
NuzzleBug: Debugging Block-Based Programs in Scratch
Adina Deiner

University of Passau
Germany

Gordon Fraser
University of Passau

Germany

ABSTRACT

While professional integrated programming environments support
developers with advanced debugging functionality, block-based
programming environments for young learners often provide no
support for debugging at all, thus inhibiting debugging and prevent-
ing debugging education. In this paper we introduce NuzzleBug,
an extension of the popular block-based programming environment
Scratch that provides the missing debugging support. NuzzleBug
allows controlling the executions of Scratch programs with classi-
cal debugging functionality such as stepping and breakpoints, and
it is an omniscient debugger that also allows reverse stepping. To
support learners in deriving hypotheses that guide debugging, Nuz-
zleBug is an interrogative debugger that enables to ask questions
about executions and provides answers explaining the behavior in
question. In order to evaluate NuzzleBug, we survey the opinions
of teachers, and study the effects on learners in terms of debug-
ging effectiveness and efficiency. We find that teachers consider
NuzzleBug to be useful, and children can use it to debug faulty
programs effectively. However, systematic debugging requires ded-
icated training, and even when NuzzleBug can provide correct
answers learners may require further help to comprehend faults
and necessary fixes, thus calling for further research on improving
debugging techniques and the information they provide.
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1 INTRODUCTION

Debugging is one of the most time consuming activities during soft-
ware development [27, 31, 57]. Debugging is also a frequent activity
when programming with the block-based programming language
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(a) Stage of the program.

(b) Breakpoint on the block

checking if star and fish touch.

Figure 1: The Scratch program “Collect the Stars” , containing a

typical fault: The check for whether the fish touches the star should

be contained in a loop.

Scratch [35], one of the most popular languages for introductory
coding.1 Although the visual composition of blocks prevents syn-
tactical errors and enables learners to quickly create games and
animations, programs can nevertheless implement wrong function-
ality. Finding the cause of a failure can be difficult, especially for
programming beginners [17, 24, 41, 52, 61] as well as for teachers
trying to support their learners [26, 59].

Consider the simple example Scratch program “Collect the
Stars” shown in Fig. 1(a), where the clownfish controlled by
the user has to collect the stars in the underwater world. Every
time the fish touches the star, the star should change its position
and increment the number of points by one. When executing the
program, nothing happens when the fish touches the star. How can
the programmer of this game find out what caused the failure?

Professional programming environments provide debuggers fa-
cilitating the debugging activity [64], but Scratch does not provide
any debugging support. In this paper we therefore introduce Nuz-
zleBug, which contributes debugging functionality to Scratch,
such as the ability to pause the execution of a program, or to set
breakpoints and execute a program step by step, even backwards
in time. Figure 1(b) shows a breakpoint on the block checking if the
fish is touching the star. The red dot visualizes the breakpoint and
results in pausing the execution of the program every time the block
is executed, which allows to investigate the program state used
to evaluate the condition. The breakpoint reveals that the block is
only executed once at the start of the program and the condition
is not checked afterwards. The cause of the failure is found—the
if-condition should be contained in a loop, the omission of which
is a common mistake made by beginners [19].

Setting the breakpoint requires a hypothesis about the cause of
the failure, but deriving such hypotheses is difficult [30]. Therefore,
NuzzleBug uses interrogative debugging [28], which helps deriv-
ing hypotheses by allowing to pose questions one naturally would

1
https://scratch.mit.edu/statistics, last accessed March 2023
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Figure 2: Answer for the question “Why didn’t the position of sprite
Star change?”

Figure 3: Answer for the question “Why didn’t the condition
evaluate to true?”

want to ask about the execution of a program. Once a question is
selected, the debugger calculates an answer explaining the behavior
and directing the programmer to the fault. For our example, the
debugger makes it possible to ask the question “Why didn’t the po-
sition of sprite Star change?” and generates the answer visualized in
Fig. 2, from which the programmer can conclude that the condition
touching Fish ? never evaluated to true. Furthermore, it is possi-
ble to ask the question “Why didn’t the condition touching Fish ?

evaluate to true?” and the debugger provides the answer shown in
Fig. 3. Since this evaluation to false is the only time the condition
was checked, this helps understanding there is a missing loop.

In detail, the contributions of this paper are as follows:
• We introduce NuzzleBug, the first debugger for Scratch,
and the first approach of omniscient and interrogative de-
bugging for a block-based programming environment.

• We collate questions for Scratch-like programs, and provide
novel answer types for block-based programs.

• We empirically evaluate NuzzleBug using a survey with
teachers and a controlled study with pupils.

Overall, our evaluation demonstrates that NuzzleBug is intuitive
and effective, and brings systematic debugging to the world of
block-based programming. The teachers we survey confirm that

Figure 4: The Scratch GUI consisting of a block palette containing

available blocks on the left, the cat’s source code in the center, the

stage on the upper right and the target editor on the bottom right.

NuzzleBug is useful, and pupils taught debugging are able to fix
bugs using NuzzleBug, often even more effectively so than without
debugger. However, we also find that maintaining the simplicity of
block-based programming is challenging when presenting textual
questions and answers, and young programming learners need to
be explicitly educated on systematic debugging.

2 BACKGROUND

2.1 The Scratch Programming Environment

Scratch is a block-based programming language primarily aimed
at children and is increasingly used in schools and coding clubs
to introduce programming [35]. Program statements in Scratch
are blocks that can be stacked to create scripts. Blocks can also con-
tain holes of different shapes into which other blocks of matching
shapes can be placed, for example to report the values of attributes
or variables (reporter blocks) or conditions (Boolean blocks). Block
shapes ensure that resulting programs are syntactically valid [46].

