Mixed Initiative Interfaces for Learning Tasks:
SMARTedit Talks Back”

Steven A. Wolfman Tessa Lau

Pedro Domingos

Daniel S. Weld

Department of Computer Science & Engineering
University of Washington, Box 352350
Seattle, Washington 98195-2350

{wolf, tlau, pedrod, weld}@cs.washington.edu

ABSTRACT

Applications of machine learning can be viewed as teacher-
student interactions in which the teacher provides train-
ing examples and the student learns a generalization of the
training examples. One such application of great interest to
the IUI community is adaptive user interfaces. In the tra-
ditional learning interface, the scope of teacher-student in-
teractions consists solely of the teacher/user providing some
number of training examples to the student/learner and test-
ing the learned model on new examples. Active learning
approaches go one step beyond the traditional interaction
model and allow the student to propose new training ex-
amples that are then solved by the teacher. In this paper,
we propose that interfaces for machine learning should even
more closely resemble human teacher-student relationships.
A teacher’s time and attention are precious resources. An
intelligent student must proactively contribute to the learn-
ing process, by reasoning about the quality of its knowl-
edge, collaborating with the teacher, and suggesting new
examples for her to solve. The paper describes a variety of
rich interaction modes that enhance the learning process and
presents a decision-theoretic framework, called DIAManD,
for choosing the best interaction. We apply the framework
to the SMARTedit programming by demonstration system
and describe experimental validation and preliminary user
feedback.

Keywords

Mixed initiative, machine learning applications, program-
ming by demonstration

1. INTRODUCTION

Machine learning (ML) is widely used in areas such as
wrapper induction, credit approval, image analysis, data
mining, and intelligent user interfaces. A learning module

*To appear TUT01.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

1UI'01, January 14-17, 2001, Santa Fe, New Mexico.

Copyright 2001 ACM 1-58113-325-1/01/000$5.00

can endow a system with the ability to extract valuable in-
formation from substantial amounts of data or to adapt to
new circumstances. However, many traditional applications
of machine learning involve their users — the domain ex-
perts who provide and label training examples — in only
the most primitive ways. The systems operate on batches of
prelabelled examples and neither provide nor request feed-
back during the learning process. Indeed, the only “commu-
nication” between the user and the learning system besides
the provision of this batch of examples is to test the system
on yet another batch of examples.

Yet, experience and research shows that great benefits can
be realized by machine learning applications with rich user
interfaces. Work in active learning has shown that just al-
lowing the system to pick which example to label next can
greatly reduce the number of examples the user need con-
sider [5]. Bauer et al. describe how the inclusion of a variety
of interaction modes in a wrapper generation system can re-
sult in more robust wrappers with less annoyance to the
user [3]. Our previous work on the SMARTedit text-editing
system [10] led us to the same conclusion: machine learning
tasks can benefit from careful management of interactions
with the user. The result is a system that requires fewer ex-
amples to learn a concept, acquires domain knowledge with
less user effort, and is more appropriate for users unfamiliar
with machine learning.

1.1 Vision

We view the process of training a machine learning system
as analogous to the interaction between a teacher and stu-
dent. The teacher guides the student toward a concept by
presenting and explaining examples. Although the teacher
ultimately controls the interaction, the student also takes
the initiative, directing the teacher’s attention toward areas
of knowledge that are unclear.

Interaction between a user and a machine learning system
should mimic the interaction between a teacher and a stu-
dent. The user/teacher demonstrates examples of a concept
to the system/student. Traditional machine learning has
filled the role of student by listening quietly. However, this
strategy may waste valuable resources — the teacher’s time
and effort — by withholding information from her about
the student’s level of understanding. We propose that ma-
chine learning systems should instead follow the example
of the proactive yet considerate student: asking questions,
proposing examples and solutions, and relating its level of
knowledge when appropriate to make the interaction more

Interaction
Mode Library

Attributes
Attribute vector
for each mode

Learner
context

DIAManD

[] User actions .
_ Soived _y Learning
Examples System
Queries Current
User Interaction Learned
Mode model

Figure 1: Diagram of the DIAManD interaction
manager in use in a machine learning application.
Traditional ML systems have only the bottom three
components with a fixed interaction mode. DIA-
ManD allows us to introduce a library of interaction
modes and choose among them based on a set of
attributes. The chosen interaction mode regulates
the next stage of communication (i.e., interaction)
between the user and the learning system.

effective.

Such a mixed initiative interface is uniquely appropriate
to machine learning systems because the user is directly in-
terested in helping the underlying system. Indeed, the user’s
primary goal is for the system to refine its knowledge to the
point that it has learned the correct concept and can aid
her in her task. Thus, the user interface has a prerogative
to act to maximize the value of the user’s efforts to the learn-
ing system. The interface’s guidance may take the form of
informing the user of the learner’s internal state in a com-
prehensible, domain-oriented manner, or of taking control of
the discourse with the user to refocus her attention on new
aspects of the learning process.

