, 21, 22] are proposed to utilize the latent
structure of log data to improve compression results. For example,
LogZip [20] extracts log events and corresponding parameters via
iterative clustering and compresses log data using dictionary en-
coding. LogReducer [11] proposes to improve compression ratio
through delta encoding of timestamps and elastic encoding of nu-
merical values. Although effective, these methods are still limited
in utilizing the characteristics of log data and their compression
ratios can be further improved.

In order to compress log data by leveraging its inherent char-
acteristics, we conduct an empirical study on three real-world log
datasets from diverse software systems. We obtain three key obser-
vations that could potentially enhance both the compression ratio
and speed. First, we observe that commonality and variability exist
among log messages and they can be exploited to generate a shorter
representation for log messages. Second, we find that the storage
style has a significant impact on the compression ratio. Specifically,
column-oriented storage style can reduce the compressed file size
by 36% to 103% compared to traditional row-oriented storage style
due to the columnar nature of log data. Lastly, we observe that the
distribution of log sequence types is highly imbalanced. Over 50%
of all log sequences belong to only 3%∼5% of log sequence types.

Based on the aforementioned three observations, we propose
LogShrink, a novel and effective log-specific compression method
by leveraging commonality and variability of log data. LogShrink
first reads and segments the input log file intomultiple log chunks to
enable parallel batch processing. Each log chunk is initially parsed
into structured logs including log headers, log events, and log vari-
ables. Next, we propose a novel clustering-based sequence sampling
method to extract representative log sequences in each log chunk.
Then, we devise an analyzer to identify commonality and variability
in log data. The identified characteristics are sent to a compressor,
which matches all log data corresponding to their types, encodes
values according to their value types, and stores all the content in
a column-oriented format. Finally, all the encoded files are com-
pressed using a general-purpose compressor.

We conduct extensive experiments to evaluate LogShrink on 16
public datasets collected from a variety of software systems [23].
The experimental results show that LogShrink outperforms two log-
specific compression methods and three general-purpose compres-
sion methods by 16% to 356% on average in terms of compression
ratios with a reasonable compression speed. The ablation study on
LogShrink confirms that the proposed commonality and variability
analyzer and clustering-based sequence sampling contribute to the
improvement of both compression ratio and speed.

In summary, the major contributions of this paper are as follows:
• We conduct an empirical study on three real-world log datasets
and obtain three observations, which can facilitate the log
compression task.

• Based on the obtained observations, we propose a novel and
effective log compression method by leveraging commonal-
ity and variability of log data. Our proposed commonality

LID Datetime Level Component Log Event Variables
L1 17/06/09 20:10:46 INFO CacheManager Partition * not found, computing it rdd_2_1
L2 17/06/09 20:10:46 INFO CacheManager Partition * not found, computing it rdd_2_0
L3 17/06/09 20:10:48 INFO MemoryStore Block * stored as bytes in memory 

(estimated size * B)
rdd_2_1, 935.0

L4 17/06/09 20:10:48 INFO MemoryStore Block * stored as bytes in memory
(estimated size * B)

rdd_2_0, 913.0

L5 17/06/09 20:10:52 INFO BlockManager Found block * locally rdd_2_0
L6 17/06/09 20:10:52 INFO BlockManager Found block * locally rdd_2_1

Log Parsing

Formatting at runtime

L1: 17/06/09 20:10:46 INFO CacheManager: Partition rdd_2_1 not found, computing it
L2: 17/06/09 20:10:46 INFO CacheManager: Partition rdd_2_0 not found, computing it
L3: 17/06/09 20:10:48 INFO MemoryStore: Block rdd_2_1 stored as bytes in memory \\

(estimated size 935.0 B)
L4: 17/06/09 20:10:48 INFO MemoryStore: Block rdd_2_0 stored as bytes in memory \\

(estimated size 913.0 B)
L5: 17/06/09 20:10:52 INFO BlockManager: Found block rdd_2_0 locally
L6: 17/06/09 20:10:52 INFO BlockManager: Found block rdd_2_1 locally

Log messages

spark.cachemanager.scala:     Logger.info(f”Partition {block_id} not found, computing it”)
storage.MemoryStore.scala:  Logger.info(f”Block {block_id} stored as bytes in memory \\

(estimated size {memory} B)”)
Spark.blockmanager.scala:     Logger.info(f”Found block {block_id}”)

Log statements

Figure 1: The generation and parsing of log data

and variability analyzer can largely improve the compression
ratio. In the meantime, a clustering-based sequence sampler
can accelerate the analyzing process thus improving the
compression speed.

• We perform extensive experiments on 16 public log datasets,
which confirm the efficacy of our proposed method. The
source code of our tool and our experimental data are avail-
able at https://github.com/IntelligentDDS/LogShrink

2 BACKGROUND AND RELATEDWORK
2.1 Background
Log data is essential for the maintenance and operation of soft-
ware systems, which allows engineers to understand the system’s
behaviors and diagnose problems [24, 25, 26, 27, 28, 29, 30, 31].
Figure 1 illustrates the process of generating and parsing log mes-
sages. During the development phase, developers instrument log
statements like “logger.info(“Partition {block_id} not found,
computing it”)" in source code [32, 33]. When the log statements
are executed at runtime, a logger is specified to format the log
statements to log content like “Partition rdd_2_1 not found,
computing it". Then the logger pads the log content to the log mes-
sages (e.g., “17/06/09 20:10:46 INFO CacheManager: Partition
rdd_2_1 not found, computing it") based on a pre-defined pat-
tern including datetime, log level, and component information [34,
4]. Log parsing [35] is a fundamental step in log analysis that per-
forms a reversible analysis to convert formatted log messages into
structured ones. We introduce the structures of log parsing results
as three components: headers (e.g., datetime, log level, and compo-
nent), log events (e.g., “Partition * not found, computing it")
and variables (e.g., “rdd_2_1"). A log sequence is a series of log
messages, representing a system execution flow.

In practice, large-scale systems generate vast amounts of log data.
These data must be stored for extended periods for a variety of rea-
sons, including (i) Security analysis to identify potential long-term

https://github.com/IntelligentDDS/LogShrink
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network attacks. For example, a recent attack remained undetected
for eight months, and log access data is a critical data source to
trace the attackers’ behaviors [36, 37]; (ii) Audit compliance. Cloud
providers are required by local laws to store logs for a specified
period; (iii) Long-term statistical analysis. Log data is analyzed for
prolonged periods to gain insights into system performance and
user behavior. However, archiving such a massive amount of log
data introduces expensive overhead on log storage costs.

