
Example-based generation
of custom data analysis appliances

Mark Derthick
Carnegie Mellon University

Human Computer Interaction Institute
Pittsburgh, PA 15213 USA

xmad@cs.cmu.edux

Steven F. Roth
Carnegie Mellon University

Robotics Institute
Pittsburgh, PA 15213 USA

roxth@cs.cmu.edu

ABSTRACT
Custom interfaces, which we call appliances, allow users
to efficiently carry out specialized tasks. Without one, a
user is often required to perform repetitive mechanical
steps using general purpose interfaces, which we call tools.
Much research has attempted to enable non-programmers
to create appliances for themselves.

We present a system in which a user can choose an
example of the task behavior to be automated from a
visualization of his past operations. The example is
transformed into a visual language, using two simple rules
to generalize from the single example to a class of tasks.
The user can then edit this representation directly, or
continue to refine the example using selective undo and
redo. The visual representation can be transformed into an
esthetically pleasing appliance by deleting irrelevant
components, and rearranging, resizing, and relabeling other
components. Restricting the domain to data analysis tasks
enables a well-matched visual query language to be used.
Appliance interactions are automatically provided by the
underlying interactive visualization system in which the
appliance is embedded.

An observational study suggests that this system represents
a useful point on the ease-of-use vs. expressive power
tradeoff appropriate for data analysis, and that the ability to
choose and modify examples after the fact is helpful.

Keywords
Programming with Examples, GUI Builder, Visual Query
Language.

INTRODUCTION
A study of presentation slide creation showed that the
tradeoff between task-specific and generic application
software is complex. The authors conclude that providing
collections of interoperable tools and appliances may offer
the most efficiency and flexibility [1].

Access to custom applications does not require every end
user to create appliances. Spreadsheets are a good
example of how local experts can create custom models

used by a community that shares similar domains and tasks
[3]. One reason that non-programmers can create
spreadsheet models is that the domain is limited to data
manipulation, and models are directly tied to a simple
visual representation. Our system similarly capitalizes on
domain specificity.

Programming by demonstration (PBD) is an approach to
creating custom interfaces without requiring programming
expertise. A user tells the system when he is beginning to
demonstrate a desired behavior, and when he has finished
the demonstration. The computer then attempts to
generalize the behavior so that it applies to the whole class
of tasks the user may perform in the future. Usually
multiple demonstrations are required to clarify which
aspects of the behavior are fixed, which should be
parameterized, and the degree of generality of the
parameterization. In practice, finding a set of examples
that spans the task space requires sophisticated abstract
reasoning on the user’s part, and can be quite frustrating.
As a result, programming by demonstration has not yet
been widely successful. The broader class of attempts to
generate interfaces automatically using heuristics has
suffered from a similar unpredictability. The relationship
between the specification and the final result can be hard to
understand and control [4].

We present an alternate approach, in which a single
example is transformed into a declarative visual
representation of the structural relations among its
operations. This structure is intended to be more
comprehensive than the user’s task requires, so editing it
consists of deleting unneeded components. This explicit
editing takes the place of heuristics. We believe that non-
programmers can do this deleting, even if they cannot
construct such a representation. As with spreadsheets, we
rely on the fact that the domain of interest (data
manipulation and visualization) is quite limited to provide
a reasonably simple visual query language representation.

The next section presents an example exploration scenario
that a user would like to automate. Sections 3 and 5
describe the visual query language and the appliance
editing process. Section 4 presents the algorithm for
inferring the query. Section 6 discusses the results of an
informal user evaluation. Related work is discussed last.

Proceedings of Intelligent User Interfaces (IUI '01), Santa Fe, NM, January, 2001, pp. 57-64.

EXAMPLE ANALYSIS SCENARIO
Our system is built on top of the Visage data exploration
and visualization system, developed by Maya Design
Group and Carnegie Mellon University [5]. The following
example was used in the video accompanying our IUI’00
paper (http://www.cs.cmu.edu/~sage/animations/IUI.rm).
That paper examined how reified representations of user
actions supported browsing, comparison of multiple
scenarios, and selective undo and redo [6]. This paper
shows that the same representations can be used as input to
a system that generates custom interfaces.

The user is a transportation analyst whose job is to ensure
adequate supplies to each brigade of an Army corps. He
must evaluate the amount of supplies needed and access to
supply routes. For readers unfamiliar with military
terminology, the point of the example is that a sequence of
operations is performed, and that a causal ordering is
imposed when the output of earlier operations serves as the
input for later operations.