1.2 Overview

In the rest of this paper, we explore the issues that arise
in constructing mixed initiative user interfaces for machine
learning systems. We describe a general framework for inter-
action management in machine learning based on the com-
mon structure of most machine learning tasks: examples,
labels or solutions, predictions, and data sets. In particular,
we describe:

e a comprehensive list of classes of interaction modes for
machine learning systems,

e a set of attributes for measuring aspects of the utility of
these interaction modes,

e DIAManD: the Decision-theoretic InterAction Manager
for Discourse, a system for selecting among interaction
modes using a multi-attribute utility function,

e 3 learning framework for adapting the weights of DIA-
ManD’s utility function to individual users, along with

experiments validating the framework,

e a full implementation of DIAManD in the SMARTedit
programming by demonstration system for text-editing,

e and preliminary user feedback on the SMARTedit imple-
mentation of DTAManD.

Figure 1 shows the high-level architecture of our system.
DIAManD selects from among a set of interaction modes
the one it judges most appropriate based on their attribute
vectors. The best of these modes is presented to the user
and controls the next stage of discourse, updating the state
of the learner. The modes are then rescored based on the
new state of the learner. Our implementation of DIAManD
in SMARTedit currently includes six interaction modes, five
attributes, the original SMARTedit learning system, and an
adaptive utility function.

In the next section, we motivate the subject of user inter-
faces for machine learning with a brief case study of SMART-
edit. We then present the top three blocks of Figure 1 in
three sections: a list of classes of interaction modes, the DIA-
ManD decision-theoretic framework for adaptively selecting
among these modes, and an example set of attributes for use
with DIAManD. The following section (Section 6) describes
our implementation of the framework in the SMARTedit
programming by demonstration system and discusses some
preliminary user feedback. Finally, we conclude with our
contributions and sketch out future lines of research build-
ing on this paper.

2. CASE STUDY: SMARTEDIT

One machine learning application that benefits from mixed
initiative discourse is programming by demonstration, in
which the user demonstrates to the system how to perform
a task. The system treats this demonstration as a partial
execution trace of the program that solves the task, and
generalizes from the trace to the original program.

In prior work, we have formulated programming by de-
monstration (PBD) as an inductive learning problem [10,
11]. In our formulation, the learner is given the sequence of
changes in the application state observed as the user per-
forms some task on a concrete example. The learner then
generalizes from these to a program that is capable of per-
forming the task on new examples by learning the functions
that transform from the initial application state to the de-
sired final state. The actual learning mechanism involves
maintaining a compact representation of a set of candidate
hypotheses which is pared during learning to include only
those hypotheses consistent with the observed task.

The user interface for PBD is similar to the regular macro
recording interface: the user demonstrates the behavior of a
program by recording how the program performs on a con-
crete example. In contrast to regular macros, however, the
PBD system doesn’t merely record a series of keystrokes.
Instead, it gemeralizes from one or more demonstrations to
a robust, executable program. After recording each demon-
stration, the user can ask the system to execute its learned
program on the next example. In effect, the system has two
interaction modes: recording the user’s solution of the next
example, and solving the next example using its learned pro-
gram.

We have implemented this interface in the SMARTedit
PBD system for text-editing. For example, a simple task
for SMARTedit is to delete HTML comments from a text

% SMARTedit: example. txt [H[=] E3

Run
program

Record
iteration

Step through Try another
macro guess

Step 1 of 3 is Move to the end of ‘ample’ [35% prob.]

This is some sample

HTML text from which the comments <!—
Comment #2 ——>ought to be

deleted. Look! Comment coming
<!——Comment #3——>!

There is ampl{fevidence that these
<!-—Comment #4--> comments should go. 7l

Figure 2: Screenshot of the original SMARTedit
PBD system. The task is to delete all HTML com-
ments. The first comment has already been deleted
from just after the word “sample”. The system now
incorrectly predicts the user’s next action is to move
after the string “ample” rather than before “<!--,

file. A user demonstrates this task by starting the macro
recorder, moving the cursor to the next comment, selecting
the comment with the shift and cursor keys, and pressing the
delete key to delete it (Figure 2). She then stops the macro
recorder. After this demonstration, one of SMARTedit’s
candidate programs is a program consisting of three actions
of the form “move to the next occurrence of <!--, select to
the next occurrence of -—>, and delete the selection.”

2.1 Need for mixed-initiative interface

When we presented the interface to users, however, several
problems were revealed. One user performed ten examples
before asking the system to predict an action when, in fact,
the system had learned the task correctly after the first two
demonstrations. Another performed only one example be-
fore asking for the system’s prediction. Because the system
had not yet learned the right program, the user had to cycle
through a large number of predicted actions before finding
the correct one. A third user asked the system to begin pre-
dicting actions and then wished to return to demonstrating
examples, but the system did not support returning to the
recording mode.

