23
24
25
26
27
28

29

39
40
41
42
43
44

CydiOS: A Model-based Testing Framework for iOS Apps

Anonymous Author(s)

ABSTRACT

To make an app stand out in an increasingly competitive market, de-
velopers must ensure its quality to deliver a better user experience.
Ul testing is a popular technique for quality assurance, which can
thoroughly test the app from the users’ perspective. However, while
considerable research has already studied UI testing on the Android
platform, there is no research on iOS. This paper introduces CydiOS,
a novel approach to performing model-based testing for i0S apps.
CydiOS enhances the existing static analysis to build a more com-
plete static model for the app under test. We propose an approach
to retrieve runtime information to obtain real-time app context that
can be mapped in the model. To improve the effectiveness of UI test-
ing, we also introduce a potential-aware search algorithm to guide
testing execution. We compare CydiOS with four representative
algorithms(i.e., random, depth-first, stoat, and ape). We have evalu-
ated CydiOS on 50 popular apps from App Store, and the results
show that CydiOS outperforms other tools, achieving both higher
code coverage and screen coverage. We will open source CydiOS at
https://github.com/SoftWare2022Testing/CydiOS, and a demo video
can be found at https://www.youtube.com/shorts/VeZpY92Fno4.

1 INTRODUCTION

Recent years have witnessed significant growth in the iOS mar-
ket. According to recent estimations [15], iPhone sales reached a
new record high in 2021, accounting for over 60% of the premium
market. With the number of iPhone users continually increasing
[21], more developers distribute their apps in App Store to get a
market share. To promote user trust, App Store has a strict review
process concerning the quality of each submitted third-party app
[4]. Therefore, it is a significant concern for both app developers
and vetters to ensure the app meets the quality expectation.

To improve apps’ reliability, researchers have proposed many
approaches to generate GUI tests to explore their functionalities.
Random-based approaches [39, 57, 63, 76] inject arbitrary Ul events
into apps. However, without guidance, these approaches are time-
consuming, and their test coverage cannot be guaranteed. To un-
cover the app behavior that is hard to be reached by random-based
approaches, many systems [44, 53, 74] use symbolic execution to
find all feasible program paths for test generation. However, it
remains challenging to scale them in practice due to the high com-
putational cost [54].

Model-based testing (MBT) is another popular solution, which
generates test inputs based on the model to systematically explore
the app. The model is a Finite State Machine (FSM) that reflects the
behavior space of the app under test. Each state usually represents
an app screen (i.e., an Activity in Android apps or a View Controller
in i0S apps), and each transition between states is labeled with
an input event. With guidance, MBT can get high coverage, thus
outperforming other testing techniques [45, 65]. However, despite
considerable research efforts [43, 46, 49, 54-56, 68, 70] focusing on
performing MBT on Android apps, to the best of our knowledge,
MBT on iOS apps remains unstudied. An effective MBT approach

No SIM &

T
RLTasz\rCnntroller

Bas,
eNavngatmnCamroller

ST/ Hamecnntroller \

UPLOAD

(a) Home screen. (b) The hierarchy of home screen.

Figure 1: An example of Speed-Test-Master app.

for iOS apps is highly demanded by both developers and researchers
for reducing manual efforts to scale up the testing and evaluating
iOS apps’ performance and security.

To fill in the gap, in this paper, we design an effective MBT

approach for iOS apps and implement a new tool named CydiOS
by tackling the following technical challenges.
C1: Building a complete static model. To guide the testing, we
need a complete model. A few previous work targeting Android
apps builds the model by dynamically exploring apps. Although
dynamic exploration can provide more trustworthy information, it
is difficult to completely explore the behavior space [47], making
the generated model only cover a small range of the behavior space.
Therefore, researchers resort to statically analyzing apps’ binary
to generate the static model. However, applying static analysis
to i0S apps’ binary is non-trivial. State-of-the-art approaches [51,
59] perform data flow analysis directly on the disassembled code.
Considering there are some indirect jumps in app binary, where the
target address is stored in the memory and remains unknown until
execution [22], these approaches cannot resolve some data flow
paths correctly. For this reason, the accuracy of static analysis is
hampered, which makes the built model incomplete and inaccurate.
C2: Obtaining app context. During Ul testing, real-time app
context (i.e., name of app screens) is retrieved to guide test input
generation [45]. For example, we need app context to determine if
the last event causes a screen transition or enters a new state in the
model. For Android apps, adb [3], a tool provided by Google, can be
employed to retrieve the name of the current Activity. However,
there is an absence of such a tool for iOS apps.

In an iOS app, a view controller usually manages a screen of
content, which is analogous to the Activity in Android. Therefore,
we retrieve the name of view controller currently displayed on the
device screen as the app context. However, unlike Android where
an Activity represents a single screen, there can be multiple view
controllers comprising a screen of an iOS app. For example, Figure

59
60

61

63

64

65

66

67

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ISSTA 2023, 17-21 July, 2023, Seattle, USA

1a shows the home screen of the Speed-Test-Master app, and its
hierarchy is displayed in Figure 1b. The home screen consists of
3 view controllers, and the GUI managed by STHomeController
is displayed on the device. Considering that iOS developers can
use multiple view controllers to comprise a single screen in many
ways, it is challenging to determine the view controller which is
responsible for the GUI displayed on the device screen.

To address C1, we use simulated execution [66], which simulates
the code path execution on the emulator, to resolve the target of
each indirect jump. Then, we enhance static analysis to build a
complete model from apps’ binary. To address C2, we gain com-
prehensive knowledge about common patterns of organizing view
controllers by investigating Apple’s developer documentation and
forums [5, 18]. Based on it, we propose an approach to determine
the view controller which is responsible for the GUI displayed on
the device, so that we can obtain the real-time app context and map
it to the model. To improve test effectiveness, we design a potential-
aware search algorithm, which guides testing towards less traveled
paths according to the model and real-time app context.

We compare CydiOS with four state-of-the-art UI testing algo-
rithms (i.e., random, depth-first search, stoat [70], and ape [54])
on 50 popular apps downloaded from App Store. The result shows
CydiOS outperforms other algorithms. Specifically, it consistently
resulted in 24.2-154%, and 6.0-63.2% relative improvements over
the above four algorithms in terms of average screen coverage
and code coverage, respectively. In addition, we also evaluate the
enhanced static analysis in CydiOS on 20 open source iOS apps,
the result indicates it achieves 16% more precision and 35.6% more
recall than existing approaches. To measure the performance of
CydiOS driving the UI testing, we compare it with Apple’s native
Ul testing driver XCUITest [17] and Appium [31] which is a com-
mercial test automation framework. The result shows that CydiOS
has the lowest cost in dumping GUI and injecting test actions. To
further demonstrate the practical usefulness of CydiOS, we leverage
it to perform Ul fuzzing and detect privacy leakage in iOS apps.

