
Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners?

Stefanos Chaliasos
Imperial College London

United Kingdom

Marcos Antonios
Charalambous

Imperial College London
United Kingdom

Liyi Zhou
Imperial College London

United Kingdom

Rafaila Galanopoulou
National and Kapodistrian University

of Athens
Greece

Arthur Gervais
University College London

United Kingdom

Dimitris Mitropoulos
National and Kapodistrian University

of Athens
Greece

Benjamin Livshits
Imperial College London

United Kingdom

ABSTRACT
The growth of the decentralized finance (DeFi) ecosystem built on
blockchain technology and smart contracts has led to an increased
demand for secure and reliable smart contract development. How-
ever, attacks targeting smart contracts are increasing, causing an
estimated $6.45 billion in financial losses. Researchers have pro-
posed various automated security tools to detect vulnerabilities,
but their real-world impact remains uncertain.

In this paper, we aim to shed light on the effectiveness of au-
tomated security tools in identifying vulnerabilities that can lead
to high-profile attacks, and their overall usage within the indus-
try. Our comprehensive study encompasses an evaluation of five
SoTA automated security tools, an analysis of 127 high-impact real-
world attacks resulting in $2.3 billion in losses, and a survey of 49
developers and auditors working in leading DeFi protocols. Our
findings reveal a stark reality: the tools could have prevented a
mere 8% of the attacks in our dataset, amounting to $149 million
out of the $2.3 billion in losses. Notably, all preventable attacks
were related to reentrancy vulnerabilities. Furthermore, practition-
ers distinguish logic-related bugs and protocol layer vulnerabilities
as significant threats that are not adequately addressed by existing
security tools. Our results emphasize the need to develop special-
ized tools catering to the distinct demands and expectations of
developers and auditors. Further, our study highlights the necessity
for continuous advancements in security tools to effectively tackle
the ever-evolving challenges confronting the DeFi ecosystem.

ACM Reference Format:
Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila
Galanopoulou, Arthur Gervais, Dimitris Mitropoulos, and Benjamin Livshits.
2024. Smart Contract and DeFi Security Tools: Do They Meet the Needs of

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623302

Practitioners?. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623302

1 INTRODUCTION
The emergence of Ethereum and blockchains with smart contract
capabilities led to the development of decentralized applications
(dapps), opening up new possibilities for innovation. The Decentral-
ized Finance (DeFi) ecosystem, which is built on these technologies,
has experienced significant growth since 2020, with the total value
locked (TVL) reaching an all-time high of 180 billion USD onDecem-
ber 2021 [2]. Unfortunately, this massive amount of value locked
in DeFi has also made them an attractive attack target. Despite the
efforts to write secure dapps, attackers have successfully exploited
vulnerable smart contracts causing losses of 6.45 billion dollars [2],
underscoring the need for effective security measures.

Over the years, researchers have dedicated tremendous efforts to
secure smart contracts by developing new techniques and tools that
identify vulnerabilities [24, 29]. Such techniques involve static anal-
ysis [5, 6, 16, 48], symbolic execution [11, 33], fuzzing [20, 25, 47, 54],
formal verification [38, 46], runtime verification [43], and machine
learning-based approaches [31, 56]. Despite these efforts, high-
profile attacks on smart contracts still persist. To understand and
evaluate these approaches, researchers have conducted various
studies. Durieux et al. [14] and Ren et al. [42] evaluated smart con-
tract security tools, while Perez and Livshits [37] assessed the high
number of false positives of automated security tools. Additionally,
Zhang et al. [60] performed a systematic investigation to highlight
missing vulnerability oracles.

Although there has been significant research and focus on smart
contract security, it remains unclear how effective automated secu-
rity tools are against real-world exploits, what impact these tools
have on the industry, and how they are utilized in developing and
auditing smart contracts. In this paper, we aim to answer the fol-
lowing research questions.

RQ1: Which vulnerability types can be detected by auto-
mated security tools? How frequently do these vulnerabilities

1

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3597503.3623302
https://doi.org/10.1145/3597503.3623302
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623302&domain=pdf&date_stamp=2024-02-06

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaliasos et al.

occur in real-world attacks? What is the severity level of the vulner-
abilities that could have been detected by automated security tools
in real-world attacks? Finally, what types of vulnerabilities cannot
be detected by current automated security tools? (Section 4.1)

RQ2: To what extent can security tools be used to prevent
real-world high-profile attacks?What is the effectiveness of au-
tomated security tools against each vulnerability category? Which
high-profile attacks could have been potentially avoided by using
semi-automated security tools that require user input? (Section 4.1)

RQ3: What is the landscape of security tools used by de-
velopers and auditors? To what extent do developers prefer open-
source tools? How prevalent are academic tools in practice? What
percentage of practitioners use semi-automated tools that can pre-
vent specific vulnerability types that are out-of-scope for automated
security tools? How much time do auditors typically spend using
security tools during audits? (Section 4.2)

RQ4: What are the key characteristics of security tools
that are prioritized by auditors and developers?Do practition-
ers weigh the trade-off between false positives and false negatives
when selecting security tools, and how? Additionally, are ease of
use, documentation, and report quality important factors when se-
lecting security tools for both developers and auditors? (Section 4.3)

RQ5: How effectively do security tools address various
classes of errors according to auditors and developers? Specif-
ically, which types of errors are inadequately covered by current
security tools? Additionally, what is the perception of auditors
regarding the usefulness of security tools? (Section 4.3)

Methodology. To address RQ1-RQ2, we conducted an extensive
empirical evaluation of five automated security tools using a dataset
of 127 high-impact real-world attacks. In Section 3.1, we describe
the dataset, the selection criteria we followed for the tools, and our
benchmarking process. To answer RQ3-RQ5, we conducted surveys
with 49 developers and auditors working in top DeFi protocols. Our
methodology for performing the surveys is presented in Section 3.2.

Findings. Through our extensive analysis, we have obtained the
following findings regarding the current state of security tools’
effectiveness and usage in the industry.

RQ1: Our empirical analysis revealed that the selected auto-
mated security tools can identify 14 different types of vulnerabilities.
Among the attacks in our dataset, a total of 32 out of 127 exploits
were associated with vulnerabilities in these 14 categories. These 32
vulnerabilities resulted in a total damage of approximately 271.5
million USD. Notably, the top two types of vulnerabilities in the at-
tack dataset involve concepts such as coding logic or sanity checks
or on-chain oracle manipulation, which in turn cannot be detected
by current automated security tools.

RQ2: The evaluation indicates that automated security tools
could have potentially prevented 11 out of 32 in-scope attacks, re-
sulting in a total loss of 149 million USD. However, security tools
tend to generate numerous insignificant reports, leading to a poten-
tially overwhelming number of false positives. All detected vulner-
abilities were related to reentrancy, highlighting the effectiveness
of security tools against this type of vulnerability but also the ineffi-
ciency against other types. Furthermore, our analysis indicates that

existing security tools neglect protocol layer vulnerabilities. Inter-
estingly, semi-automated tools could potentially prevent 47 attacks
involving code logic absence, sanity checks, and logic errors.

RQ3: Our survey results show that developers tend to use light-
weight tools that can be easily integrated into the development
life cycle, such as linters, while auditors use more sophisticated
tools with greater bug-finding capabilities (e.g., static analyzers).
The majority of developers (92%) prefer open-source tools, while
over half of the participants reported using in-house security tools.
We found that academic tools used in research evaluations and
benchmark studies are not commonly used in practice. Further-
more, about 59% of developers and 48% of auditors use tools that
can detect logic-related bugs, which are often the root cause of
high-impact attacks. The majority of auditors (76%) reported using
security tools for up to 20% of their audit time.

RQ4: The results of our survey indicate that developers prefer
security tools with low false negative rates, while auditors prefer
tools with low false positive rates since they are responsible for
triaging reports. In addition, auditors place a greater emphasis
on the tool’s setup process and its bug-finding capabilities, while
developers prioritize tools that can be easily integrated into their
development workflows. Both auditors and developers consider
ease of use, documentation, and report quality to be important
factors when selecting security tools.

RQ5: Our findings reveal that both developers and auditors
consider logic-related bugs and oracle manipulation vulnerabilities
as significant threats that are inadequately addressed by security
tools. They express the need for better support for these types of
vulnerabilities. While the over half (52.4%) of auditors find security
tools helpful for auditing, a notable proportion (38.1%) do not find
them useful, highlighting the need for further improvement in the
development and use of security tools for auditing purposes.

