
Learning and Repair of Deep Reinforcement Learning Policies
from Fuzz-Testing Data

Martin Tappler

martin.tappler@ist.tugraz.at

Graz University of Technology, Institute of Software

Technology

Graz, Austria

Silicon Austria Labs, TU Graz - SAL DES Lab

Graz, Austria

Andrea Pferscher

andrea.pferscher@ist.tugraz.at

Graz University of Technology, Institute of Software

Technology

Graz, Austria

Bernhard K. Aichernig

aichernig@ist.tugraz.at

Graz University of Technology, Institute of Software

Technology

Graz, Austria

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Graz University of Technology, Institute of Applied

Information Processing and Communications

Graz, Austria

Figure 1: We find a reference trace for an RL task, depicted in red for one of our case studies of an agent playing the Nintendo
game Super Mario Bros. Along the trace, we detect dangerous situations (depicted as white dots), from which we test the agent
(depicted with yellow lines). We repair the deep RL policy w.r.t. safety violations; here these are losses of a life depicted with
red crosses on the left. After testing the policy, we find that it passes all test cases, which is depicted with green check marks.

ABSTRACT
Reinforcement learning from demonstrations (RLfD) is a promising

approach to improve the exploration efficiency of reinforcement

learning (RL) by learning from expert demonstrations in addition

to interactions with the environment. In this paper, we propose

a framework that combines techniques from search-based testing

with RLfD with the goal to raise the level of dependability of RL

policies and to reduce human engineering effort. Within our frame-

work, we provide methods for efficiently training, evaluating, and

repairing RL policies. Instead of relying on the costly collection of

demonstrations from (human) experts, we automatically compute

a diverse set of demonstrations via search-based fuzzing methods

and use the fuzz demonstrations for RLfD. To evaluate the safety

and robustness of the trained RL agent, we search for safety-critical

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3623311

scenarios in the black-box environment. Finally, when unsafe be-

havior is detected, we compute demonstrations through fuzz testing

that represent safe behavior and use them to repair the policy. Our

experiments show that our framework is able to efficiently learn

high-performing and safe policies without requiring any expert

knowledge.

CCS CONCEPTS
• Computing methodologies→ Learning from demonstra-
tions;Reinforcement learning; • Software and its engineering
→ Search-based software engineering; Software testing and de-
bugging.

KEYWORDS
Deep reinforcement learning, Reinforcement learning from demon-

strations, Search-based software testing, Policy repair

ACM Reference Format:
Martin Tappler, Andrea Pferscher, Bernhard K. Aichernig, and Bettina

Könighofer. 2024. Learning and Repair of Deep Reinforcement Learning Poli-

cies from Fuzz-Testing Data. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623311

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623311&domain=pdf&date_stamp=2024-02-06

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tappler et al.

1 INTRODUCTION
Deep reinforcement learning has achieved stunning results in diffi-

cult decision-making problems, like in playing video games (e.g.,

AlphaStar [43]) and board games (e.g., AlphaGo [34]).

In RL [35], an RL agent learns an optimal behavior through trial

and error via interactions with an unknown environment. A ma-

jor challenge in RL is sample efficiency [42]. Many of the famous

applications of deep RL required millions of interactions with the

environment. Even though the numbers of environment interac-

tions are very high and triggered a great amount of research and

new approaches for sample efficient learning [33, 46], these num-

bers only report the training steps for the final learned controller

and neglect the number of times the training process was executed.

The common procedure in RL is to train an agent and evaluate

the final policy. In case the trained policy performs insufficiently

well, a developer tunes hyperparameters or adjusts the reward

function, and restarts the training process. Therefore, if we are

interested in the total number of steps that were required to train

the final controller, we should multiply the number of steps by the

number of times the developer restarted the training.

Drawing the analogy to software development, this would map

to writing code from scratch every time test cases fail. Reusing and

retraining neural networks for visual tasks is common practice [6,

21], but to the best of our knowledge, this is not the case for RL.

Problem statement: The main goal of this paper is to propose

a development framework for RL controllers that includes their

training, their evaluation, and their policy repair. To achieve sample

efficiency while reducing human engineering effort, our framework

combines techniques from search-based testing with deep reinforce-
ment learning from demonstrations (RLfD).

RLfD [31] combines learning from demonstrations with learning

from exploring the environment, to be sample-efficient while gen-

eralizing globally. In RLfD, demonstration data are used to pre-train

the agent so that it has an acceptable performance from the start of

training. During training, the policy is further improved with newly

collected data from exploration as well as from demonstration data.

In most work on RLfD, demonstrations originate either from

a former agent or from a human expert. A common challenge in

using the generated data to guide RL is that, in both cases, the data

tends to have a limited variety. Such data with insufficient state

coverage makes it hard to efficiently learn a robust policy.

After the training phase, the final policy of the RL agent needs

to be evaluated, which is an extremely challenging task. The lack of

determinism, combinedwith the very high complexity of the trained

deep neural networks and the environment the agent operates in

makes any kind of testing non-trivial. To the best of our knowledge,

no work discusses how a policy of an RL agent can be repaired in

case testing reveals any weaknesses in the policy.

Our development framework for RL agents via fuzz-testing
data. We propose a framework that uses search-based testing tech-

niques (1) to train, (2) to evaluate, and (3) to repair the policy of deep

RL agents.

(1) Training RL agents from fuzz demonstrations. Figure 2 is a
schematic overview of our proposed RLfD approach. First, we auto-

matically generate demonstrations using the approach of [36]. This

approach performs a simple backtracking-based depth-first search

Search-Based
Testing

Demonstrations

Environment
Agent

sample
interact

store

learn from

Figure 2: RL from demonstrations generated by search-based
testing.

Search-Based
Testing

Demonstrations

Safety
Testing �

Safety

Issues

Repair Experiences

Environment

Agent

sample

interact

store

test

detect

learn from

Figure 3: Repairing RL agents from demonstrations gener-
ated by search-based testing.

for an initial reference demonstration. Using this demonstration as a

seed, a diverse set of demonstrations is sampled via fuzzing. The

fuzzing is implemented using a meta-heuristic search with the aim

to find demonstration trajectories that cover large parts of the state

space and gain high rewards. Finally, the fuzz demonstrations are
used to efficiently train an RL agent via RLfD.

(2) Testing RL agents via search-based testing. Following train-
ing, a learned policy needs to be evaluated. We use the safety test-

ing approach of [36] which tests trained agents in safety-critical

situations that were detected in the search for the reference demon-

stration. Since the DFS algorithm backtracks from unsafe states,

branches in the search reveal safety-critical situations. The safety

of an agent is evaluated based on its ability to succeed in such

situations.

(3) Policy repair of RL agents via fuzz-testing. If testing reveals
unsafe behavior, we perform policy repair to correct detected un-

safe behavior while seeking to retain the overall performance, and

especially, to not induce new unsafe behavior. Figure 3 outlines our

approach for repairing RL policies. We repair the agent’s policy

in the vicinity of states where testing reveals issues. To set up the

repair, we collect examples of correct behavior near the detected

faulty states from the fuzz demonstrations. We filter these demon-

strations to keep only experiences relevant to the detected issues.

If we do not have enough fuzz demonstrations in a particular area,

we can apply another search to sample the environment. Using the

collected experiences as additional demonstrations of safe behavior,

we apply learning from demonstrations again to re-train the agent.

Afterward, we go back to Step 2 to test the new policy. If the new

policy still fails test cases, we perform another round of policy

repair.

Learning and Repair of Deep Reinforcement Learning Policies
from Fuzz-Testing Data ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Properties of our RL development framework. 1. Applicable
under partial observability. The search and fuzzing approaches in

our framework sample the environment as an oracle. Thus, even in

the case of partial observability, our framework can be successfully

applied. The only required information is the reward gained from

executing a trace (did the trace partially or completely solve the

task to be learned?) and if a trace violated safety. Exact state infor-

mation is not required. 2. Usage of human experts demonstrations. If
human expert demonstrations are available, such demonstrations

can be used (alone or additionally to automatically generated traces)

as a basis for fuzzing for training and policy repair. 3. Improved
dependability regarding safety violations due to fuzzing. In software

testing, fuzzing has been proven effective in discovering corner

cases. We exploit this feature throughout our framework: by train-

ing with traces that solve the tasks in different and possibly not

obvious manners, by finding corner cases in the state space that

are safety-critical, and by repairing the agent with diverse traces.