Our major contributions are summarized as follows:

o To the best of our knowledge, we take the first step to investigate
the UI testing on i0S platform.

o We design a novel model-based UI testing tool named CydiOS,
which automates UI testing for iOS apps. We implement CydiOS
by carefully tackling several technical challenges.

o After extensive evaluation, the results show that CydiOS can
achieve both good screen coverage and code coverage. We also
demonstrate two use cases to show the applicability of our tool
in app fuzzing and privacy leakage detection.

2 BACKGROUND

In this section, we provide the necessary background about iOS UI
in §2.1, and introduce the language feature of Objective-C in §2.2,
which is the primary programming language for i0S app [24].

2.1 iOSUI

Window. Window is the top container for app user interface. Ev-
erything we can see on the device is in a Window [20]. Normally,
an iOS app has only one Window [37] at a time.

Anon.

View Controller. View controller (VC) represents a screen in the
iOS app, which is similar to Activity in Android. Screen transition
is the switch between two VCs. Every Window has a single VC
served as its root VC, which is initially displayed on it [30].
Container View Controller. To facilitate the transition between
VCs, iOS UI framework (i.e., UIKit [2]) provides container view
controllers, including navigation controller and tab bar controller.
Navigation controller internally maintains a stack to manage the
VCs to be displayed [33]. Only the VC at the top of the stack
will be displayed (i.e., when the Third View Controller in Fig-
ure 2a is displayed, it is on the top of the stack). App can invoke
pushViewController function to push a new VC onto the top of
the stack to navigate to it. On the newly presented VC, we can find
a back button that is automatically created by the navigation con-
troller for return back (see Figure 2a). Tab bar controller is another
commonly used container VC in iOS. It keeps its child VCs in an
array [34] and allows users to transit between different child VCs
by selecting the array index. For example, in Figure 2b, the index
for the currently displayed Item1Controller is 0.

Screen Transition Basically, there are three styles of transition
in i0S, namely Push, Tab, and Modal [36]. The Push and Tab tran-
sition can be achieved by utilizing container VCs (i.e., navigation
controller for Push style, tab bar controller for Tab style). Modal is
a bottom-up transition style that displays a separate screen to hide
the current app screen. For example, the ModalViewController in
Figure 2c is presented modally. Developers can invoke transition
APIs provided by Apple framework to trigger the screen transition.
We list the transition APIs in iOS in Table 1. Besides implement-
ing VC transitions in the code (by setting transition source and
destination in transition API), developers can create a segue ob-
ject by connecting two VCs in the layout files to add a transition
[40]. The segue object defined in the layout can be programmati-
cally triggered by invoking performSegueWithIdentifier (Segue
style).

Table 1: View Controller Transition APIs

Style | APIs

pushViewController, popViewController,

popToRootViewController, popToViewController
Tab addChildViewController

Modal presentViewController, dismissViewController

Segue performSegueWithIdentifier

Push

2.2 Message Dispatch Mechanism

Objective-C is the primary programming language for iOS [24],
and it is a dynamic language because all method calls are resolved
dynamically at runtime through the messaging dispatch function
objc_msgSend [23]. For example, in Figure 4, the code in Line 4
will be translated into the code in gray color by the compiler. Every
time the code in Line 4 is executed, the objc_msgSend function is
invoked under the hood to jump to the method implementation
(i-e., the implementation of doJump). Since all method invocations
are delegated by objc_msgSend, it is difficult to extract a complete
method call graph from the binary, which negatively affects further
static analysis.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

CydiOS: A Model-based Testing Framework for iOS Apps

418 - a18 -
First View Controller Item1 Controller

Modal View Controller

Corrior zo2am -

< eack Second View Controller

Carrior & zo2am -

<Eack Third View Controller

Accept
| |
. J Lllcml Item 2 J —_
(a) Navi VC. (b) Tab Bar VC. (c) Modal VC.

Figure 2: View Controller Hierarchy.

ONO —
@ —| Static Analysis [—
® ®
© Model Construction Module —_ njgde
Runtime Info e
Retriever
Code Counter|
Server
© Guided Testing Module Next Event Tweak

Figure 3: Architecture of CydiOS.

3 CYDIOS OVERVIEW

As shown in Figure 3, CydiOS consists of three modules:

@ Static Model Construction Module : Given an i0S apyp, it statically
analyzes the app’s binary and layout files to build the model (i.e., a
screen transition graph), so that Guided Testing Module can gener-
ate test inputs to trigger possible app behavior based on it. When
statically analyzing app’s binary, we perform data flow analysis
to identify transition target. Due to the indirect jump, data flow
analysis in existing practice is hampered because some data flow
paths cannot be resolved. To build a more complete and accurate
model, we employ a new technique named simulated execution to
the enhance existing static analysis for iOS app (detailed in §4).

® Run-time Retriever Module: During testing, it retrieves run-time
information including UT hierarchy and app context. Ul hierarchy
shows all the widgets displayed on the screen, which reflects all
feasible UI events that we can execute. App context is used to
map to a state in the model. The retrieved information will be
fed to Guided Testing Module. Based on it, we can guide the test
inputs generation to effectively explore the app. Run-time Retriever
Module retrieves the name of view controller (VC) displayed on the
screen as app context [45]. Since developers can organize multiple
VCs to compose a screen in different ways, we propose an approach
to identify the correct VC that is responsible for the GUI on the
device (detailed in §5).

® Guided Testing Module: We design a potential-aware search al-
gorithm to guide the testing based on the static model and run-time
information. To explore the app more effectively, we estimate the
potential of the widget to reach an unseen screen. Unlike existing

ISSTA 2023, 17-21 July, 2023, Seattle, USA

testing algorithms [45, 54, 70] that only measure the potential of
widget locally (i.e., by looking for the unvisited widgets in its next
screen), we estimate its potential globally in the whole model, so
that we can make a more optimal decision to guide the testing
towards untraveled paths (detailed in §6).