In Figure 1, the analyst has created three visualizations
using the expert system SAGE and its sketch-based user
interface, SageBrush [7]. He then Drags a graphical
representation of the corps to the echelon chart on the left1.

From the corps unit, he Navigates down the
subord_unit relation to find two divisions, and in turn
Navigates from the 53rd division to its six brigades. Each
of these actions adds an event to the timeline interface
(wide bottom rectangle). He Selects only the brigades,

1 High resolution color figures are available at, e.g.,

http://www.cs.cmu.edu/~sage/papers/IUI01/Fig1.GIF.

using a bounding box to paint them green.2 Note that the
bounding box extends above and below the y-axis. The
event is therefore heuristically annotated with the inferred
intention of selecting any unit that is a brigade.

A copy of the brigades is Dragged to a bar chart showing
their total_supply_weight. Those with high needs
are Selected, this time in orange. Again the bounding box
extends above and below the y-axis, as well as to the right
of the x-axis, and Visage infers an intention to select any
unit whose total_supply_weight exceeds 690 tons.
Copies of the two high supply-need units are Dragged to a
map, where units far from ports or highways would then be
examined in more detail.

Each time the operational plans change, the transportation
analyst must repeat this task. The next section discusses
the visual representation used to generalize the data
manipulation effected by the seven operations in Figure 1.

VISUAL QUERY ENVIRONMENT REPRESENTATION
VQE combines the expressive power of database query
languages with the interactivity of direct manipulation data
visualization systems [8]. It was originally designed as a
visual interface for constructing queries manually. It uses
the familiar node-link diagram to express database joins,
which correspond to Navigate operations in Visage. It
uses Dynamic Query [9] sliders and bars to represent
database range and equality restrictions. These correspond
to Selection of graphical objects (which we call
graphemes) individually or with bounding boxes in Visage.

2 Visage uses a form of selection called “brushing” [2],

which allows coordination across visualizations. The two
orange units in the echelon chart were green until the
selection in the bar chart changed them.

Figure 1 The timeline of user operations is shown at bottom. Arrows were added in Photoshop to link each operation to its
result set on the three visualizations above. The timeline represents a span of about a minute.

In normal usage, a user would select all the operations in
the timeline of Figure 1 and drag them to a VQE as a
group. For expository purposes, we illustrate the
cumulative effect on the query of dragging each of the
operations into VQE in chronological order. Figure 2
shows their full names.

Figure 3 shows the VQE state after the Army corps has
been Dragged into the echelon chart. The single node
query graph (upper enclosed rectangle) shows that the
query involves a single Army unit. The generalization
algorithm does not know why this unit was chosen for
dragging, so picks it out from other candidates using the
default attribute description, requiring it to have the
value ARMY. VQE also shows all the visualizations in
which this set of units was manipulated. Here the corps
unit only appears in the echelon chart. Visualizations
stacked below a query node show the data objects in that
node.

Figure 4 shows the state after the first Navigate operation,
from the corps unit to its two divisions. The query graph
now consists of two nodes linked by the subord_unit
relation. Each of the nodes represents a set of units, but
the ones on the right are subordinates of the ones on the
left. The divisions also appear only in the echelon chart.
Note that there are two copies of the echelon chart, one for
each set of units.

Figure 5 shows the state after the second Navigate
operation. Since VQE does not know why the 53rd
Division was chosen as the source of the navigation, it adds
a description DQ widget with only the 53rd selected.
The query node header now expresses that only one of its
two UNITs satisfies the current query constraints. As a
result, its 6 brigades are visible, while the 7 brigades of the
22nd Division are invisible.

Figure 6 shows part of VQE after Dragging the 6 visible
brigades to the bar chart, and Selecting those with high
total_supply_weight. Only two units satisfy the
conjunction of the two DQ constraints, and are visible in
both the echelon chart and the
total_supply_weight chart. The top DQ
represents the [vacuous for this dataset] constraint that
echelon = Brigade. The bottom DQ represents the
range restriction that total_supply_weight > 690
Short Tons.

Figure 7 shows the result of Dragging the two visible units
to the map. The only change is the additional visualization.

Now the analyst cleans up VQE to make a user-friendly
appliance. Figure 8 shows the state when he is almost
done. He has dragged the total_supply_weight

Figure 3 VQE after the first Drag operation.

Figure 2 Full names of the operations in Figure 1.

Figure 5 VQE after the second Navigate operation.