Availability: All the data and analysis from this study are ac-
cessible at https://github.com/StefanosChaliasos/sc-defi-security/.

2 BACKGROUND
The literature on the evaluation of automated security tools for
smart contracts has been primarily focused on assessing their ef-
fectiveness by constructing various benchmarks (see Figure 1). Fer-
reira et al. [18] developed Smartbugs, an extendable evaluation
framework that facilitates the integration and comparison between
multiple security tools that analyze EVM and Solidity smart con-
tracts. In [14], the authors employed 9 automated analysis tools
using two datasets; one consisting of 47K contracts for consistency
evaluation, and the other one, 69 annotated vulnerable contracts
for precision evaluation. Ren et al. [42] proposed a comprehensive
4-step evaluation process for minimizing bias in the assessment of
automated tools.

Contrary to previous work, our study aims to evaluate the real-
world impact of automated security tools. Perez and Livshits [37]
surveyed 23K smart contracts reported as vulnerable in 6 academic
papers and found that only 1.98% of them had been exploited since
deployment, highlighting a potentially high number of false pos-
itives in existing techniques. In contrast, we focus on assessing
automated tools’ false negatives and gaining a deeper understand-
ing of their limitations.

2

https://github.com/StefanosChaliasos/sc-defi-security/

Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Papers Venue Dataset Vulnerabilities Tools Running
Tools

Exploited
Contracts

Measured
Impact

Surveyed
Practitioners

Durieux et al. [14] ICSE’20 69 manually annotated vulnerable con-
tracts and 49K on-chain contracts

9 9 ✓ ✗ ✗ ✗

Ren et al. [42] ISSTA’21 176 contracts retrieved fromGithub, EIPs,
Academic papers

6 6 ✓ ✗ ✗ ✗

Perez et al. [37] USENIX SEC’21 23K vulnerable contracts reported by six
recent academic projects

6 6 ✓ 463 1.7M USD ✗

Zhang et al. [60] ICSE’23 516 from codearena and on-chain ex-
ploits

17 38 ✗* 54 ✗ ✗

This work 127 on-chain exploits 39 5 ✓ 127 2.3B USD ✓

Figure 1: Point-to-point comparison of related work on evaluating automated security tools. *: This paper categorizes bugs in
machine unauditable bugs. Two tools, Slither and Oyente, were used not to measure false positives and false negatives, but to
validate whether the tools were able to detect MUB bugs as defined in the study.

Zhang et al. [60] performed a systematic investigation of 462
defects reported in CodeArena audits and 54 exploits to study the
extent to which existing tools could detect them. Our work takes a
different approach by actually running the tools against exploits
and reporting both cases where the tools have false negatives and
cases where the tools lacked appropriate oracles. Wan et al. [49]
surveyed 156 practitioners to understand their perceptions and
practices on smart contract security. Our study on the other hand,
focuses on surveying dapp developers and auditors to investigate
how they use smart contract security tools.

In contrast to previous studies, this paper presents a mixed-
methods investigation into the effectiveness and usage of security
tools. The aim is to provide a comprehensive overview of the current
status and offer valuable insights for researchers and practitioners
to advance the state-of-the-art in smart contract and DeFi security.

3 METHODOLOGY
Weprovide an overview of themethodswe employed to evaluate the
capability of current security tools to find real-world vulnerabilities
and understand practitioners’ experience when using such tools.
Specifically, we describe the dataset containing real-world exploits,
the tool selection criteria, and the benchmarking process. Further,
we focus on the design of the surveys, participant demographics,
and how we analyzed the results.

3.1 Empirical Evaluation on Attacks

Dataset. We use the dataset of DeFi attacks presented by Zhou et
al. [64] as a basis for our analysis. The dataset includes a compre-
hensive analysis and classification of 181 real-world, high-impact
DeFi attacks. Attack details involve underlying vulnerabilities in
smart contracts, corresponding exploits, and monetary losses. The
vulnerabilities are categorized into five layers including Network,
Consensus, Smart Contract, DeFi Protocol, and Auxiliary Service. Our
work focuses on the Smart Contract and the DeFi Protocol layers,
because these are typically the layers where developer errors occur
and security tools focus their analyses. Hence, we filtered out all
vulnerabilities related to other layers. This resulted in a dataset
of 127 attacks. Figure 2 presents the vulnerability types as reported

Vulnerability Layer # Tools

So
lh
in
t[
39
]

Sl
ith

er
[1
6]

M
yt
hr
il
[1
1]

Co
nF

uz
zi
us

[4
7]

O
ye
nt
e
[3
3]

Absence of coding logic or sanity check SC 42
On-chain oracle manipulation PRO 29
Reentrancy SC 13 ● ● ● ● ●
Liquidity borrow, purchase, mint, deposit PRO 10
Camouflage a token contract PRO 9
Token standard incompatibility PRO 8
Function/State Visibility Error SC 8 ●
Other unsafe DeFi protocol dependency PRO 7
Other Inconsistent, improper or
unprotected access control SC 5 ● ● ● ● ●

Logic Errors SC 5
Unfair slippage protection PRO 4
Unfair liquidity providing PRO 4
Direct call to untrusted contract SC 4 ●
Other protocol vulnerabilities PRO 3
Governance attack PRO 3
Transaction Order Dependence PRO 2 ● ● ●
Other coding mistakes SC 2
Delegatecall to Untrusted Callee SC 2 ● ● ●
Unsafe call to phantom function PRO 1
Improper asset locks or frozen asset SC 1 ● ●
Other unfair or unsafe DeFi protocol
interaction PRO 1

Camouflage a non-token contract PRO 1
Weak Randomness PRO 0 ● ●
Unhandled or mishandled exception SC 0 ● ● ● ● ●
Unbounded or gas costly operation SC 0 ●
Timestamp Dependence PRO 0 ● ● ● ● ●
Shadowing State Variables SC 0 ●
Outdated compiler or solidity version SC 0 ● ● ●
Integer Overflow and Underflow SC 0 ● ● ● ●

Figure 2: Summary of vulnerability categories and the num-
ber of corresponding exploits in the Zhou et al. dataset [64].
● indicates tool support for a corresponding vulnerability
type. An empty cell indicates that a tool does not support
the respective vulnerability. SC: Smart Contract Layer, PRO:
Protocol Layer. We exclude vulnerability types that (1) the
tools cannot support and (2) do not exist in the dataset. Note
that one exploit can be caused due to multiple vulnerabili-
ties.

in [64] while Figure 3 depicts the total impact of the correspond-
ing attacks. Additionally, we downloaded the source code 1 and
bytecode of the smart contracts that were attack targets.

1via etherscan when available

3

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaliasos et al.

Attacks 127
Damage 2,331,903,028 $
Attacks out of selected tools’ scope 95 (75%)
Damage out of selected tools’ scope 2,060,349,987 $ (88%)
Attacks in selected tools’ scope 32 (25%)
Damage in selected tools’ scope 271,553,041 $ (12%)

Figure 3: Overall descriptive statistics of the analysed at-
tacks.

We chose this dataset because it reflects the real-world attacks
that have occurred in the smart contract and DeFi ecosystem. While
other related works [14, 42] have employed datasets of known
vulnerable contracts or contracts with induced vulnerabilities, we
believe that our selection of real-world attacks provides a more
representative sample of the types of vulnerabilities smart contract
developers and auditors should be aware of because they have led
to major losses in deployed protocols. Furthermore, the contracts
in the dataset have greater complexity than minimal examples,
making reasoning about them more challenging.
Tools Selection. To select the security tools for our study, we first
conducted an advanced keyword search on Google Scholar 2 and
followed references to identify additional tools. We also searched
for security tools in GitHub repositories. The above process resulted
in 75 tools.

Next, we applied a number of criteria to narrow down our selec-
tion. Specifically, we focused on (1) the availability of source code
(51 tools), (2) maintenance (14 tools) 3, (3) ability to run automat-
ically without input (7 tools), (4) popularity among practitioners
(e.g., prioritize tools with more GitHub stars and survey results),
and (5) repeated use in academic papers (i.e., higher reference count
and usage in evaluations/comparisons). We also included at least
one tool based on the following techniques: linting, static analysis,
fuzzing, and symbolic execution. Notably, focusing on tools that
are based on different analyses methods is an important dimension
of our study.