4 STATIC MODEL CONSTRUCTION MODULE

This module builds a static model to guide test generation based
on the app’s expected behaviors. The model is a directed graph
G = (V,E), where node set V represents the view controllers (i.e,
app screen), and edge set E represents transitions between view
controllers (i.e., screen transitions). We take two steps to generate
the model. First, we identify the source and destination view con-
trollers (VC) in each screen transition (§4.1). Second, we find the
widgets that trigger transitions so that we can label the edges in the
model (§4.2). When building the static model, we need to identify
the data flow between two VCs to detect a transition. However,
due to the indirect jump, existing work [51, 52, 54] is limited in
data flow analysis since they cannot identify some data flow paths.
To build a complete and accurate model, we leverage simulated
execution to tackle the problem.

4.1 Identifying Screen Transitions

Screen transitions can be implemented both in app’s code and in
layout files, we perform static analysis on them separately.
> Analyzing App Binary. Developers can programmably invoke
a VC transition API (listed in Table 1) to trigger a screen transition.
Therefore, we analyze transition APIs in app binary to find the po-
tential transition between two VCs. Specifically, we build the app’s
method call graph (MCG) and traverse MCG to identify VC transi-
tion APIs. Due to the language feature of objective-C, all method
invocations are transformed into the message by compiler (§2.2),
we need to resolve the actual target of function calls to make MCG
complete. In detail, we follow the existing work [51] to resolve the
call target and then add the corresponding edges to MCG. After
identifying transition APIs, we further determine their transition
source and destination screen so that we can add an edge to the
model. For each VC transition API, the source screen is the view
controller that invokes it, so we look for its caller in MCG. For
example, the source screen for the API in Line 6 is AController.
Since the parameter of API (i.e., target) stores the object represent-
ing the destination screen, we perform data flow analysis on it to
determine its value, so that the destination screen can be identified.
Previous approaches [51, 52, 59] directly perform data flow anal-
ysis on assembly/IR code, thus they cannot resolve the target of
indirect jumps. As a result, some data flow paths cannot be cor-
rectly resolved, leading to missing some VC transitions. To tackle
this problem, we employ simulated execution to execute the corre-
sponding code snippet on an emulator (i.e., Unicorn [38]) to resolve
the target of indirect jumps. Specifically, for the VC transition API
whose destination can not be determined through data flow analy-
sis, we first perform use-def analysis on its parameter to find the
instruction that defines it. Then, we conduct simulated execution
from the definition instruction to this API invocation. After that,
we read the value of API’s parameter to identify the destination of
this transition. For example, to determine the destination screen

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ISSTA 2023, 17-21 July, 2023, Seattle, USA

01 @implementation AController {
02 -(void)btniClick{
o3 BController *vcB = [[BController alloc] init];
04 [self doJump:vcB];}
de in @x04 will be compiled into
objc_msgSend(self= objc_getClass(@“AController”),
op= NSSelectorFromString(@“doJump”), ...=vcB)
05 =Guaid)dodump: (BController) target({
06 [self PresentViewController:target];}

Figure 4: Example VC Transition Code.

// CYButton.h

@interface CYButton : UIButton

01 @property (nonatomic,copy) void (~tapBlock)();//declare a block
// CYButton.m attach block to CYButton action

02 [self addTarget:self action:@selector((~tapBlock))];

@implementation CYController

@3 - (void)viewDidLoad {

04 CYButton *btn = [[CYButton alloc] init];

05 [btn addTarget:self action:@selector(onClick)]; // 1)

06 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(onClick)];

o7 [btn addGestureRecognizer:tap]; // 2)

08 btn.tapBlock = ~{

09 // screen transition};}

10 - (void)onClick {// screen transition}

Figure 5: Add an action to button programmatically.

UIStoryboardPushSegueTemplate
UIDestinationViewControllerIdentifier = AViewController

UIRuntimeEventConnection
UILabel = buttonAction:
UISource = UIButton

//action method

Figure 6: Reverse-engineered layout files.

of API in Line 6 of Figure 4, we first find the definition instruction
for target in Line 3. Then, we perform simulated execution from
Line 3 to Line 6 and read the register that saves target when the
execution reaches Line 6. Since the register usually holds a pointer,
by analyzing the memory data it points to, we can find that target
is an instance of BController.

> Analyzing Layout Files. Besides programmatically defining the
VC transitions in the code, developers can create a segue in the
layout files to connect two VCs. We use ibtool [19] to decompile
the layout files and then extract the VC transitions from them (i.e.,
from the SegueTemplate items, as shown in Figure 6).

4.2 Identifying Widget
We label each screen transition in the model with the widget that
triggers it, which guides the testing algorithm (§6) to perform tar-
geted testing by selecting the widget that navigates to the target
screen. In i0S app, each responsive widget (e.g., Button) is asso-
ciated with an action method, which is a callback to handle user
event. For example, the onClick in Line 10 of Figure 5 is an action
method, which will be executed when the user taps on button btn.
Therefore, we first find the widget that invokes transition API in its
action method, and then label the corresponding edge (i.e., screen
transition) in the model with it.

Since the action method can be set either statically in the layout
files or programmatically in code, we analyze them separately.

Anon

> Analyzing Layout Files. We retrieve the name of action method
on widget from layout files (e.g., from EventConnection items
shown in Figure 6) and then inspect the method implementation in
binary. By checking the control flow of action method, we deter-
mine if it invokes VC transition APL If so, we label the previously
identified screen transition in the model (§4.1) with that widget.

> Analyzing App Binary. Besides setting action in layout files,
developers can programmatically add an action to a widget in two
ways. First, as shown in Line 5 of Figure 5, developers can use
addTarget method to set the action on a widget. Accordingly, we
resolve the value of parameters target and action to connect the
widget to its action method leveraging techniques in §4.1. Second,
developers can attach the action to a gesture detector (Line 6) and
then add this gesture detector to a widget (Line 7) as the event han-
dler. Accordingly, we track the data flow from the gesture detector
(i.e., UITapGestureRecognizer in Line 6), to find the widget that
holds it. By doing so, we can connect the gesture action to widget
and label the corresponding screen transition with this widget.