Current logging frameworks such as ELK (ElasticSearch-LogStash-
Kibana) stack [38] utilize general-purpose compressors (e.g., lzma [16],
gzip [17], bzip2 [18]) to compress a large volume of log data. These
compressors analyze log files character-by-character, identify re-
peated characters in log data, and substitute them with a shorter
representation. For instance, LZ77 [39] algorithm used in gzip re-
places the datetime “17/06/09 20:10:46" in L2 with a shorter
representation of (76, 16, ‘ ’), which comprises of an offset length,
matching length, and the next character. However, general-purpose
compressors do not consider the unique characteristics of log data.
For example, the datetime here keeps increasing. Advanced log-
specific compression methods leverage the latent structure of log
data and apply various techniques to enhance the compression ratio
of log data. For example, LogZip [20] extracts log events iteratively
and replaces the log events with a shorter log event ID. LogRe-
ducer [11] also parses log events and analyzes relations only in
numerical parameter values. LogBlock [22] targets applying some
heuristics-based preprocessing steps on small log block compres-
sion. Although they achieve promising results on the log compres-
sion task, they either require some domain knowledge, such as
manual datetime identification or apply many heuristics rules in
preprocessing. Therefore, they still have limitations in practice.

2.2 Related Work
General-purpose data compression methods. Compression al-
gorithms exploit statistical redundancy to eliminate redundancy
literally, which can be categorized into three types: entropy-based,
dictionary-based, and prediction-based. Entropy-based methods
(e.g., Huffman encoding [40], Arithmetic encoding [41]) build a
probability model and find the optimal minimized coding for data.
Dictionary-based methods (e.g., gzip [17], lzma [16]) search the
repeated tokens and replace them with dictionary references when
processing the input stream. Prediction-basedmethods (e.g., PPMd [42],
DeepZip [43]) use a set of previous tokens to predict the next token,
and encode the prediction results adaptively. Yao et al. [44] con-
ducted an empirical study on the performance of general-purpose
compressors on log data. From the results, we can indicate that all
general-purpose data compression methods can only analyze log
messages character-by-character or bit-by-bit without reorganizing
log data based on the characteristics of log data.

Log-specific data compression methods. Considering log
data as semi-structured data, it is highly redundant by nature. Log-
specific compression methods can be categorized into two types:
non-parser-based and parser-based. Non-parser-based log com-
pression methods (e.g., LogArchive [21], Cowic [10] and MLC [45])
process log data without extracting log event patterns. Parser-based
log compression methods [20, 19, 22, 11] use a log parser to extract
log events and process headers, events, and variables separately.

According to the data type, they apply various encoding methods
like delta encoding, common sub-pattern extraction, and dictio-
nary encoding to shrink log data heuristically. In terms of data
characteristics, most of them [20, 11, 22] deal with the high redun-
dancy of log content. Others [11, 22, 19] leverage the timestamp
feature. CLP [46] and LogGrep [47] deliver efficient query tools
on compressed data. CLP parses log lines into schemas and stores
the variables as dictionary and non-dictionary variables. LogGrep
further extracts static patterns and runtime patterns of dictionary
variables and packs them into a set of capsules in a fine-grained
manner. However, they could not achieve a high compression ratio
while preserving searchable features.

3 AN EMPIRICAL STUDY ON
CHARACTERISTICS OF LOG DATA

In order to leverage the latent characteristics of log data to improve
log compression, we conduct an empirical study on three real-
world log datasets from a widely used log repository [23]. The
basic statistics (i.e., file size, the number of log event types, and the
number of log header fields) of the datasets are presented in Table 1.
Through the empirical study, we obtain three observations:

Table 1: The statistics of datasets used in empirical study

Dataset File size # Event # Header

Hadoop 48.61 MB 298 5
HPC 32.00 MB 104 6

OpenSSH 70.02 MB 62 5

Observation 1: Commonality and variability exist among
pairs of log components. Considering a log sequence as a format-
ted execution flow, commonality and variability can be manifested
in the following pairs.

• Header-Header (H-H): Each header is rendered by a pre-
defined format, including timestamp, level and component.
The timestamp exhibits a strong variability due to its increas-
ing nature. The other meta information, such as log level
and log component, shows a strong commonality because
they usually come from a limited number of possible values.

• Event-Header (E-H): Among the padded information in log
headers, there is some static information bound with events
such as log level, logger name, and file location. For example,
in Figure 1, the log component of the event “Partition *
not found, computing it” is always CacheManager. The
commonality can be identified as the binding among them.

• Event-Variable (E-V): The number and the types of variables
are always the same among log messages with the same
log event, which can be considered as commonality. For
example, in Figure 1, the log messages L3 and L4 both have
two variables. Their first variables are of the type of block ID
(i.e., “rdd_x_x”) and their second variables are of the type
of floating point number.

• Variable-Variable (V-V): Variables within the same log event
share a similar pattern with a slight difference. For exam-
ple, in Figure 1, variables in L1 and L2 are “rdd_2_1” and
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“rdd_2_0”, which follow the pattern “rdd_x_x”. Between
them, the variability can be observed as the change of x,
namely the change from 1 to 0.

Table 2: The statistics of occurrence and proportion of dif-
ferent pairs. # denotes their occurrence and % denotes their
proportion.

Pairs Hadoop HPC OpenSSH
# % # % # %

H-H 5 100% 6 100% 5 100%
E-H 146 48% 39 40% 20 29%

Two out of four pairs (i.e., H-H, E-H) can be explicitly defined
in the empirical study. For H-H pairs, if the header only includes
a finite set possible set or an increasing timestamp, then it can be
considered as a satisfied pair. We identify E-H pairs as satisfying
the condition if the log headers with the same log event only have
one value. We first calculate the total number of H-H and E-H
pairs in three datasets accordingly. Then we carefully identify the
fields that meet the requirements shown above in H-H and E-H
pairs. For example, we count the 304 E-H possible pairs in total
in Hadoop and identify 146 satisfied E-H pairs. The proportion of
E-H pairs is calculated as 48% (146/304). The statistics of the above
pairs occurrence and corresponding proportion results among three
datasets are shown in Table 2. We can see from the results that the
satisfied H-H pairs occupy 100% among all headers. Satisfied E-H
pairs also widely exist in log messages, which take around 29% - 48%
of all E-H pairs. The identified commonality and variability in these
pairs can be leveraged to condense log data through dictionary
replacement or differential values.

row-oriented

20:10:52 INFO BM: Found block rdd_2_0 locally
20:10:52 INFO BM: Found block rdd_2_1 locally