Based on the above criteria, we ended up with the following
tools: ConFuzzius [47], Mythril [11], Oyente [33], Slither [16], and
Solhint [39]. Solhint, Slither, and Mythril are widely recognized as
the most popular and up-to-date linter, static analyzer, and symbolic
executor, respectively. ConFuzzius is the most updated fuzzer that
meets our selection criteria. Despite Oyente not being actively
maintained, 4 we chose to include it in our analysis due to its
status as one of the earliest academic tools, and its continued use
in evaluations of numerous academic works [7, 9, 14, 21, 25, 27, 30,
35, 36, 38, 42, 46–48, 50, 57, 58, 61].

Figure 2 depicts the vulnerabilities that each selected tool can
identify. Note that the tools cannot detect every programming error
related to a vulnerability type. For example, in the case of “Other
Inconsistent, improper or unprotected access control”, Slither can only
detect some of the bugs that can lead to this defect type. In the

2“Smart contract”, “Smart contract security”, “Ethereum”, “ETH”, “Ethereum Virtual
Machine”, “EVM”, “EVM bytecode”, “Solidity”, “Ethereum automated analysis tools”,
“Blockchain”, “Blockchain security”, “Ethereum security”, “Ethereum vulnerabilities”,
“DeFi”, “Decentralized Finance”
3We define maintained tools as those that have had commits in the last year.
4There is minimal support from the SmartBugs team fixing various errors, so it can
still be used.

Security Tool

Smartbugs [18]

Results

Post-Processing

Analysis

Vulnerable
Contract

Maps identified
vulnerabilities to the
dataset [64] entries

Runs tools on the
provided contracts

DeFi attacks
dataset [64]

Figure 4: Evaluating the effectiveness of security tools.

supplementary material, we provide a comprehensive overview
of the tool selection process and a detailed mapping between tool
vulnerabilities and the vulnerability categories of Zhou et al. [64].
Benchmarking. Figure 4 summarizes our benchmarking ap-
proach. To obtain results from the selected tools we utilized the
SmartBugs framework [18] (see also Section 2). 5 Next, we manu-
ally tracked all vulnerability types that each tool could detect and
mapped them to the vulnerabilities of Figure 2, i.e., the vulnera-
bilities coming from the dataset. We used a post-processing script
to integrate this information with the output of the SmartBugs
framework and fed the data into an SQLite database for further
analysis. Adding support for more tools is straightforward, as it
only requires including the tool in SmartBugs and provide a CSV
file that describes the mapping of the tool’s detected vulnerabilities
to our toolchain.

After retrieving all results, we performed various sanity checks to
verify that the results were consistent. In the case of a true positive,
two authors independently examined if the result is correct. Solhint
identified a number of defects of the following type: “Function/State
Visibility Error”, in five different exploited contracts. However, all
cases were false alarms. Finally, we did not try to manually verify
the rest of the results (i.e., potential false positives), and we argue
that most of the reports should have been either false positives or
vulnerabilities that cannot be exploited in practice, as the contracts
in question had millions of USD in TVL, and hence attackers would
have had high motivation to attack them.

3.2 Surveys
Protocol. To better understand how developers and auditors per-
ceive and use security tools, we conducted a survey campaign.
To do so, we followed Kitchenham and Pfleeger’s guidelines [28]
(also used in similar studies [10, 49]). Further, we employed best
practices [44] to boost practitioner participation. Our survey was
anonymous and we made all questions optional. In addition, we
added an "other" option where possible to increase response rates.
Questions were divided into three categories:

5We modified SmartBugs to ensure that the latest version of the selected tools was
always used, all detectors capable of detecting security vulnerabilities were enabled,
and a one-hour timeout per tool per contract was employed. When a tool could accept
either source code or bytecode as input, we used both to evaluate its effectiveness.

4

Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(1) Demographics to understand the respondents’ background.
(2) Familiarity/usage of security tools during development

and auditing to assess if practitioners are well acquainted
with security tools and how they use them.

(3) Experience with security tools to understand how satisfied
practitioners are and how these tools can be improved.
To fine-tune our campaign, we performed the following steps.

Two authors independently designed two slightly distinct surveys,
one for developers and one for auditors. Then, they converged on
the questions that should be included in the first versions of the
surveys. Moving forward, the first round of the surveys took place
with a set of 𝑁 = 3 per survey where we asked the respondents to
provide feedback. After that first iteration, we adjusted the ques-
tions and performed the same with 𝑁 = 5 per survey. We used the
feedback and responses to fine-tune the multiple-choice questions.
Respondent selection and demographics. Our aim was to fo-
cus our surveys on practitioners with experience working on proto-
cols with high TVL, which in turn, are the main targets of attackers.
Instead of focusing on getting as many responses as possible, we fo-
cused on obtaining high-quality responses. Although this strategy
might bias our results, it was essential to focus on developers of top
protocols and auditors who assess such protocols to understand
the direct impact of security tools.

To recruit respondents, we first contacted developers from the
top 200 DeFi protocols, as reported by Defillama [2]. 6 For auditors,
we looked at the auditing companies with the most audit reports
for the top 200 protocols and contacted auditors from those compa-
nies. We also contacted the top 100 auditors from Code4Arena [1],
as independent auditors are also involved in auditing high-profile
projects. We received a total of 49 responses: for the developers
survey, out of the 266 messages/emails sent, we successfully re-
ceived 27 responses, resulting in a response rate of 10%. Similarly,
for the auditor survey, we received responses from 22 out of the
132 messages sent, corresponding to a response rate of 16%. Fig-
ure 5, presents an overview of the demographics of our survey
participants.
Data analysis. We analyzed the results based on question types.
For multiple-choice and Likert-scale questions, we reported respon-
dent percentages per option. For open-ended questions, we followed
an inductive approach in which two authors separately performed
open card sorting and regularly discussed emerging themes un-
til an agreement was reached. In the rest of this work, we report
percentages given the total responses to each question.

4 RESULTS
In this section, we present the findings of our mixed-method inves-
tigation aimed at addressing our research questions.

4.1 Effectiveness and Impact of Security Tools
on Real-World Exploits

Recently, automated security tools for detecting vulnerabilities in
smart contracts have received increased attention. Previous stud-
ies [14, 37, 42] have evaluated their effectiveness by measuring
recall and precision on datasets containing contracts sourced from

6Queried at 15/1/2023.

Developers Auditors

Years of experience in smart contract development/auditing
more than 5 8 (31%) 5 (23%)
3-5 6 (23%) 3 (14%)
1-2 10 (39%) 6 (27%)
less than one 2 (8%) 8 (36%)

Organization’s size
more than 250 0 (0%) 1 (5%)
50-250 5 (19%) 5 (24%)
26-50 3 (12%) 1 (5%)
6-25 15 (58%) 9 (43%)
1-5 3 (12%) 0 (0%)
Independent n/a 5 (24%)

Main Targeted blockchains
Ethereum 25 (93%) 22 (100%)
Polygon 15 (56%) 15 (68%)
Avalanche 6 (22%) 10 (46%)
Arbitrum 11 (41%) 9 (41%)
BSC 7 (26%) 8 (36%)
Fantom 7 (26%) 11 (50%)
Solana 2 (7%) 3 (14%)
Other 6 (22%) 5 (23%)

Status of most mature dapp developed
Mainet 25 (96.2%) n/a
Development 1 (3.8%) n/a

Total 27 22

Figure 5: Survey participant demographics.

Tool (Version) Method Attacks
In Scope

Detected Damage
In Scope

Detected
Damage

ConFuzzius (0.0.2) Fuzzing 22 0 $ 256,393,948 $ 0
Mythril (0.23.15) SE 24 1 $ 263,104,948 $ 25,236,849
Oyente (480e725)* SE 20 0 $ 247,443,948 $ 0
Slither (0.8.3) SA 20 11 $ 213,793,948 $ 149,792,690
Solhint (3.3.8) Linting 25 0 $ 213,292,041 $ 0
Total 32 11 $ 271,553,041 $ 149,792,690

Figure 6: Tool effectiveness and damage that could have
been prevented. SE: Symbolic Execution, SA: Static Anal-
ysis. * Used the forked version from: https://github.com/
smartbugs/oyente.

blockchains (e.g., Ethereum) or manually crafted vulnerable con-
tracts. Additionally, Zhang et al. [60] surveyed automated tools to
determine their ability to detect various vulnerability categories.
However, a key question that remains unanswered is the real-world
impact of these tools, particularly in preventing significant exploits.
To address this question, we conducted a comprehensive analysis
of vulnerabilities in DeFi protocols that have led to significant ex-
ploits and assessed the effectiveness of automated security tools in
preventing these exploits. Additionally, we quantified the potential
funds that could have been saved by utilizing these tools.
Automated tools scope. Figure 2 illustrates the scope of the se-
lected security tools. We find that the automated security tools have
oracles for the vulnerabilities that lead to the exploit for only 25% of
the 127 attacks studied. These attacks cause a total of 271 M USD
in monetary losses, amounting to 12% of the total damage incurred
by attacks in the dataset (c.f. Figure 3). Notably, the automated
security tools do not have oracles for detecting certain critical vul-
nerabilities, such as absence of code logic or sanity checks and oracle
manipulation. Conversely, the tools tend to focus on vulnerabilities
that do not appear to be frequently targeted by adversaries in high-
profile attacks, such as integer overflows and underflows, as well as
unhandled or mishandled exceptions (see Figure 2).