In practice, instead of passing a defined method (Line 5 of Figure
5), developers can pass arbitrary action to addTarget with block,
which is an anonymous function in Objective-C (e.g., the right-hand
side of Line 8 is a block). To do so, developers first create a block
pointer tapBlock (Line 1) in CYButton, and set it as CYButton’s
action method (Line 2). After that, they can encapsulate the code
into a block and assign it to tapBlock (Line 8), so that CYButton’s
action method will point to this block of code. To handle it, based
on the observation that the block assignment (in Line 8) is done by a
method that is automatically generated by Apple’s framework (i.e.,
code in Line 8 will be compiled into [btn set_tapBlock_Block]),
we use a regular expression to find all block assignment methods.
Then, we perform data flow analysis on each block assignment
method to find the block implementation, which is further inspected
to determine whether it contains a transition API invocation.

5 RUN-TIME INFORMATION RETRIEVER

This module retrieves the necessary run-time information (i.e., Ul
hierarchy and app context), which is further used to generate test
inputs. In particular, we leverage UI hierarchy to find all feasible
Ul events (i.e., widget) on the screen, and app context to map the
run-time state to the corresponding state in the model. Then, our
exploration strategy (§6) can use the information to decide the
proper Ul events to be executed.

To obtain the app context, we capture the name of view controller
(VC) displayed on the device. Since developers can organize multiple
view controllers in different patterns to compose a single screen, we
propose an algorithm to identify the correct VC that is responsible
for the GUI on the device in §5.1. In model-based testing, for the
purpose of avoiding redundant tests, visited widgets need to be
recorded to keep the testing history [70]. Since the widget in iOS
doesn’t have attributes for uniquely identifying it, we propose a
new approach to uniquely label each widget (§5.2). Moreover, to
drive Ul testing, we introduce how CydiOS injects UI events in §5.3.

This module is implemented as an iPhone extension. We build
it using theos [32], a development tool integrated with Cydia Sub-
strate framework [10] which allows analysts to hook the code of
apps. Apart from capturing run-time UI information, to drive UI

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

tomwu

tomwu

tomwu

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

CydiOS: A Model-based Testing Framework for iOS Apps

testing, the module uses a built-in server to receive test commands
from host computer and injects corresponding Ul actions to apps.

5.1 Retrieving App Context

Since each state in the model denotes a separate view controller, to
map each run-time state to its corresponding state in the model, we
obtain the view controller displayed on the device, i.e., app context.

However, as the example in Figure 1, there can be multiple view
controllers organized in different patterns to compose a single
screen, therefore it is challenging to determine the correct VC that
is responsible for the GUI on the device, which complicates the task
of obtaining app context. For example, if the model built in §4 con-
tains a transition from STHomeController (in Figure 1) to another
VC. When the testing reaches the screen shown in Figure 1, if we
wrongly treat the BaseNavigationController as app context, we
cannot detect this transition according to the model. To mitigate
this problem, we identify the view controller that is responsible for
the GUI on the current screen and name it the topmost VC.

Specifically, we investigate Apple’s developer documentation
and forums [5, 18] to gain comprehensive knowledge about com-
mon patterns of organizing view controllers (see §2.1) and design
Algorithm 1 to identify topmost VC. Specifically, we first obtain the
current displayed Window (Line 2), which is the top container for
the app UI (§2.1). Then, we traverse the view controller hierarchy
on it from its root view controller (Line 3). As we find there are 3
common patterns to present a VC on the device, during the traverse,
@ if the current VC is a container VC (e.g., Figure 2a, 2b), since it
contains multiple child VCs, we invoke the related API to obtain
the VC currently displayed by it (Line 7 and Line 9). For example,
if the current VC is a Navigation controller, we obtained the VC
which is currently at the top of the navigation stack by invoking
topViewController. @) If the current VC separately displays a
modal VC on its top (e.g., Figure 2c), we obtain the pop-up modal
VC by invoking presentedViewController [35] (Line 11). @ In
practice, we find developers can also implement custom container
by adding child VCs to a normal VC (e.g., UIViewController).
Therefore, in Line 13, we will retrieve the current displayed child
VC in the custom container [9]. By iteratively repeating this process,
we can identify the topmost VC, which is responsible for the GUI
on the current screen.

After determining the topmost VC of the current screen, we
recursively traverse its subviews to dump the UI hierarchy on the
screen, which reflects all feasible UI events. During traversing, we
filter out the invisible widgets (i.e., whose x coordinate of its top
left corner exceeds the screen width, the isHidden attribute is true,
or the height is zero).

Since the makeKeyAndVisible method defined in UIWindow gets
fired when app is launched and is executed in the main thread (i.e.,
UI thread), we hook it to retrieve the app run-time information.
Specifically, we create a timer task to periodically retrieve the run-
time information and synchronize it with host computer. The time
interval can be adjusted by users. Currently, our iPhone extension
captures app context and UI hierarchy including widget’s class
name, type, size, location, text, and screenshot. To offload work
from UI thread (i.e., main thread), our iPhone extension does IO
(file and network IO) operations in low priority threads.

ISSTA 2023, 17-21 July, 2023, Seattle, USA

[CYButton a] [UILabel] [CYButton b] [CYButton c]

Figure 7: UI hierarchy of AController.

5.2 Labeling UI Element

After dumping the UI hierarchy, we need to uniquely label each UI
widget within it for the purpose of recording the testing history
by saving the unique ID of visited widgets. The recorded testing
history can be used by the testing algorithm (§6) to guide testing.
For example, we can determine if a UI widget has been explored
before, or whether it will navigate to another screen.

Previous work [71] simply uses some attributes of widget as the
identifier, such as accessibility id and Label, which cannot
be used to uniquely identify all widgets in the app. Specifically, in
practice, we find that most developers leave the accessibility
id blank, while the Label attribute is not available in non-texture
Ul elements (e.g., ULImageView).

To tackle the problem, we design a new approach to gener-
ate a unique label for each widget. Specifically, we label each
widget with the screen name and its path in the UI hierarchy
of this screen. For example, Figure 7 displays the UI hierarchy
of AController. To label CYButton b, we trace the path from
the root view (i.e., UIWindow) to it, and then concatenate class
names of views in the path. That is, the label for CYButton b is
<AController,UIImageView/CYButton>.

However, in some cases, a parent view can have several child
views of the same class, making it hard to distinguish between
them. For example, the two children of UIView have the same
type CYButton, we cannot differentiate them through class name.
To address the issue, we first put child views into different lists
according to their types, so that we can use the index in the list to
uniquely label each child view. For example, the label for CYButton
b would be <AController,UIView[@]/CYButton[1]>.

