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ABSTRACT
To date, over 40 Automated Program Repair (APR) tools have
been designed with varying bug-fixing strategies, which have been
demonstrated to have complementary performance in terms of
being effective for different bug classes. Intuitively, it should be
feasible to improve the overall bug-fixing performance of APR via
assembling existing tools. Unfortunately, simply invoking all avail-
able APR tools for a given bug can result in unacceptable costs on
APR execution as well as on patch validation (via expensive testing).
Therefore, while assembling existing tools is appealing, it requires
an efficient strategy to reconcile the need to fix more bugs and the
requirements for practicality. In light of this problem, we propose a
Preference-based Ensemble Program Repair framework (P-EPR),
which seeks to effectively rank APR tools for repairing different
bugs. P-EPR is the first non-learning-based APR ensemble method
that is novel in its exploitation of repair patterns as a major source
of knowledge for ranking APR tools and its reliance on a dynamic
update strategy that enables it to immediately exploit and bene-
fit from newly derived repair results. Experimental results show
that P-EPR outperforms existing strategies significantly both in
flexibility and effectiveness.
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1 INTRODUCTION
Bug fixing is a challenging, time-consuming, and labor-intensive
task, often consuming a significant portion of developers’ efforts [41].
To address this challenge, Automated Program Repair (APR) [31]
has been dedicated to automatically fixing bugs without human in-
tervention, and has become a hot field in the software engineering
community. To date, more than 40 APR tools have been proposed
as the momentum for program repair is growing.

Practitioners have been exploring advanced techniques that
could overwhelmingly outperform all the other APR techniques
in all lines of bug-fixing performance. Nevertheless, various exper-
imental results in the literature suggest that there is at least one
APR tool whose bug-fixing merit cannot be achieved by other APR
tools [1, 9, 23, 24]. Different APR tools present complementary re-
pairability to each other. For example, as the recent state-of-the-art
APR tool, AlphaRepair [46] can correctly fix 50 Defects4J bugs un-
der normal fault localization setting, while there are 108 Defects4J
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Figure 1: Fixing capabilities of single top-performing APR
system vs. their integration over the years (2016-2022) on
Defects4J v1.2 bugs under normal fault localization setting.

bugs that cannot be fixed by it but can be correctly fixed by other
APR tools, as shown in Figure 1.

Given the results in Figure 1, it is tempting to try all APR tools so
that more bugs can be fixed, but trying all APR tools to fix a given
bug is simply impractical due to the unacceptable costs of tool in-
vocation and patch validation. For instance, Durieux et al. [9] spent
314 days executing and validating 11 APR tools even with Grid’5000
[3]. Additionally, a single APR tool could generate some plausible
patches for a given bug [36], and more APR tools would generate
more plausible patches [24], which will considerably increase the
difficulty of distinguishing the correct patch from plausible ones.
For this problem, the current state-of-the-art strategy, E-APR [1],
frames the selection as a supervised machine learning task, specifi-
cally a multi-label classification task, that involves identifying the
set of tools that should be used to fix a given bug from an ensem-
ble of tools. However, training E-APR requires a large amount of
labeled data, which is costly to obtain in the program repair field
(manually validated patches); moreover, model retraining is neces-
sary whenever a new tool is to be added, which limits its flexibility
and practicability.

In this paper, we propose a novel ensemble strategy for APR
that is motivated by the following hypothesis: different APR tools
achieve differing performance in bug fixing because they have
different repair preferences (i.e., a feature set of bugs that an APR tool
can fix). Our hypothesis is formulated based on our examination of a
number of bug-fixing examples, two of which are shown in Figure 2.
For example, Closure-13 is fixed by moving the buggy statement
to a new position implemented in TBar [22] with a certain fixing
pattern, whereas Chart-6, a bug that requires multi-line patches,
is fixed by TransplantFix [50] via target design on finding and
adapting complicated fix ingredients. The preference that an APR
tool has in fixing bugs is driven in part by the repair pattern(s) that
the tool explicitly or implicitly employs as well as its repair history.

Given the above discussion, we proposeP-EPR (Preference-based
Ensemble Program Repair), a new ensemble strategy that lever-
ages the repair preferences of each tool in the ensemble to improve
repairability in practice. P-EPR is novel in the following respects:

No model training. P-EPR is the first non-learning-based en-
semble method for APR. While E-APR casts the task as a multi-label
classification task that involves identifying the subset of tools in
the ensemble of tools for fixing a given bug, P-EPR casts the task
as a ranking task that ranks the tools in the ensemble based on

Defects4J Bug: Closure-13
@@ -123,8 +123,8 @@ private void traverse(Node node) {

do {
Node c = node.getFirstChild();
while(c != null) {

- traverse(c);
Node next = c.getNext();

+ traverse(c);
c = next;

}
Fixed by TBar: moving the buggy statement to a new postion (triggered by the certain fix

pattern implemented in TBar).

Defects4J Bug: Chart-6
@@ -108,7 +108,14 @@ public boolean equals(Object obj) {

if (!(obj instanceof ShapeList)) {
return false;

}
+ ShapeList that = (ShapeList) obj;
+ int listSize = size();
+ for (int i = 0; i < listSize; i++) {
+ if (!ShapeUtilities.equal((Shape) get(i), (Shape) that.get(i))) {
- return super.equals(obj);
+ return false;
+ }
+ }
+ return true;
Fixed by TransplantFix: transplanting a donor method via targeted design on finding and

adapting complicated fix ingredients.

Figure 2: Examples of two bugs fixed by APR tools with dif-
ferent bug-fixing strategies.

how likely a tool can correctly fix a given bug. Moreover, unlike E-
APR, which requires training a classification model in a supervised
manner, P-EPR does not require any model training. Specifically,
P-EPR ranks the tools in the ensemble by independently scoring
each tool based on how likely it can fix the bug using several sources
of information in a heuristic manner.

New knowledge sources. As mentioned before, P-EPR em-
ploys two sources of information that encodes a tool’s repair prefer-
ences, namely repair patterns and repair history. To our knowledge,
the use of repair patterns has not been explored in existing ensem-
ble methods for APR. Note that repair patterns encode a significant
amount of human knowledge of the types of bugs a tool is adept at
fixing and therefore they are likely to be more useful for scoring and
ranking tools than any other program-independent and dependent
features that one can possibly come up with. In fact, we believe
that augmenting the feature set currently employed by E-APR with
our repair patterns will likely boost its performance.

Dynamic updating. As soon as a tool is used to fix a bug, P-
EPR receives immediate feedback on whether it successfully fixes
the bug by having its repair history updated. In other words, the
repair history of a tool is updated in a dynamic fashion based on
all of the bugs that it has been applied to so far. Hence, P-EPR has
the ability to exploit information that it acquires in real time. This
dynamic updating mechanism is one of the key strengths of P-EPR
that distinguishes it from existing ensemble methods for APR.