5

https://github.com/smartbugs/oyente
https://github.com/smartbugs/oyente

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaliasos et al.

Vulnerability Slither Oyente ConFuzzius Mythril Solhint Total

D ODI D ODI D ODI D ODI D ODI TA D ODI
Reentrancy 11 69 0 0 0 1 1 18 0 11 13 11 71
Function/State Visibility Error ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0 62 8 0 62
Other inconsistent, improper or unprotected access control 0 8 0 0 0 0 0 9 0 10 5 0 19
Direct call to untrusted contract ✗ ✗ ✗ ✗ ✗ ✗ 0 0 ✗ ✗ 4 0 0
Transaction Order Dependence ✗ ✗ 0 1 0 0 0 0 ✗ ✗ 2 0 1
Delegatecall to Untrusted Callee 0 5 ✗ ✗ 0 0 0 0 ✗ ✗ 2 0 5
Improper asset locks or frozen asset 0 8 ✗ ✗ 0 0 ✗ ✗ ✗ ✗ 1 0 20
Weak Randomness 0 11 ✗ ✗ ✗ ✗ ✗ ✗ 0 0 0 0 11
Unhandled or mishandled exception 0 84 0 0 0 3 0 25 0 47 0 0 93
Unbounded or gas costly operation ✗ ✗ ✗ ✗ ✗ ✗ 0 17 ✗ ✗ 0 0 17
Timestamp Dependence 0 46 0 0 0 2 0 46 0 55 0 0 69
Shadowing State Variables 0 55 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0 0 55
Outdated compiler or solidity version 0 69 0 73 ✗ ✗ ✗ ✗ 0 103 0 0 109
Integer Overflow and Underflow 0 47 0 5 0 7 0 36 ✗ ✗ 0 0 69

Figure 7: Summary of tool results. D (Detected). ODI (Other Detected Issues): other findings including false positives, defects
that cannot be exploited (e.g. in protected functions), or exploitable defects not included in the dataset (i.e., not used in the
attacks). TA (Total Attacks).

Tool effectiveness on real-world vulnerabilities. Out of 32
attacks that automated security tools can reason about the under-
lying vulnerabilities, only 11 of them could have been detected
and potentially prevented if the tools were used (see Figure 6). 7
Figure 7 depicts the results of the tools. Slither detects the most
vulnerabilities, but it also reports many false positives (FP). This can
be detrimental to the usability of security tools as the number of
reports that cannot lead to exploits may overwhelm users. Further-
more, our evaluation indicates that all tools detect vulnerabilities
that were not utilized to exploit the assessed contracts, with static
analysis and linting tools reporting a greater number of potential
false alarms in comparison to other methods.
Detecting different vulnerability types. Notably, all of the 11
aforementioned attacks were caused by reentrancy vulnerabil-
ities, suggesting that the focus on reentrancy by academic re-
searchers [15, 30, 40, 55] has led to the development of effective
tools for this category. Despite the effectiveness of these tools in
detecting reentrancy vulnerabilities, there are still major issues. Of
the five selected tools, only three were able to detect at least one
vulnerability that led to a significant exploit. Additionally, 10 of the
vulnerabilities could only be detected by Slither.

Automated security tools (see Figure 2) are unable to detect “Ab-
sence of coding logic or Sanity check” and “Logic errors.” Thus, it is
crucial to determine how many attacks could have been prevented
by tools capable of detecting such errors, such as property-based
fuzzers, formal verification, and model-checking tools. Notably,
such tools could have potentially prevented 37% (47/127) of the
exploits in the dataset, amounting to 1,116,118,649 USD in damage.
When combining these tools with automated security tools, the
total number of (potentially) preventable exploits in the dataset
rises to 75, accounting for 59% of the attacks and 1,359,921,690 USD
(58%) of the total damage. Our results complement those of Zhang et
al. [60], who found that 79.5% of real-world bugs cannot be detected
by automated tools alone. However, their research did not consider
the effectiveness of semi-automated tools. Zhang et al. [60] also
observed that logical errors often have generalized abstract models,
indicating that human involvement could be crucial in construct-
ing testing oracles. This finding is consistent with our preliminary

7Given that the tools were available in the time of the attack.

findings. We leave it to future work to evaluate the practical effec-
tiveness of semi-automated tools that can detect logic-related bugs
and to assess the difficulty of writing specifications/properties for
smart contracts that have been exploited.

Potential preventable losses. Our analysis shows that the total
funds that could have been saved if selected tools were employed
amount to 149,792,690 USD, highlighting the importance of security
tools in protecting smart contracts.

Conclusions for RQ 1, RQ 2
• In a subset of 32 attacks that automated security tools
could have detected, only 11 of the exploited vulnera-
bilities were detected, highlighting a significant missed
opportunity to enhance the security of smart contracts.

• All of the detected vulnerabilities were related to reen-
trancy, indicating the effectiveness of the tools in de-
tecting this type of vulnerability but also highlighting
the inefficiency of automated tools in detecting other
vulnerabilities.

• The top two types of vulnerabilities, absence of coding
logic or sanity checks and on-chain oracle manipulation,
cannot be detected by current automated security tools.
Moreover, we observe that the majority of protocol-layer
vulnerabilities are out of the scope of security tools.

• Semi-automated tools may be able to prevent 47 attacks
that involve absence of code logic or sanity checks and
logic errors.

• The tools generate many insignificant reports, leading
to a potentially overwhelming number of false positives.

• The total funds that could have been saved if the tools
were employed are 149,792,690 USD, underscoring the
importance of security tools in preventing smart con-
tract vulnerabilities.

Call to action: Security tools should focus on detecting
vulnerabilities beyond reentrancy to be more effective in
securing smart contracts and DeFi applications.

6

Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Responses

Developers toolkits
IDE

Linter
Runtime monitoring

Static analysis
Fuzzer

Symbolic execution
Formal verification

Other
Automated patcher Devs

Auditors

Figure 8: Overall practitioner experience with different tool
categories. Other includes tools that employ more than one
technique.

0 10 20
Number of Responses

OSS

Internally developed

Extended existing OSS

Third-party service

Not using security tools

92.6%

51.9%

33.3%

25.9%

7.4%

Figure 9: Different tool types used during development.

Discussion. Despite almost a decade of research and development,
automated security tools are still inefficient in detecting vulnerabil-
ities in real-world contracts with high TVL, while reporting many
potentially insignificant issues. Hence, further research is needed to
improve the effectiveness and usability of these tools to better pro-
tect against financial losses due to vulnerabilities in smart contracts,
while it is important to add support for more vulnerabilities.

4.2 Familiarity and Usage of Security Tools
In this section, we aim to explore the role of security tools in the
smart contract development lifecycle and DeFi audits, specifically
focusing on how practitioners utilize these tools. To address this
question, we survey both developers and auditors. In the following,
we present the results of the surveys and analyze their implications
for the development of secure dapps and effective DeFi audits.
Tool familiarity and usage for developers and auditors. Fig-
ure 8 illustrates the different types of tools that both developers and
auditors have used. The category of tools that most practitioners
have used is developer toolkits, followed by IDEs. These tools are
primarily used for developing, deploying, debugging, and testing
smart contracts. Interestingly, we observe that developers tend to
favor lightweight tools such as linters, while auditors prefer tools
with greater bug-finding capabilities, such as static analyzers and
symbolic executors. Furthermore, developers have more experience
using runtime monitoring tools, as most audits are performed on
contracts before their deployment. Additionally, we found that de-
velopers have used an average of 4.5 different types of tools, while
auditors have used an average of 5.3.

0% 10% 20% 30% 40% 50% 60% 70% 80%
Percentage of Responses

Slither
Solhint

Runtime monitoring
Foundry’s fuzzer

Mythril
Ethlint

Echidna
Remix-analyzer

Other fuzzer
Certora’s prover

Other SE
Other FV

MythX
Other linter

Other SA
Manticore
Securify2

Maian
Oyente Devs

Auditors

Figure 10: Security tools used by developers and auditors.