Scratch programs are structured into targets: The stage is the
application window containing the background image, and sprites
are rendered on top of the stage. Each target contains scripts that
control its behavior. The first block of a script is always an event
handler (hat block), and the execution of a script is triggered every
time the event represented by the hat block occurs. One particular
such event is the green flag , which the user can click to start the
program execution. Scripts are executed in separate threads by the
Scratch Virtual Machine (VM), and thread switching occurs when
scripts encounter a waiting state, reach the end of a loop, or have
no more blocks to execute. To avoid that learners have to deal with
confusing error messages, Scratch uses a ‘failsoft’ approach where
runtime errors are swallowed and execution is resumed without
informing the user [23].

The Scratch’s Graphical User Interface (GUI) is divided into
four main sections (Fig. 4): The block palette on the left contains
all available blocks divided into different color-coded categories.
Blocks can be dragged out of the block palette and then dropped
and snapped together in the coding area in the middle to define the
behavior of the currently selected target. The upper right contains
the stage, which renders the programmed behavior. The bottom
right area enables selecting and editing targets.
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2.2 Debugging Tools

Debugging is the activity of detecting, locating and eliminating
program errors [18]. A typical debugger provides three functional-
ities [64]: First, it supports tracing by pausing the execution of a
program at any point in time or on specified conditions. The most
common available pausing condition is a breakpoint, which is a
specific location in the program or condition on the execution that
results in pausing the execution when reached. Second, once the ex-
ecution is paused, classical debuggers provide context information,
such as the values of variables or the current stack trace. Third, it
allows resuming the execution, either until the next pause, or the
next statement, which enables stepping through a program.

One of the reasons why debugging is difficult is the temporal or
spatial chasm between the cause and the symptom of an error [15].
Although programs are executed forward in time, debugging re-
quires thinking backwards from the failure to discover the cause.
Omniscient debuggers [4, 5] record executions to enable users to
explore the execution history [33], going back and forth to arbitrary
moments instead of having to restart programs multiple times [43].

Debugging is triggered by a question about the behavior and
methods like breakpoints or code stepping require coming up with
a hypothesis about the cause of the behavior, which may be diffi-
cult [29]. False assumptions may lead to a time-consuming investi-
gation of unrelated code and in the worst case prevent detecting the
error. Ko and Myers observed that programmers naturally would
like to ask “Why did ...?” questions about unexpected output that
did occur and “Why didn’t ...?” questions about expected output
that did not occur [28]. Interrogative debuggers such as Whyline
for Alice [28] and Java [29] allow to directly ask such questions
via a “why”-menu, in which “Why did ...?” and “Why didn’t ...?”
questions can be selected for available objects. Answers point out
the cause of the queried behavior as graphs explaining causality
in terms of data and control flow, derived from execution traces,
dynamic slices, and code analysis.

2.3 Debugging in Block-Based Programming

Since block-based programming environments generally follow a
preventive approach that avoids exposing learners to errors [23],
debugging tools are usually missing. Scratch offers no support to
trace executions, and to inspect states one needs to resort to say

blocks to have sprites communicate values at runtime. A recent sur-
vey of block-based programming environments [51] confirms there
are only few exceptions: Snap! [22] allows pausing executions in ad-
dition to starting and stopping the entire execution, and Microsoft’s
MakeCode [3] supports breakpoints. An experimental extension
of the hybrid (text and block-based) PencilCode [6] programming
environment highlights executed blocks using arrows and supports
step-wise execution and variable tracking [7]. Stepping, breakpoints
and watches are also part of a proposed visual debugger [50] for
Google’s Blockly2. Alice [12], which is not strictly block-based
but similarly constrains the syntactic validity of programs, provides
no dedicated debugging support, but the Whyline interrogative
debugger was originally implemented for Alice [28]. The general

2https://developers.google.com/blockly

lack of debugging support in block-based environments is concern-
ing: A recent study [36] found that students found and fixed fewer
bugs in block-based environments than in hybrid ones.

There is a growing awareness of the importance of teaching
debugging [39] and the lack of debugging in education [38]. Sev-
eral studies on the processes applied by young learners [58, 63]
in block-based programming revealed that they tend to debug
unconsciously without a systematic but with a tinkering-based
approach [13]. To counter this, research has resulted in instruc-
tional materials [2, 10], learning trajectories [47], teaching strate-
gies [20, 54], serious games [32, 34, 40], and unplugged [1] and
tangible [53] environments for teaching debugging of block-based
programs. Debugging tools, however, are generally not included.
Debugging tools would furthermore not only be important for
learners, but their educators also require skills and confidence in
debugging to teach how to debug block-based programs, and to sup-
port students in the classroom. While teachers have been reported
to struggle finding and fixing bugs in block-based programs [26, 59],
tools have been shown to be helpful particularly for teachers [21].

3 THE NUZZLEBUG SCRATCH DEBUGGER

NuzzleBug is the first debugger for Scratch, and provides all the
debugging functionality described in Section 2.2. In order to provide
this debugging functionality, NuzzleBug extends the Scratch VM
to trace executions (Section 3.1), which results in collecting all the
information that is necessary for debugging [48]. NuzzleBug also
extends the Scratch user interface for controlling the debugger,
allowing users to pause executions, set breakpoints, or step through
program executions forward and backward (Section 3.2). Execution
traces are also prerequisite for creating questions and answers
during debugger interrogation (Section 4).

3.1 Tracing Executions

NuzzleBug instruments the VMwith a custom tracer, which records
which blocks have been executed in which order. Every time a block
is executed by the VM, the tracer appends a new trace entry to a
trace, storing the executed block and the program state resulting
from the execution of the block. The trace is automatically cleared
every time the green flag is clicked, because then a new program
run starts, and the trace is also reset whenever the code is changed.