Another key strength of P-EPR is its flexibility. One may argue
that the need to manually identify repair patterns whenever a
new non-learning-based tool is to be added to P-EPR makes our
approach undesirable or even impractical. It turns out that P-EPR is
flexible enough that one can add a new non-learning-based tool to it
without identifying any repair patterns. In other words, the manual
identification step is a recommended rather than compulsory step. To
see the reason, recall that P-EPR operates by scoring each tool w.r.t.
a given bug using two sources of knowledge, repair patterns and
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repair history. If one source of information is absent (in this case
the repair patterns), P-EPR can simply rely on the other source of
information for scoring. In other words, the use of repair patterns
can only improve ranking results, but P-EPR can operate even
without the patterns.

In fact, P-EPR is even more flexible than what we just described.
In the extreme case, a new tool can be added to P-EPR even when
both sources of information (i.e., the patterns and the history) are
absent. In this scenario, the new tool will receive a score of 0 at
the beginning, but over time, the dynamic updating procedure will
update its repair history1 In other words, over time, P-EPR will be
able to accumulate enough knowledge about the repair preferences
of the new tool via updating its repair history even if we know
nothing about it at the time of incorporation.

In sum, our work makes the following contributions. First, we
propose the first non-learning-based ensemble strategy P-EPR for
assembling APR tools that is highly flexible. Second, we manually
collect 13 repair patterns of APR tools, retrieve 4 types of bug fea-
tures, and construct a mapping between repair patterns and bug
features. Besides, we generate a categorized performance history
between 21 concrete APR tools and the feature set of bugs that
they can fix, which can be reused in other ensemble program re-
pair frameworks. Finally, we design specific evaluation metrics to
measure the effectiveness of ensemble program repair strategies
and conduct comprehensive experiments to evaluate P-EPR.

Experimental results show that P-EPR achieves better results
than existing strategies. Two of the most significant empirical find-
ings are that (1) when given the same amount of labeled data (which
P-EPR uses to initialize the repair histories of the tools and E-APR
uses for model training), P-EPR demonstrates that it is more effec-
tive at exploiting the labeled data by achieving considerably better
results than E-APR; and (2) even when P-EPR operates witihout
using any repair patterns, it still outperforms E-APR, suggesting
the robustness of P-EPR.

2 BACKGROUND AND RELATEDWORK
This section introduces the research background of this work.

2.1 Different Types of APR Tools
Existing APR tools can be categorized into four types:

Heuristic-based approaches rely on manually defined heuris-
tic rules to generate patches by iterating over a search space of
syntactic program modifications, of which experimental results
reviewed that they normally target on fixing general bugs [11, 14,
28, 35, 40, 50, 52]. However, they suffer from low efficiency due to
the large search space and the limited effectiveness caused by the
large number of plausible patches [12].

Template-based approaches generate patches based on a batch
of pre-defined fix patterns, acting at explicit and direct modes [8,
13, 17, 18, 20, 20–22, 25, 28, 37, 42] : (1) checking whether the buggy
statement satisfies the prepositive conditions of fix patterns, and

1Given a bug, even a tool with repair patterns and a repair history may get a score of 0
if its repair patterns and repair history do not match the bug. Besides, a tool may even
get a score lower than 0 if its repair history has many records of failing in fixing the
current type of bug (since we will use the history of failures as a penalty). Therefore,
a tool that has neither repair patterns nor repair history may be ranked higher than
those with repair patterns and/or repair history.

(2) continuously generating code changes based on patterns until
a valid patch is generated or the fixing behavior is terminated.
Obviously, the repairability of template-based tools relies on the
diversity of repair templates.

Constraint-based approaches use semantic constraints to limit
the search space of patches [10, 19, 29, 49] . Generally, such ap-
proaches first infer repair constraints from the buggy program or
the test suite and use an SMT solver (e.g., Z3 [6]) or other strate-
gies to solve the constraints. However, the symbolic execution and
constraint solver can explode the space of generating constraints
and patch candidates when fixing complex bugs.

Learning-based approaches aim to train APR systems using
historical bug-fixing data that can be sourced from code repositories.
For example, DeepRepair [43] relies on deep learning to sort repair
ingredients via code similarities. Latest learning-based approaches
[4, 5, 7, 15, 26, 39, 51] employ neural machine translation (NMT) [2]
models to perform bug-fixing framework as a sequence-to-sequence
translation task. Such methods rely on a large amount of bug-fix
data and need to address the overfitting issue in the training process.

2.2 Empirical Studies on APR Tools
Various empirical studies on APR tools have been conducted from
different aspects to boost the development of automated program
repair. Qi et al. [36] analyzed the correctness and plausibility of
patches generated by APR tools. Smith et al. [38] looked into the
overfitting problem of patches generated by APR tools. Motwani
et al. [33] investigated to what extent hard and important bugs
can be fixed by APR tools. Durieux et al. [9] empirically studied
the generalizability of 11 APR tools with five benchmarks and
all possible repair attempts. Liu et al. [24] explored the bug-fixing
efficiency of 16 APR tools. These studies demonstrated that different
APR tools present varying repairability on different bugs and their
specific characteristics of fixing bugs.

2.3 Related Work
As various APR tools are proposed, researchers have begun ex-
ploring advanced assembling methodologies to boost automated
program repair, which can summarized into two categories:

Exploiting multiple models. CoCoNut [26] and CURE [15]
are two learning-based techniques that train a neural APR model
multiple times, each time with a different set of parameters. This
results in multiple APR models. Each of these results is then used
to independently generate patches. For example, if 10 models are
trained and each one generates 300 patches, all 3000 patches will
be validated. Hence, while these techniques generate an ensemble
of models, strictly speaking they are not ensemble strategies.

Ensemble methods. E-APR [1] makes an early exploration of
reusing existing tools via an ensemble strategy. It first identifies
significant program-independent and dependent features by ana-
lyzing footprints of repair results of existing APR tools. Then, it
predicts the effectiveness of APR tools via machine learning algo-
rithms according to the metrics of nine features identified from
146 features. However, a major limitation is that every time a new
APR tool needs to be added to the ensemble, the model must be
re-trained. In contrast, P-APR does not require any model training.
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Figure 3: The overall procedure of P-EPR.

3 P-EPR
Figure 3 shows the overall procedure of P-EPR, which consists of
two parts: (1) Computing Tool Preferences (Section 3.1), and (2)
Conducting Ensemble Program Repair (Section 3.2).

3.1 Computing Tool Preferences
To capture the preference of an APR tool, we compute a tool’s
preferences in an offline manner (see the first part of Figure 3)
through two steps, as described below.