Case Studies.We performed two sets of experiments, using our

framework to develop deep RL agents for Super Mario Bros (level 1-

4) and for solving navigation tasks in challenging gridworlds. Both

case studies demonstrate that we are able to reduce the number of

training steps without requiring any expert knowledge. The repair

phase is able to successfully repair the policy to fix most detected

unsafe behavior. We show that not doing repair but increasing the

number of training steps does not result in safer policies.

Main Contributions. To summarize, our main contributions are:

(1) We propose a development framework for RL that repairs a

trained policy instead of starting training from scratch. (2) We

reduce human effort in RLfD by automatically computing demon-

strations via fuzzing. (3) To the best of our knowledge, we are the

first who discuss policy repair for deep RL agents. (4) We show the

potential and flexibility of our approach on solving a challenging

computer game and navigation tasks.

2 RELATEDWORK
Recently, there have been many impressive advances in RLfD. The

survey [31] provides an overview of the most novel relevant al-

gorithms to integrate demonstration data into deep RL. The ap-

proaches to solve the RL part of RLfD can be categorized into

value-based [4, 14], policy-based [16, 17, 30], and actor-critic meth-

ods [11, 32].We use the value-based approachDeepQ-learning from

Demonstrations (DQfD) [14] since it is one of the most prominent

algorithms. However, our framework can combined with any RLfD

algorithm. Several works consider the problem of learning from

imperfect or noisy demonstrations, or learning from fewer demon-

strations [2, 9, 25, 48]. We assume to compute fuzz demonstrations

under ideal conditions, i.e., we assume that fuzzing and testing have

the exact same observation space as the agent. Closing domain gaps

between fuzz demonstrations and the agent’s action and reward

trajectories is interesting future work. Techniques from transfer

learning, like cross-domain transfer [38], may help to achieve this

goal.

In the last year, several works proposed to apply software testing

approaches to evaluate deep RL agents. In particular, [36] and [49]

propose search-based testing methods, and [22] discussed mutation-

based testing for the RL setting. Tappler et al. [36] were the first to

propose a search-based testing framework to evaluate the safety of

RL agents. Our paper directly reuses the techniques presented in

[36] to (a) search for reference demonstration and boundary states,
to (b) test for safety and to (c) generate fuzz demonstrations ((a)-(c)
refer to Step 1-3 in the testing framework of [36]). Similar to [36],

Zolfagharian et al. [49] search for demonstrations using genetic al-

gorithms. However, instead of searching for boundary states (states

in which some successors states are safety-critical and some are

safe) and testing several agents near these boundary states, the ap-

proach directly searches for failing executions of an agent’s policy.

For RLfD to be effective, it is necessary to have a diverse set of

demonstrations, including traces that are successful. The demon-

strations can come from search algorithms or from human experts.

In this paper, we reused the approach and implementation of [36]

to search for demonstrations. However, the algorithm from [49]

could be used as well to search for demonstrations. We extend the

work from [36] and [49] by using search-based testing methods not

only to evaluate the agent but also for training and policy repair.

In addition to testing methods for DNNs that are used for con-

trol tasks (i.e., deep RL), the testing community was very active

in developing testing frameworks and tools for DNNs used for

visual tasks (e.g., for object detection). Tools, like DeepTest [40],

TensorFuzz [27], and DeepHunter [44], have been designed to auto-

matically discover errors in deep neural networks that occur only

for rare inputs.

We showcase our approach in environments where several sub-

goals need to be completed to solve a task,like picking up a key to

unlock a door. Environments with such sparse or non-Markovian

rewards are often approached by learning automata as high-level

task description [10, 13, 15, 45]. Our fuzzing-based demonstration

generation provides a potentially more lightweight alternative to

the inference of automata-based task descriptions.

Even though policy repair has not been investigated in the con-

text of RL policies yet, repair techniques have been used in various

application domains. In program repair, automatic analysis meth-

ods, like fuzzing, are used to detect and correct errors in software

code [12, 26]. In this work, we use search-based testing to detect

unsafe behavior of the agent and apply specialized re-training to

correct its behavior which we refer to as repair.

3 PRELIMINARIES
AMarkov decision process (MDP)M = (S, 𝑠0,A,P,R) is a tuple
with a finite set S of states including initial state 𝑠0, a finite setA of

actions, and a probabilistic transition functionP : S×A×S → [0, 1],
and an immediate reward function R : S × A → R. We consider

episodic RL tasks in which an agent fails by violating safety or

succeeds by completing the task. Therefore, we introduce two sets

of terminal states: unsafe states S𝑈 ⊆ S and goal states S𝐺 ⊆ S.
Visiting an unsafe state 𝑠 ∈ S𝑈 is a safety violation. If a goal state
𝑠 ∈ S𝐺 is visited, the task to be learned is completed successfully.

In reinforcement learning (RL), [35] an agent learns a task

via interactions with an unknown environment modeled by an

MDPM = (S, 𝑠0,A,P,R). At each state 𝑠 ∈ S, the agent chooses
an action 𝑎 ∈ A, the environment then moves to a state 𝑠′ with
probability P(𝑠, 𝑎, 𝑠′). The reward is determined with 𝑟 = R(𝑠, 𝑎).
A (deterministic) policy 𝜋 : S → A is a function mapping states to

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tappler et al.

actions. The set of all policies is denoted by Π. The return ret is the
discounted cumulative reward defined by ret = Σ∞

𝑡=0
𝛾𝑡R(𝑠𝑡 , 𝑎𝑡),

using the discount factor 𝛾 ∈ [0, 1]. The objective of the agent is to
learn an optimal policy 𝜋★ that maximizes the expectation of the

return, i.e., max𝜋∈Π E𝜋 (ret).
Given a policy 𝜋 , a state 𝑠 and an action 𝑎, the value 𝑄𝜋 (𝑠, 𝑎) is

defined as the expected return that can be obtained from (𝑠, 𝑎) when
following 𝜋 . The optimal Q-value function𝑄★(𝑠, 𝑎) is computed by

solving the Bellman equation:

𝑄★(𝑠, 𝑎) = E
[
R(𝑠, 𝑎) + 𝛾Σ𝑠′P(𝑠′ | 𝑠, 𝑎)max

𝑎′
𝑄★(𝑠′, 𝑎′)

]
.

A policy 𝜋★ is optimal if 𝜋★(𝑠) = max𝑎 𝑄
★(𝑠, 𝑎). In deep RL, the

value function 𝑄★(𝑠, 𝑎) is approximated by a neural network. For a

given state 𝑠 , the network outputs a vector of action values𝑄 (𝑠, ·;𝜃)
that approximates 𝑄★(𝑠, 𝑎), where 𝜃 are the network parameters.

The DDQ Algorithm. The double Deep Q-Network algorithm

(DDQ) [41] uses an online network with parameters 𝜃 and a target
network with parameters 𝜃− . The policy is evaluated according to

the online network, but the target network estimates the action

values. The double DQN error is given by 𝐽𝐷𝑄 (𝑄) = R(𝑠, 𝑎) +
𝛾𝑄 (𝑠𝑡+1, 𝑎max𝑡+1 ;𝜃

−
𝑡) with 𝑎max

𝑡+1 = argmax𝑎𝑄 (𝑠𝑡+1, 𝑎;𝜃𝑡). The online

network parameters are continuously updated according to this er-

ror. Every𝑇 time steps, the target network is updated by overriding

𝜃− with the online network parameters 𝜃 . DDQ uses experience re-

play, where the agent adds all of its observed transitions to a replay

buffer, which is sampled uniformly to update the online network.

The n-step return [28] is defined via G𝑡 := Σ𝑛−1
𝑖=0

𝛾𝑖 · 𝑟𝑡+𝑖 , for a
constant 𝑛. Variations of DDQ, like DQfD, use 𝑛-step returns G𝑡 to
consider long-term dependencies instead or in addition to R𝑡 .

Demonstrations. An experience is a state-action-reward triple

(𝑠, 𝑎, 𝑟). A demonstration (or trace) is the experience sequence 𝜏 =

⟨𝑠0, 𝑎0, 𝑟0, 𝑠1, . . . , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛−1⟩ induced by a policy 𝜋 during an

episode starting in the initial state 𝑠0. It consists of the actions taken

by an agent, the corresponding observed environment states, and

the gained rewards. 𝜏 [𝑖] is the 𝑖𝑡ℎ experience, i.e., 𝜏 [𝑖] = (𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖)
with 0 ≤ 𝑖 < 𝑛. We denote sets of demonstrations with T .

The action sequence with states and rewards omitted from 𝜏 is an

action demonstration 𝜏A = ⟨𝑎0, 𝑎1, . . . 𝑎𝑛−1⟩, and 𝜏A [𝑖] = 𝑎𝑖 is the

𝑖𝑡ℎ action. Executing 𝜏A from 𝑠0 ofM yields a trace exec𝜏 (𝜏A , 𝑠0) =
⟨𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1 . . . , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛−1⟩ with 𝑛 = |𝜏A |.