Spark.log
column-oriented

20:10:52 INFO BM:
20:10:52 INFO BM: 

Spark.log.1
Found block rdd_2_0 locally
Found block rdd_2_1 locally

Spark.log.2

Figure 2: An example of different storage styles

Observation 2: Storage style significantly affects the com-
pression ratio. When reviewing the existing log-specific compres-
sion methods, we notice that they rarely consider the file storage
style and explain the impact of file storage styles. On the one hand,
it is natural to store logs in a row-oriented storage style as log mes-
sages are printed line-by-line with logging frameworks [48]. On
the other hand, log files are well formatted as each log line is semi-
structured text [19]. Furthermore, there is evidence showing that
general-purpose data compression methods perform better with
structured or semi-structured texts [49, 50] as much redundant in-
formation can appear in the structure. Therefore, we argue that dif-
ferent storage styles can affect the performance of log compression.
We depict these two storage styles, i.e., column-oriented and row-
oriented storage styles, in Figure 2. The columns here are considered
as fields of log messages, namely, log headers (e.g., “20:10:52 INFO
BM:”) and log content (e.g., “Found block rdd_2_0 locally”) in
Figure 2. Row-oriented storage style is to store columns of each log
message in one row. Column-oriented storage style follows another

way to store them column-by-column. For example, log headers
are first stored in file 1 and then log content in file 2.

We study the impact of different storage styles on log compres-
sion by analyzing three real-world log datasets. The original log files
are stored in the row-oriented storage style. Next, we transform logs
to the column-oriented style by splitting each log line into its header
and its content without further log parsing. We then archive files
in different storage styles using two widely-used general-purpose
compression methods (i.e., lzma [16] and gzip [17]). We measure
the size of the archived files and compute the improvement as
Δ =

𝑟𝑜𝑤 𝑓 𝑖𝑙𝑒 𝑠𝑖𝑧𝑒−𝑐𝑜𝑙𝑢𝑚𝑛 𝑓 𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑐𝑜𝑙𝑢𝑚𝑛 𝑓 𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
. Table 3 shows the results.

Table 3: Archived file size using different storage styles

Dataset
lzma gzip

Avg Δ
Row Column (Δ) Row Column (Δ)

Hadoop 1.23 MB 0.86 MB (0.43↓) 2.20 MB 1.70 MB (0.29↓) 0.36↓
HPC 2.02 MB 1.17 MB (0.72↓) 3.09 MB 2.43 MB (0.27↓) 0.50↓

OpenSSH 3.92 MB 1.73 MB (1.26↓) 4.19 MB 2.34 MB (0.79↓) 1.03↓

The results in Table 3 demonstrate that utilizing a column-oriented
storage style for log compression significantly reduces the com-
pressed file sizes, compared to the row-oriented storage style. On
average, the column-oriented storage style achieves a storage re-
duction of 36% to 103% when using different general-purpose com-
pression methods. The main reason is that log data exhibits more
common patterns with the column-oriented storage style than with
the row-oriented style. This finding suggests that storing logs in a
column-oriented manner could enable more effective compression.

Observation 3: The distribution of log sequences is highly
imbalanced. A log sequence reflects an execution flow of a pro-
gram [51]. For example, in Figure 1, three log events (i.e., “Parti-
tion * not found, computing it", “Block * stored as bytes in
memory (estimated size * B)", and “Found block * locally")
form a type of log sequence. Analyzing the commonality and vari-
ability among all log sequences is time-consuming, thereby we
study the distribution of log sequences to see if there are more
efficient ways. Prior work [5] grouped log sequences by task ID and
showed the long tail distribution of log sequence types. However,
this method is not always feasible when log messages have no iden-
tifiers. Instead of using identifiers, we follow recent studies [52, 53]
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Figure 3: Imbalanced distribution of log sequence types
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Raw logs Log chunks Sampler

Compressor

L
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2

Log sequence

17/06/09 20:10:52 INFO BlockManager: 
Found block rdd_2_0 locally

Header 17/06/09, 20:10:52, INFO, 
BlockManager: 

EventID E1
Variables rdd_2_0

Events: {E1: “Found block * locally”}

Vectorization
L1

Ln

C
andidates

Analyzer

Variability 
Analyzer

Compressed files

gzip

lzma

bzip2

Column-oriented files

String Encoder
Matcher

Number Encoder

Commonality

Variability

Parsing results

shrink

Shorter 
representation

fields

Batch processing
Clustering

…

Sampling

Commonality 
Analyzer

32

4

1

Figure 4: The overview of LogShrink framework

to group log sequences using a fixed-length window of size ℎ = 50,
and consider two log sequences belonging to the same type if their
similarity score is greater than a certain threshold (0.6 by default).
The similarity score is calculated as the number of common tokens
divided by the number of total tokens in two sequences. We then
analyze the frequency percentage of each log sequence type in the
three datasets and present the results in Figure 3, where the x-axis
denotes the distinct log sequence types, and the y-axis represents
the frequency proportion of each log sequence type in the dataset.
We can observe that the types of log sequences in the three datasets
exhibit a highly imbalanced distribution, which is consistent across
all three datasets. Out of hundreds of log sequence types, more
than 50% of the log sequences come from the first 3%∼5% log se-
quence types. The results suggest that we can identify commonality
and variability more efficiently by analyzing a small sample of log
sequences.

4 LOGSHRINK: THE PROPOSED APPROACH
Drawing upon the above observations, we propose LogShrink, a
novel log compression method that can exploit the latent character-
istics of log data to enable effective compression. The overview of
LogShrink framework is illustrated in Figure 4. Since the raw log
files that require compression are usually too large for processing,
the raw log files are initially segmented into multiple log chunks
with equal size. Log chunks are processed in batches, and each
log chunk goes through four main components: ① Log Parser, ②

Sampler, ③ Analyzer, and ④ Compressor.
The main essence behind LogShrink is that we try to represent

log sequences in shorter forms based on their commonality and
variability. Therefore, in LogShrink, firstly, Log Parser partitions
log messages in each log chunk into three log components, namely
log headers, log events, and log variables. To exploit the common-
ality and variability observed in Observation 1, we propose a novel
and effective analyzer to identify the commonality and variability
among log components. As it usually requires much time to analyze
all log messages, a clustering-based sequence 𝑠𝑎𝑚𝑝𝑙𝑒𝑟 is introduced
to accelerate the analyzer. Based on Observation 3, the 𝑠𝑎𝑚𝑝𝑙𝑒𝑟 is

designed to sample a small yet representative set of log sequences
and then the 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟 is applied to identify commonality and vari-
ability among sampled log sequences. The compressor takes all the
parsed results from log parser and mined relations from analyzer
as input. It shrinks log data by replacing the log data with a shorter
representation based on the analyzed commonality and variability.
Then 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑠 are applied according to value types (e.g., string
values and numerical values). Inspired by Observation 2, all the
encoded data are stored in a column-oriented storage format and
eventually compressed to log files by a general-purpose compressor
such as lzma [16] and gzip [17].