Step 1: Repair Pattern Collection via Manual Analysis. We
define a tool’s repair action (e.g., Inserting Range Checker) for
fixing a certain type of target bug as a Repair Pattern. Each repair
pattern has corresponding pre-requirements on bugs (e.g., "If an
array or collection is accessed without being checked" for Inserting
Range Checker), which describes the characteristics of a bug that
would trigger and be fixed by the repair pattern/action. An APR
tool may have multiple repair patterns and one repair pattern may
be shared by different APR tools. We summarize the repair patterns
for existing APR tools by going through their methodologies and
implementations. For example, for template-based tools, the repair
patterns can be inferred directly from their implemented patterns.
For other types of tools, a repair pattern can be searched by checking
if the tool implements certain repair actions that must be triggered
by conditions related to the input bugs. Note that there are no repair
patterns defined in learning-based APR tools.

Specifically, we collect all repair patterns by investigating the
42 APR tools listed in [32] and [22]. In total, we derive 13 repair
patterns that are implemented in 19 non-learning-based APR tools.
Table 1 presents the four example patterns, describing their name,
pre-requirements and implemented APR systems.

Next, we complete the judgement logic of whether an input bug
satisfies the conditions of a certain repair pattern. Motivated by a
previous template-based APR tool TBar [22], we manually analyze
the pre-requirements of the collected patterns and design four types
of bug features (BF1-4) that could cover the automatic judgment
logic of all patterns, as shown in Table 2. For example, to check if
a given bug satisfies P4 Throw Exception, P-EPR would examine
whether BF4 (the type of the test error) of the bug is an Exception
Thrown error.

Step 2: Repair History Initialization using Existing Repair
Data. Among the four features (BF1-4) defined in the previous
step, BF1 (the node type of the buggy statement) and BF4 (the
type of test error) can be regarded as program-independent since
they can be extracted from any buggy program. Thus, we reuse
BF1 and BF4 to initialize the repair history of a tool. Concretely,
we store a tuple <tool, bug_feature, failed_times, correct_times> for
each tool, where bug_feature can be BF1 or BF4. When configuring
an APR tool into P-EPR, the existing repair history of the tool
can be loaded to initialize the repair history. For example, APR
tools are usually empirically evaluated in some bug-fix benchmarks
before publication. Thus, before deploying P-EPR in practice, those
existing repair results can be utilized to enhance the performance of
P-EPR. Such design in P-EPR ensures the generalization of P-EPR
on integrating any kinds of APR tools with existing repair results.

3.2 Conducting Ensemble Program Repair
Given the Repair Patterns and the Repair History of the APR tools
involved, P-EPR can be used to repair a given bug. The input of
P-EPR is the buggy class file along with its suspicious faulty lines
located by fault localization techniques [44].

Step 3: Feature Extraction.To automatically determinewhether
the input bug satisfies the repair patterns and repair history of APR
tools, we need to first extract features of the given bug. Recall that
we define 4 features for bugs in Table 2. Bug features 1, 2, and 3 are
properties of code elements within the buggy statement. We use
spoon [34] to parse the buggy code and extract those features. Bug
feature 4 corresponds to the type of failed test error triggered by
the bug, such as java.lang.IndexOutOfBoundsException. Trivial test
error, i.e., junit.framework.AssertionFailedError, is disregarded since
it is too general. If a bug produces multiple failed test cases, only
the first non-trivial test error is considered.

Step 4: Tool Scoring and Ranking. Algorithm 1 presents the
core step of P-EPR, where a score representing the chance that
the given bug can be correctly fixed is calculated for each APR
tool. Concretely, the score is derived by matching the prepared
tool preferences (i.e., including Repair Pattern and Repair History)
with features of the given bug. To score each APR tool, we use the
faulty code file and the faulty line IDs as inputs. The algorithm is
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Table 1: Example of repair patterns collected from existing APR systems.
No. Pattern Name Pre-requirement Implemented APR systems

P1 Insert Cast Checker
A buggy statement that contains heuristic-based: HDRepair, SimFix, CapGen
at least one unchecked cast expression template-based: AVATAR, Genesis, kPAR, SketchFix, TBar, SOFix

P2 Insert Null Pointer Checker
A buggy statement if, in this statement, a field heuristic-based: HDRepair, SimFix, CapGen
or an expression (of non-primitive data type) tempate-based: AVATAR, Genesis, Elixir, FixMiner, NPEfix, SOFix
is accessed without a null pointer check kPAR, TBar

P3 Insert Range Checker
Inserting a range checker for the access of an

template-based: AVATAR, Elixir, kPAR, SketchFix, TBar, SOFixarray or collection if it is unchecked

P4 Throw Exception The failed test type is throwing an exception heuristic-based: ACS
* Due to the space limitations, we only list 4 patterns in this table. Concrete information of all 13 collected patterns can be found in the supplementary.

Table 2: Bug features needed for matching different patterns
No. Bug Feature Pattern*

BF1 Node type of the buggy statement P6, 11, 12
BF2 Child node types within the buggy statement P3, 5, 7-9
BF3 BF1 & BF2 P1, 10
BF4 Type of the test error P4
* Corresponding descriptions of each pattern can be found in the supplementary.
We ignore P2 since its pre-requirement is too general that almost every statement
can match the pattern.

Algorithm 1: Calculate preference scores for APR tools
Input: The faulty line IDs, 𝑎𝑙𝑙𝐹𝑎𝑢𝑙𝑡𝑦𝐿𝑖𝑛𝑒𝐼𝑑𝑠
Input: The faulty class file, 𝑏𝑢𝑔𝑔𝑦𝐹𝑖𝑙𝑒
Input: The bonus coefficient of pattern match, 𝐸𝑀𝛼
Output: The preference scores of all tools, 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝑠

1 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝑠 ← ∅ ;
2 𝐸𝑀𝛼 ← 0.5 ;
3 for 𝑙𝑖𝑛𝑒𝐼𝑑 ∈ 𝑎𝑙𝑙𝐹𝑎𝑢𝑙𝑡𝑦𝐿𝑖𝑛𝑒𝑠 do
4 𝑏𝑢𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (𝑙𝑖𝑛𝑒𝐼𝑑 , 𝑏𝑢𝑔𝑔𝑦𝐹𝑖𝑙𝑒);
5 for tool ∈ availableTools do
6 𝑓 𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 0;
7 ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 ← 0;
8 for feature ∈ bugFeatures do
9 ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 ←historyScore +

