
On the Helpfulness of Answering DeveloperQuestions on
Discord with Similar Conversations and Posts from the Past

Alexander Lill
University of Zurich
Zurich, Switzerland

lill@ifi.uzh.ch

André N. Meyer
University of Zurich
Zurich, Switzerland
ameyer@ifi.uzh.ch

Thomas Fritz
University of Zurich
Zurich, Switzerland
fritz@ifi.uzh.ch

ABSTRACT
A big part of software developers’ time is spent finding answers
to their coding-task-related questions. To answer their questions,
developers usually perform web searches, ask questions on Q&A
websites, or, more recently, in chat communities. Yet, many of these
questions have frequently already been answered in previous chat
conversations or other online communities. Automatically identify-
ing and then suggesting these previous answers to the askers could,
thus, save time and effort. In an empirical analysis, we first explored
the frequency of repeating questions on the Discord chat platform
and assessed our approach to identify them automatically. The ap-
proach was then evaluated with real-world developers in a field
experiment, through which we received 142 ratings on the helpful-
ness of the suggestions we provided to help answer 277 questions
that developers posted in four Discord communities. We further
collected qualitative feedback through 53 surveys and 10 follow-up
interviews. We found that the suggestions were considered help-
ful in 40% of the cases, that suggesting Stack Overflow posts is
more often considered helpful than past Discord conversations,
and that developers have difficulties describing their problems as
search queries and, thus, prefer describing them as natural language
questions in online communities.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI;
Field studies; • Software and its engineering→ Collaboration
in software development; • Information systems→Question
answering; Recommender systems.

KEYWORDS
Developer Questions, Chat Community, Semantic Similarity

ACM Reference Format:
Alexander Lill, André N. Meyer, and Thomas Fritz. 2024. On the Helpfulness
of Answering Developer Questions on Discord with Similar Conversations
and Posts from the Past. In 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623341

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623341

1 INTRODUCTION
Software developers spend a big part of their time at work seeking
relevant information, either by searching the web for documenta-
tion or tutorials, communicating with their co-workers, or asking
questions onQuestion & Answer (Q&A) communities such as Stack
Overflow (e.g., [32]). Software developers also increasingly use
chat communities such as Gitter and Discord to ask questions on
various topics, ranging from troubleshooting to implementing spe-
cific features or even learning how to program [2, 15]. While these
chat communities often allow developers to find answers to their
questions quickly and collaboratively [56], many questions stay
unanswered [27] or are repeated several times by different devel-
opers, imposing time and effort on both, the developers asking the
questions and the ones answering them.

Automatically identifying previously asked similar questions and
suggesting their answers to developers could potentially increase
developer productivity. Research on supporting developers in re-
ceiving answers to their questions has predominantly focused on
Q&A forums, with Stack Overflow (SO) being the most prominent
one (e.g., posting links to similar questions [45] or providing sum-
maries of previous questions as answers [65]). Besides leveraging
SO as a resource, approaches have also extracted information from
documentation such as JavaDocs [40, 60] and chat communities
such as Slack and Gitter [22, 56] to suggest them to developers when
answering questions on SO. Instead of recommending similar ques-
tions, Nascimento Vale et al. used the large language model (LLM)
GPT-2 to train and answer questions on SO [26]. To our knowledge,
the only approach that aims to support question answering in a
chat community is GitterAns [53]. However, GitterAns does not
utilize the knowledge from within its own community on Gitter
but rather only recommends SO posts to answer troubleshooting
questions. In addition, little is known about the helpfulness of the
related approaches in the field since most were evaluated in lab
settings using test datasets, and only one approach for SO was
preliminarily evaluated in a small field setting [45].

In our research, we aim to evaluate the helpfulness of suggesting
either previous Stack Overflow posts or Discord conversations to
developers in the field. For the Discord suggestions, we thereby
utilize the information available in the software development chat
communities by suggesting past conversations that are similar to
the newly asked question by the developer. In particular, we are
examining the following two research questions:
RQ1 (a) How frequently do developers repeat similar questions

on Discord, and (b) how accurately can we detect similar
questions using an approach based on SBERT?

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623341&domain=pdf&date_stamp=2024-02-06

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Alexander Lill, André N. Meyer, and Thomas Fritz

RQ2 (a) Can we support developers in answering their questions
on Discord with our SBERT-based approach by providing
similar previous Discord conversations and Stack Overflow
posts, and (b) which source for suggestions is more helpful?

To address our first research question, we created a dataset from
two popular Discord communities and manually labeled 465 con-
versations to examine the frequency of similar questions. Based
on SBERT, we then developed an approach that considers the se-
mantic similarity between questions to find similar conversations
for a given input question. In an empirical analysis, we assessed
the precision of our approach in automatically detecting similar
questions using the labeled data. Our analysis showed that simi-
lar questions frequently occur on Discord, with between 44% and
74% of the analyzed questions being similar to at least one other
question. Our approach can identify these similar questions with
a precision within the first three results (notation: precision@3) of
43% on the labeled dataset and 59% on the overall exported dataset.

To address our second research question, we conducted a field
experiment in four Discord communities where we posted links to
similar previous Discord conversations and SO posts as an answer
to a total of 277 questions. We gathered data via emoticon reactions
and textual responses and received additional feedback from our
participants through 53 surveys and 10 interviews. Our analysis
showed that our approach was able to provide helpful suggestions
in 40% of the cases. We further found that while suggestions point-
ing to SO posts were more often helpful (63%) than suggestions
referring to conversations on Discord (37%), the helpfulness for
each varies by community. When attempting to find an answer
to their question, developers usually first leverage existing infor-
mation, including documentation websites, Q&A platforms, and,
more recently, generative AI solutions such as ChatGPT [6]. Chal-
lenges with crafting effective search queries that generalize one’s
problem and encapsulate the problem context often prohibit find-
ing a suitable answer. In these cases, developers resort to posting
their questions to a chat community like Discord, which is often
considered more constructive and helpful, allows for clarification
questions, and has fast response times. We discuss the helpfulness
of our approach and how developers could be better supported
when formulating search queries and questions.

This paper makes three main contributions: First, an approach
and findings from an empirical evaluation on the accuracy of the
approach and the frequency of similar questions based on manually
labeled data from two popular Discord communities. Second, a
quantitative and qualitative evaluation of the approach in a field ex-
periment with software developers from four Discord communities
that provides evidence of the accuracy of our approach in a real-
world setting. And third, insights into software developers’ current
practices of answering their questions using online communities.

2 RELATED WORK
Finding answers to coding questions online is very time-consuming,
as developers are spending roughly one-third of their time seeking
information overall [32], with about 11% of their workdays spent
browsing online for information [43]. Answers to these questions
can come from an expert in the developer’s personal or company
network, from documentation, internal or public knowledge bases,

or frommore generally researching the public web for previous sim-
ilar questions on the topic [34, 35, 39, 42, 64]. In case a question still
remains unanswered after considering one or several of the afore-
mentioned sources, developers often decide to post a new question
in either a Q&A forum or an online chat community [66]. Other
developers in the community might then self-select to ask clarifying
questions, provide suggestions to similar online discussions, and/or
provide ready-to-use answers. Q&A forums, and Stack Overflow
in particular (e.g., [17, 19, 61]), as well as online chat communities,
such as IRC [57], Slack [22], Gitter [27, 47, 55] and Discord [50, 58],
have received a fair amount of research that investigated the cov-
ered topics, as well as community-specific behaviors and rules.

After Discord was originally mainly adopted by the gaming
community, it has recently gained traction among open-source
software development communities [13, 15], often after the com-
munities listed Discord as their preferred source of discussion and
Q&A. At the time of writing, Discord hosted almost 1300 active
Discord communities which, in most cases, either focus on a spe-
cific framework or programming language or on learning how to
program. The chat-based nature of Discord and similar communi-
ties increases the velocity and volatility of the contents of these
platforms as content is often less structured, more nested, and more
difficult to retrieve at the cost of receiving quick, almost instant,
responses to questions [50, 51, 58]. One way to better understand
these communities, their topic structure and history, as well as
their members is through visualization, as investigated by Raglianti
et al. [50]. The work presented in this paper seeks to better un-
derstand why and how developers are posting their questions to
Discord communities and how they could be better supported in
satisfying their information needs in chat-based communities like
Discord.

SupportingQuestion Asking and Answering in Online Com-
munities. One challenge faced by software development online
communities is that asking a good question that is detailed and at
the same time concise enough to attract voluntary respondents is
hard [18, 21]. Therefore, many online communities provide guide-
lines on asking good questions and employ moderators to enhance
quality. Stack Overflow, for example, is actively closing questions
that are near or exact duplicates of prior questions, off-topic or
”pointless“ [18, 23, 48]. To reduce the need to close low-quality
questions and provide askers with an increased chance of receiving
a response, several approaches tried to support developers during
the formulation of questions, for example, by providing recommen-
dations on how to write good questions [21], asking a clarifying
question [30], or by providing ad-hoc feedback to the asker when
formulating a question, either manually by experts [29] or auto-
matically through a web browser extension [46].