Since UlTableview can reuse cells within it, we cannot use in-
dex to uniquely label each cell. For example, in Figure 8, each
UITableViewCell which represents a single blue row in the table,
is a child view of the UlTableview. At first, the index for “Cell 0” is
0. If we vertically scroll the table and scroll out “Cell 0%, at this time
“Cell 1” is on the top and the index for it becomes 0. As a result, it
causes “Cell 1” to be misidentified as “Cell 0%, although these two
cells can have different functionalities. To handle the case, we use
the row in the table to differentiate them instead of using index.

5.3 Injecting Ul Events

CydiOS injects UI events to drive Ul tests. Specifically, we integrate
PTFakeTouch [26], a user action simulation framework, into our
iPhone extension. For the common widgets (e.g., UIButton and
UIImageView), we inject click events on them. For UIScrollView,
we simulate a scroll action. For widgets like UISearchBar that
receive user textural input, we feed them a random string by directly
modifying their text attribute.

525
526
527
528

529

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

581
582
583
584

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

ISSTA 2023, 17-21 July, 2023, Seattle, USA

Figure 8: Reusing table cells.

Algorithm 1: Retrieve the top most view controller

1 function findTheTopMostVC()

2 keyWindow = [UIApplication sharedApplication].keyWindow;
3 rootController = keyWindow.rootViewController;

4 topMostVC = rootController;

5 while true do

6 if topMostVC is NavigationController then

7 ‘ topMostVC = [topMostVC topViewController];

8 else if topMostVC is TabBarController then

9 ‘ topMostVC = [topMostVC selectedViewController];
10 else if topMostVC has presentedViewController then

11 ‘ topMostVC = [topMostVC presentedViewController];
12 else if [topMostVC.childViewControllers count] > 0 then
13 topMostVC = [[topMostVC childViewControllers]

lastObject];

14 else

15 L break;
16 return topMostVC

17 End Function

Apart from that, we also handle some unusual events since they
can potentially interrupt UI testing. For example, when tapping on
the search bar, the keyboard will pop up automatically, which actu-
ally creates a new window situated at the top of screen, preventing
us from capturing the current UI hierarchy and app context. To
handle it, our iPhone extension hooks willMoveToWindow, which
gets fired when the keyboard is popped up, so that we can invoke
dismissKeyboard API to dismiss keyboard from the screen.

6 POTENTIAL-AWARE UI TESTING

To facilitate UI testing, we propose a potential-aware exploration
algorithm that guides UI exploration effectively. Specifically, we
define the metric exploration score (ES) of a widget as its potential
to discover an unseen screen. The potential for a widget to reach
a new screen is two-fold. One is that it can directly navigate to a
new screen (e.g., widget al in Figure 9 directly navigates to Screen
B.), and the other is that it can indirectly reach the new screen (e.g.,
widget al is on a path toward screen E). Unlike previous work [54,
70] which only considers the potential of direct exploration, we
also measure the potential of indirect exploration, thus we can
perceive the widget’s potential globally in the model and guide the
testing more effectively. The exploration process is optimized by
cherry-picking widgets for testing according to ES.

Anon.

B @ @ @ @ @

——— >
ES. Sereen C Screen D

Screen B

@B ®

b3,

Figure 9: Dynamic transition graph. Rectangle node represents a
screen, elliptical node represents a widget. solid line without arrow
indicates a subordination between screen and widget, solid line arrow
indicates the screen transition. Grey screens and widgets have been
explored by testing,.

In a nutshell, our algorithm is roughly comprised of three steps,
including @ estimating the ES of widgets, @ selecting widgets for
testing, and @ updating the ES of contextual widgets.

O Estimating ES of widget. When reaching a new screen A, for
each widget vy on it, we estimate its ES as:

L, (ASB)eTq

ESk=1p ALZOATH %0, @
d, Tq =0,
where T4 represents a set containing all unexplored transitions
from A.

If vy is identified to trigger a new transition from A to another

screen, say B, according to static analysis, we set its ES to be 1. If
ok is not identified to trigger a transition but there are still unex-
plored transitions from screen A (i.e., T4 # 0). we set its ES as
an empirical parameter p. The optimal empirical parameters may
vary for different types of widgets, because some widgets such
as UIButton are more interactive and tend to trigger a transition.
We learn the empirical parameters for major widget types in iOS
from an app set comprised of 50 representative iOS apps. When all
statically detected transitions from screen A have been triggered
(i.e., T# = 0), we specify v to be a small value § in case there may
be a few false negatives in static analysis.
0 Selecting widgets for testing. After estimating the ES of wid-
gets on the screen, We select the widget for testing using the e-
greedy strategy, which is a common strategy to balance exploration
and exploitation in reinforcement learning [67]. Specifically, the
widget v; will be selected with the probability

€
1—€+—, v;=arg max ESj,
A T e R
pPi=1q . @)
— otherwise.
[A

The value of € is set as 0.2 by default. To test the selected widget,
we employ the iPhone extension to inject an action (click or scroll)
on it according to its type. If the selected widget fails to trigger a
transition, we update its ES to 0.

® Updating the ES of contextual widgets. After ESes of new
widgets have been estimated (see @) or the ES of a tested widget
has been updated (see @), we also need to update ESes of their

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

CydiOS: A Model-based Testing Framework for iOS Apps

contextual widgets. Formally, we update ESes of contextual widgets
in a recursive fashion. Without loss of generality, assume that v; is
a widget on the screen S; and clicking on v; triggers the transition

o
to Sy, ie., St A S,. We update the ES of v; as

Yj
ESj=n Z piES; forov; € S AS1 = S, ®3)

v; €S,

where 1 is a discount factor and p; is the probability that v; on
screen Sz will be selected using a e-greedy strategy.

By iteratively repeating the process described in Eq. (3), we can
propagate the potential change of a widget throughout the whole
model. It enables us to reach deeper app space, because the potential
of widgets in deep space will also be perceived. Taking an example
from Figure 9, after exploring b2, the testing reaches screen E. Then
we first update the ES of b2. Since al and a2 can navigate to Screen
B where b2 is on, we also update their ES.

During the testing, if the app enters an unseen screen, we will
add this transition to the model. Therefore we can dynamically
refine the model.

7 EVALUATION

We evaluate CydiOS by answering 4 research questions (RQs).
RQ1: Can CydiOS accurately build the model for iOS app?