Reported tool usage. We further investigated the types of se-
curity tools that practitioners use during development to secure
decentralized applications (c.f. Figure 9). Only two participants
reported that they do not use any tool for this purpose. The ma-
jority (92%) of participants report that their organization utilizes
open-source tools, and many invest effort into developing internal
tools or extending existing open-source tools. Additionally, 25%
of participants reported that their organization uses third-party
services typically provided by auditing firms. The prevalence of
open-source tools highlights the importance of collaboration and
community-driven efforts to improve security in the decentral-
ized application ecosystem. Open-source tools have the potential
to reach a wider audience and have a greater impact, ultimately
leading to more secure and reliable decentralized applications.
Utility of specific tools during development and auditing.
Next, we explore which specific tools developers and auditors
use during the development and auditing of dapps. Figure 10 dis-
plays the results of our investigation. The distribution of tool usage
closely mirrors that of Figure 8. It’s worth noting that many audi-
tors’ responses included “other” choices. This is because, in auditing
companies, it is common for in-house security analysis tools to be
developed and used in audits. Another noteworthy result is that var-
ious academic tools, such as Maian, Oyente, and Securify2, which
are commonly used in scientific paper evaluations and benchmark-
ing studies [14, 42, 59], are not used in practice. This highlights
the need for academia to adapt its comparisons and benchmarks to
tools that are actually used by the community.

As we observed in Section 4.1, automated security tools cannot
detect logic-related vulnerabilities. Thus, it is crucial to determine
how many developers and auditors currently use tools capable of
detecting such errors (i.e., formal verification and property-based
fuzzing). Our surveys reveal that 59% of developers and 48% of
auditors utilize at least one such tool.
Property-based tests and application specifications. As al-
ready mentioned, some tools require additional inputs, such as
specifications of the smart contracts under test. Hence it is essential

7

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaliasos et al.

to understand who is responsible for providing these inputs. 40%
of the respondents indicated developers as responsible for writing
specifications/property tests for semi-automated security tools, fol-
lowed by 29% for auditors and developers, 20% for auditors, and 11%
of the respondents were unsure. As the effectiveness of such tools
heavily relies on the quality of the provided inputs, we argue that
both auditors and developers should participate in that process.

Time spent on tool usage by auditors. Another critical question
to consider is how much time auditors spend running, fine-tuning,
and validating the results of security tools. The results of our survey,
indicate that the majority (76%) of auditors spend a small proportion
(between 0%–20%) of their time using such tools. 19% spend between
21% to 40%, while 5% spent 41% to 60%. This suggests that auditing
is still primarily a manual effort. While there is certainly potential
for tools to improve and automate certain aspects of the auditing
process, it will continue to be predominantly a manual effort.

Conclusions for RQ 3.
• Overall we observe that developers tend to employ more
lightweight tools, including linters, whereas auditors
utilize tools with greater bug-finding capabilities (e.g.,
static analyzers). In addition, developers, use runtime
monitoring tools more than auditors.

• Academic tools that appear in the context of research
evaluations and benchmark studies such as Oyente, are
not used in practice.

• 59% of developers and 48% of auditors utilize tools that
can reveal logic-related bugs that are the root cause of
many high-impact attacks.

• The majority of auditors (76%) spent only up to 20% of
their time using security tools during audits, indicating
that the auditing process is mainly a manual effort.

Call to action. To bridge the gap between research and
practice, researchers must consider three key factors. First,
they should determine if the tools they create will be incor-
porated into development processes or employed during
audits, focusing on prioritizing relevant features. Secondly,
emphasizing the detection of vulnerability types that cur-
rently cannot be detected by existing security tools is vital.
Finally, the evaluation of scientific papers should include
benchmarks based on genuine real-world attack scenarios
for more accurate and relevant results.

Discussion. As different security tools may use varying tech-
niques, with some being more resource-intensive than others, it is
important to match tools appropriately to different stages of the
development lifecycle. According to our survey results, developers
tend to prefer tooling that can be used during the development
process, such as linters, static analyzers, or after deployment, i.e.
runtime monitoring tools. Therefore, it is crucial to develop tools
that can be easily integrated into developers’ daily routines. One
such example is Foundry’s property-based fuzzer [3], which, despite
being a relatively new tool, is already being utilized by a significant
number of developers.

Low false positives

Low false negatives

Ease of use

Documentation

Report quality 4.5

13.6

9.1

13.6

27.3

22.7

18.2

13.6

22.7

27.3

22.7

63.6

50.0

50.0

31.8

54.5

18.2

27.3

9.1

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

(a) Auditors

Low false positives

Low false negatives

Ease of use

Documentation

Report quality

3.8

3.8

3.8

3.8

11.5

3.8

7.7

34.6

3.8

19.2

7.7

26.9

34.6

23.1

61.5

65.4

50.0

15.4

69.2

7.7

23.1

19.2

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

(b) Developers

Figure 11: Importance of security tool characteristics.

4.3 What Makes Security Tools Valuable to
Practitioners

In this section, we aim to understand the factors that practition-
ers consider important when using security tools. Specifically, we
explore the value that security tools provide in the context of detect-
ing smart contract vulnerabilities and assess auditor satisfaction
with the results generated by security tools. By examining these
aspects, we can gain insight into what makes security tools valuable
to practitioners and how they can be further improved to better
serve the needs of the DeFi ecosystem.

Importance of tools’ characteristics. Results from a Likert-
based question on security tool characteristics are presented in
Figure 11. This survey question sought to understand the impor-
tance that both auditors and developers place on various aspects
of security analysis. The results indicate that both groups consider
all of the enumerated characteristics important, but there are some
differences in the degree to which each characteristic is prioritized.
For developers, low false negatives are perceived as more important
mainly because they want reassurance that their applications are
safe, whereas, for auditors, low false positives are considered to be
more crucial, since it’s their job to triage the reports. Additionally,
ease of use is a bit more important for auditors, while some auditors
do not place as much importance on report quality. Furthermore,
we included one open-ended question about other factors that could

8

Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

0% 10% 20% 30% 40% 50% 60%
Percentage of Responses

Logic errors
Oracle manipulation

Absence of coding logic
Reentrancy

Improper asset locks/frozen asset
Unhandled/mishandled exception

Token standard incompatibility
Other

Timestamp Dependence
Function/State Visibility Error

Integer Overflow/Underflow Devs

Auditors

(a) Opinions on the vulnerabilities that are difficult to identify
(1) manually (auditors), and (2) during development (develop-
ers).

0% 10%20%30%40%50%60%70%
Percentage of Responses

Oracle manipulation
Logic errors

Improper asset locks/frozen asset
Absence of coding logic

Unhandled/mishandled exception
Reentrancy

Other
Token standard incompatibility

Timestamp Dependency
Function/State Visibility Error

Integer Overflow/Underflow Devs

Auditors

(b) Opinions of developers and auditors on vulnerabilities that
are both crucial and cannot be detected by security tools.

Figure 12: Practitioner perspective on security tools and vul-
nerabilities.

positively or negatively affect the use of security tools. Many audi-
tors emphasized the importance of tool setup, in addition, to ease
of use. One participant highlighted the relation of time to configure
/ the severity of issues found. For developers, easy integration into
the development life cycle (e.g., continuous integration), ease of
customization, and the social aspect of other people using the tools
and detecting important bugs in real-world applications were the
most frequently mentioned factors. Overall, these findings highlight
the diverse needs and priorities of practitioners when it comes to
security tool features and underscore the importance of developing
tools that meet a wide range of requirements.
Exploring practitioners’ perspectives on challenging vulner-
abilities and available tooling for detecting such vulnerabil-
ities. Figure 12a sheds light on the most challenging vulnerabilities
faced by both developers and auditors during the development and
manual audit process, respectively. Developers identified logic er-
rors, oracle manipulation, and absence of coding logic as the most
difficult vulnerabilities to detect during development, which aligns
with the state of most common defects in high-profile real-world
attacks (see Figure 2). Auditors identified logic errors as the most
challenging vulnerability to detect manually, followed by several
vulnerabilities that existing tools have broad support for, such as

1 2 3 4 5

9.5% 28.6% 33.3% 19% 9.5%

Figure 13: Auditors’ satisfaction ratings of security tools
used for auditing, on a scale from 1 (not at all satisfied) to
5 (extremely satisfied).

integer overflows and reentrancy vulnerabilities, indicating that
tools are indeed useful for identifying such bugs.