These problems reflect on interactive machine learning ap-
plications as a whole. SMARTedit is an instance of a ma-
chine learning algorithm: it generalizes from solutions sup-
plied by the user and learns a model explaining those solu-
tions. The user interacts with the learning algorithm either
by solving examples or by supervising the system’s perfor-
mance on an example. However, these are only two points in
the space of possible interaction modes between the user and
the learner. The problems revealed in our user tests suggest
that other interaction modes could have benefits both in ac-
quiring the concepts more quickly (e.g., through judicious
choice of the example to classify, as in active learning) and
in allowing the user more control over the learning process.
The next section describes our space of interaction modes
in more detail.

3. INTERACTION MODES FOR LEARNING

We have formed a comprehensive list of effective, gen-
eral classes of interaction modes for machine learning. Each
of these classes relies on only a few features common across
learning domains and none assumes machine learning exper-
tise on the part of the user. A supervised machine learning
task includes distinct ezamples that the user solves, either

by classifying them or by some more complex manipula-
tion. Moreover, a possibly-ordered set of unsolved examples
is either readily available or easily constructed. The learner
searches through a space of hypotheses that explain the ob-
served examples, and can ezecute one of these hypotheses
on a new unsolved example to predict a solution.

Although users are generally familiar with the application
domain (e.g., text-editing), they may vary in their knowl-
edge about the underlying machine learning system. While a
machine learning expert might be able to peruse and correct
the learner’s individual hypotheses, we assume that users
are not machine learning experts. This assumption is espe-
cially true in the case of adaptive user interfaces, where the
users may not even be directly aware that they are using a
machine learning system.

Our list of interaction mode classes includes:*

e User solution: In our simplest class, the standard for ma-
chine learning, the learning system observes an example
and solution that the user provides and uses the result
as input to the learning algorithm. SMARTedit uses an
interaction mode in this class when the user provides solu-
tions (or partial solutions) to examples by demonstrating
her text-editing procedure on a section of text.

o Collaborative solution: The system executes a learned hy-
pothesis on the next example and presents a solution to
the user. The user either confirms the solution — in which
case the example becomes training data for the system —
or she asks for an alternate solution. The system can then
propose an alternate solution to the user for acceptance or
rejection, and so the process continues. For example, af-
ter a user demonstrates how to delete the first comment in
Figure 2, she asks the system to predict the next action.
Because the system incorrectly predicts a move to the
word “ample”, she might then choose to cycle to the next
most likely guess. Members of these first two interaction
classes were implemented in the original SMARTedit.

o System solution: In this class of interactions the learn-
ing system assumes slightly more control, executing its
learned concept on the next example (or a part of it),
demonstrating the solution to the user, and giving her a
chance to reject that solution. If the user does not take
this chance, the system assumes the solution was correct
and carries on to the next example. The user need exert
very little effort in this type of interaction as long as the
system’s learned concept is of high quality. Note that un-
like in a collaborative solution mode, the user does not
actually correct the system’s predictions but rather in-
dicates only whether the prediction is correct. Recalling
the example of Figure 2, SMARTedit could run its learned
program a step at a time; if the program were correct and
the user did not interrupt, SMARTedit would proceed to
delete all the remaining HTML comments in the file.

e Performance: In a performance interaction mode, the
learning system takes full control and executes its con-
cept autonomously on new examples. If implemented in
SMARTedit, for example, performance mode might be
useful once the system has learned a program to delete
HTML comments. It can then proceed to delete all the

! As described in Section 6, we have implemented represen-
tatives from all these classes except the generation classes
and user example selection.

comments in all of the HTML files in a directory. More-
over, this program might be applied to new files immedi-
ately or at a future date. Even in a performance mode,
there is the potential that the system can make further
progress in learning by studying the distribution of new
examples; however, the system is not supervised by the
user.

o System example selection: The system proposes to the
user that she shift her attention to a particular example,
rather than a user-selected example, a randomly-chosen
example, or the next one in order. As related in the active
learning literature, system-driven example selection can
often provide greater learning benefit because the system
can collect data on the most interesting examples first.

o User ezample selection: The system requests that the
user select or provide a promising new example to in-
vestigate. Ideally, this request is accompanied with a
high-level description of the kind of example that would
be most valuable to operate on next. This class of in-
teractions trades off increased control for the user with
increased burden (the onus of selecting the example).

o System example generation: In this class the system gen-
erates a new example for the user to solve. In learning ap-
plications with relatively unstructured and unrestricted
input, the system may be able to generate arbitrary ex-
amples. However, in more structured environments, mod-
ifying existing examples may be more effective than gen-
erating entirely novel examples.

o User example generation: Here, the system asks the user
to create a new example which can then be solved. This
type of interaction is valuable if the system can specify
to the user some quality of the new example which would
help to discriminate among contending hypotheses. For
example, SMARTedit might request an example in which
an open HTML comment is unmatched by a closing tag.
If the user provides the example, the system can clarify
its learned concepts. If, on the other hand, the user indi-
cates that such examples are impossible or irrelevant, the
system has learned information about the distribution of
examples.