Figure 4 VQE after the first Navigate operation.

slider out of its query node onto the appliance background.
He dragged the two description DQ widgets to the
trash, because he does not want to limit the corps or
divisions that can be examined. He leaves the echelon
widget inside its query node when he iconizes all the query
nodes, because the end user will never need to change this
value. He has edited the text describing the DQ slider, and
the appliance as a whole (see Figure 11 for legible text).
He has opened the tool drawer (gray column on left),
which contains all the controls necessary to construct
queries manually. Next he will uncheck the box indicating

whether iconized nested frames should be visible. Then he
will close the drawer and resize the window. The
appliance is then ready for use. The analyst can change the
corps he is checking by dragging into and out of the
echelon chart. He can see the supply needs of each brigade
by adjusting the slider until it becomes visible. The
appliance works in coordination with other Visage tools
and appliances through drag and drop and brushing.

Because the program representation is based on declarative
queries, the order of operations is not restricted to that of
the example. For instance, by dropping a single brigade on
the map, VQE will look up its division and corps, and in
turn all their subordinate brigades, filter them, and display
all the problem brigades on the map.

QUERY CONSTRUCTION ALGORITHM
Query construction is algorithmic. While using bounding
box bounds to “infer” range restrictions may be considered
a heuristic, we prefer to consider it an extension to the
semantics of the selection operation. We expect users to
consciously take advantage of it in performing operations.
Similarly, part of the semantics of other operations is that
objects that are operated on together are expected to play
the same role in the appliance. They constitute the query
nodes in the construction interface. Their relations to other
nodes and their DQ settings define their meaning. By this
rule, the brigade query node aggregate contains all 13
brigades of both divisions, even though only one division
was involved in the example. The explicit choice of the
53rd division is separately represented with DQ. These two
semantic extensions constitute the only built-in
generalization of examples.

The query graph is the central organizing feature of both
the construction algorithm and its user interface. The
query graph is displayed linearly, chronologically ordered
by the first operation performed on each node’s aggregate.
Visualizations that served as a source or destination of any
operation on this aggregate are stacked below the
corresponding aggregate node.

When a new operation is dropped in VQE, it is first
recursively expanded into all its lowest-level subevents.

Figure 6 The third column of VQE after the second Select
operation.

Figure 7 VQE after the final Drag operation.

Figure 8 Partial layout customization.

Those that are one of the three basic operations (Select,
Navigate, Drag) are then processed individually.

First, the operation’s origin and/or destination aggregates
are determined. Select and Drag have only a destination
aggregate; Navigate operations have both. If no match
exists in the query graph, a new node is added. If the
operation is a Navigate, the origin and destination nodes
are linked by the relation navigated across.

Determining whether an operation’s aggregate matches
that of an existing node requires examination of Visage’s
internal representations that are not normally seen by
users. In addition to graphemes denoting domain objects,
they are also denoted by data objects called
“implementation objects.” An operation’s aggregate is
declared to match that of a query node if there is an
intersection of the implementation objects each maintains.
Requiring only intersection rather than equality allows the
destination of the first navigation operation in our example
to match the origin of the second, even though the latter
uses only one of the two divisions to navigate from.
Requiring intersection of implementation object rather than
domain objects ensures that the aggregates share the same

role in the chain of user operations.

If the operation is a Select, Dynamic Queries are then
added for the appropriate attribute(s). Finally any
visualizations containing the origin or destination
graphemes are added below the respective query nodes,
unless already present.

MODIFYING THE INTERFACE
Imagine that our analyst is assigned to support a particular
operation plan involving an ad hoc group of army units
(called a Force Module). He would like to continue
analyzing one corps at a time, but would like to select it
from a list of units currently in the force module. Second,
his task is to take care of the logistical needs of only those
brigades whose mission is DEFEND.

Now his goal is to make these specific changes to the
appliance, rather than to explore additional data. Therefore
he does not bother to create custom visualizations to show
the additional attributes. He adds an Outliner to the Visage
desktop, a tool that supports navigation to objects of any
data type and display of any attribute. He copy-drags the
corps unit to the Outliner and navigates back up the
component relation to the three force modules it belongs
to. He then selects the relevant force module (Figure 9).

Dropping the new Drag and Navigate operations on the
appliance completes his first change (see Figure 10). Note
that the rule to order the query nodes chronologically has
placed the Force Module node on the right, resulting in line
crossings. A better layout choice might be the
conventional approach of minimizing line crossings.