Other approaches that focused on Stack Overflow aim to help
askers or respondents more directly by posting links to previous
similar questions [45, 53, 60], posting links to the relevant docu-
mentation [40], or providing summaries of previous answers on
similar questions [59, 65]. A relatively new set of approaches aims
to provide automatically generated responses or code snippets that
are personalized to the asker’s question using large language mod-
els (LLMs), such as GPT [5] and BERT [25]. These include bots,
either specifically trained to answer how-to questions using Stack

On the Helpfulness of Answering Developer Questions on Discord with Similar Conversations and Posts from the Past ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Overflow posts [26] or trained for more general purposes (e.g. Chat-
GPT [36]), as well as tools integrated into the developer’s IDE (e.g.
GitHub Co-Pilot[49] and other programming assistants [54]).

Closest to our work is GitterAns, a bot developed by Romero et al.
that detects troubleshooting questions on the chat platform Gitter,
queries a search engine to find relevant previous Stack Overflow
answers, and posts them to the user in the Gitter chat [53]. A pre-
liminarymanual evaluation of the answers to 20 randomly sampled
questions showed that the bot suggested relevant suggestions for 9
of them. In contrast, our work focuses on Discord as the chat-based
community which serves as the source for not only the question
but also prior conversations as potentially relevant answers. In ad-
dition, our approach is evaluated through an experiment in the field,
on 277 questions in four different software development Discord
communities of varying sizes.

Detecting SimilarQuestions in Online Communities. A core
challenge for many of the aforementioned approaches is the de-
tection of similar or duplicate questions and answers that were
previously posted in an online community, given an asker’s newly
posted question. Approaches to identify relevant similar questions
range from manual (e.g., [56]) to fully automated, for example, by
using the “related questions” feature of Stack Overflow [45] or
querying an online community’s prior responses using an API [53].
In case a prior question is exactly the same as a new question
content-wise, it is considered a duplicate [28]. To support large
online communities with detecting and closing duplicate questions
almost instantly and avoiding inefficiencies stemming from an-
swering the same questions repeatedly, several approaches have
been developed to automatically detect duplicates, the best one
performing with a recall-rate of around 80% [16, 62, 69].

Many of these tools to detect similar or duplicate questions are
based on approaches such as LSTM, RNN, or logistic regression
(e.g. [16, 62]) and need to compare a newly created question to all
other questions to calculate a relevance score [38]. This results in
challenges in providing timely detection. One novel way to over-
come these disadvantages and still achieve state-of-the-art perfor-
mance for detecting duplicates is to avoid these comparisons by
calculating sentence embeddings using SBERT [33, 37] to represent
the question’s semantic meaning as a vector and using cosine simi-
larity to find the most similar questions. SBERT is an extension of
BERT using siamese and triplet network structures, allowing to cal-
culate semantically meaningful sentence embeddings and avoiding
the need to always feed individual question pairs to the model for
calculating a similarity score [52].

Given the promising results of SBERT, this work leverages the
same technology to find similar questions. While the above ap-
proaches have been evaluated with Stack Overflow data, we have
not been able to find work for chat communities like Discord. Addi-
tionally, while these initial approaches focused on detecting exact
duplicates, we are interested in learning how well the technology
works to detect conversations similar to a question and how helpful
these conversations are to developers.

3 APPROACH
To support developers in finding answers to their questions in a
chat community, we developed an approach that identifies past

conversations that are semantically similar to a developer’s ques-
tion. Since such semantically similar conversations contain answers
to previous questions in the community, they might answer the
developer’s question or at least provide guidance.

Our approach entails three main steps: extracting and cleaning
conversations from the Discord community (3.1), creating sentence
embeddings of conversations using pre-trained models to capture
semantic meaning (3.2), and determining semantic similarity be-
tween conversations and a developer’s question based on the em-
beddings (3.3). To address our research questions, we further created
a modified version of the approach that retrieves Stack Overflow
posts that are semantically similar to a developer’s question (3.4).

3.1 Extracting & Cleaning Conversations
Extracting andGrouping. For a given Discord channel, we first ex-
tract all messages from the channel using the official Discord API [1]
and group them into conversations that consist of the question and
one or more answers. Our approach focuses on communities with
organized help channels that keep messages of different conversa-
tions separate through threaded conversations or a bot assigning
new questions to single-user help channels, thus not requiring us
to disentangle messages.

Filtering. To ensure that conversations are focused on a question
and an answer, we filter out conversations with no answer and
more than 200 messages. On average, each of the more than 50,000
conversations exported has 13messages. Amanual inspection of the
170 conversations with more than 200 messages showed that these
conversations contained multiple, overlapping question discussions
mostly due to malfunctions of the bot assigning help channels,
which is why we excluded them. We further filter out conversations
for which the question author never replied after an initial answer
since an analysis of 100 random conversations showed that authors
generally respond to initial answers, e.g., by thanking or following
up on the question, unless they abandoned it.

Cleaning Bot Messages. Next, we analyze all messages with
the bot flag and categorize them to remove unrelated messages.
The categorization is based on heuristics we identified in a manual
analysis of all bot messages from one community. Specifically, while
bot messages that were requested by a chat participant to either
format a code snippet or to link often-used documentation are kept,
bot messages related to organizing the help channels (e.g., archival
reminders) or the bot administration, and bot messages unrelated to
the conversation, are removed (also see replication package [41]).

Optimizing for Embeddings. Since only the first 256 words of a
conversation are used for creating sentence embeddings, we apply
several heuristics to better capture the semantic meaning of the
whole conversation in the 256 words. In particular, we automatically
identified and extracted code blocks in the messages using the
markdown syntax for code, i.e., one or three backticks. If the code
block is shorter than 20 characters, we move it to the start. If it is
longer, we move it to the end of the conversation. We identified this
heuristic based on our manual inspection of 100 conversations that
showed that short inline code snippets are generally used to specify
highly relevant classes or method names, while longer code blocks
usually contain a lot of noise and less relevant information than
the natural description. Additionally, we remove text that contains

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Alexander Lill, André N. Meyer, and Thomas Fritz

no semantic value, such as line breaks, user and channel names,
emoticons, and hyperlinks. Finally, we normalize all contractions,
such as “it’s” to “it is” using the Python contractions package.

Generating Conversation Titles. To present a list of the most
relevant past conversations to users, we further generate a brief
summary of each conversation. For some communities, we are able
to use the title developers specified when asking a question. In com-
munities without titles, we generate a summary of the conversation
using the language model t5-base-en-generate-headline [8],
which is optimized for generating headlines based on the Text-
To-Text Transfer Transformer (T5) [3]. We chose this model after
comparing models on a set of randomly selected conversations.

3.2 Creating Sentence Embeddings
To extract semantic meaning from a conversation, we used Sen-
tenceBERT (SBERT) to create a vector for each cleaned conversation
or the first 256 words of it in case of longer ones. SBERT is an ex-
tension of the deep learning transformer network approach BERT
that relies on a self-attention mechanism taking into account long-
range dependencies and contextual information to better capture
the semantic meaning of a sentence. It achieves state-of-the-art per-
formance on sentence classification and sentence-pair regression
tasks [52]. For our task of ranking conversations based on their se-
mantic similarity to a developer’s question, SBERT improves upon
BERT by creating semantically meaningful embeddings of conver-
sations that can be compared using cosine similarity with a simple
matrix multiplication at runtime. BERT, on the other hand, requires
a one-by-one comparison in which each pair of conversations has
to be fed into the model to determine similarity.

Various pre-trained SentenceBERT models are available [12] that
differ in the data they were trained on, their fine-tuning, and the
number of dimensions they use for the vectors. For our Q&A task,
we focused on models pre-trained on 215 million question-answer
pairs, including commonly known similarity and duplicate datasets
from StackExchange (including Stack Overflow) and Quora, thus,
avoiding the need to train the models ourselves. Specifically, we se-
lected the two models multi-qa-MiniLM-L6-cos-v1 (MiniLM) [9]
and multi-qa-mpnet-base-cos-v1 (MPNet) [10] for their high
performance on semantic textual similarity tasks both in terms of
similarity metrics and prediction speed, reaching a Massive Text
Embedding Benchmark (MTEB) [44] score of 78.90 (MiniLM) and
80.28 (MPNet), compared to ST5-XXL for example, which is slightly
more accurate (82.63), but significantly slower [24].

3.3 Determining Semantic Similarity
To determine past conversations that are most semantically similar
to a developer’s question, our approach first cleans the developer’s
question using the same steps as listed in Section 3.1 before creating
a sentence embedding of the question as described in Section 3.2.
Using the vector representations of the question and the past con-
versations, the approach then calculates the semantic similarity
based on the cosine similarity of each pair of vectors.