RQ2: Can CydiOS accurately identify the current app context?
RQ3: Can CydiOS achieve higher coverage than existing work?
RQ4: Can CydiOS drive testing more effectively than existing work?

7.1 Environment Setup

Four jailbroken devices are used in the experiments: an iPhone
6s (10S 10.3.1), an iPhone 6s (11.2.6), an iPhone 7 (13.3.1), and an
iPhone SE (13.4.1). The host computer is an iMac with 8 cores and
32 GB memory. Devices and host computers connect to the same
local WiFi for communication.

7.2 RQ1: Model Construction

Methodology. To evaluate the model generated by CydiOS, we
randomly download 20 open-source Objective-C i0S apps from the
list [8]. When downloading apps, we skip those that we cannot
build. For each downloaded app, we use Xcode to build it for armé4
architecture, and apply our static analysis to the app’s binary to
extract static model. By manually reading source code and layout
files, we get ground truth and compare with the generated model.
Result. Table 2 lists the experiment results. Cruiser represents
the model we generated by following the previous approaches (i.e,
analyzing the assembly code) [51, 59]. "Transition" column repre-
sents the screen transitions discovered by tools. "Widget" column
represents the widget that triggers screen transition. On average,
the precision of CydiOS in identifying VC transitions reaches 100%,
and the recall reaches 94.9%. The precision in identifying widgets
is 95.5% and the recall is 76.3%. The reason for precision loss is:
(1) Some apps have action methods (e.g., onClick in Figure 5) with
the same name, we don’t try to distinguish them. Consequently,
the wrongly correlated action method leads to false positives. The
reasons for recall loss are: (1) Some methods defined in UIKit are
not implemented in app code so we cannot simulate their execution,

ISSTA 2023, 17-21 July, 2023, Seattle, USA

Table 2: Compare the model built by CydiOS and Cruiser.

App Cruiser CydiOS
Name Transition Widget Transition Widget
Precison Recall [Precison Recall | Precison Recall | Precison Recall
XCFApp 34/41 34/78 21/27 21/83 75/75 75/78 77/83 77/83
SXBaiduDoctor 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8
HPYZhiHuDaily 5/8 5/9 6/7 6/9 9/9 9/9 8/8 8/9
Pica 42/51 42/65 33/36 36/59 62/62 57/65 51/53 51/59
LovePlayNews 18/18 18/25 8/10 8/20 25/25 25/25 11/13 11/20
UCToutiaoClone 717 717 6/6 6/6 717 717 6/6 6/6
OpenEyesDemo 5/8 5/15 2/6 2/8 13/13 13/15 8/8 8/8
DpWeibo 13/18 13/33 6/10 6/27 31/31 31/33 20/21 20/27
whatsapp-ios 1/1 1/1 11 11 1/1 1/1 11 11
ToDoList 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
Timi 10/11 10/15 6/8 6/11 15/15 15/15 10/10 10/11
DDNews 6/6 6/7 6/6 6/7 77 7/7 717 717
WhatsUrName 2/3 2/5 1/2 1/4 5/5 5/5 4/4 4/4
loveFreshPeak 3/3 3/4 2/3 2/4 4/4 4/4 3/3 3/4
DAudiobook 13/15 13/15 8/9 8/14 15/15 15/15 13/13 13/14
Shop-for-i0S 11/11 11/25 9/10 9/25 18/18 18/25 18/18 18/25
Concentration 4/7 4/8 8/8 8/8 8/8 8/8 8/8 18/25
Nebula 22/31 22/43 15/21 15/39 41/41 41/46 27/30 27/39
ZFCityGuides 5/5 5/11 4/6 4/11 11/11 11/11 8/8 8/11
eyepetizer 14/19 14/25 8/10 8/21 24/24 24/25 18/18 18/21
82.7% 56.2% 80.8% 43.1% 100% 94.9% 95.5% 76.3%

resulting in the incomplete data flow. (2) When performing inter-
procedure def-use analysis, some data flow cannot be identified due
to indirect jump. As a result, we cannot find the target instructions
to start simulation execution, causing false negatives.

False negatives in Cruiser are mainly caused by the indirect
jump, and false positives in Cruiser are mainly caused by the impre-
cise reference analysis. In the following example, the return type
of the method instantiateViewControllerWithIdentifier is
a UIViewController pointer. When resolving vc (which is a
AVC pointer), Cruiser analyzes the allocation on the right-hand
side to determine its type, and thus it mis-identifies vc as a
UIViewController pointer. Similarly, false negatives are also gen-
erated when widgets are initialized with the method loadNibNamed.
We use simulated execution to handle these special cases.

1 AVC xvc = [Storyboard
instantiateViewControllerWithIdentifier:@"AvVC"];
2 [self presentViewController: vc]

Compared with previous approaches, the model built by Cy-
diOS is more complete and accurate, which proves that simulated
execution significantly enhances static analysis.

Answer to RQ1: Cydi0S achieves a high precision and recall
when building the model.

7.3 RQ2: App Context

Methodology. We re-use the apps in §7.2 to evaluate whether
Cydi0s can identify the correct view controller which is responsible
for the GUI on the device (i.e., the topmost VC). For each app, we
randomly go through 3 screens, and then use Cydi0s to identify the
name of topmost VC. By manually reading apps’ source code and
using the "debug view" functionality of Xcode, which can inspect
view controller hierarchy on the screen, we can determine the
topmost VC on the screen and validate the result of Cydi0s.
Result. CydiOS can identify the topmost VC for 20 X 3 screens. The
precision is 100%, which proves that Algorithm 1 is effective.

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816

817

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

870

ISSTA 2023, 17-21 July, 2023, Seattle, USA

Answer to RQ2: Cydi0Ss can correctly identify the top most VC
on the screen as app context.