4.1 Log Parser
Log parsing is an essential step to convert unstructured log mes-
sages into structured ones. The procedure entails separating the log
header and log content, followed by the identification of common
and variable parts in the log content as log events and log variables,
respectively. In recent years, many log parsers such as Spell [54],
LogMine [55], Drain [56, 57], and LogPPT [35] are proposed to
achieve satisfactory effectiveness. However, these log parsers have
a time complexity of approximately𝑂 (𝑛), rendering them impracti-
cal for log compression tasks, particularly for large log files. In this
paper, we adopt a sub-optimal yet practical log parser proposed
by LogReducer [11]. It contains two steps: training and matching.
Following this method, in the training step, the parser samples
log segments and automatically generates header formats. Subse-
quently, it tokenizes the log segments and iteratively clusters them
based on log level, component name, and frequently occurring
words. After that, it builds a prefix tree to facilitate event matching
where the first layer is the length of events, and the rest layer is
tokens of events. In the matching step, the unsampled log messages
utilize the built parser tree to search for the most similar event. If
unmatched, it collects the raw unmatched log messages in an indi-
vidual file. The log parser yields three log components, specifically
header, events, and variables. Following Observation 2 in Section 3,
we process all log components into column-oriented fields. Log
headers are separated into multiple fields using space delimiters.
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We group log variables by the log event IDs, thereby the variable
list with the same log event constructs a matrix. Then we could
process and store all the log components in a column-oriented way.

4.2 Clustering-based Log Sequence Sampler
Based on Observation 3, the distribution of log sequence types
is highly imbalanced, which brings a big challenge to sampling.
To overcome this issue, we devise a clustering-based log sequence
sampling to extract the representative log sequences. In this method,
log messages are parsed into windows with a fixed length, denoted
as ℎ, to form a log sequence. The process of clustering-based log
sequence sampling is depicted in Figure 5.

Log
Sequence

L
1
L
2

Sequence 
Vectorization

Sequence 
Clustering

𝐶! 𝐶"

𝐶#

Sequence 
Sampling

𝐶!
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Iterative process

Figure 5: Clustering-based log sequence sampling

4.2.1 Sequence Vectorization. We calculate vector representations
for each log sequence. To determine the importance of each log
event in log sequences, we adopt a widely used technique Inverse
Document Frequency (IDF) in text mining. In this technique, log
events that occur frequently across log sequences are assigned
lower weights, while those that occur less frequently are assigned
higher weights. Specifically, the IDF weight is defined as𝑤𝑖𝑑 𝑓 (𝑒) =
log

(
𝑁
𝑛𝑒

)
, where 𝑁 is the total number of log sequences and 𝑛𝑒 is

the number of log sequences that contain log event 𝑒 . We then
construct sequence vectors using both log event frequency vectors
𝑉𝑓 𝑟𝑒 and log event weight vectors as Equation 1.

𝑉𝑖 = 𝑉𝑓 𝑟𝑒 ∗ [𝑤𝑖𝑑 𝑓 (𝑒1), ...,𝑤𝑖𝑑 𝑓 (𝑒𝑛)] (1)

4.2.2 Sequence Clustering. We use an iterative clustering method
to efficiently cluster log sequences. The process involves three
steps: sampling, clustering, and matching. The input is a set of
log sequences’ vectors, and the output is their corresponding log
sequence types. Specifically, given a set of 𝑁 log sequence vec-
tors and a sample rate 𝜉 (default as 0.01), we randomly select
a subset of 𝑀 = 𝑚𝑖𝑛(𝜉 ∗ 𝑁,𝑘𝑚𝑖𝑛) sequence vectors as the in-
put for the 𝑖-th iteration. Here, 𝑘𝑚𝑖𝑛 is set to the minimum size
that ensures the sampled data contains at least two samples of
a single log sequence type. We calculate the value of 𝑘𝑚𝑖𝑛 as
𝑘𝑚𝑖𝑛 = argmin

𝑘

(𝐶2
𝑘
𝑝 (𝑘−2) (1 − 𝑝)2 ≥ 1 − 𝑒−6). We then calculate

the distance between each pair of sampled sequence vectors using
Euclidean metrics (defined as 𝑑 (𝑢, 𝑣) =

√︁
∥𝑢 − 𝑣 ∥) and use a Hier-

archical Agglomerative Clustering (HAC) to cluster the sequences.
HAC seeks to build a hierarchy of clusters in a bottom-up way. It
performs a linkage between two clusters if their distance is smaller
than a threshold 𝜃 . The resulting clusters yield 𝑘 sequence centers
and the cluster IDs of all log sequences.

4.2.3 Sequence Sampling. Sequence sampling takes the candidate
number𝑀 as input and output𝑚𝑎𝑥 (𝑘,𝑀) sampled log sequences.
Given sampled data size 𝑀 , we first calculate the sampled data
size𝑚𝑖 = ⌈𝑀/𝑘⌉ for each log sequence cluster. Then we randomly
sample a data size of𝑚𝑖 from each log sequence cluster and concate-
nate them. Finally, we obtain𝑚𝑎𝑥 (𝑘,𝑀) log sequences. The impact
under different window lengths, candidates𝑀 and threshold 𝜃 are
evaluated in Section 5.