Visiting a goal state or an unsafe state terminates an episode. A

demonstration 𝜏 is successful if it ends in a goal state 𝑠 ∈ S𝐺 . If 𝜏
ends in an unsafe state 𝑠 ∈ S𝑈 , we say that 𝜏 failed (or is unsafe).

Otherwise, we say that 𝜏 is safe. We denote the set of successful

demonstration with Tsucc ⊆ T , and the set of failure traces with

T
fail
⊆ T .

4 STEP 1 - TRAINING FROM FUZZ
DEMONSTRATIONS

Our framework starts from the classical RL setting without having

any expert demonstrations available. Figure 4 gives an overview of

our framework for RL via fuzz demonstrations. In the first step of

our framework, we search for a reference demonstration 𝜏
ref
∈ Tsucc

that solves the task to be learned, not necessarily in an optimal way.

𝜏
ref

is then used as a seed for the fuzzing algorithm to search for a

diverse set of successful demonstrations T𝑑 ⊆ Tsucc. Finally, the

Figure 4: Overview of RL from fuzzed demonstrations.

fuzz demonstrations T𝑑
are used for RLfD. We use the approach

of [36] to search for a reference trace and to fuzz demonstrations.

Thus, we only outline these algorithms in Section 4.1 and Section 4.2,

and refer to [36] for details.

4.1 Search for a Reference Demonstration
We search for a reference demonstration 𝜏

ref
using backtracking-

based, depth-first search (DFS) by sampling the MDP M. Every

time the search visits an unsafe state in S𝑈 , the DFS algorithm

backtracks. Already visited states along a search branch are stored

to detect loops. If a state is visited again, the algorithm backtracks.

When visiting a goal state in S𝐺 , the DFS terminates successfully.

Important for the search is that the stochastic behavior ofM is

abstracted away by repeating actions sufficiently often [19]. The

search can be optimized by using proper abstractions of the state

space to merge similar states.

Example. As an example, consider the problem of finding a

reference demonstration solving the first level of Super Mario Bros,

as illustrated in Figure 1. For the DFS, we only allow the actions

"right" and "jump". Whenever an unsafe state is visited during the

DFS, the search backtracks. White dots mark branching points. The

search terminates if the demonstration reaches the end of the level.

4.2 Fuzzing of Demonstrations
Given the demonstration 𝜏

ref
as a seed, we use search-based fuzzing

methods [47] to compute a set of demonstrations T𝑑 ⊆ Tsucc. Using
a proper fitness function that assigns a value to a demonstration

based on its gained reward and visited states, we guide the search

to fuzz successful demonstrations that cover a large portion of the

state space. Using the fitness function, we apply a genetic algorithm

with a fixed population of action demonstrations for a fixed number

of generations. The mutations insert, replace, remove, or append

new actions into individuals. We combine individuals through a

point-wise crossover that concatenates a prefix and a suffix of two

Learning and Repair of Deep Reinforcement Learning Policies
from Fuzz-Testing Data ICSE ’24, April 14–20, 2024, Lisbon, Portugal

individuals that are split at a random point. The fitness function

is a weight sum of the normalized return gained from executing

an individual action demonstration and the number of new states

explored by the execution. The latter steers the search towards a

diverse set of traces covering a large part of the state space, thus

enabling learning robust policies via RLfD.

4.3 Learning from Fuzz Demonstrations
The fuzzing algorithm provides us with a set of fuzzed demonstra-

tions T𝑑 ⊆ T𝑠𝑢𝑐𝑐 which can now be used for any RLfD algorithm.

One such RLfD algorithm is deep Q-learning from demonstrations

(DQfD) [14] which builds upon the DDQ algorithm.

Overview of DQfD. During training, the agent is equipped with

two replay buffers:

• an expert replay buffer storing all experiences 𝜏 [𝑖] with 0 ≤
𝑖 < |𝜏 | for all demonstrations 𝜏 ∈ T𝑑

, and

• a standard replay buffer of fixed size, where experiences

gained by the agent are stored. Whenever the buffer size

exceeds the fixed size, the oldest experiences are dropped.

DQfD implements training in two stages. In the first stage, the

agent gets pretrained by replaying experiences observed during

demonstrations from T𝑑
. For this purpose, we sample minibatches

of size 𝑘 and update the online Q-network by learning with the loss

function 𝐽 (𝑄) = 𝐽𝐷𝑄 (𝑄) + 𝜆1 𝐽𝑛 (𝑄) + 𝜆2 𝐽𝐸 (𝑄) + 𝜆3 𝐽𝐿2 (𝑄). 𝐽𝐷𝑄 (𝑄)
is the standard one-step DQN loss, 𝐽𝑛 (𝑄) is an 𝑛-step return loss,

𝐽𝐸 (𝑄) is a large margin classification loss [29] that makes the fuzz-

demonstration action values appear better in comparison to other

actions, and 𝐽𝐿2 (𝑄) is a weight-regularization loss.

The second stage of DQfD is similar to standard DDQ, where the

agent explores the environment and fills the standard replay buffer

with new experiences. This buffer is a dequeue for normal experi-
ences, i.e., it overrides old experiences upon reaching a capacity

limit, whereas demonstrations from the expert replay buffer are

never discarded. Whenever we update the online Q-network, we

sample a minibatch of 𝑘 experiences from both buffers. The same

loss 𝐽 (𝑄) applies to both experience types, except that 𝐽𝐸 (𝑄) only
applies to fuzz demonstrations. We use a slight adaptation of DQfD,

where we sample a fixed share of 𝑠𝑒𝑥𝑝 = ⌈𝑘 · 𝑟exp⌉ fuzz experiences
and a fixed share of ⌊𝑘 · (1−𝑟exp)⌋ normal experiences. This enables

a straight-forward application to policy repair. We perform 𝑒train
episodes during the training stage.

5 STEP 2 - SAFETY TESTING OF RL AGENTS
The next development step after computing a policy is to evaluate

it. Several recent testing approaches for deep RL agents could be

applied [3, 36, 49]. In this paper, we evaluate the safety of the trained

agent reusing the approach from [36], with the small modification

of introducing probabilistic sampling of actions. In this section, we

outline the approach for safety testing and refer to [36] for details.

Search for Boundary States. We first compute a test suite, which

is a set of traces leading to safety-critical situations in which we

want to evaluate the behavior of the agent. A safety test suite

can be obtained as a side product of the search for the reference

trace 𝜏
ref

as follows. The DFS backtracks when reaching an unsafe

state in S𝑈 in the MDPM. Thus, the search reveals safety-critical

situations. A boundary state is a state in a reference trace to which

Figure 5: Gridworld showing a reference demonstration
(green), boundary states (red dots), and fuzzed demonstra-
tions (yellow). Fields with a lightning bolt are safety-critical.

the DFS backtracked, i.e., a branching point. Therefore, it is a state

from which the DFS first only explored failing traces before finding

the successful trace 𝜏
ref

. While the failing branches of the search

indicate that the boundary state is close to violating safety (visiting

a state in S𝑈), the reference trace suggests that it is still possible to

circumvent a safety violation. The safety test suite is formed from

the set of prefixes of 𝜏
ref

leading to the observed boundary states

which we denote with S𝐵 ⊆ S.
Example. Figure 5 illustrates the computation of a safety test suite.
The green trace is an example of a reference trace 𝜏

ref
. The boundary

states detected via searching for 𝜏
ref

are shown as red dots.
Test-Case Execution. The test-case execution is parameterized by

a trace 𝜏𝑡𝑐 leading to a boundary state and a test length 𝑡𝑙 . To execute

a test case, we first execute the actions of 𝜏𝑡𝑐 . After that, we let the

policy under test 𝜋𝑈𝑇 take over. For 𝑡𝑙 many test steps, we choose

an action 𝑎 according to 𝜋𝑈𝑇 . We execute 𝑎 in the environment

and observe the next state 𝑠 . If 𝑠 ∈ S𝑈 , the test-case execution

is stopped with a fail verdict. A test-case execution passes if we
perform 𝑡𝑙 steps without visiting an unsafe state. Note that each

test case should be executed several times to take the probabilistic

behavior of the environmentM into account.