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 (𝑡𝑜𝑜𝑙 , 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒);
10 end
11 if 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑡𝑜𝑜𝑙, 𝑏𝑢𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) then
12 𝑓 𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 ∗ (1 + 𝐸𝑀𝛼 );
13 else
14 𝑓 𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 ;
15 end
16 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝑠.𝑠𝑒𝑡 (𝑡𝑜𝑜𝑙, 𝑓 𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒);
17 end
18 end

compatible with bugs containing any number of hunks. For each
faulty line, the bug features defined in Table 2 are first extracted
(line 4). Then, for each tool in the available toolset, we calculate
a ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 according to the existing repair history of the tool
(line 8-10). Recall that P-EPR stores the repair history of a tool

with a tuple <tool, bug_feature, fail_times, correct_times>, so the
ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 is calculated as:

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑐𝑜𝑟𝑒 (𝑡𝑜𝑜𝑙, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒) =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑖𝑚𝑒𝑠𝑡 𝑓 /(𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑖𝑚𝑒𝑠𝑡 𝑓 + 𝑓 𝑎𝑖𝑙_𝑡𝑖𝑚𝑒𝑠𝑡 𝑓 )

(1)

where 𝑡 represents the tool and 𝑓 represents the feature. We index
the repair history with BF1 and BF4. For example, if the node type
of the buggy statement is CtInvocationImpl, the corresponding pref-
erence score will be the fixed rate when the tool encounters bugs
of such type. Then, P-EPR will judge if the bug features match the
preferred patterns of tools in the available set (line 14). If yes, the
preference score of the tool will get a bonus (line 15). At this step,
we introduce a configurable coefficient 𝐸𝑀𝛼 to control the bonus
degree. We use multiplication to combine the pattern and history
preference scores. The final preference score of each tool is the sum
of the preference score of all faulty lines. The higher the score is,
the more likely it is for the corresponding tool to fix the bug. All
the tools are ranked in descending order of scores.

Step 5: Tool Execution and Patch Validation. After the tools
are ranked in descending order of scores for a bug, a human devel-
oper can use the tools sequentially to fix the bug. However, it is not
necessary to use these tools sequentially. For instance, if there are
𝐾 available computing threads/human developers available to fix
the bug with APR tools at the same time, the Top-𝐾 tools could be
adopted simultaneously. It is worth mentioning is that generating
patches and checking if a patch is plausible is achieved by the tool
automatically, but checking if a plausible patch is a correct one can
only be achieved by a human developer. This is why we calculate
two different costs for fixing a bug when evaluating P-EPR.

Step 6: Preference Update. As aforementioned, the history
score is computed according to the repair history of the APR tools
on bugs that have the same features as the given bug. There-
fore, at the end of each repair procedure, P-EPR updates the re-
pair history of each tool according to their performance on the
bug that they just handled if they are executed. In our implemen-
tation of P-EPR, we maintain a repair result list of each APR
tool in the available toolset, and each repair result is represented
by <𝐹𝑖𝑥𝑆𝑡𝑎𝑡𝑢𝑠 ,𝐵𝑢𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ,𝑇𝑜𝑜𝑙>, where 𝐹𝑖𝑥𝑆𝑡𝑎𝑡𝑢𝑠 denotes the
repair status with three enum types (correct, overfit, fail) and
𝐵𝑢𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 identifies the characteristics of the buggy program.
Like in Repair History, we use BF1 and BF4 defined in Table 2 as
the content of 𝐵𝑢𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 in repair results.
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3.3 Integrating Improved or New APR Tools
To integrate an improved or new tool into P-EPR, we need to
perform the two steps below:2:

(1) Updating Repair History. This means updating the Repair His-
tory table shown in Figure 3 for the target APR tool with buggy
programs that have been repaired by the target tool either success-
fully or unsuccessfully. Users are only required to provide 1○ the
buggy class file, 2○ the suspicious line locations, and 3○ the test
error type (if available). P-EPR first transforms the given buggy
programs into bug features (shown in Table 2) and then updates the
corresponding tuple <tool, bug_feature, fail_times, correct_times>
for the tool. Any buggy program adopted by any APR tool as repair
history can be integrated into our Repair History table since our
bug feature BF1 is program-independent, i.e., any buggy program
has a value for BF1. In other words, our P-EPR can be generalized
to any improved or new APR tool with any kind of repair history
regardless of whether it has Repair Patterns.

(2) Updating Repair Patterns. This step is needed only when the
improved/new APR tool to be added is non-learning-based. Given
the improved/new tool, we need to identify the set of repair patterns
associated with it. If all of the repair patterns it is associated with are
among the 13 patterns that currently exist in P-EPR, then nothing
needs to be done. otherwise, for each new pattern, we need to add
it to the pattern repository and update the mapping of patterns to
bug features (see the current mapping in Table 2).

4 EVALUATION SETUP
4.1 Research Questions
We aim at answering the following three research questions for
evaluating P-EPR.

[RQ1. Performance] What is the overall performance of P-
EPR compared with the other ensemble strategies? Concretely,
we conduct different ensemble strategies to select APR tools for
each bug in the Defects4J v1.2 dataset. To thoroughly evaluate P-
EPR, we consider a maximum set of 21 tools. Note that we do not
execute each tool to derive the progress due to the unaffordable
costs. Instead, we rely on all published patches of different tools for
each bug in Defects4J v1.2.

[RQ2. Ablation Study] To what extent does each compo-
nent of P-EPR contribute to its overall performance?We seek
to gain insights into P-EPR by understanding the impacts of its
components on the performance, such as the Test error type and
the coefficient 𝐸𝑀𝛼 , via ablation experiments.

[RQ3. Practicality] To what extent can P-EPR save com-
putational costs in practice compared with adopting every
single tool? ’in practice’ means executing the selected tool by P-
EPR to calculate the computational cost (e.g., time for generating
patches, time for verifying patches, and computer memory, etc.)
instead of performing simulations using existing patches. Consid-
ering that the Defects4J dataset has been used by almost all APR
tools and that the performance of P-EPR on Defects4J is evaluated
in RQ1, we use another dataset, Bears, to verify the performance of

2For more concrete instructions of integrating improved or new APR tools
into P-EPR, as well as using P-EPR, please refer to the tool’s repository:
https://github.com/kwz219/P-EPR-Artefact

Table 3: Correct/overfit patches generated by the 21 APR
systems on 395 bugs from Defects4J v1.2

System # Correct # Overfit Source

he
ur
is
tic

-b
as
ed

jGenProg 6 10

[24]

GenProg-A 8 21
RSRepair-A 9 25
ARJA 11 25
SimFix 29 21
jKali 2 6
Kali-A 5 37
jMutRepair 5 6
TransplantFix 36 33 [50]

co
ns
tr
ai
nt Nopol 2 7

[24]
ACS 16 5
Cardumen 2 14
DynaMoth 3 10

te
m
pl
at
e kPAR 33 30

[24]
AVATAR 30 20
FixMiner 34 29
TBar 54 30

le
ar
ni
ng

SequenceR 27 24

[53]
CodeBERT-ft 29 28
RewardRepair 43 22
Recoder 56 22

Total 122 121(58)

P-EPR in practice (where the repair history of the APR tools on
Defects4J are used for initializing their Repair History in P-EPR).