4.3 Commonality and Variability Analyzer
Observation 1 in Section 3 indicates that commonality and variabil-
ity widely exist in pairs of log components. They have the potential
to generate a more concise representation of log data. Specifically,
we define commonality as the common part among the log com-
ponents and variability as the relatively steady change among the
log components. For example, for a sequence 𝐴1 = {task#0-1,
task#1-2, task#2-3}, the commonality is manifested as a com-
mon string pattern “task#x-x”, where 𝑥 denotes the variable parts
among the sequence. The variability in 𝐴1 is also obvious to ob-
serve. The task id is increasing by a step of 1 (i.e., from 0 to 1, and
to 2). By exploiting such nature, we can present the corresponding
log components by replacing the common part with a shorter in-
dex (e.g., {‘task#x-x’ → 0}) and the variable part with a shorter
difference (e.g., 1), respectively.
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Figure 6: The process of analyzer

Given a series of representative log sequences obtained from
sequence sampler in Section 4.2, Analyzer aims to analyze the latent
commonality 𝐶 and variability 𝑉 in them. Figure 6 demonstrates
the process of Analyzer. In order to identify commonality in se-
quence, a multiplicity score is employed to measure whether a field
contains multiple identical values. However, in cases such as 𝐴1,
three values are distinct but share some common values which are
separated by delimiters. To address this, we introduce a delimiter-
level Longest Common Subsequence (LCS) to extract the common
delimiters in the sequence (e.g., ‘#-’ in 𝐴1). This cannot be done
by log parsers because they treat the entity with many delimiters
inside (e.g., rdd_0_1, /10.10.8.8) as a single field. Consequently,
𝐴1 is divided into three sub-fields 𝐴11, 𝐴12, 𝐴13 using the mined
delimiters. A fine-grained analysis is performed on these sub-fields.
In the meantime, an entropy-based variability analyzer is intro-
duced to see if the steps in the sequence follow a steady way. Given
two input cases 𝐴1 and 𝐴2, the commonality 𝐶 of 𝐴1 is eventually
concluded as the combination of the common delimiters and the
field index as shown in Figure 6. The variability 𝑉 involves the
indices of those satisfied fields. Since the commonality we observed
in log data mostly exists in string values in Section 3, we analyze
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the commonality in fields containing string values. Similarly, we
analyze the variability in fields containing numerical values.

4.3.1 Commonality Analyzer. Each field in log components usually
shares the commonality in string pattern. We first use a multiplicity
function to determine whether the field satisfies the multiplicity
constraint. The multiplicity function is shown in Eq. 2, where the
multiset𝑋 refers to the possible values of one field. We calculate the
multiplicity by dividing the count of the unique set in𝑋 by the count
of the multiset 𝑋 . For example, in Figure 6, given a multiset 𝐴1, the
multiplicity score𝑀 (𝐴1) = 3

3 = 1. If the multiplicity score of one
field is smaller than a preset threshold 𝜎 , we consider that the field is
highly redundant so we can replace it with a shorter representation.
Otherwise, LogShrink activates the LCS-based pattern miner to
further analyze whether there is a fine-grained commonality in this
field.

𝑀 (𝑋 ) = |{𝑥 |𝑥 ∈ 𝑋 }|
|𝑋 | (2)

LCS is to find the longest common subsequence among a se-
quence set. Compared with token-level LCS used in other log
parsers, we apply a delimiter-level LCS to mine the shared delim-
iters among the field. Suppose Σ is a universe of delimiters. Given
any sequence 𝛼 = {𝑎1, 𝑎2, ..., 𝑎𝑚}, we extract the delimiter sequence
𝑑 = {𝑑1, 𝑑2, ..., 𝑑𝑚}, such that 𝑑𝑖 ∈ Σ. Then a delimiter subsequence
of 𝑑 is defined as {𝑑𝑖 , 𝑑𝑖+1, ..., 𝑑 𝑗 }, where 𝑖 ∈ Z+ and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚.
A common subsequence is a subsequence of both sequences 𝑑𝑖 and
𝑑 𝑗 . In the case of log field 𝐴1, the delimiter sequences are extracted
as 𝑑 = {′#−′,′ #−′,′ #−′}. The delimiter-level LCS of 𝑑 is ‘#-’.

Then, we separate each field by the mined common delimiters.
The input example𝐴1 is divided into three fields. We then calculate
the multiplicity score of the first field and analyze the variability
of the other two fields (i.e., numerical fields). Finally, the common-
ality of 𝐴1 is 𝐶 = {𝑃 : {𝐴1 :′ #−′}, 𝑀 : {𝐴11}}, including the
delimiter-level LCS and the field indices that satisfy the multiplicity
constraint.

4.3.2 Variability Analyzer. The main characteristic of variability
is that the data reveals a relatively stable differential. Given a
sequence 𝛼 = {𝑎1, 𝑎2, ..., 𝑎𝑚}, the difference of 𝛼 is defined as
Δ𝛼 = {𝑎1, 𝑎2 − 𝑎1, ..., 𝑎𝑚 − 𝑎𝑚−1}. Entropy is a widely used mea-
surement in information theory to measure disorder, randomness,
and uncertainty. In this paper, we use entropy to measure the de-
gree of variability. A higher entropy represents that the sequence
contains more variability to store. The definition of entropy is given
as follows:

𝐻 (𝑋 ) =
∑︁
𝑥∈𝑋

𝑃𝑋 (𝑥) log2
1

𝑃𝑋 (𝑥) (3)

where, in the context of a field, we use 𝑃 (𝑥) to represent the prob-
ability of observing the value 𝑥 and use 𝑋 to represent all of the
possible values in this field. However, we also need to consider the
output bits of these fields. Intuitively, small values take fewer bits
of storage [11, 34]. For example, a value of 3 only needs to take
2 bits to store. We use a metric 𝑤 (𝑥) = log2 (𝑥 + 1) to measure
the minimum required bits of storage. Then we incorporate the
minimum required bits of storage with the entropy as a weighted
entropy metric:

𝐻𝑤 (𝑋 ) =
∑︁
𝑥∈𝑋

𝑤 (𝑥)𝑃𝑋 (𝑥) log2
1

𝑃𝑋 (𝑥)

= −
∑︁
𝑥∈𝑋

log2 (𝑥 + 1)𝑃𝑋 (𝑥) log2 𝑃𝑋 (𝑥)
(4)

We calculate𝐻𝑤 (𝑋 ) of the original sequence𝛼 and the difference
of sequence Δ𝛼 as 𝐻𝑤 (𝛼) and 𝐻𝑤 (Δ𝛼). If 𝐻𝑤 (Δ𝛼) is smaller than
𝐻𝑤 (𝛼), the sequence 𝛼 is considered to satisfy the variability, and
vice versa. For example, in Figure 6, considering a sequence 𝐴2 =
{2, 1, 3} and its difference Δ𝐴2 = {2,−1, 2}, the weighted entropy
of them are 1.68 and 0.79, respectively. 𝐴2 is thus considered to
satisfy the variability requirement. In summary, after analyzing the
variability of given 𝐴2 and the two sub-fields 𝐴12, 𝐴13 in 𝐴1, the
results of 𝑉 are that 𝑉 = {𝐴12, 𝐴13, 𝐴2}.