Rather than modifying the example further, he chooses to
edit the interface representation directly. The drawer
containing the DQ and other tools has been pulled out
using the mouse. It is normally open during query
construction and closed once the application is complete.
He drops in a DQ tool from the tool drawer onto the

Figure 9 Performing additional operations to modify the
appliance. The arrow indicates dragging a copy.

Figure 10 VQE after adding additional operations.

brigade query node, chooses the mission attribute, and
activates only the value DEFEND. This action is also
reflected in Figure 10.

Finally, he lays out the appliance using normal GUI builder
operations. In Figure 11, he has dragged the
description DQ widget out of the corps query node to
the top of the appliance and relabeled it. This widget had
been deleted in Figure 8, but the new Drag operation
restored it. He has deleted the echelon chart because he
will now select the corps using DQ rather than drag and
drop. The Outliner has also been deleted. To use the
appliance, a corps is selected from the list provided by the
Dynamic Query widget. Then the DQ slider for
total_supply_weight is adjusted to pick out the
problem brigades. These can be dragged to other Visage
tools for more detailed examination.

INFORMAL EVALUATION
Our system supports open-ended user behavior involving a
combination of visualizations, direct manipulation
operations and their graphical representation, and the query
graph representation. Further, there is no other system that
we can compare with fairly, because we take advantage of
the limited domain of data exploration. Under these
conditions, focused questions answered by controlled
statistical studies of a large number of users are rarely
valuable. They often fail to generalize to an interesting
class of real-world situations, only a few variables can be
manipulated, and even statistically significant results are
often not large enough to be important [10, p 148].

Therefore we chose to perform an observational study.
Detailed studies of users working with a system can
provide valuable insight even if performed with few
subjects [10, p 136]. We watched subjects as they
performed a task, and asked them to “think aloud” as they
worked.

Two subjects were asked to construct an appliance for
performing the analyst’s task as described above, with the
additional requirement that the divisions be selectable from
a menu. Each was proficient in using Visage (and
moreover was a developer), but had never used VQE
(although Subject B was familiar with it conceptually).
Each read an introductory paragraph about the appliance
generator, and the experimenter demonstrated an example
of its use. This example involved adjusting the scheduled
arrival times of Army units based on their roles in the
operation.

The task description explained that the user must examine
groups of brigades for supply problems, indicated by
total_supply_weight and map location. There
should be one group for every division, and each division
subordinate to the user’s corps should be selectable. The
three visualizations and timeline slider in Figure 1 were
given to the subjects initially (with no data in them).

Both subjects were able to create an appliance in 15-20
minutes. Both solutions resembled cleaned up versions of
Figure 8, although the operations used to generate the
example differed significantly from those given above.
They preferred to use Visage’s Outliner (drill-down table)
to do most navigation, and for selection of discrete
attributes. Then the results were dragged to the bar chart
and map just to select the range of
total_supply_weight, and to look for the problem
units.

Due to an unclear task specification, Subject A’s appliance
required dropping divisions into the appliance, rather than
selecting from a menu. A was asked to modify his
appliance to make this possible. Subject B was asked to
address the modified task described in the previous section.
Each subject completed the modification within 5 minutes.

Each subject completed a survey of how he preferred to
use the interface, difficulty understanding and editing the
operation and VQE representations, and overall
satisfaction. Our hypothesis was that the ability to
iteratively improve the example would be an advantage
over systems that require a user to press record, execute an
example perfectly, and then press stop. This hypothesis
was generally supported. Subject B generated an almost
optimal sequence of operations on the first try. He spent
about 30 seconds examining his operations in an Outliner
and eliminated two extraneous operations, with the result
that when he dropped the remaining operations on VQE he
got exactly Figure 7, except with Outliners instead of the
echelon chart. Thus it was only when he was given the

Figure 11 Final appliance appearance.

modified task that going back and fixing the example was
an issue. He used the original Outliner to perform several
new operations, but attempted to do extra work to make
these operations connect with the old ones. Both he and
VQE became confused. He attempted to start over with a
fresh VQE and a fresh set of new operations (just the
single drag, navigation, and select this time). But data
structures had been damaged and the experiment was
halted.

Subject A generated many more operations in his example.
He was able to screen out many extraneous operations
based on their order and text description in an Outliner.
He also used the timeline interface to return to the state
before and after several operations in order to
disambiguate which reified operation stood for which real
operation. However the operations he dragged to VQE
formed a rather baroque logical progression and he was
confused by the structure displayed in VQE. He started
over with a new VQE, using the timeline slider to undo all
his actions. The second time the route was less baroque,
but still far from optimal. He repeated some operations to
get a clean set that he expected to work together, even
though they were not recorded in causal order. Except for
the fact that he did not realize the need to perform two
subord_unit navigations, the resulting structure was
correct. He easily went back to the original Outliner and
performed an additional navigation operation, which
correctly transformed the VQE structure.