4.2 Tool Selection and Data Collection
Since P-EPR is compatible with any kind of APR tool, we select a
variety of APR tools. However, empirically executing a large num-
ber of APR tools and validating generated patches is prohibitively
expensive. So, we choose to evaluate the performance of P-EPR
through a simulated experiment with published repair results of
APR tools, instead of actually running APR tools. Simulation means
that we directly get the repair results of APR tools on each bug,
skipping the tool execution and patch validation process. To reduce
the biases brought by the simulated experiment, we select APR tools
for the simulated experiment according to the following criteria:

C1: The fault localization setting of each APR tool should
be the same. Since P-EPR extracts features of faulty code lines,
different fault localization results can impact the calculated score of
the same bug. However, it is challenging to maintain the same fault
localization setting when considering Normal Fault Localization
(NFL). This is because NFL settings of existing APR tools vary
significantly on the FL tool and considered fault locations. For
example, SketchFix [13] considers only the top 50 most suspicious
statements in the ranked list, while ELIXIR [37] considers up to
the top 200 suspicious locations. Therefore, to minimize biases
in our experiment, we only considered tools evaluated within the
Restricted Fault Localization (RFL) scenario [24], where the accurate
faulty line of the buggy program is provided.
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C2: The patch generation setting of each APR tool should
be the same. To satisfy this criterion, we opt to refer to empir-
ical studies on APR tools, which typically use the same settings
across the studied tools, instead of collecting repair results from
individual APR publications. We first obtain the repair results of
16 test-suite-based APR tools from a relevant empirical study [24].
Additionally, we include four state-of-the-art learning-based tools
in our evaluation by re-running them on Defects4J with NPR4J [53],
a framework tool that supports running these tools.

Given these criteria, we collect the repair results of 21 APR sys-
tems on Defects4J v1.2. Those systems cover 4 types of APR tools:
9 are heuristic-based (jGenProg [28], GenProg-A [52], RSRepair-A
[52], ARJA [52], SimFix [14], jKali [28], Kali-A [52], jMutRepair [28],
TransplantFix [50]), 4 are constraint-based (Nopol [49], ACS [48],
Cardumen [29], DynaMoth [10]), 4 are template-based (kPAR [20],
AVATAR [21], FixMiner [18], TBar [22]) and 4 are learning-based (Se-
quenceR [5], CodeBERT-ft [30], RewardRepair [51], Recoder [54]).
Among the 21 systems, we re-run the four learning-based tools
(for execution and validating settings, ref to Section 4.5) since they
do not provide required data (i.e., both correct and overfit patches
generated by the tool) and use the published patches of other sys-
tems. In total, the 21 o tools correctly/plausibly fix 122/180 bugs
from Defects4J. 9 of them have repair patterns (SimFix, jMutRepair,
Nopol, ACS, Dynamoth, kPAR, AVATAR, FixMiner, TBar).

4.3 Metrics
First, to estimate the repairability and costs when deploying P-EPR
on a set of APR tools to fix bugs, we use the following metrics:

(1) The number of correctly/plausibly fixed bugs. A plausi-
ble patch can pass all test cases, but it may not be correct. A correct
patch can pass all test cases and human validation.

(2) Tool Invocation Times (TIT). It measures the machine
resource costs when invoking a set of APR tools. For simplicity,
we define one tool invocation as whether the APR tool should be
invoked when a bug is given.

(3) Human Validation Times (HVT). It measures the human
labor costs of checking plausible patches. For a bug, a tool selection
strategy may generate more than one plausible patch. We define
HVT as the number of manual checks needed to find a correct patch.
If no correct patches are generated, the HVT is equal to the number
of generated plausible patches.

Second, to quantify the cost savings obtained by employing P-
EPR, we design two novel metrics:

(4) Tool Invocation Saving Percentage (TISP). It measures
how many tool invocation times can be saved when using a tool
selection strategy compared with invoking all APR tools. TISP is
calculated as:

𝑇 𝐼𝑆𝑃 = 𝑅𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦/𝑅𝐸𝑛𝑠𝐴𝑙𝑙 −𝑇 𝐼𝑇𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦/𝑇 𝐼𝑇𝐸𝑛𝑠𝐴𝑙𝑙 (2)

where 𝑅𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 and 𝑅𝐸𝑛𝑠𝐴𝑙𝑙 represent the numbers of correctly
fixed bugs of using a strategy and of invoking all available tools
respectively, and 𝑇 𝐼𝑇𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 and 𝑇 𝐼𝑇𝐸𝑛𝑠𝐴𝑙𝑙 denote the tool invo-
cation times of using a strategy and of invoking all available tools
respectively.

(5) Human Validation Saving Percentage (HVSP). It mea-
sures how many manual checks can be saved when using a tool
selection strategy compared with invoking all APR tools. HVSP is

calculated as:

𝐻𝑉𝑆𝑃 = 𝑅𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦/𝑅𝐸𝑛𝑠𝐴𝑙𝑙 − 𝐻𝑉𝑇𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦/𝐻𝑉𝑇𝐸𝑛𝑠𝐴𝑙𝑙 (3)

where 𝑅𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 and 𝑅𝐸𝑛𝑠𝐴𝑙𝑙 are the same as those in Equation 2,
and𝐻𝑉𝑇𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 and𝐻𝑉𝑇𝐸𝑛𝑠𝐴𝑙𝑙 denote the human validation times
of using a strategy and of invoking all available tools respectively.

4.4 Baseline Systems
We compare P-EPR with several baselines:

(1) E-APR [1]. Since E-APR’s source codes are not published,
we replicate it. Specifically, we implement E-APR with Random
Forest Classifier since it achieves the best performance among the
four algorithms described in E-APR’s paper.

(2) E-APR (enhanced). The original E-APR is trained and tested
on only 10 APR tools. We consstruct an enhanced version of E-APR
by re-training it using the same 21 tools that P-EPR uses using a
Random Forest Classifier following the settings of E-APR.

(3) Random Selection. This strategy randomly selects 𝐾 tools
sequentially for each bug as the top-ranked tools.

(4) Invoking All Tools. This strategy simply invokes all avail-
able tools to fix each bug.

(5) Optimal Selection (GroundTruth). This is an ideal strategy
that makes the optimal choice of APR tools, thus providing a rough
upper bound on P-EPR’s performance. It prioritizes the tools as
follows: 1○ can produce correct patches, 2○ can produce plausible
patches, and 3○ cannot produce plausible patches.