4. DECISION-THEORETIC FRAMEWORK

The interaction modes described in the previous section
form the core primitives of a rich and comprehensible dis-
course with the user. However, we can’t assume that the
human user will effectively control the dialogue unassisted
because she will likely find the complete set of options be-
wildering. This assumption would be especially hazardous
since (1) we expect that many users will have no experience
with machine learning algorithms, and (2) the choice of the
most effective interaction depends crucially on the state of
the ML system.

Instead, we adopt a mixed-initiative framework (DIA-
ManD) in which the learner and human user are each par-
ticipants in a dialogue aimed at improving the learner’s hy-
pothesis with minimal effort on the part of the user. The
user and the learning system communicate through one of
the various interaction modes. A set of attributes provides
the means to discriminate among interaction modes; each
attribute can provide a numerical evaluation in the range
[—1,1] for a given interaction and state of the learning sys-
tem. DIAManD scores the interactions using the attributes

and, when appropriate, presents the best one to the user.
The user may either proceed with this interaction or over-
ride the system to choose a different one.

DIAManD scores the interactions based on a decision-
theoretic framework [17] (i.e., using a utility model) which
allows the learner to balance an interaction’s expected bur-
den to the user against its estimated value to the task and
learner. However, we believe that each human user will per-
ceive the utility of a given interaction in a given situation
differently. Some users may prefer a learning system which
is highly active, taking control of the discourse early at the
possible expense of user corrections. Others would prefer a
system that watches quietly until it is more certain that it
understands the user’s concept. To account for these differ-
ences and others, DIAManD adapts its utility function to
the preferences of each individual user.

To render the problem of adapting DIAManD’s utility
function feasible in a reasonable number of interactions, we
model the function by a linear combination of the weighted
attributes. Thus, DIAManD models an individual user’s
preferences as a set of weights on the available attributes.
Given these weights and an interaction, the interaction’s
score is the dot product of the weight vector and the vector
of values of each attribute for the interaction.

To use the DIAManD framework (Figure 1), an applica-
tion designer provides a learning system, a set of modes for
interacting with this system, and a set of attributes which
measure important aspects of these interaction modes. The
core DTAManD component then analyzes the available in-
teraction modes based on its utility function and chooses
the mode with the highest utility to present to the user.

DIAManD also imposes two constraints on the user inter-
face of a system it mediates. First, in order to support col-
laborative selection of the appropriate interaction, the user
of the system should be able to override the system’s choice
of interaction mode and choose a mode that she prefers.
In the SMARTedit DIAManD implementation, we accom-
plish this by presenting the available interactions to the user
as a list of radio buttons (Figure 4). Second, to facilitate
rapid learning, the interface should provide some mechanism
for feedback to DIAManD on particularly poor interaction
mode choices. This requirement is satisfied by the “Bad
choice” button in Figure 4.

Given these interface capabilities, DIAManD must now
codify the feedback from which it is to learn. We use a simple
feedback model that would lend itself to a variety of actual
learning algorithms. Each interaction receives a feedback
value in the range [—1, 1] that should represent an update
to its correlation with the user’s preferences: an undervalued
“good” interaction would receive positive feedback whereas
an overvalued interaction would receive negative feedback.

DIAManD gathers this feedback by two mechanisms based
on utility values. (For the purposes of this discussion, let the
utility of an interaction choice ¢ be U(c).) First, any time
the user overrides its choice of interaction mode, DIAManD
takes this as implicit negative feedback on its choice (cs)
and positive feedback on the user’s choice (c.). In response,
it generates a positive feedback value for the user’s choice
equal to U(cy) — U(cs). DIAManD also generates negative
feedback on its own choice based on the interaction with
the second highest utility (cy) equal to U(cy) —U(cs). Sec-
ond, when the user rebukes a choice made by DIAManD,
the system generates a strong negative feedback value for

[N

— Similarity ------ Error

Error/Similarity
© o o o o o o o
N w S (5] [} ~ oo ©o
!

o
e

o

o

10 20 30 40 50
Steps

Figure 3: Error and similarity metrics averaged
across the first 50 steps of 100 simulated DIAManD
runs. There are fifteen attributes and eight choices
in the domain. Confidence bars are set to 99% as-
suming a two-tailed Gaussian distribution of results.

that choice equal U(cy) — U(cs) — p where p is a parameter
to the learning system.

Our learning mechanism for DIAManD responds to user
feedback using an online reinforcement learning technique
based loosely on the one described by Auer [2]. However,
DIAManD performs no exploration — that is, it does not
try apparently inferior interaction modes in order to solicit
feedback on these choices.? Also, DIAManD allows feed-
back on more than one interaction at a time. The algorithm
adjusts its weight vector by adding to it a scaled version of
each interaction’s attribute vectors. Each attribute vector is
scaled by its interaction’s feedback value and a uniform fac-
tor controlling the learning rate (as in gradient descent [15]).