7.4 ROQ3: Testing Coverage

Methodology. To study the effectiveness of Cydi0S, we compare it
with the commonly used DFS testing strategy [45, 69] and Fastmon-
key [14], an open source tool that injects random events into iOS
apps, resembling Monkey in Android [39]. In addition, we adapt
state-of-the-art techniques on Android, stoat [70] and ape [54], ac-
cording to their source code. We compare Cydi0S with these tools
with regard to both app screen coverage and code coverage on
50 popular apps from App Store. Note that, higher screen cover-
age strongly indicates a thorough exploration of app space, while
higher code coverage indicates a more complete testing of app func-
tionalities. In detail, we run each tool 3 hours for each app. For
stoat, following the original settings, we assign 1 hour for model
construction and 2 hours for Ul testing. To reduce the measurement
bias, we run each app 3 times and calculate the average result.
App Selection. We downloaded 50 apps in 23 categories from
Apple Store to guarantee the comprehensiveness of testing. Note
that, we only select the apps developed in Objective-C language. To
this end, we search "swift" in app’s symbol table [11] for filtering.
Meanwhile, we skip the apps in the browser and game categories.
To avoid potential legal risks, we also skip the apps which require
a phone number or credit card to sign up with. The app list can be
found in our github repository.

Code Coverage Measurement. Although Apple provides a built-
in support in Xcode for code coverage to assist the unit tests of open-
source app [27], there lacks a tool to measure the code coverage for
iOS app binary. To address this issue, since all method invocations
are executed by the messaging dispatch function objc_msgsend
(introduced in §2.2), we leverage the method swizzling technique
[6, 28] in Objective-C to dynamically instrument objc_msgsend to
log all executed methods. Thus, we can measure how many app
methods are covered by the testing.

Screen Coverage Measurement. To count the total number of
screens in an app, we first use class-dump [7] to extract the header
files from the app, and then look for the class that implements
UIViewController, which is the base class for all custom VCs.
Result. Figure 10 illustrates the measurement results. "DFS" denotes
the tool that adopts depth-first search strategy on our extension. In
Figure 10a, we plot the mean of screen coverage minute-to-minute.
We discover that Cydi0s is very efficient in covering new screens.
The screen coverage of Cydi0S grows much faster than the other
three tools. Figure 10b details code coverage trends of different tools.
We count the number of executed methods in apps. We notice that
the result is consistent with Figure 10a. Cydi0S shows a significant
advantage in testing effectiveness compared with other tools.

Due to lack of guidance, random strategy generates many repet-
itive and redundant test events, resulting in poor performance.
Since DFS strategy always gets stuck in deep states, it cannot ex-
plore other paths, leading to low coverage. Specifically, "DFS" only
restarts the app until it is crashed or in the background (e.g., navi-
gate to the browser after clicking an ad), it rarely gets out of the
current navigation path and moves to a new path. Even worse,
within a single screen, many widgets can navigate to the same

Anon.

—— FastMonkey
05 = DFS
Cydios
— Stoat
—— APE

Screen Coverage

02

o1

0 25 50 g 100 125 150 175
Time (minutes)

(a) Screen coverage.

—— FastMonkey
045 = DFS

Cydios —
— Stoat
—— APE —

Code Coverage (Methods)

015

0 2 50 75 100 125 150 175
Time (minutes)

(b) Code coverage.
Figure 10: Testing result on 50 apps.

target. For example, on the home screen of a news app, clicking on
different news goes to the same screen with different news content
loaded. Therefore, for each news, "DFS" has to repeatedly go to the
same "news detail" screen and explore all the widgets on it.

The reason why stoat did not has a good performance is three-
fold. First, stoat cannot build a dynamic model effectively for iOS
apps and therefore fails to provide an effective guide to UI test-
ing. When constructing the dynamic model, Stoat only considers
executable widgets (e.g., Button). However, it cannot distinguish
executable widgets from non-executable widgets (i.e., the widget
that cannot be interacted with) in iOS apps, so it wastes much time
exploring non-executable widgets. Meanwhile, since stoat gives
"Back" button the lowest priority (the intent is to explore all exe-
cutable widgets on a screen and then go back), it will get stuck in
a path during the model construction. Second, when performing
the UI testing, the event sequence length of test input generated
by stoat is only 20, which is not enough to reach deep app states.
Third, stoat wastes much time restarting apps and many test bud-
get is spent on the initial screens. Since we learn the potential of
each widget type empirically, Cydi0S are more likely to click the
executable widgets. Meanwhile, Cydi0S only restart the app when
the app crashes or in background, it can spend more test budget on
exploring unvisited app space.

Although ape generates a longer event sequence (i.e., 300), it em-
ploys a greedy strategy rather than perceiving the widget potential
globally. Also, ape is not able to identify the executable widgets.
For these reasons, the performance of ape is worse than Cydi0s.

Moreover, we study the reasons why Cydi0S cannot reach some
screens and execute some code. The main reason is that some

871

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

CydiOS: A Model-based Testing Framework for iOS Apps

screens are inaccessible until the precondition is satisfied. For exam-
ple, we are allowed to visit the screen that holds premium features
only if we buy a VIP service. Meanwhile, some apps require a valid
and meaningful textural input to go to the target screen and show
the content correlation with user input. For example, on travel apps,
we need to feed the name of a real city to the search bar, so that we
can see the tourist information. Some apps have a weak network
connection to the remote server, which causes the screen cannot
be loaded, making CydiOS click on the "Back" button.

Answer to RQ3: CydiOS can achieve both higher screen cover-
age and code coverage compared with representative algorithms.

7.5 RQ4: Performance

Methodology. To validate if our iPhone extension can capture
the UI hierarchy on the screen accurately and drive UI testing
effectively, we compare it with Apple’s native driver XCUITest, and
a commercial Ul testing framework Appium. We randomly choose 5
open-source apps. For each app, we randomly choose 3 screens and
run three different UI drivers. We measure the time it takes these
drivers to dump the UI hierarchy of the app screens, and to inject
a click event on the screens. We also compare the UI hierarchies
extracted by these three drivers. To get the ground truth, for each
app, we use the "debug view" functionality provided by Xcode to
capture the target UI Hierarchy.

Table 3: Compare the performance of CydiOS with other tools.