Regarding vulnerabilities that cannot be detected by automated
security tools, both developers and auditors cited oracle manip-
ulation and logic errors as the most challenging (c.f. Figure 12b).
Additionally, both groups identified improper asset locks or frozen
assets as a vulnerability that requires better support from tools.
Overall, these findings emphasize the importance of developing
more sophisticated security tools to detect crucial vulnerabilities
that current tools may either not support or miss.

How auditors evaluate security tools for auditing smart con-
tracts. Our survey results indicate that a majority of participants
found security tools helpful when auditing smart contracts, with
52.4% rating them as 4 or 5 on a 5-point scale (c.f. Figure 13). How-
ever, a significant portion of respondents (38.1%) did not find se-
curity tools to be helpful or found them only somewhat helpful
(rated 1-2). This suggests that there is still room for improvement in
terms of the effectiveness and usability of security tools. In particu-
lar, participants highlighted the need for security tools to address
more complex vulnerabilities that pose a greater threat to DeFi
applications.

Conclusions for RQ 4 and RQ 5.
• Developers prioritize low false negatives in security
tools, while auditors prioritize low false positives in
security tools (in comparison to developers), as it is their
job to triage reports. Furthermore, auditors emphasize
the importance of tool setup and bug-finding capabili-
ties, while developers emphasize easy integration into
the development lifecycle.

• Both developers and auditors want better support for
tooling related to logic-related and oracle manipulation
vulnerabilities.

• While 52.4% of auditors find security tools helpful for
auditing, a significant portion (38.1%) do not find them
useful, highlighting the need for further improvement
in the development and use of security tools in auditing.

Call to action. Security tools should detect crucial vul-
nerabilities, such as logic-related and protocol-layer vul-
nerabilities (e.g., oracle-manipulation bugs), that can re-
sult in significant losses in practice. However, it is equally
important for security tools to meet high usability and
interoperability standards to be adopted by practitioners.

9

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaliasos et al.

5 DISCUSSION
5.1 Implications
Effectiveness, coverage, and need for manual inspection.
Our analysis shows the limited effectiveness of automated security
tools in detecting DeFi vulnerabilities. Figure 2 reveals that only
11 out of 32 (34%) vulnerability types in our dataset were detected
by the tools, emphasizing the insufficiency of current automated
tools for comprehensive security assurance in DeFi ecosystems.
Additionally, given the limited number of vulnerabilities covered
by security tools (32/127), smart contract security relies heavily on
manual inspections by designers, developers, or auditors. Our sur-
vey data indicates that only 59% of developers and 48% of auditors
utilize tools capable of identifying logic-related errors, stressing the
need for a holistic auditing approach combining automated tools
and manual reviews.
Emphasizing semi-automated tools for addressing critical
vulnerabilities. Our findings point to the necessity of semi-
automated security tools capable of detecting critical vulnerabilities
in the smart contract ecosystem. Automated tools, while able to
detect reentrancy vulnerabilities, fall short in covering logic-related
bugs and protocol-layer vulnerabilities, such as oracle manipulation.
Semi-automated tools, which incorporate user input to provide ora-
cles for detecting security issues, present a promising solution. We
encourage academia to focus on developing advanced tools that can
effectively identify and prevent high-impact vulnerabilities, com-
plementing practical tools already developed by the practitioner
community [3, 20]. For example, Liu and Li [32] have made progress
in this direction by utilizing dynamic analysis techniques to iden-
tify invariants, which can subsequently be utilized as inputs for
semi-automated tools.

5.2 Threats to Validity
We use a standard methodology [17] to identify validity threats,
which we mitigate where possible. This section discusses threats
to internal, construct, and external validity for both the empirical
analysis and the surveys.
5.2.1 Empirical analysis.

Internal. One potential threat to internal validity is that the tools’
results may be unsound. To mitigate this risk, we cross-checked
the results and manually verified the essential findings. We also
conducted sanity checks to ensure that the processing of the analy-
sis results was correct. Another potential threat is that the dataset
from Zhou et al. [64] may have incorrect data. To address this issue,
we manually verified the important findings, while the dataset is
open to the public for further verification.
Construct. A potential threat to construct validity is the setup of
the tools used in the analysis. To mitigate this risk, we followed the
documentation, the setting used in the tool papers, and ran the tools
on both source code and bytecodewhen available. However, we note
that ConFuzzius had the highest failure rate per contract, and while
we attempted to mitigate any compilation errors, the tool failed in
some cases because it could not deploy the targeted contract. Con-
Fuzzius (and fuzzers in general) typically require more fine-tuning
per execution, which is out of the scope of this work as we aimed
to measure the out-of-shelf solutions available to practitioners with

minimal setup. Another potential threat is mapping vulnerabilities
from tools to the vulnerability types of Zhou et al. [64]. To address
this issue, multiple authors performed the mapping independently,
and we iterated over the mapping until reaching an agreement. We
further consulted our mapping with the authors of [64].
External. A potential threat to external validity is the size of the
DeFi attacks dataset. We used the most extensive dataset with at-
tacks that have fine-grained information. Furthermore, we have
automated the whole process, so addingmore attacks to the analysis
is straightforward. Another potential threat is that we did not in-
clude all available tools in the analysis. In this work, we focused on
tools most likely to be used by practitioners (c.f. Figure 10). For each
analysis technique, we selected the most well-established tool. We
further included the most frequently used tool in academic paper
evaluations (i.e., Oyente). Finally, we ran several not-maintained
academic and industry tools (Securify2, SmartCheck, Conkas, Ma-
ian) and observed that their results did not change the paper’s
overall conclusions.
5.2.2 Surveys.

Internal. Our survey responses may be subject to a potential threat
to internal validity, as some respondents may not understand some
of the questions well. To reduce this risk, we highlighted in the
invitation message that all questions are optional, and that they
can skip any question that they do not understand. Additionally, to
mitigate this threat, we designed our survey in an iterative fashion,
as discussed in Section 3.2).
External. Our goal is to survey developers and practitioners that
work on projects with high TVL that are typically the targets of
adversaries. Hence, we meticulously selected who to invite and did
not share our surveys on social media or email lists to focus on the
quality of responses rather than quantity.

Furthermore, focusing on developers and auditors who work on
top protocols and are more experienced with security tools can pose
an external validity threat, because our results might not represent
the broader ecosystem. Another risk involves the fact that a large
percentage of the participants work for the same organizations. To
mitigate this risk, we sent up to three invites per organization.

6 RELATEDWORK

Smart Contract Attacks and Security. To detect vulnerabilities
in smart contracts, various tools using different techniques have
been developed. Static analysis [5, 6, 16, 27, 48] is one such approach,
where the source code or bytecode is analyzed without execution.
In contrast, dynamic analysis examines the smart contract while
executing it. Fuzzing [20, 25, 54] is a testing technique where inputs
are automatically generated to test the system’s behavior. Symbolic
execution [11, 19, 33, 34] and formal verification [38, 46] are other
well-known and frequently used techniques. However, formal verifi-
cation typically requires users to provide specifications of intended
behavior. In our study, we included one tool from each category
that can be executed automatically, providing a comprehensive
assessment of available solutions.
DeFi Attacks and Security. DeFi attacks present unique chal-
lenges compared to those in traditional financial systems, primar-
ily due to two key factors [41, 51]: (i) the transparency in DeFi’s

10

Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

application design, bytecode availability, and P2P transaction prop-
agation; and (ii) the composability of DeFi applications. Several
studies have examined DeFi attacks, including Zhou et al.’s five-
layered framework for incident categorization and evaluation [64].
Other significant works have focused on specific security issues.
For instance, the Flash Boys paper [12] was the first to explore
the front-running issue, while Zhou et al. pioneered the study of
sandwich attacks [63], which takes advantage of users’ slippage
settings in decentralised exchanges. DeFiRanger [53] extracted DeFi
actions and identified price oracle manipulation attacks using pat-
tern matching. DeFiPoser [62] employed SMT solvers to compose
DeFi protocols, aiming to generate attacks. Collectively, these stud-
ies highlight the complexity and unique challenges posed by DeFi
attacks. Additionally, our work underscores the limitations of tra-
ditional security tools that primarily focus on the smart contract
layer neglecting the protocol layer.
Surveys on smart contract vulnerabilities and security tools.
Atzei et al. [4] performed the first survey of smart contract attacks.
Chen et al. [8] conducted a more comprehensive survey of 40 vul-
nerabilities, 29 attacks, and 51 defense locations and underlying
causes, while Demolino et al. [13], categorized bugs based on typi-
cal developer pitfalls. Harz et al. [23] investigated 10 smart contract
verification tools, exhibiting various aspects of their security char-
acteristics. Hu et al. [24] assessed 39 analysis tools in terms of input
type and methodology. Finally, Kushwaha et al. [29] presented a
comprehensive survey of 86 analysis tools, the most of any research
publication and article, and examined their analysis approaches and
tool type. In constrast to these studies, we focus on the real-world
impact of security tools by evaluating them against high-profile
attacks and surveying practitioners.