We propose a slight modification of the test-case execution

of [36]. Additionally to 𝜏𝑡𝑐 and 𝑡𝑙 , we parameterize test-case execu-

tion with a low probability 𝑝𝑐ℎ𝑎𝑛𝑔𝑒 for action perturbations. During

the execution of a test case, we choose a random action 𝑎 with prob-

ability 𝑝𝑐ℎ𝑎𝑛𝑔𝑒 instead of picking the action from 𝜋𝑈𝑇 . Having a

probability 𝑝𝑐ℎ𝑎𝑛𝑔𝑒 > 0 has two advantages. First, it increases test

coverage since a randomized policy likely visits more states than

a deterministic policy. Second, it takes action robustness [39] in

the safety testing into account. Since an action might fail during

execution, this evaluation gives a measure of how close agents are

to violating safety.

Example. In Fig. 5, states labeled with a lightning bolt are safety-
critical states which are not boundary states and thus are not in the
safety test suite. However, a test-case execution with 𝑝𝑐ℎ𝑎𝑛𝑔𝑒 > 0

might also visit such states such that the agent’s policy in these cases
can be evaluated. Additionally, a policy that avoids situations where a
perturbed action selection would violate safety will have higher scores
in the safety evaluation.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tappler et al.

Algorithm 1 Policy repair.

Input: Policy under repair 𝜋𝑈𝑅 , repair states S𝑅 , fuzz demonstra-

tions T𝑑
, maximum repair environment distance Δ, DQfD pa-

rameters

Output: Repaired policy 𝜋𝑈𝑅

1: 𝑅𝐸 ← {} ⊲ Initialize repair experiences

2: for 𝜏 ∈ T𝑑 do
3: for (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖) ∈ 𝜏 do
4: if ∃𝑠𝑅 ∈ S𝑅 : 𝑑 (𝑠𝑖 , 𝑠𝑅) ≤ Δ then
5: 𝑅𝐸 ← 𝑅𝐸 ∪ {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖)}
6: ExpBuffer← 𝑅𝐸, ReplayBuffer← {}
7: while |ReplayBuffer| < bufferSize do
8: 𝜏 ← RunEpisode(𝜋𝑈𝑅)
9: for (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖) ∈ 𝜏 do
10: ReplayBuffer← ReplayBuffer ∪ {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖)}
11: for 𝑖 ← 0 to pretrainSteps do
12: 𝑟exp ←

𝑖 ·𝑟exp−rep
pretrainSteps

13: 𝑠exp = ⌈𝑘 · 𝑟exp⌉
14: 𝜋𝑈𝑅 ← DQfDpre(𝜋𝑈𝑅, 𝑠exp, ReplayBuffer, ExpBuffer)
15: 𝜋𝑈𝑅 ← DQfD(𝜋𝑈𝑅, 𝑠exp, ReplayBuffer, ExpBuffer)
16: return 𝜋𝑈𝑅

6 STEP 3 - POLICY REPAIR VIA FUZZ DATA
The second step of our framework tests the policy of a trained RL

agent. For a given policy under repair 𝜋𝑈𝑅 , testing returns a set

of states S𝑅 ⊆ S, called repair states, in which the behavior of the

policy is unsafe. The goal of policy repair is to robustly correct

the behavior of the agent’s policy around the states in S𝑅 while

retaining the overall performance of the agent.

Overview of Policy Repair.We are given the policy under repair

𝜋𝑈𝑅 , the set of fuzz demonstrations T𝑑
as described in Sec. 4.2,

and the set of repair states S𝑅 . For any state 𝑠𝑅 ∈ S𝑅 , we assemble

a set of repair experiences 𝐸 that represent correct behavior in the

vicinity of 𝑠𝑅 , i.e., experiences that we use to repair policies. We

extract these experiences from T𝑑
. In case that the demonstrations

in T𝑑
do not contain enough experiences near a state 𝑠𝑅 ∈ S𝑅 , the

environment can be sampled for additional demonstrations that

represent correct behavior near 𝑠𝑅 . Finally, we repair the policy

using the repair experiences and obtain a new policy 𝜋 ′
𝑈𝑅

. With

𝜋 ′
𝑈𝑅

, we return to the testing step of our framework. In case that

testing reveals undesired behavior in 𝜋 ′
𝑈𝑅

, another iteration of

repair can be performed until the performance and safety of the final

policy is satisfying. Algorithm 1 implements the individual of steps

of policy repair, which we discuss in detail below. Parameters, like

the number of training episodes for repair 𝑒𝑟𝑒𝑝𝑎𝑖𝑟 , are summarized

in the input DQfD parameters.
Assembling of Repair Experiences. The repair algorithm starts by

collecting repair experiences in the lines 1 to 5. Four components

form the basis for the computation of the repair experiences 𝑅𝐸:

(1) the set of repair state S𝑅 , (2) the fuzz traces T𝑑
demonstrating

safe behavior, (3) a problem-dependent distance function 𝑑 , and

(4) a Δ defining the size of repair environment around individual

repair states. We check every experience 𝑒 = (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖) of every
fuzz demonstration 𝜏 ∈ T𝑑

. If the state 𝑠𝑖 lies in the neighborhood

of any repair state, we add 𝑒 to the set of repair experiences. To

define a distance function, we generally apply an abstraction over

the states and we choose Δ based on the test-case execution length

𝑡𝑙 and the length of the reference trace. Δ can be seen as a distance

to be traveled by the agent during a successful test. To this end, 𝑅𝐸

contains the experiences prior to reaching the repair state and as

many experiences as would be required to pass the test case. Note

that alternatively to abstraction-based distance functions, simple

index-based distance functions may be viable. If reference trace and

fuzz demonstrations have similar length, the 𝑠𝑖 in an experience 𝑒

can be abstracted to its position in the fuzz demonstration.

Policy Repair. The remainder of Algorithm 1 implements our pro-

posed DQfD variation. Using the repair experiences 𝑅𝐸, we repair

the policy 𝜋𝑈𝑅 that comes in the form of a neural network. We

implement this through DQfD while ensuring a non-abrupt distri-

bution shift. In Line 6, we populate the expert replay buffer with the

repair experiences 𝑅𝐸. Lines 7 to 10 execute the non-repaired 𝜋𝑈𝑅

to sample demonstrations that we use to fill the standard replay

buffer. In the lines 11 to 14, we perform the pre-training stage of

DQfD with the important modification that we linearly increase the

share of expert demonstration experiences from 0 (using no experi-

ences from the expert buffer) to a specified target ratio 𝑟exp−rep of

expert and normal experiences. The function DQfDpre performs

minibatch updates of the neural network to update the policy 𝜋𝑈𝑅 ,

like in the pretraining stage of DQfD. In contrast to standard DQfD,

we use the experiences of the trained unsafe agent also during

pre-training. With that and the gradually increasing expert share,

we ensure that the distribution of experiences does not shift dras-

tically as compared to the initial training of 𝜋𝑈𝑅 . This DQfD-like

pretraining adjusts the policy under repair 𝜋𝑈𝑅 so that it follows

the repair experiences 𝑅𝐸, rather than training a new policy from

scratch. By doing so, we repair the agent so that it learns to safely

escape from experienced safety-critical states. Finally, in Line 15, we

perform 𝑒repair training episodes, where we update the Q-network

with minibatches containing expert experiences and newly gained

experiences as in the second stage of DQfD outlined in Sec. 4.3.

Evaluation & Iterated Repair. Repairing the policy 𝜋𝑈𝑅 for the

repair states S𝑅 gives us a new policy 𝜋 ′
𝑈𝑅

. In the next step, we

test 𝜋 ′
𝑈𝑅

for safety according to Sec. 5. This step may reveal new

repair states S′
𝑅
for 𝜋 ′

𝑈𝑅
. If S′

𝑅
is nonempty, we perform another

repair step for 𝜋 ′
𝑈𝑅

using the repair states S′
𝑅
∪ S𝑅 . That is, we

perform Algorithm 1 again. The nature of training may induce new

unsafe or non-optimal behavior. In our experiments, however, we

found that the number of repair states generally decreases and a

few repair iterations (one or two) are mostly sufficient.

7 EXPERIMENTS
We train RL agents to complete the first four levels of Super Mario

Bros. (SMB) with RL-development framework and four different

gridworlds. The experiments were conducted on nodes of a compute

cluster equipped with an Nvidia Tesla T4™ graphics card.