4.5 Tool Execution and Validation Settings
Our experiments involve practical execution of four APR tools
(SequenceR [5], CodeBERT-ft [30], Recoder [54] and RewardRepair
[51] ) on Defects4J v1.2 [16] for the data collection in previous
section, and Bears [27] for an empirical experiment in RQ3. We
use the same tool execution and patch validation settings. For each
bug, each tool generates 300 candidate patches, with a timeout of 2
hours for validating them. For patch correctness assessment, two
of the authors manually validate the first test-adequate patch with
a timeout of 10 minutes for every bug, adhering to the assessment
criteria established by prior research [24]. A patch is deemed correct
only if both reviewers agree on its accuracy. All model execution
and patch validating experiments are performed on a machine
equipped with an AMD Ryzen 9 5950X 16-Core Processor and two
NVIDIA GeForce RTX 3090 Ti GPUs.

5 EVALUATION RESULTS
5.1 RQ1. Performance of P-EPR
Method: We design three experiments. First, we execute P-EPR on
all of the 395 bugs from Defects4J using the 21 APR tools. We use
all data in Defects4J as test data, effectively assuming that no bugs
are used for initializing the repair history. Second, we compare
P-EPR with the original E-APR [1] (which is trained and evaluated
on only 10 of the 21 APR tools) by only using the 10 APR tools used
by the original E-APR. The third one involves comparing P-EPR
with the enhanced E-APR, which is re-trained on all of the 21 APR
tools. In the second and third experiments, we also compare with
the Random selection strategy. Besides, in these experiments, we
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Table 4: P-EPR’s performance on 395 bugs from Defects4J considering 21 APR tools. For each bug, the Top-𝐾 APR systems
ranked by P-EPR are selected to repair it. "Opt" and "All" denote Optimal Selection and Invoking All Tools strategies respectively.

Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 Top-8 Top-9 Opt All

# of correctly/plausibly fixed bugs 54/89 68/100 78/113 87/129 86/133 95/138 101/146 108/157 109/160 122/180 122/180
# of plausible patches 108 159 219 278 326 389 453 478 510 180 859
Tool Invocation Times (TISP) 1010 (33%) 1461 (39%) 1925 (41%) 2330 (44%) 2701 (38%) 3102 (41%) 3488 (41%) 3906 (42%) 4282 (38%) 395 (95%) 8295
Human Valdation Times (HVSP) 98 (20%) 117 (26%) 148 (27%) 175 (27%) 191 (22%) 214 (24%) 229 (25%) 257 (24%) 271 (21%) 180 (54%) 393*
* When invoking all tools, the plausible patches are ordered in the same way as the tools were initially added to the toolset.
** Due to space limitations, we only present results from top-1 to top-9. Results of larger 𝐾 values are listed in the GitHub repo.

assume that the input order of bugs is random (random seed = 1)
and 𝐸𝑀𝛼 (see Step 4 in Section 3.2) is 0.5 (the default setting) 3.

Results and discussion: Next, we describe and discuss the results
of the aforementioned expriements.

Comparisonwith InvokingAll Tools and theOptimal Strat-
egy. Table 4 presents the repair results (the number of correctly/-
plausibly fixed bugs), execution costs (model invocation times and
human validation times), and costs saving a percentage of P-EPR
(TISP and HVSP) when selecting Top-1 to Top-9 to repair bugs from
Defects4J when all 21 tools are used, as well as the corresponding
metrics of Invoking All Tools and Optimal Selection (i.e., Ground
Truth) strategies. Compared with simply executing all available
APR tools, P-EPR can significantly save costs on tool execution
and human validation while reaching comparable repairability. For
example, when K is 9, P-EPR achieves a 90% repairability compared
with executing all tools (109 correctly fixed bugs for P-EPR vs. 122
for all tools), with a 50% reduction of execution costs in terms of
the model invocation times (4282 vs. 8295) and a 30% reduction of
human validation costs (271 vs. 393). As K decreases, P-EPR also
achieves remarkable performance. When K is 1, P-EPR correctly
fixes 54 bugs, which is very close to the best APR tool in our experi-
ment (Recoder [54] fixes 56 bugs). When K is larger than 2, P-EPR
outperforms any one of the 21 tools significantly. Remembering
that we have a large-scale set of 21 APR tools, the results prove that
P-EPR has the ability to correctly rank APR tools among a variety
of tools. Compared with the optimal strategy, P-EPR achieve 35% -
44% of the optimal strategy on TISP, and 37% to 50% on HVSP. It
indicates that the performance of the current P-EPR strategy still
has a large room for optimization.

Comparison with the original E-APR. Figure 4 expresses
the performance of P-EPR, the original E-APR, and the random
selection strategy in terms of TISP and HVSP when only the 10 APR
tools employed by the original E-APR are involved. As can be seen,
P-EPR achieves significantly higher performance than E-APR and
random selection. In terms of TISP, P-EPR always performs better
than the random selection. Compared with E-APR, P-EPR has a
significant improvement when K ranges from 1 to 5. In some cases
E-APR performs worse than just invoking all APR tools. When K is
2, P-EPR has the highest improvement on TISP than E-APR (40%
vs -15%). In terms of HVSP, P-EPR performs better in most cases
than other strategies. Besides, when K is between 2 and 5, P-EPR
achieves the highest TISP and HVSP, while E-APR’s performance
3Since the dynamic update module updates the repair history of APR tools in P-EPR
according to the input bug and the repair history affects the performance of P-EPR
in real time, the input order of test bugs will affect the evaluation results of P-EPR.
Besides, the different combinations of APR tools may also affect the evaluation of the
overall performance of P-EPR. So, we conduct additional experiments by setting them
with different values to demonstrate the feasibility of P-EPR. See these experimental
results and discussions in Section 2 in the supplementary file.
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Figure 4: Comparison of P-EPR and other strategies in terms
of TISP on Defects4J employing only the 10 APR tools origi-
nally used by E-APR. "All" denotes invoking all APR tools.
The HVSP of the optimal strategy is 57%, and the TISP of the
optimal strategy is 90%.
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Figure 5: Distributions of TISP and HVSP of P-EPR and other
strategies on the different train-test split of Defects4J projects
and different K (ranges from 1 to 20) considering 21 tools.

improves as K becomes larger. This suggests that a higher level
ensemble strategy of P-EPR and E-APR may yield even better
performance.