A trace entry records the execution of a block and the resulting
program state. It stores (1) the identifier of the block, (2) the type
of the block, (3) the names of input parameters and (4) variables,
(5) all evaluated parameter values, as well as (6) a list of trace
entries recording the execution of reporter and Boolean blocks
used by the block. For non-parameter blocks the trace entry also
stores (7) the execution time of the block, and (8) the id of the
target instance executing the block. Finally, the trace entry records
(9) the program state after the execution of the block. For each
target, this state consists of the target’s costume or backdrop, visual
effects, volume, sound state and variable values. If the target is a
sprite, it also contains the position, direction, rotation style, size,
visibility, draggability, layer and state of its speech or think bubble.
If the executed block contains a touching mouse-pointer ? condition,
the tracer also saves the current position of the mouse-pointer.
Finally, to enable reverse execution the execution state information
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(a) Original. (b) Extended by NuzzleBug.

Figure 5: Scratch control panel.

includes the currently active threads, the id of the next thread to
execute, the number of executed steps and the last executed blocks.

To reduce the size of execution traces and the computation
time of their analysis, the tracer applies two optimizations. First,
Scratch allows displaying the values of variables or attributes on
the stage, which internally is treated like block executions. Since
these have no effects on the state, the tracer ignores them. Sec-
ond, blocks that halt the execution of their thread waiting for a
timeout or condition are internally processed like repeated block
executions in the VM. For such blocks ( glide time seconds to ... , say message for time seconds ,
think message for time seconds , play sound sound until done , wait time seconds , and wait until condition ), only the
initial and final execution states are stored.

The tracer can be enabled or disabled by the user with a new
button in the control panel above the stage. If tracing is active
the button has a blue background color and otherwise it has a
transparent background color . Toggling the value also clears
the trace to avoid gaps between trace entries.

3.2 Execution Control

Scratch allows starting and stopping executions using the control
panel above the stage shown in Fig. 5(a). NuzzleBug extends this
with debugging functionality (Fig. 5(b)). In particular, NuzzleBug
provides functionality to pause an execution and to resume it again
once paused. Moreover, we enable the user to execute a program
step by step and to rewind the execution to any traced program
state. In addition, it is possible to add breakpoints to blocks such
that the program pauses every time the block would be executed.

3.2.1 Pausing. The “Pause / Resume” button ( if the execution
can be paused, and if the execution can be resumed) allows
halting executions. If the program is not running, the button is
disabled. When the execution is paused, a white arrow with a red
border is shown next to the last executed block of each active
script, and a red arrow is shown next to the overall last executed
block (Fig. 6). In addition, the selected target is changed to the one
containing the overall last executed block, which is blinked.

3.2.2 Stepping. If the execution is paused, the user can execute
a single block at a time by clicking the “Step Over” button
in the control panel (Fig. 5(b)), which informs the Scratch VM’s
runtime about stepping, such that the modified Scratch pauses
after one executed block, adhering to the thread execution order.
During the execution of a block, the target instance executing the
block is highlighted with a blue overlay (Fig. 7). This is especially
useful when multiple instances of the same target (i.e., clones) exist
and it is unclear which one executed the block. While stepping, the
arrows emphasizing the last executed blocks are shown. Finally, the

button (Fig. 5(b)) allows executing the first block of a program,
by activating stepping and then invoking the program like when the
green flag is clicked. This causes the runtime to start the program
execution, execute the first block and then pause.

Figure 6: Arrows emphasizing the last executed block of each active

script and the overall last executed block.

(a) Before. (b) During. (c) After.

Figure 7: Highlighted target instance during the execution of a block.

(a) Final state. (b) Intermediate state. (c) Initial state.

Figure 8: Execution states during rewinding of an execution.

3.2.3 Reverse Execution. In order to jump to arbitrary points in a
trace, the user interface provides a slider to select the trace position
(see bottom of Fig. 8). In addition, a “Step back” button above
the stage allows to rewind the execution by one executed block (if
there is a predecessor). In either case the recorded program state
is restored in terms of the clones existing in that state, attributes
of all target instances, and thread status. If the selected trace entry
is not the last element in the trace, the “Step over” button does
not execute the next block, but instead increments the index of the
selected trace entry by one and restores the state of this trace entry.
Clicking the “Resume” button does not resume the execution as
usual, but deletes all trace entries succeeding the selected one and
resumes the execution at the corresponding program state.

3.2.4 Breakpoints. NuzzleBug provides functionality to set a break-
point on a block, which results in halting the execution every time it
is executed. Breakpoints are supported by all blocks except reporter,
Boolean and hat blocks. Reporter and Boolean blocks are implicitly
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(a) Unset breakpoint. (b) Hovering over a

breakpoint.

(c) Set breakpoint.

Figure 9: Possible states of a breakpoint.

evaluated when the block they are contained in is executed. Hat
blocks would interfere with the event triggering the hat block.

Each block stores whether its breakpoint is set. By default, a
block’s breakpoint is not set and the block is rendered as usual
(Fig. 9(a)). While hovering the mouse pointer over the left margin
of a block, a red dot visualizing the breakpoint appears (Fig. 9(b)).
Clicking on it sets the breakpoint, which leads to the red dot being
shown (Fig. 9(c)) permanently. Another click unsets the breakpoint
and removes the red dot again. It is also possible to toggle the break-
point by clicking the context menu option “Add Breakpoint” or
“Remove Breakpoint” . In order to pause executions at the correct
time, the VM is instrumented to check for activated breakpoints be-
fore executing blocks. If a breakpoint is encountered, the execution
is paused and the breakpoint’s block is highlighted in red.

4 SCRATCH INTERROGATIVE DEBUGGING

In addition to regular and omniscient debugging functionality (Sec-
tion 3), NuzzleBug implements interrogative debugging. It gener-
ates questions the user might want to ask about the execution of
a program (Section 4.1), as well as visual and textual answers for
these (Section 4.2). Figure 10 shows the full interrogative debugger
in action, with categorized questions to the left, textual answer on
the top, and an answer visualized as a graph beneath.

Figure 10: The dialog of the interrogative debugger.

The principle of interrogative debugging was originally intro-
duced in Whyline [28]. NuzzleBug is inspired by Whyline, but
differs in a number of ways: First, the user interface for asking
questions is different and designed specifically to blend in seam-
lessly in the Scratch UI, and allows navigation of a new set of
questions tailored specifically for Scratch programs and blocks.
Second, NuzzleBug uses analyses tailored for Scratch and a differ-
ent approach to represent answers, based on custom answer graphs
as well as visualizations of the Scratch stage.