It has been shown that a retrieve & re-rank approach that first re-
trieves results based on cosine similarity and then re-ranks the top
results based on a more computationally expensive cross-encoder

approach can boost the relevance of the retrieved similar docu-
ments [31]. Therefore we further refined our approach and added
a re-ranking step of the top 32 conversations most similar to the
input question using the cross-encoder ms-marco-MiniLM-L-6-v2,
chosen due to its high similarity-score performance and speed [12].

3.4 A Version for Stack Overflow
To examine how our approach for retrieving past conversations
compares to retrieving similar Stack Overflow posts, we created a
modified version of it. For this version, we used the official Stack
Exchange archives [11] downloaded in September 2022 and pre-
selected specific tags corresponding to the topics discussed in the
Discord communities to which we applied our approach. Details
about the used tags can be found in the section about the participat-
ing communities (5.3) and Table 2. We then removed posts that did
not contain any of the pre-selected tags or had no answers. For each
remaining post, we used the Python bs4 package to retrieve the
visible text from the HTML code of the post, removed line breaks,
and created a concatenated representation of the post containing
(i) the title of the post, (ii) the list of the tags assigned to the post,
and (iii) the question asked in the post. We then created a sen-
tence embedding for each post (or the first 256 words if longer) and
determined semantically similar posts as described in Section 3.3.

4 EMPIRICAL ANALYSIS
To examine how frequently developers repeat similar questions on
Discord (RQ1a) and how accurately we can retrieve these similar
repeated questions (RQ1b), we empirically analyzed two popular
software development communities on Discord. In particular, we
first curated a dataset of 500 conversations that we manually la-
beled (4.1). We then analyzed the curated dataset (4.2) and finally
applied our approach to evaluate its precision (4.3).

4.1 Selected Communities & Collected Data
We selected two communities for our analysis: the Electron commu-
nity that focuses on integrating web applications into the Electron
framework, and the TypeScript community focusing on the use
of the TypeScript programming language. We chose these two
communities due to their high activity and popularity and their
representativeness of the various communities on Discord, which
can roughly be grouped into (a) projects and frameworks, (b) pro-
gramming languages, and (c) others. Specifically, we focused on the
channels of these communities that are exclusively used for Q&A.

For each community, we extracted 250 conversations going back
in time from our export day, January 24th, 2022. This reflects the to-
tal number of asked questions within one to four weeks, depending
on the community’s activity. On average, each of the 500 conver-
sations consisted of 11 messages. We excluded 35 conversations
for being off-topic, not having a topic (e.g., just a greeting), or the
content largely not being readable for our approach due to it being
only available as an attached image. We further excluded exact
duplicates when a user asked the exact same question twice due
to not receiving an answer. Overall, the analyzed questions that
askers initially posed in a conversation have an average word count
of 67 in the Electron and 72 in the TypeScript community.

On the Helpfulness of Answering Developer Questions on Discord with Similar Conversations and Posts from the Past ICSE ’24, April 14–20, 2024, Lisbon, Portugal

4.2 RQ1a: Counting Similar Questions
Method. To answer RQ1a, we grouped questions into higher-

level topic areas before comparing questions in each topic area for
similarity. For this, one author labeled an initial set of 100 questions
and identified topic areas, e.g., “build commands and settings”, that
were then reviewed and discussed with another author.The first and
the third author then labeled a further set of 30 questions. Since an
agreement of 93% was achieved, the remaining questions were all
labeled by the first author. Next, we analyzed all questions within
the same topic area and labeled them with specific topics. In case
two questions described the same problem or asked for the same
information, and we considered the answers for one question also
helpful for the other, we labeled both questions with the same topic.

Results. For the 465 analyzed questions, we identified a total of
75 topic areas. 40 topic areas contained more than one question, and
the remaining 35 only had one question per topic area. The analysis
of the 431 questions that were categorized into the 40 topic areas
with multiple questions resulted in 153 individual questions, and
278 questions being part of a total of 45 question topics with at least
two questions describing the same problem or asking about the
same information. Thus, we found similar questions for 60% (278 of
465) of all cases, where the answer for one of the questions could
benefit another question about the same topic. The 45 identified
topics contain between 2 and 79 questions (mean=6.2±11.7), with
most of them containing two.

Themajority of similar questions were found in the Electron com-
munity (180 out of a total of 243, 74%), and significantly less in the
TypeScript community (98 of 222, 44%). The most common topics
in the Electron community were questions on how to communicate
with the operating system (79×) and how to control the application
window from the web application running inside Electron (10×). In
the case of the communication with the operating system from Elec-
tron, the common answer is explaining the intricacies of context
isolation that prevents web applications from accessing resources
outside of their browser window, and how inter-process communi-
cation (IPC) works in Electron. For TypeScript, the most common
questions asked how to export (20×) and import (17×) modules and
how to handle asynchronous operations using promises (11×).

RQ1a: Similar questions are frequently repeated in the Q&A chan-
nels of Discord communities. Out of a total of 465 analyzed ques-
tions, 278 are similar to each other (60%). The amount of repeated
similar questions differs between communities and makes up be-
tween 44% and 74% of the analyzed questions.

4.3 RQ1b: Detecting Similar Questions
Method. To evaluate our approach for detecting and retrieving

similar questions, we used the labeled dataset for calculating its pre-
cision@k and recall@k metrics, and conducted an additional manual
evaluation to determine the similarity of the retrieved questions.

For the automated analysis, we used the dataset of labeled similar
conversations created for RQ1a. We used each of the 278 questions
belonging to topics with similar questions as input to our approach
and evaluated howmany of the questions retrieved by our approach
are labeled as similar in our dataset. For this evaluation, we queried

Table 1: Model Comparison per Community for Automated�
and Manual" Analysis showing Precision@3 and Recall@3

Electron (E) TypeScript (TS) E & TS (Avg.)
P@3 R@3 P@3 R@3 P@3 R@3

MiniLM� 49% 12% 36% 11% 43% 12%
MPNet� 47% 11% 35% 12% 41% 12%

MiniLM" 65% - 53% - 59% -

only the labeled dataset for finding similar conversations and not
the complete set of exported questions, allowing us to calculate both
precision@k and recall@k. The precision@k metric indicates how
many of the first k returned results are relevant for the given input,
and the recall@k metric shows how many of the overall relevant
results were returned for a given input in the first k. We set k=3 as
we are interested in the performance of the first three results, which
will be shown to users as part of our experiment (see section 5),
with the goal to provide at least one relevant suggestion out of three
to limit user effort while also ensuring value. This evaluation was
conducted for both pre-trained models selected in subsection 3.2
to compare their performance and determine which one to use for
the experiment.

Additionally, we manually analyzed a total of 100 questions to
evaluate our approach and the chosen pre-trained model under
realistic conditions. For this, we randomly sampled 100 questions
from our labeled dataset created for RQ1a, and used our approach
to find similar questions within the complete exported dataset. The
retrieved conversations were then manually analyzed to determine
whether they are similar to the input question.

Results. The evaluation results show that our approach achieves
an average precision@3 of 43% and an average recall@3 of 12%
across both communities in the labeled dataset of 278 questions
using the MiniLM model (see Table 1). The precision@3 metric is
49% for the Electron, and 36% for the TypeScript community, where
we also found significantly fewer similar questions (44% similar
questions for TypeScript, 74% for Electron). While we report the
recall@3 scores for completeness (see Table 1), their meaningfulness
is limited since the score is highly affected by a large number of
similar questions for some topics and the low k=3. For instance, for
the topic of communicating with the OS (i.e., IPC) in Electron, there
are 79 similar questions resulting in a best-case recall@3 score of
4% (3/79) for three out of three relevant results. Experimenting with
the retrieve & re-rank approach using the cross-encoder described
in subsection 3.3 yielded no performance improvement.

Our manual analysis of 100 questions using the MiniLM model
shows that the performance improves when we do not restrict our
search to the 465 labeled questions but search for similar questions
in the overall dataset of 11,171 questions. We achieved an average
precision@3 of 59% (65% for Electron and 53% for TypeScript) and
were able to identify 169 additional similar questions which were
not included in the labeled dataset. These results provide evidence
that our approach can successfully retrieve one to two similar con-
versations when given an input question, and thus satisfies our aim
of providing at least one relevant suggestion in three.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Alexander Lill, André N. Meyer, and Thomas Fritz

To determine a threshold for showing the retrieved similar ques-
tions to users we analyzed the similarity scores generated by our
approach during both the automated and manual evaluation. Start-
ing from the average threshold for the correctly identified similar
questions of the automatic evaluation (0.60 for TypeScript, and
0.59 for Electron), we analyzed the scores of the suggested sim-
ilar questions during the manual evaluation and aimed to lower
this threshold to include as many of the relevant suggestions as
possible while avoiding too many non-relevant suggestions. The
lowest scores for relevant suggestions were 0.43 for TypeScript and
0.32 for Electron. In the end, we defined our minimum threshold
for the similarity score as 0.46 after a case-by-case analysis of the
suggestions with scores that are lower than the average of 0.60.