Comparison with enhanced E-APR. In the previous compar-
isons, we used all of Defects4J as test data, leaving no training data
that can be used to initialize a tool’s repair history. In this compari-
son, we perform comparisons where we do partition Defect4J into a
training set and a test set so that we can initialize the repair history
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of each tool in P-EPR using the training data. More specifically,
we show in Figure 5 the distributions of TISP and HVSP of P-EPR
computed based on 400 situations (i.e., there are 20 train-test splits
situations of selecting three projects from Defects4J’s six projects,
and for each bug, we could select Top-𝐾 tools to fix it, 𝐾 ranges
from 1 to 20; so, for each strategy, 400 TISPs and 400 HVSPs are
calculated and plotted in Figure 5). We similarly plot the curves
for two other baselines, enhanced E-APR and the random selection
strategy Recall that enhanced E-APR is the version of E-APR that
is being retrained on all the 21 APR tools used in P-EPR. For a
fairer comparison with P-EPR, E-APR is re-trained using not only
the training data used in the original E-APR but also the training
portion of Defect4J in each of the 400 situations mentioned above.
As shown in Figure 5, P-EPR still outperforms enhanced E-APR. In
terms of both TISP and HVSP, P-EPR has a larger minimum value,
Q1 (first quartile), Q2 (second quartile), Q3 (third quartile) than
enhanced E-APR and random selection. Also, P-EPR has a shorter
IRQ (Inter Quartile Range) than enhanced E-APR, which means
that generally, P-EPR has better and more stable performance than
the two strategies. However, we also observe that P-EPR has a
lower maximum value than enhanced E-APR (especially TISP).

5.2 RQ2. Contributions of Components
Method: We investigate the impacts of each components by com-
paring P-EPR with following variants: (1) P-EPR without Pattern,
(2) P-EPR without Dynamic Update, (3) P-EPR without Repair
History Initialization, (4) P-EPR without Test Error Type and (5)
P-EPR with different 𝐸𝑀𝛼 (0.1, 0.3, 0.5, 0.7, 0.9). For comparison,
we select the Math project (contains 106 bugs) from the Defects4J
project as the evaluation set and use the other five projects (con-
tains 289 bugs) as the repair history for initialization (except variant
(3)). We use the 21 APR tools and calculate their TISP and HVSP. It
should be mentioned that there is no need to conduct any ablation
experiment on the he Buggy element type feature (i.e., BF1) because
all bugs have this feature and it is obvious that it plays an important
role in ranking APR tools for bugs. Considering that while adding
a new APR tool into P-EPR, collecting its repair patterns may be a
little bit harder than collecting its repair history, we also conduct
ablation experiments on Repair Patterns while comparing P-EPR
with the other strategies to investigate whether the performance
of P-EPR will be lower than the other strategies if we want to save
the cost of collecting repair patterns of the new APR tools.

Results and discussion: Figures 6 (a) and (c) show the comparison
between variants (1) - (4) in terms of TISP and HVSP, respectively.
As can be seen, Repair History Initialization and Dynamic Update
have significantly higher impacts than Repair Patterns and Test
Error Type in P-EPR. Without repair history initialization, P-EPR
has a up-to-50% performance degradation both in terms of TISP
and HVSP. P-EPR without Dynamic Update suffers a similar per-
formance degradation. The two components contributes to P-EPR
via categorizing and updating history, which indicates that P-EPR
benefits significantly from the repair data. It is recommended that
a good practice for users to utilize P-EPR is to provide data for
initialization and keep updating with newly derived repair results.

In addition to Figures 6 (a) and (c), which show the relative
small impact of Repair Patterns on P-EPR, Figures 4 and 5 show

that even without Repair Patterns, P-EPR still outperforms the
other ensemble strategies. This implies that P-EPR can still help us
select appropriate APR tools for bugs if we want to save the cost of
collecting repair patterns of APR tools. However, these figures also
show that the complete P-EPR outperforms the variant without
Pattern in most cases when K ranges from 1 to 9. This implies that
we should encourage the users to analyze patterns when integrating
new tools into P-EPR for a even better ensemble performance.

In Figure 6 (a) and (c), we see that the variant without Test Error
Type seems has relatively smaller performance difference with
complete P-EPR comparing against other components. It suggests
that P-EPR can be generalized in more scenarios (e.g., the bug is
identified by a bug report but not a test case failure).

Figure 6 (b) and (d) compare the impacts of different 𝐸𝑀𝛼 values
(variant 5) in terms of TISP and HVSP. As can be seen, the value
of 𝐸𝑀𝑎𝑙𝑝ℎ𝑎 has little impact on the performance of P-EPR, which
means users can pay less attention to setting this parameter.

5.3 RQ3. Practicality of P-EPR
Method: We collect 83 single-hunk bugs from another dataset, i.e.,
Bears [27] for investigating the performance of P-EPR while prac-
tically executing integrated APR tools. We configure P-EPR with
four learning-based program repair systems (i.e., SeqeunceR [5],
CodeBERT-ft [30], RewardRepair [51], and Recoder [54]) 4 and
initialize P-EPR with their existing repair results on Defects4J col-
lected beforehand. We set 𝐸𝑀𝛼 to 0.5 by default. During inference,
we select the top-1 system to repair every bug and record the In-
ference Time, Machine Validation Time, Human Validation Time,
and GPU Memory Usage. In cases where multiple systems have the
same top-1 score, we always choose the system with the least GPU
usage (i.e., CodeBert-ft < SequenceR < RewardRepair < Recoder).

Results and discussion: Table 5 illustrates the performance and
costs associated with executing each tool individually, as well as
deploying P-EPR to select the top-ranked tool for execution. As
depicted, P-EPR achieves the highest levels of repairability, suc-
cessfully fixing 16 bugs, and demonstrates superior precision (57%)
compared to the other four tools and the optimal selection strategy.
In comparison to the strategy of executing all tools, P-EPR achieves
a repairability of 76% (16 out of 21 bugs) while maintaining a higher
precision, at a significantly reduced cost (25% of inference time
and 24% of machine validation time). On human validation times,
P-EPR also has a lower cost at 67% and 47%, compared with the
optimal strategy and invoking all tools. This case serves as a con-
crete example of P-EPR’s effectiveness in bug fixing, highlighting
its feasibility and practical application.

6 DISCUSSION
Practicality. One may be concerned that the design of patterns in-
volves a large amount of manual work and is prone to human errors.
While this is a valid concern, there are a few things to keep in mind.
First, patterns are applicable for non-learning-based tools. Given
that the majority of work on APR these days are learning-based, we

4Recall that the reason of conducting simulation experiments to evaluate the per-
formance of P-EPR on 21 APR tools is that it is prohibitively expensive for us to
empirically executing a large number of APR tools and validating generated patches.
So, in the evaluation of practicality, we try our best to include APR tools into the
experiments considering the computational and human resources that we can afford.
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Figure 6: Ablation experiments illustrating the impact of different components of P-EPR when used with 21 APR tools.