4.1 Questions

Like Whyline [28], at the highest level we distinguish between
positive (“Why did ...?” ) and negative (“Why didn’t ...?” ) questions,

but also add a third category (“When did ...?” ). NuzzleBug then
provides comprehensive questions covering all attributes (e.g., size,
rotation, position, . . . ) and behaviors of sprites (e.g., movement,
rotation, saying, . . . ), as well as control-flow questions (e.g., why
blocks were or were not executed) and data-flow questions (e.g.,
regarding the values of attributes, variables, or conditions).

Questions are generated based on the code of the program that
is being debugged, such that only questions about relevant hy-
potheses are shown. To further avoid overwhelming users with
too many questions, they first have to select an object of interest,
which can be a target or a block. For each possible object the con-
text menu is extended with the option “open questions” , which
pauses the execution if running, opens the interrogative debugger
and triggers the generation of questions related to the selected ob-
ject. The questions are categorized according to the category of the
corresponding block: Motion, Looks, Sound, Events, Control,
Sensing, Operators, Variables and Lists. Additionally, Execu-
tion contains general questions about the execution of a block.
Within each category questions are further grouped into “Why did
...?” , “Why didn’t ...?” and “When did ...?” questions, resulting in
the hierarchy located in the left of the dialog (Fig. 10).

4.1.1 Target behavior questions. The context menu option shown
in Fig. 11 can be used to ask questions about the behavior of targets
(i.e., sprites or the stage). Since a sprite may have clones, users can
choose which instance they want to ask questions about using a
drop down menu in the dialog’s header (Fig. 12). An overview of all
target questions can be found in Table 1. Each of these questions
relates to either a certain type of block, or a change in attribute. For
example, if the code contains point towards object blocks, NuzzleBug gen-
erates the question “Why didn’t <sprite> point towards <object>?”
for each target object (i.e., another sprite or the mouse-pointer).
The question is positive (“Why did ...?” ) if at least one of the related
blocks was executed, and negative (“Why didn’t ...?” ) otherwise.

(a) Context menu of a sprite. (b) Context menu of the stage.

Figure 11: The new context menu option “open questions” .

4.1.2 Block questions. A context menu option “Open questions”
on blocks (Fig. 13) can be used to ask about their execution and
contained reporter and Boolean blocks. As a block may be executed
multiple times, all its executions are numbered and selectable in a
drop down menu similar to Fig. 12. Block questions are generated
by iterating over the blocks of a selected target, and instantiating
all applicable questions of those in Table 2 based on whether each
block is contained in the execution trace and its value for Boolean
and reporter blocks.
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Table 1: Target questions.

Motion
Why didn’t the position of <sprite> change?
Why did <sprite> move right- / left- / up- / down-wards?
Why didn’t the direction of <sprite> change?
Why didn’t the direction of <sprite> change to <direction>°?
Why didn’t <sprite> point towards <object>?
Why didn’t <sprite> turn clockwise / counterclockwise?
Why didn’t <sprite> turn to the right / left?

Looks
Why didn’t <sprite> say / think <message>?
Why didn’t the size of <sprite> change?
Why did the size of <sprite> increase / decrease?
Why didn’t <sprite> show / hide itself?
Why didn’t the costume of <sprite> change?
Why didn’t the costume of <sprite> change to <costume>?
Why didn’t <sprite> change the backdrop?
Why didn’t <sprite> change the backdrop to <backdrop>?
Why didn’t the backdrop change?
Why didn’t the backdrop change to <backdrop>?

Sound
Why didn’t <target> play sound <sound>?
Why didn’t <target> stop all sounds?

Events
Why didn’t <target> broadcast the message <message>?
Why didn’t <target> receive the message <message>?

Control
Why didn’t <sprite> start as a clone?
Why didn’t <target> create a clone of <sprite>?

Sensing
Why didn’t <target> ask <message>?

Figure 12: Drop down menu to select the sprite instance of interest.

4.2 Answers

In contrast to Whyline [28], which visualizes answers using a
graph structure representing data and control flow causality over
time, NuzzleBug simplifies answers by separating causality and
temporality: Each answer explains the program state selected with
the slider (Section 3.2) or the occurrence of a specific event or block
execution. After selecting a question, the answer is visualized on
the right side of the dialog using the structure depicted in Fig. 14,
with a textual answer in a speech bubble explained by a cat (the

Table 2: Block questions.

Execution
Why didn’t the block execute?
When did the block execute?

Motion
Why did x position have the value <value>?
Why did y position have the value <value>?
Why did direction have the value <value>?

Looks
Why did size have the value <value>?
Why did costume ... have the value <value>?
Why did backdrop ... have the value <value>?

Operators
Why didn’t the condition < / = / > evaluate to true?
Why didn’t the condition contains ? evaluate to true?

Sensing
Why didn’t the condition touching object ? evaluate to true?
Why didn’t the condition touching color ? evaluate to true?
Why didn’t the condition is touching ? evaluate to true?

Variables
Why didn’t <variable> have the value <value>?

Lists
Why did <list> have the value <value>?
Why didn’t <list> contain <item>?

Figure 13: Extended context menu of a block.

Scratch mascot), and a visual answer in the form of an answer
graph or visualization of the program state.

4.2.1 Block execution answers. The (non-)execution of a block is
based on its control dependencies, which in Scratch can be control
blocks, hat blocks triggered by the user, and hat blocks triggered
programmatically. For an executed block NuzzleBug shows a graph
of all control dependencies causing the execution of the block; for
unexecuted blocks the graph visualizes every possible way the block
would execute and why it did not occur. Thus, the answer graph is
a subgraph of the Control Dependence Graph (CDG) containing the
block of interest and some or all of its transitive predecessors. The
answer graph is created by first removing all circular dependencies
in the CDG, since they can easily be confusing and are not neces-
sary to understand why a block was executed or not. Then, starting
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Figure 14: Answer structure; examples are shown in Fig. 2 and Fig. 3.

from the target block the CDG is traversed backwards for all transi-
tive dependencies that do not represent user events, copying each
traversed node and edge to the answer graph.