RQ1b:Our approach achieves an average precision@3 of 43% across
both communities in the labeled dataset, and a precision@3 of 59%
when tasked to find similar questions in the overall exported dataset
of 11,171 questions.This shows that, in case there are similar conver-
sations with relevant answers, our approach is able to recommend
one to two such conversations within the top three.

5 EXPERIMENT IN THE FIELD
To evaluate our approach and answer research questions RQ2a and
RQ2b, we applied it to several Discord communities in the field,
which allowed us to receive users’ feedback about our suggestions
for their real-world questions. In addition, the field experiment
allowed us to better understand how developers would want to
integrate automated suggestions into their workflows.

5.1 Experiment Procedure
During the experiment, we monitored participating Discord com-
munities for newly asked questions, generated suggestions for qual-
ifying questions using our approach (section 3), and posted them
to the conversation in case they fulfilled pre-defined criteria. To
evaluate the helpfulness of the suggestions, their presentation on
Discord, and how these suggestions could best be integrated with
developers’ workflows, we collected participants’ feedback through
Discord’s “reactions”-feature as well as surveys. A few participants
further opted to answer clarifying questions in a follow-up inter-
view. The experiment procedure is visualized in Figure 2 and was
approved by our institutional ethics board prior to its execution.

Monitoring for new Questions. During the experiment, we
monitored the Q&A channels of participating communities for
continuous sessions of 1 to 5 hours during a total of 29 different
days over 7 weeks, or a total of 85 hours, and processed all new
questions asked during these time-windows.

To avoid evaluating the approach on questions it could not suc-
ceed, we only posted suggestions to questions that fulfilled the
following criteria: the question (a) is longer than 15 words (not
including code), (b) does not only focus on the code itself (e.g., ask-
ing to refactor a code snippet, or to fix an error in a code snippet),
(c) does not contain attached images that contain error messages or
other information necessary for understanding the question (not
easily extractable from the image), and (d) should not be too spe-
cific to a particular environment and user (e.g., describing a unique

problem using only the user’s domain-specific terminology without
any abstraction of the problem).

Posting Suggestions. Whenever an asker posted a new ques-
tion, we waited at least two minutes before generating and posting
our suggestion to avoid interrupting them in the process of formu-
lating their question and adding necessary context. To generate
suggestions for qualifying questions, we applied our approach to
the question. The output was suggestions for both, Discord and
Stack Overflow, including a link to the suggested conversation or
post and a summary of the conversation or the title of the post.
In general, we alternated between posting suggestions to Discord
and Stack Overflow. In case the similarity scores for any of the
generated suggestions for the particular platform were above the
threshold of 0.46 (see section 4.3), we posted them to the Discord
conversation as a response to the question. In case the scores for
the generated suggestions were lower than the threshold for the
selected platform, we checked the scores for the other platform and
posted these suggestions in case they were above the threshold. In
case the scores for both platforms were lower than the threshold,
we did not post any suggestions. In case the approach yielded less
than three suggestions, only these were posted.

Receiving Helpfulness Ratings. As one way to receive feed-
back on the quality of the posted suggestions, we asked question
askers and responders to indicate whether a suggestion is helpful by
selecting an emoticon as a “reaction”: the “X” emoticon for helpful
suggestions and the “×” emoticon for not helpful suggestions. An
example of the posted suggestions and one participant’s reaction
can be found in Figure 1. In that case, the user indicated that the
first suggestion was helpful, while the second and third suggestions
were not helpful1. Participants were further given the option to opt
out of the experiment by selecting the “�” emoticon.

Figure 1: Example of Posted Suggestions
The screenshot shows our invitation to participate as well as three
suggestions. In this case, a participant rated the first suggestion as
helpful, while the second and third were rated as not helpful1.

1Note that we pre-selected all reactions to allow participants to click the reaction
without having to search for a particular emoticon. This means that the count ‘1’
is shown when no reaction is selected. This count is incremented by ‘1’ for every
additional user that rates a suggestion.

On the Helpfulness of Answering Developer Questions on Discord with Similar Conversations and Posts from the Past ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Participating Communities & Datasets (Averages are rounded to the closest increment of 500)

Avg. Avg. Questions Discord Stack Overflow
Community Topics Members Online Asked 2022 Conversations Posts Filtered Tags

Java Java 21,000 3,500 19,004 12,884 570,260 java
TypeScript TypeScript 42,000 7,000 14,235 6,024 159,515 typescript
Reactiflux TypeScript, React, Redux 210,000 14,500 8,576 2,091 354,978 reactjs, redux
Vuetify TypeScript, Vue.js, Vuetify 48,500 3,000 3,294 921 6,817 vue.js, vuetify.js

Feedback Survey. Once participants either reactedwith an emoti-
con or answered with a textual response and did not opt out of
the study, we invited them to answer a feedback survey. Before
participants could start answering the survey questions, they were
shown an overview of the experiment and asked to review and
agree to the consent form. The survey consisted of four parts: In
part 1, participants were asked to give feedback on the suggestions.
Part 2 focused on the presentation of suggestions. Part 3 asked how
participants approach finding answers to their questions and how
they use Discord for the task, and part 4 collected demographics
and invited participants to an interview and to enter a raffle for a
digital gift card as compensation for participating in the experiment.
The survey questions can be found in the replication package [41].

Follow-up Interview. Participants who opted to participate in
a follow-up interview were asked clarifying questions about their
survey responses, as well as a few additional questions on their
preference for receiving Discord versus Stack Overflow suggestions
and their requirements for a Discord bot that could post sugges-
tions automatically. The semi-structured interview questions are
available in the replication package [41].

5.2 Experiment Preparation
Pilot. To test the experiment procedure, we ran a pilot study

in the Discord community Astro, a web framework. Overall, we
monitored 20 questions and posted suggestions to 13 conversations,
for which we received 3 survey responses. In the pilot, we invited
participants to our survey via direct messages (DMs) on Discord.
Since our messages were mostly ignored due to the lack of notifica-
tions for messages from users who are not approved connections,
we adjusted the study procedure accordingly by posting invitations
to the survey directly into the respective Discord conversations.
Since several moderators of Discord communities also stated their
interest in supporting the experiment, we adapted our procedure
to invite both, question askers and responders, to provide feedback
through the survey and interview. Finally, study participants’ feed-
back led us to shorten the length of the study description that we
posted to the conversations when asking for feedback.

Community Eligibility. We considered several publicly avail-
able lists of software development Discord communities for recruit-
ing (see [41]). To evaluate a community’s eligibility the first author
joined and checked the following criteria: The community should
(a) be concerned with software development, (b) have at least 5,000
members, and more than 1,000 online users to ensure that new
questions are regularly asked, (c) have at least 900 questions in the
export of their help channels, and (d) should have Stack Overflow

posts concerned with the community’s topic(s). To avoid conversa-
tions being mixed with different active discussions, (e) communities
should either use the “help-forums” feature [4], where each ques-
tion creates a separate channel, or use a bot to organize channels to
avoid overlapping conversations (see section 3.1). For eligible com-
munities, we contacted the moderators through Discord, to explain
and discuss the experiment and obtain permission to conduct it.

5.3 Experiment Data
Participating Communities. Of all eligible communities, four

agreed to participate in the experiment. Two of them, Java and
TypeScript, are focused on a programming language, while Reacti-
flux and Vuetify are concerned with web frameworks. As shown
in Table 2, they have between 3,000 and 14,000 online members
on average, and users posted a total of 45,109 questions (124 on
average per day) to these communities in 2022. For the selected
communities, we applied the data preparation steps as described
in section 3. Table 2 provides an overview of the exported datasets
from both Discord and Stack Overflow, as well as the tags that were
used to filter Stack Overflow posts. The export sizes of the two plat-
forms are diverse: while the Java export includes 12,884 exported
Discord conversations, Vuetify is much smaller, with 921. Similarly,
the Java export from Stack Overflow contains 570,260 posts, while
the Vuetify export contains 6,817 posts. Since the export of the
Stack Overflow posts tagged with “java” counted more than 1.8M
posts, we decided to use only popular questions to both reduce
noise and computational complexity and discarded posts with less
than 1,000 views. The limit of 1,000 views was selected based on
Stack Overflow’s definition of a “popular question” [14].