Both users easily and quickly accomplished the aesthetic
cleaning by deleting unneeded visualizations, hiding query
nodes, and relabeling frames. Thus “programming by
deleting” was seen to be effective even though they did not
know how to use VQE constructively. (This process had
not been described to the subjects.)

Both users felt strongly that it was hard to associate the
reified operations with the real operations. Some
suggestions emerged: 1) The ability to step through
operations individually and choose whether each should be
part of the example. 2) An extension of brushing so that
selecting a reified operation would also color the frames
and graphemes involved in it. 3) Showing before/after
screenshot pairs of the affected areas. More research is
required in this area.

Correspondence between the VQE declarative
representation and the original operations was unclear to
the subjects at the detailed level, but that was not of
concern to them. The way that it portrayed the dynamic
operations in a declarative high level view was clear for B
and “really cool” for A, who had “never thought about the
structure of his exploration that way.”

Both users naturally went back to their original examples
in order to modify them. There was little effort required to
start with a fresh VQE, and so this was a second choice.
Starting the example over was a clear third. B said “now

that I know my operations are being recorded, it seems like
a total waste to have to do them over again.”

Both strongly agreed that this was a much better way to
generate appliances than by writing code, and felt that the
expressive power is not a major problem. They still
envision tweaking the result by writing code, for instance
substituting radio button behavior for the checkbox
behavior of the DQ bar chart widget. A said “it looks like
it’s almost ready to do real work.” The qualification refers
to the robustness of the implementation as well as the
operation-matching problem. Both strongly preferred
using this tool to repeating the operations by hand, and
both preferred it to unadorned VQE (though neither had in
fact used VQE to build anything).

After addressing the problems identified above, the system
should be tested with non-programmer Visage users.

RELATED WORK
Query by Example (QBE) [11] is a database interface
where users place variables in a visual representation of the
database schema, rather than using a textual language like
SQL. VQE is somewhat similar in its visual language. It
differs in that it gives continuous feedback based on the set
of actual data that has been dropped on it. This paper goes
a step further toward real examples in that the visual query
representation can be generated automatically from
operations carried out in Visage’s normal interface.

Database form generators allow the user to create
applications with charts, tables, buttons, and checkboxes.
The data manipulation is specified using a query language.
At best this will be QBE. The direct manipulation layout
of the components is similar to that in VQE.

Chimera [12] allows macro definition from the history of
interface actions. The user selects a subset of events to
generalize into a macro. A macro builder window pops up
containing a comic strip of these events. The user then
selects arguments to the macro graphically, and generalizes
the macro to apply in a variety of situations. Chimera has
an inference engine to guess default generalizations, which
the user can override by selecting from a list of possible
alternatives. Because it uses procedural macros and shows
screenshots of each operation result, Chimera does not
have the operation-matching problem that we do. We plan
to adopt comic strips for our timeline interface. Chimera
does not allow modifying the example after the fact, and it
is not designed to work well in the data analysis domain.

Programming by demonstration in general was discussed in
the Introduction. Pursuit [13] is an example of PBD that
we have tried to emulate in certain respects. Its techniques
for enabling the user to understand the visual program
include: 1) Programs are specified by operations on real
data. 2) Programs are represented in a visual language in
which the data and operations of a program look very much
like the actual objects and changes users see on the desktop

when constructing the program. The language is similar to
Chimera’s, except that the images are more abstract than
screenshots. 3) Programs appear incrementally as the user
executes each operation. Pursuit also emphasizes
manipulation of sets of objects, to reduce the need for
looping constructs.

The main difference between Pursuit and our system is that
we allow the user to retrospectively choose operations to
automate, rather than include each operation as it is
performed. Our experience is that extraneous operations
are confusing in the visual programming representation.
The user can still see the effects of individual operations
on the program by dropping them individually on VQE. A
second difference is the domain. Pursuit still relies on
looping and branching constructs for doing file operations
in a visual Unix shell. We have avoided procedural
constructs altogether by using a declarative query
language, which simplifies programming but does not
generalize to domains beyond data analysis. On the other
hand, no previous PBD system can generate interactive
data analysis appliances.

SUMMARY
We described a tool for automatic appliance construction
from an example. Using Visage’s first class
representation of user operations enables the example to be
created piecemeal, rather than executed perfectly in record
mode as required by PBD systems. The chosen operations
are dropped into VQE, which shows a visual representation
of the causal structure and the relevant visualizations.