4.4 Compressor
The compressor takes all the parsing results from the log parser and
identifies commonality and variability from the analyzer as input.
It matches them to all log data and shrinks with a shorter represen-
tation. Then it encodes all values using an encoder according to its
value types. All the encoded data are stored in multiple files in a
column-oriented storage style. Finally, we use a general-purpose
compressor as the zip tool to further improve the compression ratio.

4.4.1 Matcher. After obtaining the identified commonality and
variability from representative log sequences, we need to apply
them to all log data. LogShrink shrinks log data by replacing the
field’s values with shorter representations according to their charac-
teristic types. For those fieldswhose commonality includes delimiter-
level common patterns, we first separate them using the correspond-
ing 𝑃 . Then, for those fields in the commonality set satisfying the
multiplicity constraint 𝑀 , we build a dictionary for repetitive to-
kens and replace these tokens with a dictionary index. The built
dictionary and replaced data are stored as two files. As for vari-
ability, we perform the differencing operation between consecutive
values for those fields in the variability set. For all the analyzed
characteristics, if one of them cannot be satisfied in all log data, we
will drop them and store the rest.

4.4.2 Encoder. We categorize objects in log data as two data types:
string values and numerical values. For string values, LogShrink
outputs their raw values. As the numerical values are fairly small,
they only use a few bits specified by their types. For example, a
4-byte integer value of 13 only requires 4 bits to store losslessly.
Following the method used in LogReducer [11], we adopt an elastic
encoder to encode numerical values.

4.4.3 Zip tool. Based on Observation 2 in Section 3, the processed
data are stored in a column manner. For example, each header (e.g.,
timestamp, log component) and each variable are stored in separate
files to improve the compression ratio. The final compression is
done by a general-purpose compressor such as lzma [16], gzip [17],
and bzip2 [18].

4.5 Decompressor
The decompression process is a reverse process of compression. At
first, the decompressor applies the general-purpose decompressor
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(e.g., lzma [16], gzip [17], bzip2 [18]) to decompress the whole com-
pressed file into many uncompressed files. Next, LogShrink loads
the files that record the identified commonality and variability sets.
Then, LogShrink performs the recovery process of differencing op-
erations on fields and the dictionary mapping operation accordingly.
After that, we obtain three log components which are generated by
the log parser. To recover the message content, we parameterize the
asterisk in log events using variables in order. Finally, the header
and message content can be joined together with the extracted
delimiters to obtain the original log messages.

5 EVALUATION
We conduct extensive experiments on a variety of log datasets. Our
evaluation aims to answer three questions:

• RQ1: What is the overall performance of LogShrink?
• RQ2: What is the effect of each individual component in
LogShrink?

• RQ3: What is the impact of different settings?

5.1 Experimental Design
5.1.1 Datasets. We use 16 representative log datasets [23] from a
wide range of systems to evaluate LogShrink, including distributed
systems (e.g., HDFS, Hadoop, Spark, Zookeeper, OpenStack), super-
computers (e.g., BGL, HPC, Thunderbird), operating systems (e.g.,
Windows, Linux, Mac), mobile systems (e.g., Android, HealthApp),
server applications (e.g., Apache, OpenSSH), and standalone soft-
wares (e.g., Proxifier). All these logs amount to over 77 GB in total.
The details of experiment datasets are presented in Table 4.

Table 4: The statistics of experimental datasets

System Type Dataset File Size # Lines

Distributed systems

HDFS 1.47 GB 11,175,629
Hadoop 48.61 MB 394,308
Spark 2.75 GB 33,236,604

Zookeeper 9.95 MB 74,380
OpenStack 58.61 MB 207,820

Supercomputers
BGL 708.76 MB 4,747,963
HPC 32.00 MB 433,489

Thunderbird 29.60 GB 211,212,192

Operating systems
Windows 26.09 GB 114,608,388
Linux 2.25 MB 25,567
Mac 16.09 MB 117,283

Mobile systems Android 183.37 MB 1,555,005
HealthApp 22.44 MB 253,395

Server applications Apache 4.90 MB 56,481
OpenSSH 70.02 MB 655,146

Standalone software Proxifier 2.42 MB 21,329

5.1.2 EvaluationMetrics. Tomeasure the performance of LogShrink
in log compression, we use the compression ratio and compression
speed, which are widely used in the evaluation of compression

methods [20, 11, 22]. The definitions are given as follows:

Compression Ratio (𝐶𝑅) = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒
(5)

Compression Speed (𝐶𝑆) = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐶𝑜𝑠𝑡 𝑇𝑖𝑚𝑒
(6)

5.1.3 Baselines. We compare our proposed method with two state-
of-the-art log compression methods (e.g., LogZip [20] and LogRe-
ducer [11]) and three representative general-purpose compression
methods (e.g., gzip [17, 58], lzma [16], and bzip2 [18]). gzip [17] is
a traditional compression method based on DEFLATE algorithm,
which achieves a good compression speed instead of a good com-
pression ratio. Compared to gzip, bzip2 [18] is based on the Burrows-
Wheeler transform algorithm. It has a better compression ratio yet
worse compression speed. Lzma [16], which uses dictionary com-
pression algorithms, usually gets a better compression ratio but has
a relatively slow compression speed. In this study, we use a python
package tarfile [59] to compress data with gzip and bzip2. The com-
pression level opts to the highest 9 to achieve the best compression
ratio. For lzma, we use the standalone 7za tool [16] in the Linux
system to compress data. In terms of state-of-the-art log-specific
compression methods, LogZip extracts hidden structures for all log
messages and performs different levels of compression. We select
the level 3 to achieve the highest compression ratio. LogReducer
is also a log parser-based compressor, which can further compress
numerical values. We use their open-sourced code [60, 61] in our
experiments.

5.1.4 Implementation and Environment. We implement LogShrink
in Python 3.8. The raw log files are segmented with an equal size
of 100k lines. We adopt the log parser implemented by the Lo-
gReducer [11] and modify it to adapt to our framework. As for
the setting of parameters, we pre-define the universe of delimiters
Σ = {−# >< _ :; , []\/.()} used in the commonality analyzer. We
set threshold 𝜃 = 4, fixed-window length ℎ = 20, and 𝑀 = 16
used in sequence sampler as defaults. The threshold 𝜎 used in the
commonality analyzer is set to 0.3 by default. Since the sampling in
LogReducer [11] and LogShrink might yield random results during
execution, we run them 10 times for all experiments and obtain
the average results. We conduct our experiments on a Linux server
equipped with 8× Intel Xeon 2.2GHz CPUs (with 32 cores in total)
and 128GB RAM, and Red Hat 8.1 with Linux kernel 4.18.0.