Figure 3 shows the action of this learning system in an
artificial domain. We have assumed that the domain has
fifteen attributes and eight interaction modes (these num-
bers approximate those we hope to eventually achieve in
SMARTedit). We model the user’s preferences as a set of
weights on the attributes; these are not revealed to DIA-
ManD. We generate a random vector (with one entry for
each attribute) by selecting values in the range [—1,1] for
each element of the vector. For each run, a “user” is cre-
ated by generating a random weight vector and scaling its
length to 1.0. DIAManD’s initial weight vector is also a
random vector. At each step, a random attribute vector is
constructed for each interaction. Based on their respective
weight vectors, DIAManD and the user model each pick the
best (i.e., highest utility) interaction. If these choices differ,
feedback is generated as if the user overrode DIAManD’s
choice in favor of her own. Moreover, if the user’s utility
for DIAManD’s choice is less than 0, she issues a rebuke
(é.e., presses the “Bad choice” button). Finally, DIAManD
updates its own model based on this feedback.

2 An earlier version of DIAManD that did explore the space
of interaction modes in this manner frustrated users by mak-
ing the “wrong” choices for no apparent reason.

We measured two values (both averaged across 100 runs)
at each step. The error at a step is the difference between
the user’s utility value for DIAManD’s interaction choice
and the user’s utility for her own choice. The similarity
between DIAManD’s weight vector and the user’s vector is
the cosine of the angle between the vectors (the dot product
of the two divided by their lengths). This value approaches
1.0 as the vectors become more and more similar.

Figure 3 shows that as long as the user’s preferences really
can be represented as a linear combination of the attributes,
DIAManD will quickly learn the user’s preferences. In this
scenario, DIAManD’s error is below 0.2 after only 18 interac-
tions with the user — about one or two typical SMARTedit
tasks.

We also tested variations on the number of attributes and
interaction modes. The results indicate that more interac-
tions make learning faster while more attributes slow learn-
ing; however, even with fifty attributes and only five choices,
DIAManD’s error level still drops well below 0.2 and its sim-
ilarity level rises above 0.75 within 50 steps. Finally, starting
DIAManD with a zero weight vector (rather than a random
vector) makes little difference across all settings after only
a few steps.

5. DIAManD ATTRIBUTE SET

The attribute set used in a DIAManD system defines the
space of user adaptations available to that system. DIA-
ManD can adapt to a user only if that particular user’s
preferences are expressible in the “basis set” defined by these
attributes. Although the best attribute set for a specific DI-
AManD implementation will depend somewhat on both the
learning system and interaction set used, the vital consid-
eration that any attribute set must reflect is the balance
between user effort and value to the task and system.’.

For the SMARTedit implementation of DIAManD, we
chose five appropriate but general attributes; each of these
should be viable for most learning system and interaction
library combinations. The first three (user input, level of
continuity, and probability of correction) focus on user ef-
fort and represent physical and mental effort required from
the user. The latter two (task progress and value to the
system) focus on achievement of the user’s objective. These
measures reflect the typical objective of the user of a ma-
chine learning system: complete the task by refining the
hypothesis of the learning system until it correctly describes
the data. In the remainder of this section, we describe the
five attributes used in our implementation.

e The user input attribute measures the difficulty of com-
pleting the interaction. For some interactions it may be
possible to calculate the expected amount of input (e.g.,
keystrokes and mouse clicks) necessary to complete the
interaction. However, in the case of SMARTedit, we take
a simple approach and hand-craft a function for each in-
teraction which returns a rating between 0 and 1. The
rating reflects the calculated possible courses of the inter-
action and our subjective estimate of the amount of input
required for these potential courses. Note, however, that

31deally, attributes measuring user effort will draw on ger-
mane work in human-computer interaction such as task
analysis [7] However, the initial work described here uses
simple heuristics for these attributes.

any more complex or realistic scheme could be applied if
its results could be mapped to the range [—1, 1].

e The level of continuity between a new interaction and
those preceding it measures the additional burden of some
interactions on the user imposed by the cognitive context-
switch required to change interaction modes. For exam-
ple, if DIAManD moves the discourse to a performance
mode directly from a user-solution mode, the sudden shift
in initiative might confuse to the user. On the other hand,
moving from collaborative-solution mode to performance
mode will be less confusing because the change in ini-
tiative is not as great. In our SMARTedit DIAManD
implementation we create a matrix of values between 0
and 1 that reflect our subjective estimation of the level
of continuity between each pair of interactions. We track
the most recently completed interaction mode and assign
a value for this attribute based on the matrix entry for the
last mode and the mode currently under consideration.

e The probability of correction is the probability that the
user will be forced to correct an error by the system.
This measure is used to reflect the amount of attention
the user will be forced to pay to the system during an
interaction. Typically, this attribute can be estimated
using the learner’s own confidence in its hypotheses. In
the case of SMARTedit, we measure the value directly
using its learning systems probability framework. Each
interaction is simulated to determine the probability that
the user will be forced to correct the system’s prediction.