Common Parameters – Training. In both types of case studies,

we set the following parameters for DDQ and DQfD: 𝛾 = 0.95, a

buffer size of 2 · 104, 𝑛 = 10 for 𝑛-step return losses, a minibatch

size of 𝑘 = 32, and we use the Adam optimizer [20] with a learning

rate of 10
−4
, a weight decay of 5 · 10−5. We start training with an

Learning and Repair of Deep Reinforcement Learning Policies
from Fuzz-Testing Data ICSE ’24, April 14–20, 2024, Lisbon, Portugal

exploration rate of 0.1 and decrease it with a multiplicative decay

rate of 0.999999 to 0.01 (which is the fixed exploration of DQfD for

ATARI games [14]). The DQfD-specific parameters are as follows:

We perform 𝑡pre = 2 · 105 pre-training steps and use a fixed expert

demonstration share of 𝑟exp = 1

2
. Finally, the weights for the losses

are 𝜆1 = 𝜆2 = 𝜆3 = 1.

Common Parameters – Testing. For testing, we set the test length
such that we check the environment around a boundary state with-

out reaching the next boundary state, thus individual tests are inde-

pendent from each other. We set 𝑝𝑐ℎ𝑎𝑛𝑔𝑒 = 0.01 to test robustness

to small perturbations of the agent’s actions.

7.1 Super Mario Bros. Experiments
Training from Fuzz Demonstrations – Setup. All SMB experiments

where performed in the SMB environment [18], where we build

upon the implementation of [36] that provides a DDQ agent for

comparison and a search-based testing framework. For each level,

we first computed a single reference demonstration 𝜏
ref

that com-

pletes the level. For fuzz testing, we used a population size of 100

and 50 iterations, i.e., we simulate 5000 episodes during fuzz testing.

All successful demonstrations of each generation form the demon-

stration set T𝑑
. To evaluate the quality of demonstrations from

fuzz testing, one of the authors manually collected 50 successful

demonstrations T 𝑒
for each of the four considered levels. We de-

note experiments with such expert demonstrations with DQfED

and experiments with DQfD from fuzz demonstrations with DQfD.

We trained both types of DQfD agents with the respective demon-

strations in T𝑑
and T 𝑒

, and we compare to double DQN agents

trained with n-step return, which we abbreviate DDQ. Note that

computing 𝑛-step return losses for DDQ enables a fair comparison

with DQfD in terms of how much information is extracted from

gained experiences. Using 𝑛-step return losses in learning ensures

that experiences are propagated further in time faster. We compare

all agents in terms of gained cumulative rewards.

We perform 𝑒train = 15000 episodes in the training phase of

DQfD and 20000 training episodes with DDQ. Hence, the sampling

budget is the same for both approaches, as we fuzz for 5000 episodes.

The cost of the initial search for a reference trace is negligible as

we show in Table 1. The agents’ task is to finish a level. They

get more reward the further they get in the level and get negative

reward for a game over and for the amount of time spent in the level.

Concretely, the reward in a step is given by
(𝑥−𝑥 ′)+(𝑡−𝑡 ′)+𝑑

100
, where

𝑥 is the agent’s 𝑥-coordinate in a level, 𝑡 is the time left to complete

the level, primed values denote the corresponding values from the

last time step, and 𝑑 = −25 if an unsafe state is reached and 𝑑 = 0

otherwise. The scaling factor of 100 improves convergence when

training uses 𝑛-step return losses. The MDP states seen by the RL

agent are stacks of four greyscale images resized to 84 by 84 pixels,

where stacking helps to track movement speed and direction. The

actions are running and jumping to the right. Since levels are of

different lengths, the maximal cumulative reward varies from level

to level.

Training from Fuzz Demonstrations – Results.We plot the average

cumulative reward gained during training in Fig. 6. The thick line is

averaged over five runs of each training type, whereas the shaded

area depicts the range between minimum and maximum of the

Table 1: Average runtime in seconds of the individual steps
in DQfD and runtime of DDQ.

DQfD DDQ

search fuzzing pretraining Σ Σ
1-1 7.89 5566.08 1567.67 76218.08 90696.12

1-2 152.69 5554.94 1567.87 81671.72 195373.51

1-3 75.43 3016.59 1566.37 24892.87 15332.85

1-4 18.47 7026.72 1556.60 39836.69 49451.16

average cumulative rewards. The green lines represents the results

for our DQfD implementation using the demonstrations T𝑑
, the

blue lines depict the DQfED results with expert demonstrations,

and the red line represents the DDQ agent. We offset the DQfD

plots by 5000 episodes, as this is the sampling budget for fuzzing.

We can see that DQfD only had a minor effect in the learning

performance for levels 1 and 4, but it allowed to successfully train

agents for levels 2 and 3 in which DDQ hardly progressed. The

reason, most likely, is that the levels have varying difficulties: Level

1 and Level 4 are relatively basic with only a few obstacles scattered

across the levels. In contrast, Level 2 features several pits and obsta-

cles in close proximity to each other, and Level 3 features many pits.

Thus, Level 2 and Level 3 require tight maneuvers that are difficult

to learn only via exploration, such that demonstrations give the

agent a head start. The derived test suites also suggest a difference

in difficulty between the levels. There are 31 test cases for Level 3,

despite it being relatively short, whereas there are only 16 test cases

for Level 4. Note that for all four levels, the DQfD agent shows a

very stable learning curve. Comparing DQfD and DQfED, we can

see that expert demonstrations lead to slightly better performance

in the levels 1, 2, and 4 and to faster convergence and more effective

pretraining in Level 3. In contrast, DQfD shows more stable progres-

sion; the minimal cumulative return of DQfED shows some spikes,

where it goes below the DQfD return range, most prominently in

Level 2. Hence, DQfD with completely automatic demonstration

generation is mostly on par with DQfED, which requires an expen-

sive human oracle. DQfD with fuzz demonstration would require

more training to reach the performance of DQfED in Level 3, which

is possible without human intervention. The plots of the second

repair iteration for Level 3 in Fig. 7 show that additional training

with fuzz demonstrations indeed further improves performance.

We balanced the sampling budget between DQfD and DDQ.

Table 1 additionally provides an overview of the runtime of the

individual steps. The columns contain the stage, the runtime of the

DFS for the reference trace, the runtime of fuzzing, and the runtime

of the pretraining steps, i.e., neural network updates without sam-

pling. The summed runtime for DQfD includes all these steps and

the time required by training, whereas the summed DDQ runtime

solely includes the training runtime. The search is generally fast,

taking less than three minutes. Fuzzing takes at most 2.7 hours

and the pretraining time is typically about half an hour since we

set a constant number of minibatch updates of the neural network.

Comparing the overall runtimes, we can observe that the time in-

vested in preparation for DQfD pays off, as the overall runtime of

DDQ is generally higher. DDQ is faster only in Level 3, where the

DDQ agents fail early, such that episodes are short. The difference

between DDQ and DQfD is especially large in Level 2, where the

agent may get stuck due to obstacles blocking the way.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tappler et al.

0 0.5 1 1.5 2

·104

1,000

2,000

3,000

Episodes

DQfD

DDQ

DQfED

(a) Level 1

0 0.5 1 1.5 2

·104

1,000

2,000

Episodes

DQfD

DDQ

DQfED

(b) Level 2

0 0.5 1 1.5 2

·104

500

1,000

1,500

2,000

Episodes

DQfD

DDQ

DQfED

(c) Level 3

0 0.5 1 1.5 2

·104

500

1,000

1,500

2,000

Episodes

DQfD

DDQ

DQfED

(d) Level 4

Figure 6: The cumulative rewards gained during training of SMB with a sliding average of 100 episodes.

0 2,000 4,000

500

1,000

1,500

2,000

Episodes

repair it. 1

0 2,000 4,000

500

1,000

1,500

2,000

Episodes

repair it. 2

base ext.

training

repair

it. 1

repair

it. 2

0

0.2

0.4

Safety Test Fail Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

·104

500

1,000

1,500

2,000

Episodes

ext. training

Figure 7: Cumulative rewards gained during training performed for repair and extended training for Level 3, and test results
before and after repair, and after extended training.

Repairing DDQ Agents – Setup. To evaluate policy repair, we

test the DDQ agent (trained for 15000 episodes) for safety issues

and repair these issues using the fuzz demonstrations. We set the

target expert share to 𝑟exp−rep = 0.5 and use the same parameters

as for DQfD with the following exceptions: We set the weight

for the supervised loss to 𝜆2 = 0.1, we decrease the exploration

rate to 0.99999, and we perform 5000 training episodes. With the

lower 𝜆2, we aim to change the policy carefully. The reason for

less exploration is that the policies under repair already performs

well. For the experience selection, we define the distance 𝑑 via the

difference in the 𝑥-coordinates based on the underlying coordinate

system of SMB, i.e., we abstract states to their x-coordinates. We

set Δ = 𝑡𝑙 · 𝑥𝑠 , where 𝑡𝑙 is the length of a test, which is the number

of steps performed during a test after visiting the corresponding

boundary state, and 𝑥𝑠 is the average distance traveled in the 𝑥-

direction within a single step.