Participant Demographics. We received demographic infor-
mation from a total of 49 survey participants, which were mostly
located in Europe (25×) or North America (15×). Participants in-
dicated that they had completed a high school education (10×)
or a bachelor’s (17×) or master’s (11×) degree. Of the survey par-
ticipants, 44 identified as male, 2 as female, and 3 chose not to
disclose their gender. The majority of survey participants were soft-
ware developers (35×) or students (6×), with an average age of 27.7
(±6.9). Participants responded having an average of 6.2 years of
non-professional (0-29, ±6.1) and 4.2 years of professional software
development experience (0-25, ±5.3). On average, they reported
having worked for 3.4 years (0-18, ±3.6) with the respective pro-
gramming language and 1.5 years (0-8, ±1.6) with the used web
framework (for web frameworks, both the programming language
and framework experience were collected).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Alexander Lill, André N. Meyer, and Thomas Fritz

Criteria not Fulfilled

No Feedback
Helpful

Not Helpful
Opt Out

10

397
277

Monitored questions
from 4 communities

Questions answered
with 1-3 suggestions

To gain more
detailed insights

To add context and
clarify responses

As emoticon-reactions
or messages

Feedback
Surveys

Follow-up
Interviews

? ...
Receiving
Helpfulness Ratings

...

81

54

120

57

85

Monitoring for
new Questions

Posting
Suggestions!

142
53

Figure 2: Experiment Procedure & Collected Data

Collected Data. Figure 2 visualizes the collected data, starting
from the questions that were monitored and answered and end-
ing with the received surveys and conducted interviews. In total,
we recorded 397 new questions that were posted to the four Dis-
cord communities during the monitoring time windows. Of these,
no suggestions were posted to 120 questions that did not fulfill
the qualifying criteria defined above: suggestions were below our
threshold (42×), or questions that only focused on the code snippet
(54×), included key information only as part of an image (33×),
were too short (32×), were deleted before or after we posted the
suggestions (10×), or asked for an opinion or plan (13×). Of the 277
questions we posted suggestions to, 54 question askers opted out.
From the remaining 223 questions, we received feedback in 142
cases and did not receive any feedback in 81 cases, corresponding to
a response rate of 64%. Thus, the following analysis is based on the
142 cases that we received feedback for (35.5 ± 7.4 per community).
We additionally received survey responses from 53 participants
(42 askers A** and 11 responders R**) and conducted 10 follow-up
interviews (7 askers and 3 responders).

Qualitative Analysis. To analyze the collected qualitative data
stemming from surveys and interviews, we applied the reflexive
thematic analysis approach by Braun and Clarke [20]. Two authors
independently familiarized themselves with the data and coded
two-thirds of the open-text survey responses and interviews. To
reach an agreement on a final coding tree and saturation, the two
authors discussed and consolidated the codes together. Due to the
high initial agreement between the authors, the first author then
coded the remaining one-third of the data using the previously
identified codes, which resulted in no new codes. A subsequent
discussion of the codes with all authors led to higher-level themes
that are described as results in the following section.

5.4 Experiment Results
Helpfulness of Suggestions. Of the 142 suggestions that we

received feedback for, participants rated 57 as ‘helpful’ (40%) and
85 as ‘not helpful’ (60%). Participants’ feedback was evaluated as
one rating for each group of suggestions, meaning that we counted
the entire group of suggestions as helpful when one of the up to
three suggested links was rated as helpful. In case a participant
gave feedback in the conversation and the survey, as well as in case
a group of suggestions received feedback from the question asker
and responder, they were counted as one feedback.

0%

20%

40%

60%

Java Reactiflux TypeScript Vuetify Overall

Discord Stack Overflow

6

15
10

3 7

8
3
5

36

21

Figure 3: Percentage of Suggestions Rated as Helpful, Distin-
guished by Suggestion Source and Community

Helpful Suggestions. For the 57 suggestions that participants
rated as helpful, we received additional feedback through 21 surveys
and three interviews to better understand participants’ ratings on
suggestion helpfulness. In 7 of these 21 cases, participants stated
that the suggestions directly answered their question, meaning they
did not need to perform further research. In 14 cases, the sugges-
tions were indirectly helpful to participants since they brought them
to a “path where [they could] find a solution to the problem” (A10),
for example, by pointing them towards additionally relevant infor-
mation or by identifying new keywords for additional web searches
that led to a result: “By providing keywords that I had not thought
of when formulating my previous search queries” (A03). Finally, one
participant mentioned that the suggestions led them into a com-
pletely new direction that eventually resolved their question: “It
lead to few new topics and old ones too that got overlooked. Ultimately
the amalgamation of answers lead me to think in a new direction to
reach at a reasonable thought” (A24).

Not Helpful Suggestions. 21 participants who rated the sugges-
tions as not helpful provided additional feedback through the survey,
and seven of them also in the interviews. The main reasons why
participants rated suggestions as not helpful were that they were
either unrelated to the specific problem (12×), the problem context
was unclear or different (8×, e.g. wrong or not matching software
version or environment), or because the suggested resources pro-
vided only a partial solution to their question (4×): “The suggestions
scratched the surface and technically answered the question as asked,
but didn’t address the whole problem.” (A21), “My question was very

On the Helpfulness of Answering Developer Questions on Discord with Similar Conversations and Posts from the Past ICSE ’24, April 14–20, 2024, Lisbon, Portugal

nuanced, so the suggestions ended up being too specific.” (A07). An-
other reason for participants rating a suggestion as not helpful was
that they had already found the suggested link before posting their
question to Discord, and thus the suggestion did not provide them
with any new information (7×): “I have come across the links that
you have shared, and some of those proposed ”workarounds” work but
don’t scale well for many fields with different use cases.” (A31).

RQ2a: We can support developers in answering their questions on
Discord by suggesting similar previous Discord conversations and
Stack Overflow posts in 40% of the cases.

Stack Overflow is not always the Better Information Source.
Participants generally rated suggestions of previous Stack Overflow
posts more often as helpful compared to suggestions of previous
Discord conversations. From the 57 suggestions that were rated as
helpful, 21 (37%) linked to previous Discord conversations, while
36 (63%) linked to previous Stack Overflow posts. As visualized
in Figure 3, the helpfulness of each suggestion source differs by
community: While suggestions of Discord conversations were more
often helpful in the Vuetify community (63% of all helpful sugges-
tions referred to Discord), suggestions linking to Stack Overflow
posts were more often helpful in the Java (71%) and Reactiflux
(77%) communities, and almost equally helpful in the TypeScript
community (53% Stack Overflow and 47% Discord).

In the interviews and surveys, we further asked participants
about their preference for these two suggestion sources, yielding
17 responses. Participants (9 of the 17) generally prefer suggestions
of Stack Overflow posts since “Stack Overflow is the main place
where you can find answers as a developer” (A11). More nuanced
responses received in the interviews revealed that Stack Overflow
questions are often easier to generalize and adapt to one’s own
problem, while Discord is preferred for problems that are very
specific and requiremore context: “Generally, Stack Overflow has
the advantage that it has better responses and that they usually are
more generic.” (R02). “[…] often on Discord, the question is […] very
context specific” (R05). In addition, participants emphasized that
Discord conversations often consist of a more detailed description
of the context, helping to better understand and troubleshoot the
problem and that it is especially useful to receive these suggestions
because this knowledge is inaccessible via search engines: “Discord
threads hold unique value in that […] the problem could be similar,
and you can read through the thought process of the people trying to
help and them trying to figure [the problem] out. You have a history
to read, which is useful for problems that are hard.” (A18). For 5 of
the 17 participants, the source for the suggestions does not matter
as long as they help them solve their problem: “I don’t care where
the links go as long as they are clean sites (not filled with ads) and
have the information I’m seeking.” (A41). Further work is required
to study how well these opinions generalize to other developers.

RQ2b: Suggesting Stack Overflow posts was generally more often
considered helpful (63%) than Discord conversations (37%). Help-
fulness varies between communities and depends on how well the
problem can be generalized vs. how much context is required.

Discord as “Last Resort” for Finding a Solution. Of the 35
participants who answered the survey question on the steps they
usually take to resolve their problems, no participant mentioned
using Discord first. Instead, the majority reported first employing
a search engine to find existing information (27×), or trying to find
a solution using a generative AI such as ChatGPT (8×). The web
searches usually directed participants to reading documentation
(16×), checking Q&A forums (10×), checking GitHub for related
issue reports (5×), sifting through source code (3×), or checking
other websites such as blogs (2×). Only after unsuccessfully comb-
ing through existing information online participants considered
asking a question, either directed at another person (4×) or online
on Discord (20×). The main reasons for choosing Discord to ask are
the very fast response times (8×) and the ability to communicate
back and forth with the responder in case of follow-up questions
(3×): “On Discord, you can have fast, direct talking with people instead
of creating a new post and waiting for [a] long time before having
someone to answer.” (A01)

Another reason for choosing to post questions to Discord rather
than Stack Overflow was mentioned by 13 participants who de-
scribed Discord communities to have a very constructive and
helpful atmosphere, while Stack Overflow was described to pose
a greater barrier due to the rules, the risk of being down-voted and
the need to provide all the required context at the time of posting
the initial question: “Ease of use, no downvote, less trollings, [and]
less people trying to get points for their future job.” (A21).