e The task progress achieved during an interaction is a mea-
sure of how much of the user’s task is completed over the
course of that interaction. In SMARTedit, we measure
this value as the expected number of program actions that
will be completed over the course of the interaction. This
measure is mapped to the range [—1,1] by establishing
an upper bound on the reported value and scaling.

e The value to the system of an interaction is the amount of
improvement to or increase in confidence of the system’s
hypothesis space. To measure this change in quality of
the hypothesis space, we note that a space with fewer
distinct hypotheses is less “ambiguous” and more likely
to favor the correct concept. In SMARTedit, we quantify
this ambiguity by the entropy of hypothesis space: the
amount of information the system would gain were it to
ask the user: “Which of these hypotheses is the correct
one?”*

Note that each possible interaction mode implicitly asks
a limited version of this broad question — by asking the
user explicitly, displaying a proposed solution, or some
other mechanism. So, each interaction divides the space
of programs into disjoint subsets and discriminates among
these subsets. For instance, recording an example divides
the learning system’s hypothesis space into the distinct
subsets which predict each possible recording trace. Even
before the demonstration, we can calculate these subsets.
After the demonstration, we can point to the subset which
explains the user’s actions.

Given this model, we can view the expected change in
quality of the hypothesis space as the information gain of
the interaction, Ig:

*For an introduction to entropy and information gain, see
Chapter 3 of [15].

XI SMARTedit: probl txt [_ O[]

Started recording
Interaction Control Panel |This is some sampldl
HTHL text from which the comments <!——
~ Record one full example M comment #2 ——>cught to be
deleted. Look! Comment coming
Record one step I | <!-—comment #3-—>!
v | | There is ample evidence that these
<!-— Comment #4 —--> comments should go.
v
v
< dump and record an exarple [
Bad choice! |
Done recording | -

Figure 4: Screenshot of SMARTedit enhanced with
DIAManD. The task, as in Figure 2, is to delete
all HTML comments, and the first one has been
deleted. The interactions are lined up on the left of
the screen, and their scores are represented by the
darkness of their fonts and the bar gauges to their
right. The system has just selected the “Record one
step” interaction, asking the user to demonstrate
the next move. DIAManD selected this interaction
over “Step” (the third down) because of the high
probability of error in the “Step” interaction.

I =~ (3 P(c)log(}_ P(c))

0€O0 c€o c€o

Each o is a set of concepts (drawn from the universe O)
which predict indistinguishable solutions on the current
example, and P(c) is the probability of concept c. As with
the task progress, this measure is mapped to the range
[-1,1] by truncating and scaling the range of entropy
values.®

6. IMPLEMENTATION

We have implemented our framework in the context of
the SMARTedit system. SMARTedit previously supported
only two modes of interaction — one user solution and one
collaborative solution — and had no intelligent interaction
management. It was the user’s responsibility to select the
interaction mode and she made this choice without guid-
ance. Moreover, it was impossible to switch back to the
user solution mode from collaborative solution mode.

In order to introduce DIAManD’s collaborative frame-
work into SMARTedit, we followed the steps described in
Section 4: provide a learning system, an interaction library,
and an attribute set, and include in the interface the capac-
ity to switch between interactions and rebuke a poor inter-
action choice.

Our learning system is the SMARTedit learning engine,
based on Version Space Algebra [10]. Our five attributes
are described in the Section 5. We also constructed a new
library of six interaction modes.

To create the interaction library, we cleanly separated two
interactions from SMARTedit’s recording mode: one asks
the user to record an entire example while the other asks

®This measurement is also used to compare the utility of
demonstrating on different examples for the system selection
interaction mode.

the user to record just a single action (“Record one full ex-
ample” and “Record one step” in Figure 4). Each of these
fits into the user solution class from Section 3. SMART-
edit’s ability to present a guess at the next action became
“Step”, a collaborative solution mode. We also introduced
three entirely new interaction modes:

e “Run to end of example” successively presents the sys-
tem’s guesses for each step up to the end of the current
example. After a brief pause to allow the user to in-
terrupt, the system commits the guess. This interaction
mode is from the system solution category.

e The “Run while sure” interaction immediately executes
the learned program step by step until the system’s con-
fidence in the program at any step drops below a thresh-
old (currently 99.9%). This interaction is a performance
mode.

e Finally, we introduced system example selection in the
form of the “Jump and record an example” mode. In this
mode, the system repositions the cursor to just before an
example that is particularly confusing to the system and
asks the user to demonstrate that example.

SMARTedit’s user interface was altered to display the
interaction choices as a set of radio buttons. DIAManD’s
scores for the interactions are displayed by the contrast of
the font and a horizontal gauge to the right of each interac-
tion (as shown in Figure 4). Finally, the “Bad choice” but-
ton was added to allow users to rebuke DIAManD’s choice.