Finally, we compare repaired policies to policies resulting from

extended training for another 15000 episodes starting from the initial

policy under repair. That is, after extended training, the agent has

been trained for a total of 30000 episodes. After two repair iterations,

the repaired agent has been trained for a total of 25000 episodes

and the repair makes use of demonstrations collected during 5000

fuzzing episodes. Hence, the comparison is fair in terms of sampling

budget. Moreover, repair and extended training start from the same

initial policy. We perform each run of repair and extended training

five times for one of the base DDQ agents trained for 15000 episodes.

Repair Results. In Fig. 7 and Fig. 8, we show results from repairing

and extended training for Levels 3 and 4. The results highlight

different aspects: repair improves safety as well as performance for

the third level. In Level 4, standard DDQ already performs well w.r.t.

reward, thus repair improves only safety. The line plots at the top

show the cumulative reward gained during training for repair as in

Learning and Repair of Deep Reinforcement Learning Policies
from Fuzz-Testing Data ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Fig. 6, while the plot at the bottom shows the cumulative reward

gained during extended training. The bar plots depict average safety

testing results that are ratios of failing test cases to all executed test

cases. The red bars correspond to test results from DDQ training for

15000 episodes and extended training for another 15000 episodes,

respectively. The green bars correspond to test results after repair

iterations. Black bars show the respective standard deviation.

DDQ did not find a good policy for Level 3, even with extended

training. Analogously to performance, extended training did not in-

crease safety. With the first repair iteration, we generally achieved

close-to-zero test fails, albeit with low reward. The policies failed at

a point that is not covered by the generated test suite. We combated

that by extending the repair experiences to include fuzz demonstra-

tions near the state where the agent fails, as determined by episode

length. Since this requires a larger change of the policy under re-

pair, we changed two parameters for the second repair iteration

of Level 3 agents, increasing the weight for the supervised loss to

𝜆2 = 1 and the pre-training steps to 𝑡pre = 5 · 105. Fig. 7 shows that
this indeed improves the reward, even beyond the reward of DQfD

shown in Fig. 6c. At the same time, the safety test-case fail rate

stays low after the second repair iteration.

For Level 4 in Fig. 8, we see that extended training can hurt safety,

despite negative rewards for safety issues. The first repair iteration

likewise even reduced the overall safety. A closer investigation

showed that it mostly fixed issues corresponding to failing test

cases of the base DDQ agent, but it introduced issues elsewhere.

The policy was changed considerably in this first repair iteration,

causing other test cases to fail and unstable performance in terms

of reward. The second iteration fixed most safety issues. Only one

test case still failed in three of five runs after the second iteration.

7.2 Minigrid Experiments
Setup. The gridworld experiments were performed in the Minigrid

environment [5]. For this gridworld environment, we implemented

a DDQ agent and a fuzz-testing framework. The reward in these

environments is given by 𝑔 − 0.01 · 𝑑 − 𝑠 + 𝑟 , where 𝑔 = 1 if the

goal is reached, 𝑑 is the Manhattan distance to the goal, 𝑠 = 0.01 if

the maximum number of steps is reached, and 𝑟 = 0.025 if a new

room was entered. For Minigrids with only one room, we penalize

each step with −0.01. The states seen by the RL agent are 84 by

84 images of the environment and the available actions are: turn

left, turn right, move forward, pick up, put down, and unlock. We

reduce the action set to a subset that is sufficient to reach the goal.

Additionally, the agent knows if it is holding an item.

Training from Fuzz Demonstrations. For our evaluation, we se-
lected four gridworlds: (a) ThreeRoomsLava, (b) DistShift1, (c)
LavaCrossingS9N1, and (d) UnlockPickup. Gridworld (a) depicted
in Fig. 5 is a manually designed multi-room gridworld with doors

and lava fields, while gridworlds (b)-(d) are from [5]. The agent’s

task is to enter the goal field or pick up a box. To do this, the agent

must unlock and open doors, avoid lava fields, and complete the

task before reaching the maximum number of steps. Note that the

agent must complete subtasks sequentially, which may temporarily

decrease the cumulative reward by increasing the distance to the

goal. However, completing the series of subtasks ultimately leads

to a large cumulative reward via completion of the entire task. For

Table 2: Average runtime in seconds of the individual steps
in DQfD and runtime of DDQ for the Minigrid experiments.

DQfD DDQ

search fuzzing pretraining Σ Σ
DistShift1 0.04 149.38 1859.24 4108.30 9780.74

LavaCrossingS9N1 0.06 211.06 1735.18 3754.74 6628.17

UnlockPickup 0.06 386.33 1869.72 6363.39 72462.02

ThreeRoomsLava 0.13 1221.98 1844.85 16582.26 48147.06

example, in UnlockPickup (d), shown in Fig. 9, the agent must

perform a fairly complex sequence of actions including picking

up the key, unlocking the door, discarding the key, and picking

up the box. The learning setup is similar to the SMB case study,

except that we set an increased initial exploration rate of 0.4 for

Gridworld (a) to guarantee the DDQ agent sufficient exploration in

all rooms. In comparison to SMB, we reduced the training episodes

to 𝑒train = 1500 episodes in the training phase of DQfD and to 2000

training episodes with DDQ.

Results. Figure 9 illustrates the cumulative rewards gained during

training for the gridworlds. DDQ and DQfD could learn policies to

complete the task of the gridworlds (b) and (c). Similar to SMB, we

see that DDQ yields more unstable and inferior results. Therefore,

DDQ could not reliably learn a policy that can achieve the goal.

The DQfD results show that search-based demonstrations can also

support learning of navigation problems. DDQ was not able to

learn the Gridworlds (a) and (d) due to sparse rewards and tasks

that require a certain sequence of actions for completion. We as-

sume that DDQ requires a different reward function to accomplish

this task, while DQfD is sufficient without further reward shaping.

Hence, our demonstration generation provides an alternative to the

inference of high-level subgoal descriptions that is often applied

in environments with sparse or non-Markovian rewards [13, 45].

Moreover, Table 2 shows that DQfD is on average 4.45 faster in

training than DDQ even when 5000 episodes are fuzzed in advance.

Repair Results. Figure 10 presents the results of the testing and

repair of agents for Gridworld (a). Note that we aim to test a policy

for robustness. Similar to SMB, the test and repair results highlight

different aspects. First, testing of the trained DDQ agent showed

failed test cases. A closer look at the trajectory of the agent revealed

that the DDQ-learned policy is more likely to run into safety-critical

states, which are marked with a lightning bolt in Fig 5. Second, by

repairing the policy with fuzz demonstrations, the agent not only

avoids these safety-critical states but improves performance by

achieving the goal in fewer steps.We executed 5000 test cases for the

DDQ policy, which resulted in a proportion of 0.16 failing test cases.

By repairing, we can reduce the proportion to 0.0062 at the mean.

This is a significant reduction with 𝑝 < 0.01. Extended training

could not reduce the proportion of failing test cases and the standard

deviation (0.013) was exceptionally high between the different test

executions. Furthermore, unlike repair, extended training did not

improve the agent’s performance. We omit repair for gridworlds

(b)-(d) since in gridworlds (b) and (c) the agents could achieve the

task within a fair amount of episodes, and Gridworld (d) has no

safety-critical states (no lava).

Threats to Validity. Our findings compare DQfD from fuzzing

data and standard DDQ, where DQfD shows favorable performance.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tappler et al.

0 2,000 4,000

500

1,000

1,500

2,000

Episodes

repair it. 1

0 2,000 4,000

500

1,000

1,500

2,000

Episodes

repair it. 2

base ext.

training

repair

it. 1

repair

it. 2

0

0.2

0.4

Safety Test Fail Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

·104

500

1,000

1,500

2,000

Episodes

ext. training

Figure 8: Cumulative rewards gained during training performed for repair and extended training for Level 4, and test results
before and after repair, and after extended training.

0 0.5 1 1.5 2

·104

−50

0

50

Episodes

DQfD

DDQ

(a) ThreeRoomsLava.

0 0.5 1 1.5 2

·104

−40

−20

0

Episodes

DQfD

DDQ

(b) DistShift1

0 0.5 1 1.5 2

·104

−40

−20

0

Episodes

DQfD

DDQ

(c) LavaCrossingS9N1

0 0.5 1 1.5 2

·104

−60

−40

−20

0

Episodes

DQfD

DDQ

(d) UnlockPickup

Figure 9: Cumulative rewards gained during training of gridworlds with a sliding average of 100 episodes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

−50

0

50

100

Episodes

repair

ext. training

base ext. training repair

0

1

2

3

·10−2
Robustness Test Fail Frequency

Figure 10: Cumulative rewards gained during training performed for repair and extended training for (d) ThreeRoomsLava
gridworld, and test results before and after repair, and after extended training.