Participants further commented on their strategies when they
do not receive answers from Discord or when the answers do not
resolve their problem. Out of 27 participants, 12 emphasized that
Discord is usually their last chance for solving their problem
before they move on (6×) or try to find a workaround (7×): “Discord
is kind of my last resort.” (A08), “If I resort to asking on Discord,
it usually means that I’ve exhausted all my options.” (A18). Other
participants stated reformulating their search queries to search
again (12×) or posting their unresolved question to another Discord
community or a Q&A platform like Stack Overflow or Reddit (6×):
“Asking on Stack Overflow and Quora after that. Should neither of
those yield results finding a workaround.” (A03).

Providing Adequate Context when Searching. As previously
noted, participants often fall back to posting a new question when
they are unable to find a resolution to their problem from exist-
ing information. As the main reason for unsuccessful searches, 15
of 25 participants mentioned difficulties in crafting effective
search queries that match their problem’s context. Partici-
pants described that they either lacked the necessary knowledge
to write effective queries using the correct keywords (6×) or that
it was difficult to summarize their problem within a limited and
brief query (6×): “[I am having] difficulty to summarize my problem
for a search engine, it is [easier] to ask humans, where I can share
code samples.” (A25). As a result, participants reported that their
unsuccessful searches led to information that was either unrelated
to their problem (4×) or on topic but with inadequate context, such
as being too specific, too vague, outdated, or incorrect (11×): “The
most common case that my question was not answered is because the
situation is too specific or because the answer is too old, compared to
the versions I’m using.” (A09).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Alexander Lill, André N. Meyer, and Thomas Fritz

Presenting Suggestions to Users. In the survey, participants
further elaborated on the ideal form of receiving suggestions, as
well as how they should integrate with their existing workflows
as askers and responders. In terms of visualizing the information
necessary to decide whether to click a suggested link, 21 of the
45 participants who answered the survey question requested a
question summary, as well as either a summary of all answers (17×)
or the accepted answer in case a suggestion is pointing to a Stack
Overflow post (8×). In addition, 14 participants requested to see
relevant code snippets from the suggested conversations/posts.

To integrate link suggestions into their workflow, 37 of the 50
answering participants asked for the suggestions to be visible to
everyone in the conversation. Not limiting the visibility just to the
question asker benefits responders who can then consider these
suggestions before providing their answer (7×) and who can bet-
ter gauge which solutions the question asker might have already
considered (4×). It further allows future readers to benefit from
the same suggestions to discover solutions to their own problems
(27×). In contrast, 10 of the 50 participants stated that they want
the suggestions to be visible only to themselves and before posting
their question, as this could help to reduce the number of similar
questions asked (5×): “I think showing suggestions beforehand can
help people quickly solve common issues without having to wait for
responses or even submit their questions in the first place.” (A18).

6 DISCUSSION
Helpfulness of Suggestions. Based on 142 collected ratings,

our results show that participants considered around 40% of the
suggestions as helpful. The suggestions thereby either directly an-
swered their question, and thus, reduced the time to find an answer,
or pointed them towards additional relevant information. When
discussing the helpfulness of our suggestions, moderators hinted
that the actual number of helpful suggestions could be higher since
participants might have rated questions as “not helpful” in case the
answers were difficult to understand or map to the problem: “The
[asker] did not display enough familiarity with coding to understand
the problem via indirection. The [suggested] Stack Overflow link only
makes sense if you are able to translate the [asker]’s convoluted prob-
lem into your own domain, which at the level the [asker] seemed to
operate on seemed not very likely.” (R08).

The helpfulness of a suggestion further depends on the partic-
ular Discord community (Section 5.4) and dataset size. A Pearson
correlation analysis showed a significant (p<0.0005) correlation of
0.95 between the percentage of helpful suggestions and the dataset
size (see Table 2). One exception was the Vuetify community, where
suggestions of previous Stack Overflow (SO) posts performed worse
than expected, given the dataset size. A manual analysis showed
that in this community, responses often referred to another ma-
jor release of Vuetify that was no longer relevant. Previous work
showed that outdated code snippets and responses are important
issues for developers [63, 68]. While SO is currently evaluating
ways to mark outdated solutions to counter the issue [7], this prob-
lem is not specific to SO but to all content in online communities.
Future work could investigate how communities can better convey
and persist context and thus more easily mark questions that are
embedded in a different or outdated context.

While related work has suggested several approaches to answer
questions on SO by recommending previous SO posts or to im-
prove the way the SO posts are presented, little is known about
the helpfulness of these approaches in the field, how they apply
to questions in chat communities, and how SO posts compare to
previous conversations in the chat communities. Also, while we try
to examine a more general-purpose approach, several of the related
approaches have been trained and fine-tuned for specific types of
questions, such as Java API questions [60] or how-to-questions with
code snippets [26], making a comparison of the helpfulness difficult.
One of the closest related works is by Murgia et al., which evaluated
an approach for answering the 50 most common Git error messages
on SO using SO’s existing recommendation feature. A preliminary
field study resulted in positive feedback for 19 out of 29 (66%) evalu-
ated cases, 5 of which were answers accepted by users and 14 were
upvoted [45]. Yet, while the approach by Murgia et al. achieved
a higher score of ‘helpfulness’, it was limited to a specific set of
questions, compared to the evaluation in which we applied our ap-
proach to the questions that were asked in the Discord communities
during the 7-week experiment. Overall, our results indicate that
there is potential and value in a more general-purpose approach
that recommends prior conversations and/or SO posts to answer
questions in chat communities. At the same time, the results show
that aspects such as the way the answer is presented (e.g., SO post
vs. Discord conversation), the topics discussed in the community,
and the details required in the answer affect the helpfulness.

Providing Question Context. While developers usually first
rely on existing information to find answers to their questions,
many eventually turn to Discord as their last resort for resolving
their problems. Discord is preferred for specific problems requiring
more context, as it allows fast follow-up questions to provide more
context until a problem is resolved. Our results indicate that many
developers struggle to formulate their problem as a question and to
generalize it appropriately while still providing enough context for
responders. These difficulties may discourage them from posting
questions to Stack Overflow, as suggested by Ford et al. [29]. Future
work could further investigate how to better support developers
in abstracting and describing their specific problem as natural lan-
guage questions while including adequate context for potential
responders. In particular, we imagine a system that could initially
and continuously support developers in formulating search queries
when they try to answer their questions. Besides capturing context
from source code inside the IDE (see e.g. [54]), it could capture the
developer’s search queries, as well as websites and communities
that were considered. In case the problem remains unresolved and
the developer turns to an online community such as Discord, the
automatically captured context could then be suggested as amend-
ments when posing a question, thus supporting the developer with
the formulation of their question.

Using Generative AI forQuestion Answering. Recently, de-
velopers started leveraging generative AI tools, such as ChatGPT
and GitHub Copilot. These, however, do not fully replace the need
to post questions in online communities, such as Discord or Stack

On the Helpfulness of Answering Developer Questions on Discord with Similar Conversations and Posts from the Past ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Overflow, nor do they solve all coding problems [36]. The con-
tinuous use of Discord, also during our experiment, shows that
developers still turn to Discord to find answers to their questions.
Several participants even mentioned using ChatGPT first to try and
find an answer to their question, yet eventually gave up and asked
their question on Discord. One reason why developers are not al-
ways successful when using generative AI to answer their questions
might again be the difficulty of crafting effective search queries,
even in natural language. Prior work on generative AI tools further
highlighted that the generated answers and code snippets are of-
ten incorrect or do not follow the programming language-specific
idioms [36, 49, 67]. Additionally, challenges in the up-to-dateness
of the training data and the necessity of re-training generative AI
tools might result in unspecific or outdated answers for emerging
and fast-changing technologies [36]. A semantic-search approach
like the one proposed in this paper, one that only requires indexing
new content rather than re-training, could be combined with a
generative AI approach to overcome some of these challenges and
ensure up-to-date and correct answers.

Limitations. The participating Discord communities might not
be representative of all software-development-related Discord com-
munities due to eligibility criteria and communities’ willingness to
participate. The resulting four communities focus on two program-
ming languages and different web frameworks and are of varying
sizes of 21,000 to 210,000 members. In addition, our participation
criteria explicitly excluded minors. However, messages we received
from developers who were willing to participate in the survey but
could not due to their age suggest that minors are participating
in these conversations. Although the feedback on helpful and not
helpful suggestions was equally distributed (see Figure 2), there
may be a self-selection bias towards taking the feedback survey
only when the question was answered since developers otherwise
might have wanted to continue finding a solution instead.