The resulting graph is rendered using Scratch blocks as nodes,
and each block has a colored margin indicating its associated target.
If a node represents a block that was never executed the block
has a reduced opacity of 0.5. The same holds for edges, which
count as executed if their source and target nodes were executed.
Figure 15 shows the same graph with all blocks executed, some
blocks executed and none executed. If the source of an edge is a
control block containing a condition, the condition’s value required
to flow this direction is used as label for the edge. If the control
block was executed, the visualization depends on the condition’s
traced value: If it is not the required one, then the edge is dashed
and crossed out using a red line (Fig. 15(b)). If the execution should
have caused the execution of another block, but that block was not
executed, the execution was interrupted, which is indicated with a
crossed out edge labeled with “execution paused / stopped” .

(a) All blocks executed. (b) Partially executed. (c) No block executed.

Figure 15: Different answer graphs for the say block depending on

whether the contained blocks were executed.

Hovering the mouse cursor over a reporter block (Fig. 16(a))
or a Boolean block (Fig. 16(b)) displays the value this block had
during execution. Clicking a node in the answer graph opens the
interrogative debugger for that block, and if it was executedmultiple
times, the relevant execution is selected.

Textual answers are generated using the answer graph. For posi-
tive questions this answer explains every control dependency re-
sponsible for a block’s execution. Starting with the entry node of the

(a) Tooltip for a reporter

block ( variable ).

(b) Tooltip for a Boolean

block ( > ).

Figure 16: Tooltips showing the traced value of parameter blocks.

graph, a message is generated by adding <reason1> to describe the
control dependency, and then iteratively appending explanations
<reason𝑖> of the node’s successors with appropriate conjunctions.
For this, NuzzleBug defines positive and negative parametrizable
text templates for each block. For example, for the graph in Fig. 15(a)
the answer is “The block was executed, because the sprite Cat was
clicked and afterwards the condition variable > 0 was true.”

The textual explanation why a block was not executed is based
on the reason in the answer graph that prevented the execution
from flowing towards the block of interest, i.e., the edge where the
source block was executed and the target was not. The answer then
consists of “The block wasn’t executed, because <reason>.” If the
execution to the target node flowed in the correct direction but
was interrupted, <reason> is “the execution was stopped / paused” .
Otherwise, if the execution did not flow in the correct direction
due to a condition not having the required value, <reason> is “the
condition <condition> wasn’t <requiredValue>” . Since events can
depend on multiple blocks or on user input, the <reason> for nodes
depending on events is set to a generic message specified for each
type of event. If the node that interrupted the execution from flow-
ing towards the target block is not its immediate predecessor, the
template for the answer is “The block wasn’t executed, because
<reason> and therefore all subsequent blocks that could lead to the
execution of the block were not executed.” , since resolving <reason>
might still not guarantee the execution of the target block.

Figure 17: Answer graph for an unreachable say-block.

Blocks that are not executed because they are unreachable (dead
code) result in “The block wasn’t executed because it is not reach-
able!” , and the visualization shown in Fig. 17.

4.2.2 Block execution time answers. To answer the question “When
did the block execute?” NuzzleBug extracts the timestamps of the
first trace entry and the selected block execution, and calculates
their difference in seconds. If the first trace entry recorded the
execution of the when clicked block, the answer message is “The block
was executed <elapsedTime> seconds after clicking the green flag.”
and otherwise it is “The block was executed <elapsedTime> seconds
after starting the recording.” The visual part of the answer is a
picture of the stage rendering the state of the program when the
selected block execution took place (Fig. 18). Below the picture a
slider with a fixed value indicates the time of the block execution,
with the calculated temporal difference shown as a red label.
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Figure 18: Visual answer showing the execution time of a block.

4.2.3 Target behavior answers. Questions about target behavior
refer to the execution of one or multiple blocks. For example, a
question like “Why didn’t <sprite> say <message>?” can be trans-
formed to “Why didn’t a say <message> block of <sprite> execute?”
The general procedure to answer positive questions about target
behavior is to extract all blocks that caused the behavior and then
answer why each of these was executed. If there are multiple graphs
(e.g., for ambiguous control flow), then they are merged. Starting
at the end of the trace causes the graph nodes to visualize values of
the latest relevant execution.

Depending on the question and related block, relevant attribute
values before and after the execution of the block are added to the
graph’s node, for example the position of a sprite before (left) and af-
ter (right) the block’s execution (Fig. 19). The same holds for blocks
changing the attributes direction, size, costume and backdrop.

Figure 19: Graph node visualizing the position of a sprite before and

after the relevant execution of the node’s block.

The textual answer is of the form “<behavior>, because <reason1>,
then <reason2>, next <reason3>, then <reason4>, ..., next <reason𝑥 >
and therefore the <type> block was executed.” , where <behavior>
is a text describing the target’s behavior the question asks about,
<type> is the type of the block causing the behavior, and <reason𝑖>
are based on the control dependencies. If more than one block’s
execution caused the question’s behavior, then there are multiple
graphs, in which case a question mark button is shown next to each
leaf node. Initially, the general answer message “<behavior>, be-
cause the execution of <count> <type> blocks caused this behavior.
Do you need an explanation for a block? Then click on the ? next
to it!” is displayed. Clicking a question mark button next to a node
highlights the node and displays its answer message.