The results may be influenced by the hyperparameter selection, i.e.,

different hyperparameters may favor DDQ. However, we aimed

to decrease the dependency on the hyperparameter selection. For

this, we tuned the hyperparameters on the first SMB level so that

both approaches can learn well within about 20000 episodes. We

left the hyperparameters unchanged for all other levels, similar to

[14] who used the same parameters for various games.

For demonstrating the general feasibility of our approach, we

considered two environments that are different in nature. Never-

theless, there is a possibility that our results may not translate to

Learning and Repair of Deep Reinforcement Learning Policies
from Fuzz-Testing Data ICSE ’24, April 14–20, 2024, Lisbon, Portugal

other environments. However, the environments chosen are rep-

resentative of RL problems considered in the literature. Computer

games are popular benchmarks since they involve long, complex

action sequences, require image processing, and feature adversarial

environments [14, 24, 43]. Navigation in gridworlds, while appear-

ing simple, is often challenging for RL, as rewards are sparse and

only gained when sequences of subtasks have been completed;

cf. UnlockPickup in Fig. 9 and work on inferring subtask struc-

tures [8, 13, 45]. In order to apply our approach, we require two

assumptions to be fulfilled by an environment. First, we rely on

RLfD to work, where others [31] have shown that it works well in

various RL environments. Second, we require a testing approach for

the environment under consideration. In this regard, we show that

search-based testing can be adapted to navigation in gridworld en-

vironments. RL testing is in its early stages, but recent work shows

its potential to increase trust in RL [22, 49], a very relevant research

topic. In particular, Zolfagharian et al. [49] propose search-based

testing for control tasks, another popular type of RL task.

Another potential threat to validity stems from uncertainty. Due

to their long runtime, we performed only five runs of each experi-

ment. In these experiments, the DQfD performance shows a clear

trend and low variance as depicted by Fig. 6 and Fig. 9, whereas DDQ

shows more variance. Considering maximum cumulative reward,

we can see that learning from fuzz-trace experiences especially

helps in solving challenging tasks, like levels 2 and 3 of SMB, and

complex navigation tasks like in Gridworld (d). However, the search

performed for fuzzing is heavily influenced by randomness, which

potentially affects DQfD performance. If the search fails to find

good demonstrations, DQfD may show worse performance than in

our experiments.

Supplementary Material. Source code, setup files, and raw result

data are available online [37].

8 CONCLUSION
We propose a development approach for RL from demonstrations

obtained via search-based testing. The approach includes learning

from demonstrations, testing of a learned policy, and repairing of

policies using safe demonstrations. While previous work on RL

from demonstrations relies on data collected by (human) experts,

we generate demonstrations fully automatically using fuzz test-

ing. We showcase deep Q-learning from fuzz demonstrations with

two case studies comprising levels from the computer game Super

Mario Bros. and navigation tasks in gridworlds. Our experiments

demonstrate that DQfD using fuzz demonstrations helps to solve

tasks more efficiently, especially if they are difficult. To repair a

policy, we first identify safety issues and safe alternative behavior

through search-based testing that includes fuzz testing. Via iterated

DQfD, we repair a policy w.r.t. safety while retaining its perfor-

mance in terms of cumulative reward. In particular, we show that

we can reliably improve safety, whereas extended training does not

necessarily improve safety.

In future work, we will explore other RLfD approaches and com-

binationswith testing approaches, like learning-based testing [1, 23]

using appropriate abstractions, e.g., through clustering [7].

ACKNOWLEDGMENTS
This work has been supported by the “University SAL Lab” initiative

of Silicon Austria Labs (SAL) and its Austrian partner universities

for applied fundamental research for electronic based systems. Fur-

ther, this work has been supported by the State Government of

Styria, Austria – Department Zukunftsfonds Steiermark. Addition-

ally, this work has been funded by the AIDOaRt project (grant

agreement No 101007350) from the ECSEL Joint Undertaking (JU).

The JU receives support from the European Union’s Horizon 2020

research and innovation programme and Sweden, Austria, Czech

Republic, Finland, France, Italy, and Spain. Finally, the authors

would like to acknowledge the use of HPC resources provided by

the ZID of Graz University of Technology

REFERENCES
[1] Bernhard K. Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Horn, Franz

Pernkopf, Wolfgang Roth, Astrid Rupp, Martin Tappler, and Markus Tranninger.

2019. Learning a Behavior Model of Hybrid Systems Through Combining Model-

Based Testing and Machine Learning. In Testing Software and Systems - 31st
IFIP WG 6.1 International Conference, ICTSS 2019, Paris, France, October 15-17,
2019, Proceedings (Lecture Notes in Computer Science, Vol. 11812). Springer, 3–21.
https://doi.org/10.1007/978-3-030-31280-0_1

[2] Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando

de Freitas. 2018. Playing Hard Exploration Games by Watching YouTube. In

Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada. 2935–2945. https://proceedings.neurips.cc/paper/2018/hash/

35309226eb45ec366ca86a4329a2b7c3-Abstract.html

[3] Matteo Biagiola and Paolo Tonella. 2023. Testing of Deep Reinforcement Learning

Agents with Surrogate Models. arXiv:2305.12751 [cs.SE]

[4] Si-An Chen, Voot Tangkaratt, Hsuan-Tien Lin, and Masashi Sugiyama. 2020.

Active Deep Q-Learning with Demonstration. Mach. Learn. 109, 9-10 (2020),

1699–1725. https://doi.org/10.1007/s10994-019-05849-4

[5] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lu-

cas Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry.

2023. Minigrid & Miniworld: Modular & Customizable Reinforcement Learning

Environments for Goal-Oriented Tasks. CoRR abs/2306.13831 (2023).

[6] Anamika Dhillon and Gyanendra K. Verma. 2020. Convolutional Neural Network:

A Review of Models, Methodologies and Applications to Object Detection. Prog.
Artif. Intell. 9, 2 (2020), 85–112. https://doi.org/10.1007/s13748-019-00203-0

[7] Guoliang Dong, Jingyi Wang, Jun Sun, Yang Zhang, Xinyu Wang, Ting Dai,

Jin Song Dong, and Xingen Wang. 2020. Towards Interpreting Recurrent Neural

Networks through Probabilistic Abstraction. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 499–510. https://doi.org/10.1145/3324884.3416592

[8] Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra

Russo. 2021. Induction and Exploitation of Subgoal Automata for Reinforcement

Learning. J. Artif. Intell. Res. 70 (2021), 1031–1116. https://doi.org/10.1613/jair.1.

12372

[9] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. 2018.

Reinforcement Learning from Imperfect Demonstrations. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Workshop Track Proceedings. OpenReview.net. https://openreview.

net/forum?id=HytbCQG8z

[10] Maor Gaon and Ronen I. Brafman. 2020. Reinforcement Learning with Non-

Markovian Rewards. In The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI
Press, 3980–3987. https://ojs.aaai.org/index.php/AAAI/article/view/5814

[11] Vinicius G. Goecks, Gregory M. Gremillion, Vernon J. Lawhern, John Valasek, and

Nicholas R. Waytowich. 2020. Integrating Behavior Cloning and Reinforcement

Learning for Improved Performance in Dense and Sparse Reward Environments.

In Proceedings of the 19th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 465–473.

https://doi.org/10.5555/3398761.3398819

[12] Claire Le Goues, Michael Pradel, Abhik Roychoudhury, and Satish Chandra. 2021.

Automatic Program Repair. IEEE Softw. 38, 4 (2021), 22–27. https://doi.org/10.

1109/MS.2021.3072577

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tappler et al.

[13] Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom

Melham, and Daniel Kroening. 2021. DeepSynth: Automata Synthesis for Auto-

matic Task Segmentation in Deep Reinforcement Learning. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021. AAAI Press, 7647–7656. https://ojs.aaai.org/index.php/AAAI/article/

view/16935

[14] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,

Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,

John P. Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-Learning

From Demonstrations. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.
AAAI Press, 3223–3230. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/16976

[15] Rodrigo Toro Icarte, EthanWaldie, Toryn Q. Klassen, Richard Anthony Valenzano,

Margarita P. Castro, and Sheila A. McIlraith. 2019. Learning Reward Machines for

Partially Observable Reinforcement Learning. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M.

Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.