The result of this implementation is a system capable
of intelligently recommending which interaction to perform
next. The user interface problems motivated in our case
study are each addressed by the interaction manager. Users
can tell when to stop recording examples because the system
lowers the ranking of user solution mode interactions and in-
stead recommends collaborative or system solution modes.
Moreover, if a user does enter collaborative solution mode
(or system solution mode) too early, she can now switch back
to solving examples herself using the interaction manager.

We have not yet performed a formal user study focusing
on DIAManD. However, we have received informal feedback
on the SMARTedit implementation of DIAManD from col-
laborators and students in our department. Feedback from
these users has motivated the current design of the user in-
terface. For example, one user used SMARTedit to perform
a task and felt he had trained the system correctly after a
pair of examples. However, when he then had SMARTedit
run in system solution mode® it made a mistake on one ir-
regular example which went unnoticed. When he performed
this task again with DIAManD, the interaction manager cor-
rectly recommended recording that irregular example, but
the user failed to notice the change in recommendations and
initiated the “Run” interaction anyway. To avoid this prob-
lem, weights are now represented in a format which admits
easy comparison between options (the shaded “gauges” in
Figure 4) and also by the attention-grabbing fading of fonts.

A similar process led to a new “User control” interaction
in which the system declines to select an interaction au-
tomatically and asks the user to take the initiative. This

5The “Run” or system solution mode was so useful for DIA-
ManD that we also introduced it into the plain SMARTedit
system.

interaction always receives a fixed utility rating. “User con-
trol” serves two purposes. First, it maintains the credibility
of the system: DIAManD takes control and recommends an
interaction only when it actually has a good one to propose.
Second, it provides a “bar” toward which the user’s choice
is raised by the feedback mechanism. The effect of this ex-
tra positive feedback balances the highly negative feedback
provided by the “Bad choice” button.

The qualitative feedback from users has so far been mixed.
Some users are aggravated by the intrusion of DIAManD
into control of the discourse. Others are happy to receive
guidance and assistance. We believe that the existing DI-
AManD mechanism, with appropriate attributes measuring
user tolerance of interruptions, can eventually accommodate
both styles of users.

7. RELATED WORK

Several other lines of research have approached the prob-
lem of designing interfaces for machine learning in different
ways — either by developing methodologies for learning in-
terfaces or by creating interfaces for specific learning appli-
cations.

Work in active learning [1, 5] focuses on the “value to
the system” attribute, ignoring the burden of interactions
on the user. This focus requires the assumption that all in-
teractions pose the same burden to the user, an assumption
that may be reasonable in the face of a single mode of inter-
action. However, our work introduces numerous interaction
modes, and distinguishing among these requires a richer set
of attributes.

Boicu et al. [4] describe a framework for enabling domain
experts to construct intelligent agents. Their framework se-
lects among interactions to guide the user during exploration
of a particular example. However, they do not address the
problem of proactively selecting and moving among exam-
ples, nor are their interactions or interaction manager de-
signed to generalize beyond their specific learning system.

Bauer and Dengler [3] describe a PBD system for wrapper
induction. Their system performs heuristic search through
the space of wrappers — programs that extract data from
web pages. They describe a utility function specific to wrap-
per induction that can help users choose how to refine a
wrapper. They introduce an attribute (the number of ques-
tions asked of the user) to help determine whether to bother
the user with another interaction or use the current wrapper.

Previous work on adaptive user interfaces provided some
mechanisms for collaborating to refine the learner’s concept.
Peridot [16] and Metamouse [14] are early PBD systems that
request guidance from the user when generalizing actions.
The “mail clerk” agent [13] learns by observing the user,
from explicit feedback, and by being trained. In addition,
it compares its confidence against two user-set thresholds
(“tell-me” and “do-it”) to decide whether to initiate action,
make a suggestion, or remain quiet. None of these systems
describes a general interface for machine learning, and none
supports all the interaction modes presented herein.

Our work is partly inspired by recent work on mixed-
initiative planning [8, 12]. For example, the TRAINS-95
system [9] describes a robust, multi-modal interface that
treats the AI planner and the user as equal participants in
the problem solving dialogue.

8. CONCLUSIONS AND FUTURE WORK

Machine learning applications are a fertile area for re-
search into intelligent user interfaces. Users who are experts
in their own domain are thrown together with complex sys-
tems whose internal functioning may be arcane to them, yet
their goal in their interactions is to assist the system’s learn-
ing process. Our paper makes the following contributions:

e We advocate a mixed-initiative interface in which the ma-
chine learner and human user more equally share respon-
sibility for guiding the learning process.

e We define a comprehensive set of eight interaction modes
which capture a wide variety of interaction types.

o We present a decision-theoretic framework in which the
learner repeatedly chooses the interaction mode that max-
imizes expected utility.

o We define a multi-attribute utility function that balances
direct user effort, cognitive load, and the cost of cor-
recting computer-introduced errors, against the potential
progress of the user and gain in the learner’s “understand-
ing.”

o We describe our initial implementation of DIAManD in
the context of the SMARTedit system for programming
by demonstration.