5.2 RQ1: The Overall Performance of LogShrink
In this RQ, we compare LogShrink with state-of-the-art tools for
log compression, including three general-purpose compressors (i.e.,
gzip [17], lzma [16], and bzip2 [18]) and two log-specific compres-
sors (i.e., LogZip [20] and LogReducer [11]).

5.2.1 Effectiveness: Firstly, we compare the results of LogShrink
with baselines in terms of Compression Ratio (CR). For a fair com-
parison, we use lzma from the 7z packet [16] as the zip tool for both
LogZip and LogReducer. Table 5 shows the results.

From the results, we can see that LogShrink outperforms existing
methods or achieves comparable results on almost all datasets (14
out of 16 datasets) in terms of CR. Specifically, LogShrink exceeds
all general-purpose compressors. It can achieve a CR of 4.57× on
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Table 5: Comparison in terms of Compression Ratio

Dataset gzip lzma bzip2 LogZip LogReducer LogShrink
Android 7.742 18.857 12.787 25.165 20.776 21.857
Apache 21.308 25.186 29.557 30.375 43.028 55.940
BGL 12.927 17.637 15.461 32.655 38.600 42.385

Hadoop 20.485 36.095 32.598 35.008 52.830 60.091
HDFS 10.636 13.559 14.059 16.666 22.634 27.319

HealthApp 10.957 13.431 13.843 22.632 31.694 39.072
HPC 11.263 15.076 12.756 27.208 32.070 35.878
Linux 11.232 16.677 14.695 23.368 25.213 29.252
Mac 11.733 22.159 18.074 26.306 35.251 39.860

OpenSSH 16.828 18.918 22.865 42.606 86.699 103.175
OpenStack 12.158 14.437 15.231 17.258 16.701 22.157
Proxifier 15.716 18.982 23.619 21.493 25.501 27.029
Spark 17.825 19.908 26.497 20.825 57.135 59.739

Thunderbird 16.462 27.309 25.428 — 49.185 48.434
Windows 17.798 202.568 67.533 310.596 342.975 456.301
Zookeeper 25.979 27.667 36.156 47.373 94.562 116.981
Note: “—" denotes timeout. LogZip cannot parse and compress
Thunderbird log within 1 week.

average and 25.64× at best over gzip, a traditional compression algo-
rithm. Besides, LogShrink achieves 1.16× to 5.54× CR compared to
lzma, and 1.14× to 6.76× compared to bzip2. In the comparison with
two log-specific compression methods, LogShrink significantly out-
performs LogZip by achieving better CRs on 15 out of 16 datasets.
It achieves a CR of 1.66× on average and 2.87× at best (on Spark)
over LogZip. Moreover, LogShrink equips higher CR on 15 out of
16 datasets compared to the most powerful log compressor, Lo-
gReducer. In particular, it exceeds LogReducer by 4.56% (Spark) to
33.04% (Windows). On the Thunderbird dataset, LogShrink also
performs comparably by achieving a high CR of 98.47% over Lo-
gReducer. It is worth noting that on large-scale datasets (i.e., BGL,
HDFS, Spark, and Windows) except Thunderbird, LogShrink per-
forms the best compared to other log-specific compression methods.
Its CR is 1.05× to 2.87× that of LogZip and LogReducer. Note that, in
our experiments, LogZip failed to parse and compress Thunderbird
data within 1 week. The reason why LogShrink performs worse
on Android dataset than LogZip is that we adopt a sub-optimal yet
practical log parser in our work but Logzip adopts an optimal yet
slower log parser. The number of templates in Android is up to
76,923, making it ineffective in extracting log events from a limited
number of samples.

5.2.2 Efficiency: Our LogShrink explicitly aims at compressing
log files with high compression ratio in a reasonable running time.
Therefore, we next analyze and compare LogShrinkwith log-specific
compression methods in terms of Compression Speed. Table 6
shows the results.

We can see that LogShrink can compress log files with reasonable
efficiency. It can achieve a compression speed of 2.95 MB/s on
average, ranging from 1.31 to 5.51 MB/s. Compared to LogZip,
which is also a Python-based compressor, LogShrink outperforms it
significantly in efficiency. Specifically, LogShrink is 1.83×-273.79×

Table 6: Comparison in terms of Compression Speed (MB/s)

Dataset LogZip LogReducer LogShrink

Android 0.068 8.918 5.347
Apache 0.737 1.686 1.880
BGL 0.874 18.189 2.519

Hadoop 0.901 4.919 3.137
HDFS 0.701 20.570 3.253

HealthApp 0.736 4.108 2.064
HPC 0.644 5.110 2.485
Linux 0.687 0.526 1.307
Mac 0.009 2.887 2.572

OpenSSH 0.715 13.268 3.409
OpenStack 0.537 6.389 2.945
Proxifier 0.716 0.929 1.315
Spark 0.550 18.871 2.821

Thunderbird — 19.532 4.069
Windows 1.357 31.938 5.507
Zookeeper 0.842 3.071 2.523

(26.6× on average) as fast as LogZip. LogShrink is generally slower
than LogReducer, as LogReducer is written in C++ and thus is more
optimized in terms of execution speed than LogShrink (written in
Python).

5.3 RQ2: Ablation Study

Table 7: Ablation study results

Dataset
LogShrink w/o Sampler w/o Analyzer

CR CS CR CS CR CS

Android 21.857 5.347 21.784 4.354 20.804 7.048
Apache 55.940 1.880 56.075 1.565 42.803 2.286
BGL 42.385 2.519 43.489 1.767 32.965 5.283

Hadoop 60.091 3.137 61.206 2.904 57.885 7.281
HDFS 27.319 3.253 31.270 2.737 22.023 7.631

HealthApp 39.072 2.064 39.726 1.569 28.015 4.276
HPC 35.878 2.485 36.706 1.894 27.317 4.771
Linux 29.252 1.307 29.365 1.151 25.310 1.253
Mac 39.860 2.572 39.333 2.258 35.183 3.878

OpenSSH 103.175 3.409 101.727 2.675 71.874 5.382
OpenStack 22.157 2.945 22.648 2.136 20.573 5.484
Proxifier 27.029 1.315 28.061 1.119 26.262 1.265
Spark 59.739 2.821 59.234 2.227 49.147 5.651

Thunderbird 48.434 4.069 45.367 3.289 40.130 6.047
Windows 456.301 5.507 501.502 4.316 390.574 11.445
Zookeeper 116.981 2.523 120.003 2.002 70.993 3.066