Fox, and Roman Garnett (Eds.). 15497–15508. https://proceedings.neurips.cc/

paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html

[16] Mingxuan Jing, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Chao Yang, Bin Fang,

and Huaping Liu. 2020. Reinforcement Learning from Imperfect Demonstrations

under Soft Expert Guidance. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020. AAAI Press, 5109–5116. https://ojs.aaai.org/index.php/AAAI/article/view/

5953

[17] Bingyi Kang, Zequn Jie, and Jiashi Feng. 2018. Policy Optimization with

Demonstrations. In Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018 (Proceedings of Machine Learning Research, Vol. 80). PMLR, 2474–2483.

http://proceedings.mlr.press/v80/kang18a.html

[18] Christian Kauten. 2018. Super Mario Bros for OpenAI Gym. GitHub. https:

//github.com/Kautenja/gym-super-mario-bros

[19] Ali Khalili and Armando Tacchella. 2014. Learning Nondeterministic Mealy

Machines. In ICGI 2014 (JMLR Workshop and Conference Proceedings, Vol. 34).
109–123. http://proceedings.mlr.press/v34/khalili14a.html

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochas-

tic Optimization. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
http://arxiv.org/abs/1412.6980

[21] Zhizhong Li and Derek Hoiem. 2018. Learning without Forgetting. IEEE Trans.
Pattern Anal. Mach. Intell. 40, 12 (2018), 2935–2947. https://doi.org/10.1109/

TPAMI.2017.2773081

[22] Yuteng Lu, Weidi Sun, and Meng Sun. 2022. Towards Mutation Testing of

Reinforcement Learning systems. J. Syst. Archit. 131 (2022), 102701. https:

//doi.org/10.1016/j.sysarc.2022.102701

[23] Karl Meinke. 2018. Learning-Based Testing: Recent Progress and Future Prospects.

In Machine Learning for Dynamic Software Analysis: Potentials and Limits - In-
ternational Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016,
Revised Papers (Lecture Notes in Computer Science, Vol. 11026). Springer, 53–73.
https://doi.org/10.1007/978-3-319-96562-8_2

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nat. 518, 7540 (2015),
529–533. https://doi.org/10.1038/nature14236

[25] Tong Mu, Georgios Theocharous, David Arbour, and Emma Brunskill. 2022.

Constraint Sampling Reinforcement Learning: Incorporating Expertise for Faster

Learning. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 7841–7849.
https://ojs.aaai.org/index.php/AAAI/article/view/20753

[26] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: Program Repair via Semantic Analysis. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer

Society, 772–781. https://doi.org/10.1109/ICSE.2013.6606623

[27] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In

Proceedings of the 36th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan

Salakhutdinov (Eds.). PMLR, 4901–4911.

[28] Jing Peng and Ronald J. Williams. 1996. Incremental Multi-Step Q-Learning.

Mach. Learn. 22, 1-3 (1996), 283–290. https://doi.org/10.1023/A:1018076709321

[29] Bilal Piot, Matthieu Geist, and Olivier Pietquin. 2014. Boosted Bellman Residual

Minimization Handling Expert Demonstrations. In Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML PKDD 2014, Nancy,
France, September 15-19, 2014. Proceedings, Part II (Lecture Notes in Computer Sci-
ence, Vol. 8725). Springer, 549–564. https://doi.org/10.1007/978-3-662-44851-9_35

[30] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-

man, Emanuel Todorov, and Sergey Levine. 2018. Learning Complex Dexterous

Manipulation with Deep Reinforcement Learning and Demonstrations. In Robot-
ics: Science and Systems XIV, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, June 26-30, 2018. https://doi.org/10.15607/RSS.2018.XIV.049

[31] Jorge Ramírez, Wen Yu, and Adolfo Perrusquía. 2022. Model-Free Reinforcement

Learning from Expert Demonstrations: A Survey. Artif. Intell. Rev. 55, 4 (2022),
3213–3241. https://doi.org/10.1007/s10462-021-10085-1

[32] Marc Rigter, Bruno Lacerda, and Nick Hawes. 2020. A Framework for Learning

From Demonstration With Minimal Human Effort. IEEE Robotics Autom. Lett. 5,
2 (2020), 2023–2030. https://doi.org/10.1109/LRA.2020.2970619

[33] Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand,

Laurent Charlin, R. Devon Hjelm, Philip Bachman, and Aaron C. Courville. 2021.

Pretraining Representations for Data-Efficient Reinforcement Learning. CoRR
abs/2106.04799 (2021). arXiv:2106.04799 https://arxiv.org/abs/2106.04799

[34] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-

neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,

Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of

Go with Deep Neural Networks and Tree Search. Nat. 529, 7587 (2016), 484–489.
https://doi.org/10.1038/nature16961

[35] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning - An
Introduction. MIT Press. https://www.worldcat.org/oclc/37293240

[36] Martin Tappler, Filip Cano Córdoba, Bernhard K. Aichernig, and Bettina

Könighofer. 2022. Search-Based Testing of Reinforcement Learning. In Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence, IJCAI 2022, Vienna, Austria, 23-29 July 2022. ijcai.org, 503–510. https:

//doi.org/10.24963/ijcai.2022/72

[37] Martin Tappler and Andrea Pferscher. 2023. Supplementary Material for "Learn-

ing and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data".

(August 2023). https://doi.org/10.6084/m9.figshare.22353712

[38] Matthew E. Taylor and Peter Stone. 2007. Cross-Domain Transfer for Reinforce-

ment Learning. In Machine Learning, Proceedings of the Twenty-Fourth Interna-
tional Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007 (ACM
International Conference Proceeding Series, Vol. 227), Zoubin Ghahramani (Ed.).

ACM, 879–886. https://doi.org/10.1145/1273496.1273607

[39] Chen Tessler, Yonathan Efroni, and Shie Mannor. 2019. Action Robust Rein-

forcement Learning and Applications in Continuous Control. In Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 6215–6224.

http://proceedings.mlr.press/v97/tessler19a.html

[40] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Au-

tomated Testing of Deep-Neural-Network-Driven Autonomous Cars. In Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica

Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 303–314. https:

//doi.org/10.1145/3180155.3180220

[41] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement

Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. AAAI
Press, 2094–2100. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/

view/12389

[42] Ricardo Vinuesa, Hossein Azizpour, Iolanda Leite, Madeline Balaam, Virginia

Dignum, Sami Domisch, Anna Felländer, Simone Daniela Langhans, Max

Tegmark, and Francesco Fuso Nerini. 2020. The Role of Artificial Intelligence

in Achieving the Sustainable Development Goals. Nature communications 11, 1
(2020), 233.

[43] Oriol Vinyals, Igor Babuschkin,WojciechM. Czarnecki, MichaëlMathieu, Andrew

Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,

Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha

Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury

Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,

Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,

Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis

Hassabis, Chris Apps, and David Silver. 2019. Grandmaster Level in StarCraft

Learning and Repair of Deep Reinforcement Learning Policies
from Fuzz-Testing Data ICSE ’24, April 14–20, 2024, Lisbon, Portugal

II using Multi-Agent Reinforcement Learning. Nat. 575, 7782 (2019), 350–354.
https://doi.org/10.1038/s41586-019-1724-z

[44] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun

Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: A Coverage-Guided

Fuzz Testing Framework for Deep Neural Networks. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Møller (Eds.).

ACM, 146–157. https://doi.org/10.1145/3293882.3330579

[45] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk

Topcu, and Bo Wu. 2020. Joint Inference of Reward Machines and Policies for

Reinforcement Learning. In Proceedings of the Thirtieth International Conference
on Automated Planning and Scheduling, Nancy, France, October 26-30, 2020. AAAI
Press, 590–598. https://ojs.aaai.org/index.php/ICAPS/article/view/6756

[46] Yang Yu. 2018. Towards Sample Efficient Reinforcement Learning. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 5739–5743.

https://doi.org/10.24963/ijcai.2018/820

[47] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian

Holler. 2021. The Fuzzing Book. https://www.fuzzingbook.org/. accessed: 2023,

August 31.

[48] Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. 2022. Self-Adaptive Imita-

tion Learning: Learning Tasks with Delayed Rewards from Sub-Optimal Demon-

strations. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 9269–9277.
https://ojs.aaai.org/index.php/AAAI/article/view/20914

[49] Amirhossein Zolfagharian, Manel Abdellatif, Lionel C. Briand, Mojtaba

Bagherzadeh, and Ramesh S. 2022. Search-Based Testing Approach for Deep

Reinforcement Learning Agents. CoRR abs/2206.07813 (2022). https://doi.org/10.

48550/arXiv.2206.07813 arXiv:2206.07813