There are a plethora of interesting directions for future
work stemming from this paper. This interface model should
be thoroughly tested through user studies. Applying the
DIAManD framework to other domains will reveal new and
challenging problems. Graphical programming by demon-
stration systems such as Eager [6] or Peridot [16] seem a
natural next step, allowing us to explore collaborative ex-
ample selection in a less constrained environment than the
naturally sequential text domain. The DIAManD frame-
work may also be applicable to choosing interaction modes
in a general user interface context rather than solely for the
interfaces of machine learning systems. Our current ongoing
research involves introducing novel interaction modes (such
as automatic example generation) and more realistic and ef-
fective attributes into DIAManD. Finally, different learning
algorithms and more complex, non-linear utility functions
might improve the efficacy of DIAManD’s core learning com-
ponent.

9. ACKNOWLEDGMENTS

We thank people who provided code, help, and discus-
sion: Corin Anderson, Peter Auer, Jim Guerber, Geoff Hul-
ten, Zachary Ives, Dutch Meyer, Denise Pinnel, Rachel Pot-
tinger, and Kelly Shaw. This research was funded in part
by the Office of Naval Research Grant N00014-98-1-0147,
National Science Foundation Grants IRI-9303461 and IIS-
9872128, the ARCS Foundation Barbara and Thomas Ca-
ble Fellowship, a National Science Foundation Graduate Fel-
lowship, and a Microsoft Fellowship, and an NSF CAREER
Award.

10. REFERENCES
[1] D. Angluin. Queries and concept learning. Machine
Learning, 2:319-42, 1987.
[2] Peter Auer. An improved on-line algorithm for
learning linear evaluation functions. In Proceedings of

3]

[4]

[5]

[6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

the Thirteenth Annual Conf. on Computational
Learning Theory. Morgan Kaufmann, June 2000.

M. Bauer, D. Dengler, and G. Paul. Instructible
information agents for web mining. In Proceedings of
the 2000 Conf. on Intelligent User Interfaces, January
2000.

M. Boicu, G. Tecuci, D. Marcu, M. Bowman, P. Shyr,
F. Ciucu, and C. Levcovici. Disciple-coa: From agent
programming to agent teaching. In Proceedings of the
Seventeenth Int’l. Conf. on Machine Learning, June
2000.

David Cohn, Les Atlas, and Richard Ladner.
Improving generalization with active learning.
Machine Learning, 15(2):201-221, 1994.

Allen Cypher. Eager: Programming repetitive tasks
by demonstration. In Allen Cypher, editor, Watch
What I Do: Programming by Demonstration, pages
205-217. MIT Press, Cambridge, MA, 1993.

D. Diaper, editor. Task Analysis for
Human—Computer Interaction. Ellis Horwood, 1989.
G. Ferguson and J. Allen. Arguing about plans: Plan
representation and reasoning in mixed-initiative
planning. In Proceedings of the Second Int’l. Conf. on
Artificial Intelligence Planning Systems, pages 43—48.
Menlo Park, Calif.: AAAI Press, 1994.

G. Ferguson, J. Allen, and B. Miller. TRAINS-95:
Towards a mixed-initiative planning assistant. In
Proceedings of the Third Int’l. Conf. on Artificial
Intelligence Planning Systems, pages 70-77,
Edinburgh, Scotland, May 1996. Menlo Park, Calif.:
AAAT Press.

Tessa Lau, Pedro Domingos, and Daniel S. Weld.
Version space algebra and its application to
programming by demonstration. In Proceedings of the
Seventeenth Int’l. Conf. on Machine Learning, pages
527-534, June 2000.

Tessa Lau and Daniel S. Weld. Programming by
Demonstration: an Inductive Learning Formulation.
In Proceedings of the 1999 Int’l. Conf. on Intelligent
User Interfaces, pages 145-152, Redondo Beach, CA,
USA, January 1999.

N. Lesh, C. Rich, and C. Sidner. Using plan
recognition in human-computer collaboration. In
Proceedings of the Seventh Int’l. Conf. on User
Modelling, Banff, Canada, July 1999.

Pattie Maes and Robyn Kozierok. Learning interface
agents. In Proceedings of the Fourteenth National
Conf. on Artificial Intelligence, pages 459-465, 1993.
D. Maulsby and I. Witten. Metamouse: An
Instructible Agent for Programming by
Demonstration. In Allen Cypher, editor, Watch What
I Do: Programming by Demonstration, pages 154-181.
MIT Press, Cambridge, MA, 1993.

T. Mitchell. Machine Learning. McGraw Hill, 1997.
Brad A. Myers. Peridot: Creating User Interfaces by
Demonstration. In Allen Cypher, editor, Watch What
I Do: Programming by Demonstration, pages 125-153.
MIT Press, Cambridge, MA, 1993.

Howard Raiffa. Decision Analysis: Introductory
Lectures on Choices Under Uncertainty.
Addison-Wesley, 1968.