In a different spirit, Groce et al. [22] conducted an analysis of
23 audits conducted by a prominent blockchain security company,
employing a combination of automated tools and manual reviews.
While security tools were utilized in 21 of the audits, it is notewor-
thy that only 4 out of 246 identified vulnerabilities were explicitly
detected by automated tools, specifically Slither. This finding sup-
ports the conclusion of our work that automated security tools
require improvement to enhance their practical utility. Further-
more, despite the study being three years old, it identifies data
validation (equivalent to absence of coding logic or sanity checks)
as the most common vulnerability within the audited contracts.
This observation underscores the persistent threat posed by this
category of bugs to the overall ecosystem.
Surveys of program analysis and security tools. Outside the
realm of smart contracts security, Christakis et al. [10] empirically
investigate what appeals to practitioners the most about a program
analyzer [10], while [45] evaluates the usability of security tools.
Johnson et al. [26] and Witschey et al. [52] explored why security
tools are underused despite their benefits. On the contrary, in this
work, we focus on how practitioners use security tools in the DeFi
ecosystem. Finally, to the best of our knowledge, we are the first to
survey auditors regarding security tool usage.

7 CONCLUSIONS
In conclusion, our evaluation of automated security tools, com-
bined with surveys of developers and auditors, reveals that existing

tools have limited effectiveness in detecting high-impact vulnera-
bilities, with only 8% of the attacks in our dataset being detected
by automated tools. This indicates that smart contract and DeFi
security has not been fully addressed yet. While reentrancy vul-
nerabilities can be detected, the tools do not adequately address
logic-related bugs and protocol-layer vulnerabilities. We propose
that researchers should prioritize the development of techniques
that cover a wider range of vulnerabilities, including logic-related
bugs, even if they partially require user input. Additionally, we sug-
gest developing distinct tools for developers and auditors, as they
have varying requirements regarding the capabilities of security
tools. We hope that our findings can provide valuable insights and
guidance for practitioners and researchers working in this dynamic
and challenging area.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.
Further, we would like to express our sincere gratitude to all the par-
ticipants who took the time to complete our surveys and provided
invaluable feedback for our research. We also extend our thanks to
Zhuo Zhang for the fruitful discussions on the impact of our results.
This work has been partially supported by the European Union’s
Horizon Europe research and innovation programme under grant
agreement No 101070599.

REFERENCES
[1] 2023. code4rena. https://code4rena.com/
[2] 2023. Defillama. https://defillama.com/
[3] 2023. Foundry’s fuzzer. https://book.getfoundry.sh/forge/fuzz-testing
[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks

on Ethereum Smart Contracts (SoK). In Principles of Security and Trust, Matteo
Maffei and Mark Ryan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
164–186.

[5] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis
Smaragdakis. 2020. Ethainter: A Smart Contract Security Analyzer for Com-
posite Vulnerabilities. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for Computing Machinery, New York, NY, USA, 454–469.
https://doi.org/10.1145/3385412.3385990

[6] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security
Analysis Framework for Smart Contracts. https://doi.org/10.48550/ARXIV.1809.
03981

[7] Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, Yan Cai, and Zijiang Yang.
2019. sCompile: Critical Path Identification and Analysis for Smart Contracts.
arXiv:1808.00624 [cs.CR]

[8] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A
Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses.
ACM Comput. Surv. 53, 3, Article 67 (jun 2020), 43 pages. https://doi.org/10.1145/
3391195

[9] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2021.
DefectChecker: Automated Smart Contract Defect Detection by Analyzing EVM
Bytecode. IEEE Transactions on Software Engineering PP (01 2021), 1–1. https:
//doi.org/10.1109/TSE.2021.3054928

[10] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from
Program Analysis: An Empirical Study (ASE ’16). Association for Computing Ma-
chinery, New York, NY, USA, 332–343. https://doi.org/10.1145/2970276.2970347

[11] ConsenSys. [n. d.]. Consensys/mythril: Security Analysis Tool for EVM bytecode.
supports smart contracts built for Ethereum, Hedera, quorum, Vechain, Roostock,
Tron and other EVM-compatible blockchains. https://github.com/ConsenSys/
mythril

[12] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-
tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

[13] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.
2016. Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights

11

https://code4rena.com/
https://defillama.com/
https://book.getfoundry.sh/forge/fuzz-testing
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.48550/ARXIV.1809.03981
https://doi.org/10.48550/ARXIV.1809.03981
https://arxiv.org/abs/1808.00624
https://doi.org/10.1145/3391195
https://doi.org/10.1145/3391195
https://doi.org/10.1109/TSE.2021.3054928
https://doi.org/10.1109/TSE.2021.3054928
https://doi.org/10.1145/2970276.2970347
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chaliasos et al.

from a Cryptocurrency Lab, Vol. 9604. 79–94. https://doi.org/10.1007/978-3-662-
53357-4_6

[14] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 530–541. https://doi.org/10.1145/3377811.3380364

[15] Noama Fatima Samreen and Manar H. Alalfi. 2020. Reentrancy Vulnerability
Identification in Ethereum Smart Contracts. In 2020 IEEE International Workshop
on Blockchain Oriented Software Engineering (IWBOSE). 22–29. https://doi.org/
10.1109/IWBOSE50093.2020.9050260

[16] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[17] Robert Feldt and Ana Magazinius. 2010. Validity Threats in Empirical Software
Engineering Research - An Initial Survey. 374–379.

[18] João F Ferreira, Pedro Cruz, Thomas Durieux, and Rui Abreu. 2020. Smartbugs:
A framework to analyze solidity smart contracts. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering. 1349–
1352.

[19] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. ETHBMC: A
Bounded Model Checker for Smart Contracts. In 29th USENIX Security Sym-
posium (USENIX Security 20). USENIX Association, 2757–2774. https://www.
usenix.org/conference/usenixsecurity20/presentation/frank

[20] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.
Echidna: Effective, Usable, and Fast Fuzzing for Smart Contracts (ISSTA 2020).
Association for Computing Machinery, New York, NY, USA, 557–560. https:
//doi.org/10.1145/3395363.3404366

[21] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. 243–269. https:
//doi.org/10.1007/978-3-319-89722-6_10

[22] Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn. 2020. What
are the Actual Flaws in Important Smart Contracts (And How Can We Find
Them)?. In Financial Cryptography and Data Security, Joseph Bonneau and Nadia
Heninger (Eds.). Springer International Publishing, Cham, 634–653.

[23] Dominik Harz and William Knottenbelt. 2018. Towards safer smart contracts: A
survey of languages and verification methods. https://arxiv.org/abs/1809.09805

[24] Bin Hu, Zongyang Zhang, Jianwei Liu, Yizhong Liu, Jiayuan Yin, Rongxing Lu,
and Xiaodong Lin. 2021. A comprehensive survey on smart contract construction
and execution: Paradigms, tools, and systems.

[25] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. Association for Computing Ma-
chinery, New York, NY, USA, 259–269. https://doi.org/10.1145/3238147.3238177

[26] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the 2013 International Conference on Software Engineering (San
Francisco, CA, USA) (ICSE ’13). IEEE Press, 672–681.

[27] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In NDSS.

[28] Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal opinion surveys.
Guide to advanced empirical software engineering (2008), 63–92.

[29] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No
Lee. 2022. Ethereum Smart Contract Analysis Tools: A Systematic Review. IEEE
Access 10 (2022), 57037–57062. https://doi.org/10.1109/ACCESS.2022.3169902

[30] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
ReGuard: Finding Reentrancy Bugs in Smart Contracts. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings
(Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery, New
York, NY, USA, 65–68. https://doi.org/10.1145/3183440.3183495

[31] Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun. 2018. S-gram:
towards semantic-aware security auditing for ethereum smart contracts. In Pro-
ceedings of the 33rd ACM/IEEE international conference on automated software
engineering. 814–819.