7 CONCLUSION
Developers frequently rely on receiving answers to their coding
questions by means of chat communities such as Discord, when-
ever their searches through available online documentation and
Q&A forums are unsuccessful. One way to help save time and ef-
fort to resolve those questions is to suggest links to previously
asked similar questions. To better understand the feasibility of
suggesting previous Discord conversations, we conducted an em-
pirical analysis that showed that similar questions occur frequently,
with between 44% to 74% of all analyzed questions being similar
to at least one other question. We then developed an approach to
retrieve similar questions automatically and evaluated it both in
isolation, using a manually labeled dataset, and in the field by con-
ducting an experiment. In the experiment, we collected 142 ratings
on the helpfulness of suggestions for answering 277 real-world
questions posted by developers in four Discord communities. By
alternating between suggestions from previous Discord conver-
sations and Stack Overflow posts, we found that Stack Overflow
suggestions were generally considered more helpful. Overall, 40%
of the suggestions were deemed helpful, and helpfulness varied
across communities and dataset sizes. Participants’ qualitative feed-
back also highlighted developers’ challenges in finding answers to

their questions from existing information, voicing difficulties with
crafting search queries that capture their problem in an abstract
way that still encapsulates the necessary context. Future work is
needed to better support developers with composing web search
queries as well as formulating questions that adequately capture
the problem and required context, such as software versions.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers and
Reid Holmes for their insightful comments. We further thank the
study participants for their time and feedback and the community
admins and moderators for allowing us to evaluate our suggestions
in their communities. This work was supported by funding from
the SNF TaskFlow grant (200021_207916).

REFERENCES
[1] 2023. Discord API Reference. (March 2023). https://discord.com/developers/

docs/reference
[2] 2023. Discord Communities categorized as Educational with keyword Coding.

(March 2023). https://discord.com/servers/education?query=coding
[3] 2023. Exploring Transfer Learning with T5. (March 2023). https://ai.googleblog.

com/2020/02/exploring-transfer-learning-with-t5.html
[4] 2023. Forum Channels: A Space for Organized Conversations - Discord Blog.

(March 2023). https://discord.com/blog/forum-channels-space-for-organized-
conversation

[5] 2023. GPT2 GitHub Repository. (March 2023). https://github.com/openai/gpt-2
[6] 2023. Introducing ChatGPT - OpenAI Blog. (March 2023). https://openai.com/

blog/chatgpt
[7] 2023. Introducing Outdated Answers project - Stack Overflow Meta. (March

2023). https://meta.stackoverflow.com/questions/405302/introducing-outdated-
answers-project

[8] 2023. Model for generating headlines. (March 2023). https://huggingface.co/
Michau/t5-base-en-generate-headline

[9] 2023. multi-qa-MiniLM-L6-cos-v1 model. (March 2023). https://huggingface.co/
sentence-transformers/multi-qa-MiniLM-L6-cos-v1

[10] 2023. multi-qa-mpnet-base-cos-v1 model. (March 2023). https://huggingface.co/
sentence-transformers/multi-qa-mpnet-base-cos-v1

[11] 2023. Official StackExchange Archives. (March 2023). https://archive.org/
download/stackexchange

[12] 2023. Pre-trained SentenceBERT models. (March 2023). https://www.sbert.net/
docs/pretrained_models.html#sentence-embedding-models

[13] 2023. Publicly maintained list of Discord SE Communities. (March 2023). https:
//github.com/mhxion/awesome-discord-communities

[14] 2023. Stack Overflow Badges Overview. https://stackoverflow.com/help/badges
[15] 2023. Stack Overflow Developer Survey 2023. https://survey.stackoverflow.co/

2023/
[16] Muhammad Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K. Roy, and

Kevin A. Schneider. 2016. Mining duplicate questions in stack overflow. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR ’16). Association for Computing Machinery, New York, NY, USA, 402–412.
https://doi.org/10.1145/2901739.2901770

[17] Miltiadis Allamanis and Charles Sutton. 2013. Why, when, and what: Analyzing
Stack Overflow questions by topic, type, and code. In 2013 10th Working Confer-
ence on Mining Software Repositories (MSR). 53–56. https://doi.org/10.1109/MSR.
2013.6624004

[18] Piyush Arora, Debasis Ganguly, and Gareth J.F.Jones. 2015. The Good, the Bad
and their Kins: Identifying Questions with Negative Scores in StackOverflow. In
2012 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining. IEEE, Istanbul, Turkey.

[19] Anton Barua, StephenW.Thomas, and Ahmed E. Hassan. 2014. What are develop-
ers talking about? An analysis of topics and trends in Stack Overflow. Empirical
Software Engineering 19, 3 (June 2014), 619–654. https://doi.org/10.1007/s10664-
012-9231-y

[20] Virginia Braun and Victoria Clarke. 2006. UsingThematic Analysis in Psychology.
Qualitative research in psychology 3 (01 2006), 77–101.

[21] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2018. How to ask for tech-
nical help? Evidence-based guidelines for writing questions on Stack Overflow.
Information and Software Technology 94, C (Feb. 2018), 186–207.

[22] Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and
Nicholas A. Kraft. 2019. Exploratory Study of Slack Q&A Chats as a Mining
Source for Software Engineering Tools. In 2019 IEEE/ACM 16th International

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Alexander Lill, André N. Meyer, and Thomas Fritz

Conference on Mining Software Repositories (MSR). IEEE, Montreal, QC, Canada,
490–501. https://doi.org/10.1109/MSR.2019.00075

[23] Denzil Correa and Ashish Sureka. 2014. Chaff from the wheat: characterization
and modeling of deleted questions on stack overflow. In Proceedings of the 23rd
international conference on World wide web. ACM, Seoul Korea, 631–642. https:
//doi.org/10.1145/2566486.2568036

[24] Peter Devine and Kelly Blincoe. 2022. Unsupervised extreme multi label classifi-
cation of stack overflow posts. In 2022 IEEE/ACM 1st International Workshop on
Natural Language-Based Software Engineering (NLBSE). IEEE, 1–8.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[26] Liliane do Nascimento Vale and Marcelo de Almeida Maia. 2021. Towards a
question answering assistant for software development using a transformer-
based language model. In 2021 IEEE/ACM Third International Workshop on Bots in
Software Engineering (BotSE). 39–42. https://doi.org/10.1109/BotSE52550.2021.
00016

[27] Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou. 2021. An
Empirical Study of Developer Discussions in the Gitter Platform. ACM Trans-
actions on Software Engineering and Methodology 30, 1 (Jan. 2021), 1–39. https:
//doi.org/10.1145/3412378

[28] Mathias Ellmann. 2019. Same-same but different: on understanding duplicates in
stack overflow. Informatik Spektrum 42, 4 (2019), 266–286.

[29] Denae Ford, Kristina Lustig, Jeremy Banks, and Chris Parnin. 2018. ”We Don’t
Do That Here”: How Collaborative Editing with Mentors Improves Engagement in
Social Q&A Communities. https://doi.org/10.1145/3173574.3174182 Pages: 12.

[30] Zhipeng Gao, Xin Xia, David Lo, and John Grundy. 2021. Technical Q&A Site
Answer Recommendation via Question Boosting. ACM Transactions on Software
Engineering and Methodology 30, 1 (Jan. 2021), 1–34. https://doi.org/10.1145/
3412845

[31] Gregor Geigle, Jonas Pfeiffer, Nils Reimers, Ivan Vulić, and Iryna Gurevych. 2022.
Retrieve fast, rerank smart: Cooperative and joint approaches for improved cross-
modal retrieval. Transactions of the Association for Computational Linguistics 10
(2022), 503–521.

[32] Márcio Gonçalves, Cleidson Souza, and Victor Gonzalez. 2011. Collaboration,
Information Seeking and Communication: An Observational Study of Software
Developers’ Work Practices. J. UCS 17 (Jan. 2011), 1913–1930.

[33] Thi-Thanh Ha, Van-Nha Nguyen, Kiem-Hieu Nguyen, Kim-Anh Nguyen, and
Quang-Khoat Than. 2021. Utilizing SBERT For Finding Similar Questions in
Community Question Answering. In 2021 13th International Conference on Knowl-
edge and Systems Engineering (KSE). 1–6. https://doi.org/10.1109/KSE53942.2021.
9648830 ISSN: 2694-4804.

[34] Morten Hertzum and Annelise Pejtersen. 2000. The information-seeking practices
of engineers: searching for documents as well as for people. Information Processing
& Management 36 (Sept. 2000), 761–778. https://doi.org/10.1016/S0306-4573(00)
00011-X

[35] Andre Hora. 2021. Googling for Software Development: What Developers Search
For and What They Find. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). IEEE, Madrid, Spain, 317–328. https://doi.
org/10.1109/MSR52588.2021.00044

[36] Samia Kabir, David N Udo-Imeh, Bonan Kou, and Tianyi Zhang. 2023. Who An-
swers It Better? An In-Depth Analysis of ChatGPT and Stack Overflow Answers
to Software Engineering Questions. arXiv preprint arXiv:2308.02312 (2023).