Table 5: Performance and Computational Costs of P-EPR on the Bears benchmark. Machine Validation Time represents time
costs on executing test cases. Human Validation Times represents time costs on manually checking plausible patches.

Metrics
Single System Selection Strategy

Recoder CodeBERT-ft RewardRepair SequenceR P-EPR (top-1) Optimal* All*

# of correct/plausible patches 10/21 12/25 12/21 14/28 16/28 22/37 22/37
Precision 48% 48% 57% 50% 57% 59% /
Inference Time (min) 11 2 4 4 7 6 28
Machine Validation Time (hour) 57 54 58 52 52 40 221
Human Validation Time (min) 41 54 36 62 56 84 118
TISP 20% 29% 29% 38% 48% 75% /
HVSP 5% 7% 15% 10% 20% 29% /
GPU Memory Usage (GB) 19.1 3.84 7.32 8.17 7.83 / /

* We use the information produced when individually executing each program repair tool to estimate the performance and costs of invoking all tools. For example, we record
the machine and manual validation time when individually executing each system and use them to estimate corresponding metrics when performing the two strategies. For
the strategy that invokes all tools, we assume tools are sequentially executed.

expect that our patterns need to be updated on an occasional basis.
Second, these repair patterns can be reused in other ensemble pro-
gram repair frameworks. For example, it is conceivable that these
patterns can be encoded as features that can be used to augment the
feature sets used in existing learning-based ensemble methods for
APR such as E-APR, and given the rich amount of human knowl-
edge these patterns encode, they are likely to be useful for other
ensemble program repair frameworks as well. Third, P-EPR is flex-
ible enough that it can be deployed without any repair patterns
(with the caveat that performance may suffer as a result). While
errors could be introduced in the derivation of patterns, one could
employ a second person to verify the correctness of the patterns.

Some may argue that we should instead go for a learning-based
ensemble method for APR in which we train amodel using program-
independent and dependent features that can generalize the results
to future improvements. This is exactly what is done in E-APR.
While a systematic analysis of learning- and non-learning-based
ensemble approaches to APR is beyond the scope of this paper,
there are a few things that we should keep in mind. First, while we
acknowledge the importance in developing program-independent
and dependent features, these features by no means render our
repair patterns useless. Specifically, these features and the repair
patterns encode different kinds of knowledge. It is not even clear

whether learning a model using only program-independent and de-
pendent features will ever perform as well as one that uses patterns
as features given the rich amount of human knowledge encoded
in the patterns. Nevertheless, our results indicate that E-APR un-
derperforms P-EPR when given the same amount of labeled data.
Second, when incorporating a new tool to a learning-based en-
semble method for APR, one needs to provide a possibly large
amount of labeled data so that the model can learn how to clas-
sify/rank the new tool against the existing tools. In other words,
if one believes that the amount of manual effort that goes into
the identification of patterns makes P-EPR less practical, then
the amount of manual effort that goes into providing labeled data
may similarly make a learning-based approach impractical. Finally,
while at first glance it seems that with a learning-based approach
we can focus on developing program-independent and dependent
features that can generalize the results to future improvements, the
non-generalizable part of a learning-based approach is hidden in
the manually labeled, tool-specific training data. In other words, for
any ensemble approach to APR, there has to be a non-generalizable
component that is specific to the new tool to be added, either in the
form of labeled data (for a learning-based approach) or as explicitly
stated repair patterns (as in P-EPR).

Performance metrics. TIT and HVT are not entirely represent-
ing the related costs, thus the newly derived TISP and HVSP can not
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precisely measure the practical performance of P-EPR. However,
the real tool execution and labor costs are also hard to be fairly and
precisely measured even when executing the APR tools due to vari-
ous factors such as machine performance and reviewer proficiency.
Since no standard metrics are previously proposed for measuring
the APR tool selection strategy, our proposed metrics contributes
by providing an easy-to-compute though still imperfect quantified
measurement for comparing different tool selection strategies.

Implications for practitioners.Our research has several impli-
cations. Firstly, our analysis demonstrates that the repair preference
difference of current APR tools can be distinguished by simple bug
features and test error types. Results of our experiments in RQ3
show practical cost savings through the deployment of P-EPR for
selecting APR tools. It is important to note that the current version
of P-EPR only optimizes the repair probability of different bugs.
To further improve the tool selection strategy, researchers can con-
sider incorporating additional execution information, such as GPU
memory usage and test feedback during validation. This avenue
holds promise for designing a better approach. Secondly, P-EPR
provides a simple and extensive way to leverage existing APR tools
for enhanced repair performance, at a lower cost on tool execution
and patch validation compared with invoking all tools. For con-
figuring and extending new APR tools to P-EPR, users only need
to provide the APR tool’s repair history and implemented pattern
type (if available). This strategy can also benefit some scenarios
where tools must be run locally. For instance, recent studies have
explored bug repairs using large language models such as CodeX
[45] and ChatGPT [47]. However, these methods may raise security
concerns since the model holders only provide a remote API, which
means users must post their codes to the remote host. Instead,
our approach enables users to achieve comparable performance by
locally executing existing tools.

7 THREATS TO VALIDITY
Threats to external validity include the evaluated dataset used in
our experiment, i.e. Defects4J. We only evaluate P-EPR considering
APR tools of Java on 395 bugs from Defects4J. However, repairing
Java programs is the most popular research scene for the APR
community and Defects4J is the most popular dataset. Besides, we
evaluate P-EPR on a variety of APR tool combinations (up to 21
tools), which could alleviate the threats to some extent.

That we choose to perform a simulated experiment instead of
executing APR tools could be a threat to internal validity. To reduce
the threat, we collect repair results of existing APR tools following
strict criteria to avoid biases brought by fault localization and patch
generation settings. For learning-based tools that do not publish
complete correct/plausible patches for the bugs used in our experi-
ments, we re-run them following their experimental configurations
in their papers or source code to collect the complete correct/plausi-
ble patches they generate for these bugs. Another threat is that the
input orders of bugs could impact the performance of P-EPR. We
mitigate it by conducting rich experiments under different input
orders of bugs in RQ2.

8 CONCLUSION
We presented a practical approach, referred to as P-EPR, for select-
ing the most suitable automated program repair tools for a given
software bug. P-EPR is designed as a flexible and tunable frame-
work that can interface with any type and quantity of APR tools to
align with users’ preferences. We evaluated its effectiveness and
generalizability using a variety of tool combinations (up to 21 APR
tools) on the Defects4J dataset. Additionally, we proposed two novel
metrics that measure the extent to which a model selection strategy
can reduce tool invocation and human validation costs compared
with invoking all tools. Our study demonstrated the potential for
selecting optimal APR tools for distinct bugs, thus offering a novel
and practical avenue for future research.
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