For negative questions the strategy is to find all blocks that
could lead to this behavior, and then explain why each of these
did not cause it. If a block was not executed, the answer graph is
used to show why not and to determine the answer message of
the form “<behavior>, because <reason> and therefore the <type>
block was not executed.” , where <behavior> is a text describing the
queried unobserved behavior, and <type> is the type of the block

that could lead to the behavior; <reason> is created as described
in Section 4.2.1. Unobserved target behavior can also be explained
by (1) blocks attached to a when I start as a clone , which is never executed by an
original sprite; (2) blocks attached to the block when clicked but queried for
a clone, which can never be executed since clicking the green flag
deletes all clones; and (3) events that occurred outside the lifetime
of a clone. All of these cases have dedicated answers.

4.2.4 Reporter block answers. Questions about reporter blocks are
only available if the object of interest is an executed block contain-
ing them. The answer graph visualizes blocks causing or preventing
the reporter block from having a certain value. To answer the posi-
tive question “Why did <variable> have the value <value>?” this
graph contains the data dependencies responsible for the variable’s
recorded value <value>. In order to distinguish between data and
control dependence edges, data dependence edges are colored using
the relevant value’s color (e.g., orange for variables); values before
and after each block are shown beneath the node (Fig. 20(a)). If
the graph’s entry node represents the initial value, this node is
visualized using if the first traced block is when clicked (Fig. 20(b)),
or else using . An answer message is generated by travers-
ing the graph from the entry node, appending a pre-defined mes-
sage <reason𝑖> for each block’s effects, and thus generating the
answer “<variable> had the value <value>, because <reason1>, then
<reason2>, then <reason3>, ... and afterwards <reason𝑥 >.”

(a) Graph explaining the

data dependencies starting

at the latest block overwrit-

ing the value.

(b) Graph explaining the

data dependencies starting

at the initial value.

Figure 20: Visual answers for a positive question asking about the

value of a variable.

The negative question “Why didn’t <variable> have the value
<value>?” is generated, if the program contains at least one block
setting the variable’s value to <value>, but the value traced during
the selected block execution is different. First, all relevant blocks
setting the variable to <value> are determined. If none of these was
executed, then the corresponding answer graphs are rendered side
by side, together with a general message (with detailed messages
accessible with the question mark button.) If at least one set block
was executed and the variable had the value at some point but was
changed before the selected block execution, the answer is “The
variable was set to <value>, but changed afterwards.” , with a graph
visualizing all block executions changing the variable’s value.
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(a) Cat touching the butterfly. (b) Cat not touching the butterfly.

Figure 21: Visual answers explaining the values of a Boolean touch-

ing block evaluating to true and false.

4.2.5 Boolean operator block answers. The question “Why didn’t
the condition <operator> evaluate to true?” is answered with the
values of all reporter blocks within the Boolean operator block. For
example, for “Why did the condition A < B evaluate to true?” the
values of A and B are extracted from the trace. Assuming A = 0
and B = 1, the answer is: “The condition evaluated to true, because
A had the value 0 , B had the value 1 and therefore 0 < 1 is
true.” If there are no reporter blocks, the answer is “The condition
is always true / false, because none of the blocks is a variable ” .

In order to answer “Why didn’t the condition touching ? evaluate
to true?” questions, a picture of the stage in the relevant state is
used to visualize the reason for the condition’s value. Each existing
different kind of touching ? block checks if a set of positions 𝑃𝐴 is
touching another set of positions 𝑃𝐵 . For touching object ? blocks 𝑃𝐴
are the positions of the sprite containing the block and 𝑃𝐵 are the
positions of the object selected in the drop down menu, which
could be another sprite (i.e., all non-transparent pixels within that
sprite), the stage’s edges (i.e., positions having an x-value of±240 or
an y-value of ±180 ) or the mouse-pointer position. touching color ?

blocks compare the positions 𝑃𝐴 of the sprite containing the block
with all positions 𝑃𝐵 on the stage having the selected color. For

is touching ? blocks 𝑃𝐴 are all positions of the first selected color
and 𝑃𝐵 are all positions of the second one. If the positions 𝑃𝐴 and
𝑃𝐵 are touching each other, all overlapping positions 𝑃𝐴 ∩ 𝑃𝐵 are
highlighted with decreased opacity of all other positions 𝑃Stage \
𝑃𝐴 ∩ 𝑃𝐵 . Figure 21(a) shows an example of the touching Butterfly ?

evaluating to true; other types of touching ? blocks are visualized
similarly. In addition, the answer message “When the block was
executed, <A> touched <B> as shown in the picture.” is shown.

For false conditions, the distance of each position in 𝑃𝐴 to each
position in 𝑃𝐵 is calculated and 𝑝𝐴 ∈ 𝑃𝐴 and 𝑝𝐵 ∈ 𝑃𝐵 are selected,
such that the distance between 𝑝𝐴 and 𝑝𝐵 is minimal. The distance
is visualized in the picture by drawing a red line between 𝑝𝐴 and
𝑝𝐵 and highlighting the positions 𝑃𝐴 and 𝑃𝐵 by decreasing the
opacity of all other positions 𝑃Stage \ 𝑃𝐴 ∪ 𝑃𝐵 . Figure 21(b) shows
an example of the touching Butterfly ? evaluating to false. Then, the
answer message “The distance from <A> to <B> was <distance>
when the block was executed.” is generated and displayed in the
speech bubble. It can happen that a list of positions is empty because
a sprite is invisible or a color does not exist on the stage. In this case
no distance can be calculated, and the answer given is: “<sprite>
could not be touched, because it was invisible when the block was
executed!” or “The color <color> did not occur when the block was
executed! Try to select the desired color with the color picker.”
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Figure 22: Teacher responses to TAM questions on intention to use,

perceived usefulness, perceived ease of use, and output quality. Per-

centages aggregate all levels of agreement or disagreement.

5 EVALUATION

In order to provide initial insights on the usability of NuzzleBug,
our evaluation aims to answer the following research questions:
RQ1: Do teachers consider NuzzleBug to be useful?
RQ2: Can children find and fix faults using NuzzleBug?