[37] Arthur Kamienski, Abram Hindle, and Cor-Paul Bezemer. 2022. Analyzing
Techniques for Duplicate Question Detection on Q&A Websites for Game
Developers. Empirical Software Engineering 28, 1 (Dec. 2022), 17. https:
//doi.org/10.1007/s10664-022-10256-w

[38] Dehami Deshan Koswatte and Saman Hettiarachchi. 2021. Optimized Dupli-
cate Question Detection in Programming Community Q amp;A Platforms using
Semantic Hashing. In 2021 10th International Conference on Information and Au-
tomation for Sustainability (ICIAfS). 375–380. https://doi.org/10.1109/ICIAfS52090.
2021.9606030 ISSN: 2151-1810.

[39] Annie Li, Madeline Endres, and Westley Weimer. 2022. Debugging with Stack
Overflow: Web Search Behavior in Novice and Expert Programmers. In 2022
IEEE/ACM 44th International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). IEEE, Pittsburgh, PA, USA, 69–81.
https://doi.org/10.1109/ICSE-SEET55299.2022.9794240

[40] Jing Li, Aixin Sun, and Zhenchang Xing. 2018. Learning to answer programming
questions with software documentation through social context embedding. In-
formation Sciences 448-449 (June 2018), 36–52. https://doi.org/10.1016/j.ins.2018.
03.014

[41] Alexander Lill, André N. Meyer, and Thomas Fritz. 2023. Replication Package
for “On the Helpfulness of Answering Developer Questions on Discord with Similar
Conversations and Posts from the Past”. https://doi.org/10.5281/zenodo.8341017

[42] Jiakun Liu, Sebastian Baltes, Christoph Treude, David Lo, Yun Zhang, and Xin
Xia. 2021. Characterizing search activities on stack overflow. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2021).

Association for Computing Machinery, New York, NY, USA, 919–931. https:
//doi.org/10.1145/3468264.3468582

[43] André N Meyer, Laura E Barton, Gail C Murphy, Thomas Zimmermann, and
Thomas Fritz. 2017. Thework life of developers: Activities, switches and perceived
productivity. IEEE Transactions on Software Engineering 43, 12 (2017), 1178–1193.

[44] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. 2022.
MTEB: Massive Text Embedding Benchmark. http://arxiv.org/abs/2210.07316
arXiv:2210.07316 [cs].

[45] Alessandro Murgia, Daan Janssens, Serge Demeyer, and Bogdan Vasilescu.
2016. Among the Machines: Human-Bot Interaction on Social Q&A Web-
sites. In Proceedings of the 2016 CHI Conference Extended Abstracts on Hu-
man Factors in Computing Systems. ACM, San Jose California USA, 1272–1279.
https://doi.org/10.1145/2851581.2892311

[46] Nicole Novielli, Fabio Calefato, Federico De Laurentiis, Luigi Minervini, and
Filippo Lanubile. 2021. A Virtual Mentor to Support Question-Writing on Stack
Overflow. In 2021 IEEE/ACM 13th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE). 125–126. https://doi.org/10.
1109/CHASE52884.2021.00027 ISSN: 2574-1837.

[47] Shengyi Pan, Lingfeng Bao, Xiaoxue Ren, Xin Xia, David Lo, and Shanping Li.
2021. Automating Developer Chat Mining. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 854–866. https://doi.org/
10.1109/ASE51524.2021.9678923 ISSN: 2643-1572.

[48] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, and Michele Lanza. 2014.
Understanding and Classifying the Quality of Technical Forum Questions. In
2014 14th International Conference on Quality Software. 343–352. https://doi.org/
10.1109/QSIC.2014.27 ISSN: 2332-662X.

[49] Rohith Pudari andNeil A Ernst. 2023. FromCopilot to Pilot: Towards AI Supported
Software Development. arXiv preprint arXiv:2303.04142 (2023).

[50] Marco Raglianti, Csaba Nagy, Roberto Minelli, and Michele Lanza. 2022. Dis-
cOrDance: Visualizing Software Developers Communities on Discord. In 2022
IEEE International Conference on Software Maintenance and Evolution (ICSME).
474–478. https://doi.org/10.1109/ICSME55016.2022.00062 ISSN: 2576-3148.

[51] Marco Raglianti, Csaba Nagy, Roberto Minelli, and Michele Lanza. 2022. Using
Discord Conversations as Program Comprehension Aid. (2022), 5.

[52] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 3982–3992. https://doi.org/10.18653/v1/D19-1410

[53] Ricardo Romero, Esteban Parra, and Sonia Haiduc. 2020. Experiences Building an
Answer Bot for Gitter. In Proceedings of the IEEE/ACM 42nd International Confer-
ence on Software Engineering Workshops. Association for Computing Machinery,
New York, NY, USA, 66–70. https://doi.org/10.1145/3387940.3391505

[54] Steven I Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large LanguageModel for Software Development. arXiv preprint arXiv:2302.07080
(2023).

[55] Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing
Wang. 2021. A first look at developers’ live chat on Gitter. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, Athens Greece,
391–403. https://doi.org/10.1145/3468264.3468562

[56] Lin Shi, Ziyou Jiang, Ye Yang, Xiao Chen, Yumin Zhang, Fangwen Mu, Hanzhi
Jiang, and Qing Wang. 2021. ISPY: Automatic Issue-Solution Pair Extraction
from Community Live Chats. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 142–154. https://doi.org/10.1109/
ASE51524.2021.9678894 ISSN: 2643-1572.

[57] Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. 2009. Studying the use
of developer IRC meetings in open source projects. In 2009 IEEE International
Conference on Software Maintenance. 147–156. https://doi.org/10.1109/ICSM.2009.
5306333 ISSN: 1063-6773.

[58] Keerthana Muthu Subash, Lakshmi Prasanna Kumar, Sri Lakshmi Vadlamani,
Preetha Chatterjee, and Olga Baysal. 2022. DISCO: A Dataset of Discord Chat
Conversations for Software Engineering Research. MSR 2022 (2022), 5.

[59] Emillie Thiselton and Christoph Treude. 2019. Enhancing Python Compiler Error
Messages via Stack. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 1–12. https://doi.org/10.1109/
ESEM.2019.8870155

[60] Yuan Tian, Ferdian Thung, Abhishek Sharma, and David Lo. 2017. APIBot: ques-
tion answering bot for API documentation. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2017). IEEE
Press, Urbana-Champaign, IL, USA, 153–158.

[61] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How Do
Programmers Ask and Answer Questions on the Web?. In Proceedings of the 33rd
International Conference on Software Engineering (Waikiki, Honolulu, HI, USA)
(ICSE ’11). Association for Computing Machinery, New York, NY, USA, 804–807.
https://doi.org/10.1145/1985793.1985907

On the Helpfulness of Answering Developer Questions on Discord with Similar Conversations and Posts from the Past ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[62] Liting Wang, Li Zhang, and Jing Jiang. 2020. Duplicate Question Detection
With Deep Learning in Stack Overflow. IEEE Access 8 (2020), 25964–25975.
https://doi.org/10.1109/ACCESS.2020.2968391 Conference Name: IEEE Access.

[63] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. How do
developers utilize source code from stack overflow? Empirical Software Engineer-
ing 24 (2019), 637–673.

[64] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical
Software Engineering 22, 6 (Dec. 2017), 3149–3185. https://doi.org/10.1007/s10664-
017-9514-4

[65] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Automated
generation of answer summary to developers’ technical questions. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, Urbana, IL, 706–716. https://doi.org/10.1109/ASE.2017.8115681

[66] Zhou Yang, Chenyu Wang, Jieke Shi, Thong Hoang, Pavneet Kochhar, Qinghua
Lu, Zhenchang Xing, and David Lo. 2023. What Do Users Ask in Open-
Source AI Repositories? An Empirical Study of GitHub Issues. arXiv preprint
arXiv:2303.09795 (2023).

[67] Ming-Ho Yee and Arjun Guha. 2023. Do Machine Learning Models Produce
TypeScript Types that Type Check? arXiv preprint arXiv:2302.12163 (2023).

[68] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, Ying Zou, and Ahmed E
Hassan. 2019. An empirical study of obsolete answers on stack overflow. IEEE
Transactions on Software Engineering 47, 4 (2019), 850–862.

[69] Yun Zhang, David Lo, Xin Xia, and Jian-Ling Sun. 2015. Multi-factor duplicate
question detection in stack overflow. Journal of Computer Science and Technology
30 (2015), 981–997.