The construction algorithm uses two cases of semantic
overloading: bounding box selection now has an intentional
meaning (the bounds) as well as an extensional one (the
graphemes). Second, sets of data objects represented by
graphemes that are operated on together are considered to
have an intention as well, which comes to be defined by its
place in the query graph.

The example can be edited with normal Visage operations,
including selective undo/redo commands. Additional
operations can even be added after the application is in use.
This gives users the freedom to ensure that all constraints
required to build the application are present in the VQE
representation, so the only editing that must be done in this
more abstract representation is deleting or hiding
extraneous information, and visual rearrangement and
labeling. As construction and editing proceeds, the user
has immediate feedback about the effect on the
visualizations as well as the query structure. In addition,
he can test the application at any time by copying the VQE
frame and dropping new data on it.

The appliance is integrated into Visage’s full-featured data
exploration environment, so no new widgets or behaviors
must be programmed. The domain-specific design trades
off expressive power and ease of use in a new way. The
use of a declarative query language designed strictly for

data exploration avoids the need to express procedural
constructs like branching and looping, which have been
difficult to infer in previous PBD research.

Informal testing suggests that being able to refine an
example based on feedback from the resulting appliance is
extremely valuable. Users preferred this to starting over,
or refining using VQE techniques. Subjects felt that most
appliances they currently build can be reasonably well
approximated using this new tool, and that it is far easier
to do so. If even developers feel they can build appliances
this way, surely the target users will find its expressive
power more than adequate. However we must simplify the
task of recognizing reified operations.

REFERENCES
1. Johnson, J.A. and B.A. Nardi, Creating Presentation

Slides: a study of user preferences for task-specific
versus generic application software. ACM Transactions
on Computer-Human Interaction, 1996. 3(1): p. 38-65.

2. Becker, R.A. and W.S. Cleveland, Brushing Scatterplots.
Technometrics, 1987. 29(2): p. 127-142.

3. Nardi, B.A. and J.R. Miller. An Ethnographic Study of
Distributed Problem Solving in Spreadsheet
Development. in Proceedings of the Conference on
Human Factors in Computer Systems (CHI'90). 1990:
ACM Press: p. 197-208.

4. Myers, B., S.E. Hudson, and R. Pausch, Past, Present,
and Future of User Interface Software Tools. ACM
Transactions on Computer-Human Interaction, 2000.
7(1): p. 3-28.

5. Roth, S.F., M.C. Chuah, S. Kerpedjiev, J.A.
Kolojejchick, and P. Lucas, Towards an Information
Visualization Workspace: Combining Multiple Means of
Expression. Human-Computer Interaction Journal, 1997.
12(1-2): p. 131-185.

6. Derthick, M. and S.F. Roth. Data Exploration across
Temporal Contexts. in Proceedings of Intelligent User
Interfaces (IUI '00). 2000. New Orleans, LA: p. 60-67.

7. Roth, S.F., J. Kolojejchick, J. Mattis, and J. Goldstein.
Interactive Graphic Design Using Automatic
Presentation Knowledge. in Human Factors in
Computing Systems (SIGCHI). 1994. Boston, MA: ACM
Press: p. 112-117.

8. Derthick, M., J.A. Kolojejchick, and S. Roth. An
Interactive Visual Query Environment for Exploring
Data. in Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST). 1997. Banff,
Canada: ACM Press: p. 189-198.

9. Ahlberg, C., C. Williamson, and B. Shneiderman.
Dynamic Queries for Information Exploration: An
Implementation and Evaluation. in Human Factors in
Computing Systems (CHI). 1992. Monterey, CA: ACM
Press: p. 619-626.

10. Baecker, R. and W.A.S. Buxton, eds. Readings in
Human-Computer Interaction. Morgan Kaufmann
Readings Series, ed. M.B. Morgan. 1987, Morgan
Kaufmann: Los Altos, CA. 738.

11.Zloof, M.M., QBE: A Language for Office and Business
Automation. IEEE Computer, 1981. 14(5): p. 13-22.

12. Kurlander, D. and S. Feiner. A History-Based Macro by
Example System. in User Interface Software and

Technology (UIST). 1992. Monterey, CA: ACM Press: p.
99-106.

13. Modugno, F. and B.A. Myers, Visual Programming in
a Visual Shell Journal of Visual Languages and
Computing, 1997. 8(5/6): p. 491-522.