5.1 RQ1: Usability Study with Teachers

5.1.1 Experimental Setup. We surveyed 11 secondary school com-
puter science teachers during a teacher training at the University of
blinded. All 11 teachers already had prior experience with Scratch,
and the teacher training included a Scratch programming activity
prior to the survey. For the survey itself, we first demonstrated
the debugger’s functionality for 30 minutes, then let the teachers
use NuzzleBug to debug nine faulty programs for one hour, and
finally asked them to complete a survey based on the Technology
Acceptance Model (TAM), a common instrument to predict the accep-
tance and usage of a technology [60]. The model specifies 26 survey
items of which we used 22, because the others were not relevant
or applicable. All items were measured on a 7-point Likert scale
ranging from strongly disagree to agree. At the end, the survey
contained an optional open question for textual feedback. The full
survey and the responses are available in the replication package3.

5.1.2 Threats to validity. The survey is small and subject to threats
to external validity concerning the generalization of results. Threats
to internal validity arise as we introduced NuzzleBug within 30
minutes and afterwards the teachers used it for one hour only,
which may not be sufficient to identify all strengths or weaknesses.
While the teachers debugged programs using NuzzleBug, they did
not experience it while teaching debugging, thus implying a threat
to construct validity. Nevertheless, all participants were teachers in
practice with experience in teaching, and the results give a good
first impression on the usability and usefulness of NuzzleBug.

3
https://figshare.com/s/68281791e01be5179699

https://figshare.com/s/68281791e01be5179699
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5.1.3 Results. TAM contains questions in different categories; for
space reasons, Fig. 22 only shows the questions of the categories
relevant for RQ1 (intention to use, perceived usefulness, perceived
ease of use, and output quality). The responses indicate that the
majority of teachers considers NuzzleBug to be useful, especially
in supporting pupils in developing a debugging strategy (91% agree
somewhat or moderately). The output of NuzzleBug is understand-
able for almost all teachers (91% agree the quality of the output is
high, and 82% had no problems with the output), and more than
half (64%) can imagine integrating it into their lessons. Six out of
the 11 teachers provided free-text feedback, which was positive in
five cases, for example, “The debugger is a very nice tool” or “That’s
a nice idea”. They also commented that the experience of teaching
using the debugger would be helpful to provide better feedback.

However, the study also revealed drawbacks of NuzzleBug.
Questions regarding ease of use are rated comparatively low (Fig. 22),
and four of the teachers commented on the user interface in their
free-text answers, such as “Sometimes it was difficult to understand
where the block shown in the answer graph is located in the program.”
and “The questions are slightly hidden, because they are only accessi-
ble via the context menu.” We plan to improve usability, for example
by adding direct navigation from answers to corresponding scripts,
or a questionmark-cursor to click directly on objects, even on the
rendered stage. One teacher rated almost all items negatively, and
justified this with a general aversion of Scratch independently of
the debugger. Another teacher praised the debugger in the free-text
response but at the same time explained low ratings with being
unsure whether to use Scratch in lessons at all. More generally,
Fig. 22 shows that even though the perceived usefulness is high,
the intention to use is visibly lower, which confirms issues in how
debugging is perceived in education [38].

Summary (RQ 1): Teachers believe that NuzzleBug is useful and
understandable, but suggest improving the user interface.

5.2 RQ2: Usability Study with Children

5.2.1 Study participants. We conducted the study at a secondary
school with six school classes (two year 6 aged 12, one year 7
aged 13, two year 9 aged 15, and one year 10 aged 16) with a total
of 125 pupils. Prior to our study, the computer science teacher
of these classes implemented the same Scratch introduction in
regular lessons for all classes, in which all programming basics
required for our study (e.g., loops, branches, message passing, sprite
cloning) were first explained, and then practiced by the pupils using
a detailed task of implementing a game covering all these concepts.

5.2.2 Experiment tasks. A debugging task in our study consists of
a faulty Scratch project with a textual description of (1) expected
behavior of the program and (2) the incorrect behavior, and (3) their
task, which is to “fix the faulty behavior”. Table 3 shows details of
the individual tasks in terms of the difficulty estimated using the
number of programming concepts (e.g., loops, conditions, message
passing, sprite cloning, ...) included in a program (easy = 2, medium
= 3, hard > 3), the number of blocks and scripts, and the inter-
procedural cyclomatic complexity. Each task was created to contain
exactly one bug, and the bugs are based on common bug patterns in
Scratch [19]. In addition we created four introductory debugging

Table 3: Debugging task statistics

Difficulty counts programming concepts (easy = 2; medium = 3; hard = > 3); B = Blocks; S = Scripts;
ICC = inter-procedural cyclomatic complexity; Bugs refer to common Scratch bug patterns [19].

Task Difficulty B S ICC Tests Bug Data points

1 easy 23 4 7 3 Type Error 125
2 easy 27 4 9 3 Missing loop sensing 125
3 med. 65 11 26 6 Message never sent 123
4 med. 37 4 11 3 Position equals check 122
5 med. 35 6 13 1 Forever inside loop 110
6 med. 48 9 20 6 Message never received 103
7 hard 104 9 35 2 Interrupted loop sensing 95
8 hard 48 6 16 3 Missing clone call 79

tasks, two of which introduce bugs into the program created by
the pupils in their Scratch preparation lesson, and two easy bugs
similar to the main experiment tasks. To increase the number of
data points, for each task there are two versions with identical code
and bug, but slightly changed theme and storyline.

5.2.3 Experiment procedure. The study itself covered two two-hour
lessons, each consisting of an (1) introduction with explanations,
followed by (2) two introductory tasks, and then (3) 40 minutes
dedicated to four debugging tasks. In the first week we taught the
basics of debugging without a debugger using teaching material
adapted from existing didactic approaches for systematic debug-
ging with text-based languages [39]. The introductory tasks include
diagrams explaining the steps involved in systematic debugging.
After the introduction the pupils practiced debugging using four
debugging tasks. In the second week we first demonstrated sys-
tematic debugging using NuzzleBug, and pupils then practiced
with two introductory tasks, where the task description included
modified diagrams of the steps involved in systematic debugging
with a debugger [39]. Afterwards, they had to solve four debugging
tasks within 40 minutes. Their instructions were to fix the bugs,
but they were free to choose whether to use NuzzleBug. We used
a modified Scratch version [9] with a button for indicating when
a task is completed, collecting the corresponding .sb3 file and time,
and resulting in the data points per task shown in Table 3.