To evaluate the effectiveness of individual components in LogShrink,
we perform an ablation study among the full LogShrink, LogShrink
without clustering-based sequence sampling (denoted as w/o Sam-
pler), and LogShrink without commonality and variability analyzer
(denoted as w/o Analyzer). The experiment results of both com-
pression ratio and speed are presented in Table 7.
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The contribution of commonality and variability analyzer can
be observed in the comparison between LogShrink and LogShrink
w/o Analyzer. We can see from the results that LogShrink can
achieve an improvement of 23.12% in CR on average. Specifically,
LogShrink achieves an improvement ranging from 2.92% (on Proxi-
fier) to 64.78% (on Zookeeper) in terms of CR compared to LogShrink
without Analyzer. The improvement largely depends on the amount
of commonality and variability in log data. It is worth noting that
LogShrink w/o Analyzer also stores the log parsing results using
the column-oriented format. From the results, we can see that with-
out Analyzer, LogShrink can achieve 1.1 × to 3.8 × CR compared
to lzma, which is consistent with Observation 2 in Section 3. In
terms of CS, LogShrink performs 0.64 × slower than LogShrink w/o
Analyzer. It is a trade-off to consider both CR and CS in practical
usage. The CS with a higher CR is probably slower than the CS
with a lower CR.

The clustering-based sequence sampling contributes to the im-
provement of CS. In Table 7, we can observe that LogShrink is
faster than the LogShrink w/o Sampler by 8.03% to 42.52%, which is
consistent with the expectation. In terms of CR, LogShrink achieves
comparable results on 13 out of 16 datasets although we perform
the commonality and variability analysis on a small number of
representative log sequences out of all log sequences. However,
not all datasets can mine the representative log datasets effectively.
LogShrink shows a slight decrease of 10.0% to 14.7% in dataset Win-
dows and HDFS. This is because the number of log sequence types
in Windows and HDFS are much higher than others, their CR will
be significantly impacted by the parameters set in clustering-based
sequence sampling.

5.4 RQ3: The Impact of Different Settings
In this RQ, we explore the impact of critical parameters (i.e., the
window length ℎ to form a log sequence, the number of sampling
samples𝑀 , the distance threshold 𝜃 , and the zip tool) on LogShrink.
Due to the space constraint, we show the evaluation results on 3
out of 16 datasets (i.e., BGL, HDFS, and Spark).

Impact of windows length ℎ in sequence sampling. A larger
window length ℎ can involve more log messages and generate
more log sequence types. We run LogShrink with different window
lengths ℎ in the range [5,50]. Figure 7(a) presents the experimental
results. We can observe that the CR in all datasets has a sheer
increase when ℎ changes from 5 to 10. But for other ℎ in [10,50], all
datasets except HDFS show relatively stable results in CR. Hence,
we select ℎ = 20 as the default, which shows a relatively high CR.

Impact of 𝑀 sampled candidates in sequence sampling.
A higher 𝑀 means that more log sequences can be fed into the
analyzer. We adjust𝑀 from 20 to 27 and observe the changes in CR
among the three datasets. The experiment results are illustrated in
Figure 7(b). From the figure, we can see that the CR increases with
rising 𝑀 . Especially, the CR of HDFS is significantly affected by
the parameter𝑀 , showing a 23.1% increase in𝑀 = 128 compared
to 𝑀 = 1. From the results, we select 𝑀 = 16 as the default in
LogShrink , considering the trade-off between CR and CS.

Impact of the distance threshold 𝜎 in sequence sampling.
A larger distance threshold 𝜃 represents that the coverage of one
cluster is wider and the number of clusters is less. Figure 7(c) shows

the experimental results of the distance threshold 𝜃 in the range of
[1,10]. The CR of BGL shows a steady decline with 𝜃 rising in the
range [2,10]. However, the CR of the other two datasets remains
stable as 𝜃 grows. From the results, we can see that the distance
threshold 𝜃 insignificantly affects the CR, thereby it is set to 4 by
default.

Impact of different zip tools used in compressor. LogShrink’s
CR is influenced by the zip tools employed in the compressor. To
demonstrate this, we experimented with different zip tools (i.e., gzip,
bzip2, lzma) on LogShrink and two other state-of-the-art methods
(i.e., LogReducer, LogZip). Due to the space limit, we present the
evaluation results for the top 7 largest datasets in Figure 8. The
consistent superiority of LogShrink is observed across different
zip tools. In comparison to the best CR performance among all
baselines, LogShrink exhibits an improvement of 15.07%, 30.67%,
and 15.30% on average with gzip, bzip2, and lzma, respectively.

6 THREATS TO VALIDITY
We have identified the following threats to validity:

Subject systems:We only conduct our empirical study on three
representative datasets. Also, our experiments are performed on
a limited number of log datasets from 16 subject systems, which
cannot represent all software systems. In the future, we plan to
collect more log data and evaluate our methods on more software
systems.

Implementation: The runtime performance of a program can
differ across different programming languages. We have imple-
mented LogShrink using Python, which prioritizes code readability
over execution speed. According to a comparison of the speed of
programming languages [62], the performance of C/C++ is 10 × as
fast as Python. As a result, the compression speed of LogShrink is
slower compared to compressors [17, 16, 18, 11], which are writ-
ten in faster programming languages like C++. This language bias
can affect the comparison of compression speed. To address this,
we plan to optimize the LogShrink implementation in other faster
programming languages, such as C++, in the future.

Tool comparison: In our evaluation, we compared LogShrink
with three general-purpose compressors (i.e., lzma [16], gzip [17],
bzip2 [18]) and two state-of-the-art log-specific compressors (i.e.,
LogZip [20], LogReducer [11]). To reduce the threat from tool com-
parison, we directly use the code provided by their papers [60, 61].
Also, we use the popular implementations of the general-purpose
compressors [16, 17, 18].

7 CONCLUSION
The sheer volume of log data presents a significant challenge for
storage costs. Current compression methods, including general-
purpose and log-specific methods, have limited capability in utiliz-
ing the characteristics of log data. We have conducted an empirical
study on the characteristics of log data and derived three major
observations, which led us to propose LogShrink, an effective log
compression method, by leveraging commonality and variability of
log data. Our experimental results show that LogShrink can outper-
form existing compressors by 16% to 356% on average with respect
to compression ratio while maintaining reasonable compression
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Figure 7: Impact of different settings in clustering-based sequence sampling
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Figure 8: Impact of different zip tools used in compressor

speed. In the future, wewill optimize the LogShrink implementation
in faster programming languages such as C++.
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