[32] Ye Liu and Yi Li. 2023. InvCon: A Dynamic Invariant Detector for Ethereum
Smart Contracts. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Association
for Computing Machinery, New York, NY, USA, Article 160, 4 pages. https:
//doi.org/10.1145/3551349.3559539

[33] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 254–269. https:
//doi.org/10.1145/2976749.2978309

[34] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-
Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering

(ASE). 1186–1189. https://doi.org/10.1109/ASE.2019.00133
[35] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.

SFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,
USA, 778–788. https://doi.org/10.1145/3377811.3380334

[36] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th annual computer security applications conference. 653–663.

[37] Daniel Perez and Benjamin Livshits. 2021. Smart Contract Vulnerabilities: Vul-
nerable Does Not Imply Exploited. In USENIX Security Symposium.

[38] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. VerX: Safety Verification of Smart Contracts. In 2020 IEEE
Symposium on Security and Privacy (SP). 1661–1677. https://doi.org/10.1109/
SP40000.2020.00024

[39] Protofire. 2023. Protofire/solhint: Solhint is an open source project created
by https://protofire.io. its goal is to provide a linting utility for solidity code.
https://github.com/protofire/solhint

[40] Peng Qian, Zhenguang Liu, Qinming He, Roger Zimmermann, and Xun Wang.
2020. Towards Automated Reentrancy Detection for Smart Contracts Based on
Sequential Models. IEEE Access 8 (2020), 19685–19695. https://doi.org/10.1109/
ACCESS.2020.2969429

[41] Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Lazzaretti, and Arthur Gervais.
2021. CeFi vs. DeFi–Comparing Centralized to Decentralized Finance. arXiv
preprint arXiv:2106.08157 (2021).

[42] Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang, Chengnian Sun,
Huizhong Li, and Yan Cai. 2021. Empirical Evaluation of Smart Contract Testing:
What is the Best Choice?. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021).
Association for Computing Machinery, New York, NY, USA, 566–579. https:
//doi.org/10.1145/3460319.3464837

[43] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:
Protecting existing smart contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934 (2018).

[44] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas
Zimmermann. 2013. Improving developer participation rates in surveys. In 6th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). 89–92.

[45] Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. 2020. Why
Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis Tools
for Security. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020).
USENIX Association, 221–238. https://www.usenix.org/conference/soups2020/
presentation/smith

[46] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2019.
VeriSmart: A Highly Precise Safety Verifier for Ethereum Smart Contracts.
arXiv:1908.11227 [cs.PL]

[47] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. ConFuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts.
In 2021 IEEE European Symposium on Security and Privacy (EuroS&P). 103–119.
https://doi.org/10.1109/EuroSP51992.2021.00018

[48] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 67–82. https://doi.org/10.1145/3243734.3243780

[49] Zhiyuan Wan, Xin Xia, David Lo, Jiachi Chen, Xiapu Luo, and Xiaohu Yang.
2021. Smart Contract Security: A Practitioners’ Perspective: The Artifact of a
Paper Accepted in the 43rd IEEE/ACM International Conference on Software
Engineering (ICSE 2021). In Proceedings of the 43rd International Conference on
Software Engineering: Companion Proceedings (Virtual Event, Spain) (ICSE ’21).
IEEE Press, 227–228. https://doi.org/10.1109/ICSE-Companion52605.2021.00104

[50] Wei Wang, Jingjing Song, Guangquan Xu, Yidong Li, HaoWang, and Chunhua Su.
2021. ContractWard: Automated Vulnerability Detection Models for Ethereum
Smart Contracts. IEEE Transactions on Network Science and Engineering 8, 2 (2021),
1133–1144. https://doi.org/10.1109/TNSE.2020.2968505

[51] Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik
Harz, and William J. Knottenbelt. 2022. SoK: Decentralized Finance (DeFi).
arXiv:2101.08778 [cs.CR]

[52] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. 2015. Quantifying Developers’ Adoption of
Security Tools. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Comput-
ing Machinery, New York, NY, USA, 260–271. https://doi.org/10.1145/2786805.
2786816

[53] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qin-
ming He, and Kui Ren. 2021. DeFiRanger: Detecting Price Manipulation Attacks
on DeFi Applications. arXiv:2104.15068 [cs.CR]

12

https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1109/IWBOSE50093.2020.9050260
https://doi.org/10.1109/IWBOSE50093.2020.9050260
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://arxiv.org/abs/1809.09805
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1109/ACCESS.2022.3169902
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1145/3551349.3559539
https://doi.org/10.1145/3551349.3559539
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/SP40000.2020.00024
https://github.com/protofire/solhint
https://doi.org/10.1109/ACCESS.2020.2969429
https://doi.org/10.1109/ACCESS.2020.2969429
https://doi.org/10.1145/3460319.3464837
https://doi.org/10.1145/3460319.3464837
https://www.usenix.org/conference/soups2020/presentation/smith
https://www.usenix.org/conference/soups2020/presentation/smith
https://arxiv.org/abs/1908.11227
https://doi.org/10.1109/EuroSP51992.2021.00018
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1109/ICSE-Companion52605.2021.00104
https://doi.org/10.1109/TNSE.2020.2968505
https://arxiv.org/abs/2101.08778
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/2786805.2786816
https://arxiv.org/abs/2104.15068

Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[54] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A Greybox Fuzzer for
Smart Contracts. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing
Machinery, New York, NY, USA, 1398–1409. https://doi.org/10.1145/3368089.
3417064

[55] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng.
2021. Cross-Contract Static Analysis for Detecting Practical Reentrancy Vulner-
abilities in Smart Contracts. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (Virtual Event, Australia) (ASE
’20). Association for Computing Machinery, New York, NY, USA, 1029–1040.
https://doi.org/10.1145/3324884.3416553

[56] Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma, Haijun Wang, and Jianjun
Zhao. 2022. xFuzz: Machine Learning Guided Cross-Contract Fuzzing. IEEE
Transactions on Dependable and Secure Computing (2022).

[57] Jiaming Ye, Mingliang Ma, Yun Lin, Yulei Sui, and Yinxing Xue. 2020. Clairvoy-
ance: Cross-Contract Static Analysis for Detecting Practical Reentrancy Vulner-
abilities in Smart Contracts. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 274–275.
https://doi.org/10.1145/3377812.3390908

[58] Pengcheng Zhang, Feng Xiao, and Xiapu Luo. 2019. SolidityCheck :
Quickly Detecting Smart Contract Problems Through Regular Expressions.
arXiv:1911.09425 [cs.SE]

[59] Pengcheng Zhang, Feng Xiao, and Xiapu Luo. 2020. A Framework and DataSet
for Bugs in Ethereum Smart Contracts. 139–150. https://doi.org/10.1109/
ICSME46990.2020.00023

[60] Zhuo Zhang, Brian Zhang, Xu Wen, and Zhiqiang Lin. 2023. Demystifying smart
contract vulnerabilities. In ICSE.

[61] Ence Zhou, Song Hua, Bingfeng Pi, Jun Sun, Yashihide Nomura, Kazuhiro Ya-
mashita, and Hidetoshi Kurihara. 2018. Security Assurance for Smart Contract. In
2018 9th IFIP International Conference on New Technologies, Mobility and Security
(NTMS). 1–5. https://doi.org/10.1109/NTMS.2018.8328743

[62] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais.
2021. On the just-in-time discovery of profit-generating transactions in defi
protocols. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 919–936.

[63] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
2021. High-frequency trading on decentralized on-chain exchanges. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 428–445.

[64] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye
Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2022.
SoK: Decentralized Finance (DeFi) Attacks. Cryptology ePrint Archive, Paper
2022/1773. https://eprint.iacr.org/2022/1773 https://eprint.iacr.org/2022/1773.

13

https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3324884.3416553
https://doi.org/10.1145/3377812.3390908
https://arxiv.org/abs/1911.09425
https://doi.org/10.1109/ICSME46990.2020.00023
https://doi.org/10.1109/ICSME46990.2020.00023
https://doi.org/10.1109/NTMS.2018.8328743
https://eprint.iacr.org/2022/1773
https://eprint.iacr.org/2022/1773

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Empirical Evaluation on Attacks
	3.2 Surveys

	4 Results
	4.1 Effectiveness and Impact of Security Tools on Real-World Exploits
	4.2 Familiarity and Usage of Security Tools
	4.3 What Makes Security Tools Valuable to Practitioners

	5 Discussion
	5.1 Implications
	5.2 Threats to Validity

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