Each session consisted of one easy, two medium, and one hard
task. To collect data for all eight tasks in the second session, we
used tasks 1, 3, 4, 7 for half the classes in the first session and tasks
2, 5, 6, 8 in the second session, and vice versa for the other half. To
avoid that information about tasks was exchanged between groups,
we used the alternative task versions depending on the order.

5.2.4 Experiment analysis. The analysis is based on the eight de-
bugging tasks used during the second session. For each pupil and
task a modification in the Scratch UI logged whether they used
NuzzleBug, and we compare those who used NuzzleBug with
those who did not. To determine whether a bug was correctly fixed
we created automated tests for each task using the Whisker [56]
framework, which allows specifying UI tests for Scratch programs
using JavaScript notation. The number of tests per task is shown
in Table 3; note that the tests not only check if the bug was fixed,
but also check that all other behavior of the program has not been
broken. We executed the tests on each pupil solution, and count
a bug as successfully fixed if all tests pass. We compare the fix
ratios between pupils using and not using NuzzleBug with a Fisher
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Figure 24: Time spent for correct fixes.

exact test at 𝛼 = 0.05 and the odds ratio as effect size measure. The
modified version of Scratch [9] also keeps track of the time spent
per completed task. We compare the times between pupils using
and not using NuzzleBug with a Mann-Whitney U test at 𝛼 = 0.05.

5.2.5 Threats to Validity. Threats to internal validity result as we
did not force pupils to use a debugger, but compare those who
chose to use it with those who did not, which may be those who
immediately spotted bugs or are overwhelmed by the debugger. To
reduce the influence of the latter cause, we monitored the pupils
during the study and provided feedback to pupils who were lost.
Results may differ depending on how debugging is taught, therefore
the tasks and experiment sessions were co-designed and conducted
by a teacher. We also conducted a pilot study with another school
class and refined the debugger and teaching material based on the
experience. Results may further differ depending on programming
knowledge, but all pupils received the same introduction to Scratch
and were taught by the same computer science teacher. Threats
to construct validity arise from measuring whether programs were
fixed and how quickly; the debugger may have helped locating
but not fixing the fault. Furthermore, in an educational setting the
learning outcome may be more important than the raw fix ratio or
performance. Threats to external validity arise from our sample of
pupils and faulty programs, and results may not generalize.

5.2.6 Results. Overall, 82 debugging tasks were addressed using
NuzzleBug, and 65 without. Figure 23 shows the ratio of pupils
who correctly fixed the bug. For six out of the eight tasks, the ratio is
higher when using NuzzleBug, and for Task 6 the improvement is
statistically significant (Fisher exact test at 𝛼 = 0.05). This bug con-
sists of incorrectly nested forever-loops, which can be detected with
stepping, or by asking why blocks or behavior outside the loops
are not reached. A large improvement can also be seen for Task 7,
which contains incorrect handling of clone generation, which can
easily be understood by asking the right question. Both of these
tasks represent more complex programs; the task where the debug-
ger helped least (Task 1) is a very simple program, where sprite
collision is incorrectly checked only once rather than continuously.

Understanding this bug requires understanding timing visualiza-
tions, for which deriving a fix may be more challenging as no code
is shown—which may be challenging for children, who have been
shown to focus on code rather than deducing a causal model [26].

Figure 24 shows the time spent for the cases where the bug was
successfully fixed. For all tasks the time is higher with NuzzleBug
(significant for tasks 1, 4, and 6). On the one hand, this may be
influenced by pupils ignoring the debugger if they spot a bug im-
mediately. On the other hand, NuzzleBug provides substantially
more information to process compared to the few blocks of most
programs. Interestingly, the Whyline interrogative debugger was
reported to reduce time [28]. However, we did not study students
in higher education, but children, which leads to unique challenges,
such as their focus on solutions themselves rather than how the
program works [26, 61]. Furthermore, in a teaching context it might
actually be more productive when pupils spend more time with
debugging as this may consolidate knowledge.

Summary (RQ 2): The effectiveness of pupils at fixing faults in-
creases when using NuzzleBug, but those who manage to fix the
fault without the debugger tend to be quicker.

6 CONCLUSIONS

Programmers who are good at debugging are more likely to be
good at programming [11], but being able to program does not
immediately result in being able to debug [25]. Novice programmers
in particular lack some of the necessary skills [14] for debugging,
are often discouraged by errors in their code [42], and struggle
with debugging [17, 24, 41, 52, 61]. Although the importance of
debugging for novices has been known for decades [42, 55], most
programming courses still do not cover it in detail [8] and debugging
tools are lacking, in particular for Scratch. This inhibits novices,
debugging education, and educators trying to support students.

To remedy this situation we introduced NuzzleBug, a debugger
for Scratch providing classic, omniscient, and interrogative debug-
ging functionality. Our initial experiments showed promising re-
sults, but also suggest future research on improving the techniques
on which NuzzleBug is based, for example by narrowing down or
abstracting questions, by integrating further automated debugging
techniques such as spectrum-based fault localization [62], by im-
proving answers with fix suggestions [16, 37, 44, 45, 66], by integrat-
ing generated code explanations [49], or by automatically generat-
ing breakpoints [65]. There is also further need for research on edu-
cation of systematic debugging [39] since debugging is generally not
taught sufficiently, and in particular not using debugging tools [38].
To support education and research on debugging, all code, tasks, and
data are available at: https://figshare.com/s/68281791e01be5179699

The source code of NuzzleBug is also available here:
https://github.com/se2p/nuzzlebug
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