App Screen XCUITest Appium CydiOS
Name dT e T Ele dT e T Ele d_t e T Ele
1 0.127 0.227 21 0.862 0.275 21 0.051 0.014 21
XCFApp 2 0.146 0.236 30 1.198 0.283 30 0.045s 0.013 30
3 0.115 0.190 12 0.604 0.290 12 0.043 0.017 12
1 1.223 0.719 442 16.02 0.462 442 0.031 0.024 58
DPWeibo 2 0.137 0.193 22 0.566 0.270 22 0.015 0.008 22
3 0.991 0.368 365 12.30 0.3984 365 0.033 0.012 47
1 0.629 0.478 213 14.75 0.793 213 0.058 0.010 57
DDNews 2 0.974 0.741 420 20.66 0.893 420 0.063 0.007 64
3 0.114 0.205 16 0.653 0.280 16 0.031 0.005 16
1 0.138 0.212 31 0.982 0.286 31 0.050 0.027 31
LoveNews 2 0.368 0.239 51 1.937 0.291 51 0.058 0.027 51
3 0.149 0.217 21 0.930 0.282 21 0.043 0.026 21
1 0.106 0.182 8 0.403 0.253 8 0.027 0.006 8
Diary 2 0.122 0.191 20 0.518 0.293 20 0.040 0.010 20
3 0.132 0.202 15 0.377 0.274 15 0.044 0.014 7

- d_T represents the time to dump UI hierarchy, e_T represents the time to execute a Ul action.

- Ele represents the number of widgets in the UI hierarchy dumped by these tools.

Result. Table 3 reports the experimental results. The results show
that CydiOS requires a minimum of time to take an action, which
indicates it is able to run the test effectively. XCUITest uses a client-
server architecture, it consumes extra time to deliver the command
from the script running on our computer to the device. Considering
the command from Appium script is first transferred from the
Appium server to WDA, then from WDA to XCUITest, Appium
takes more time to execute a command.

Meanwhile, we discover that Cydi0S has higher efficiency in
dumping Ul hierarchy. It is surprising that Cydi0S outperforms Ap-
ple’s native driver XCUITest. The reason is that XCUITest in practice
dumps many widgets that are invisible on current screen. For exam-
ple, the DPWeibo(a Twitter-liked app) only displays 2 tweets on the
device. However, the Ul hierarchy dumped by XCUITest contains
137 tweets. From the text attributes of these twitters, we find that
they are the tweets to be shown after a swipe down. Another ex-
ample is Diary app, we find that the widgets on the covered screen

ISSTA 2023, 17-21 July, 2023, Seattle, USA

23

20

15

10

The number of apps

2
1 1

EXC_CRasy EXC CRasy EXC_BAD accrsdXC_BAD AccessEXC_BREAKPOY, #00000020
(SIGABRT) (SIGKILL) (5’GS‘EGV;ES§ (SIGBUS) foe (SIGTRAP) T

Figure 11: Fuzzing result.

(e.g., Figure 2c) will also be dumped by XCUITest. Therefore the
XCUTITest has to process more redundant widgets (e.g, invisible wid-
gets) to build the UI hierarchy. For Appium, which runs XCUITest
as the backend, it takes more time to dump UI hierarchy. Besides
the cost on message transfer, the main reason is that Appium takes
many efforts to parse the UI hierarchy obtained from XCUITest. It
decodes the data and generates XPath for each widget, which is
very time-consuming. As shown in Table 3, the time for Appium
to dump a UI hierarchy increases corresponding to the number of
widgets within it. Since the UI hierarchy from XCUITest contains
many redundant widgets, it could explain why Appium performs
worse than Cydi0S while we also generate an XPath-liked identifier.
This is also the reason why Appium on iOS runs tests slower than
on Android platform, given that Appium on Android is based on
UiAutomator [41], which will not dump the widgets that are not
displayed on the current screen. This experiment also shows the
benefits of Algorithm 1 (i.e., to identify top most VC), which not
only identifies the correct app context, but also helps dump the
correct UT hierarchy.

Answer to RQ4: Cydi0s can effectively drive Ul testing com-
pared with other testing frameworks.

8 APPLICATION

We further present two use cases to demonstrate CydiOS’s practical-
ity in finding bugs(§8.1) and detecting users’ personal information
leakage in iOS apps(§8.2).

8.1 Fuzzing

We randomly download 200 apps developed in OC from Apple Store.
For each app, we run CydiOS to test it for 1 hour. We detect the
bugs by capturing app’s crash log through Xcode [16] and manually
analyzing the stack trace in the log to check if the crash is caused
by app code. The result is shown in Figure 11. CydiOS detects 37
bugs crashes from 32 apps in 6 exception types. The most common
exception type is EXC_CRASH (SIGABRT), which is most likely
to be caused by some unhandled exception in the code. We have
reported these crashes to developers. The testing result shows the
promising ability of CydiOS in UI fuzzing.

8.2 Privacy Leakage Detection

Tracking libraries are widely used in iOS apps to collect user data for
user profiling. Compared with Android [62, 72], little has been done
to study user information leaked to tracking libraries in i0S. While

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

ISSTA 2023, 17-21 July, 2023, Seattle, USA

dynamic analysis is an effective way to learn data leakage, due to the
absence of an automated Ul testing tool for iOS, the recent work [58]
only analyzes network traffics at application launch time. CydiOS
can facilitate dynamic analysis to detect more privacy leakage.
We use HKET app as an example, which uses Google Analytics
for user tracking. We first read the online documentation provided
by Google Analytics to find all tracking APIs, through which de-
velopers can pass user data to it. After that, we use Frida [12] to
hook these APIs and use CydiOS to run the app for 30 minutes. By
analyzing the log, we find it leaks user behavior (e.g., visited screen,
purchase information) and device ID to Google Analytics.

9 RELATED WORK

9.1 Automated Ul Testing for Mobile Apps

Model-based Testing. Model-based testing drives the test genera-
tion according to the constructed model. Since the accuracy and
completeness of model is important to the correctness of test gener-
ation, many efforts have been made to model construction. A3E [45],
Gator [75] build a static window transition graph(WTG), which may
contain infeasible transition due to the over-approximation of static
analysis. Stoat [70], APE [54],MobiGUITAR [43],DroidBot [60] use
the information monitored at runtime to build model. However, the
built model is incomplete since dynamic execution cannot guar-
antee coverage. ProMal [61] is a hybrid approach, which applies
dynamic analysis to verify the static WTG, and leverages machine
learning to predict unverified transitions.

Testing strategy is another important component for MBT. Mobi-

GUITAR [43],DroidBot [60],GUIRipper [42] simply use depth-first
strategy to explore the model space, thus their performance is
limited. Stoat [70] adopts a probabilistic fuzzing strategy. It dis-
tributes different probabilities of being selected for the widgets
in the model, and generates optimized test inputs by iteratively
evolving the model.
Search-based testing. Some researchers adopt search based testing
to explore and optimize test inputs. Sapienz [65] employs a genetic
algorithm that optimizes randomly generated tests to maximize
code coverage and fault revealing. EvoDroid [64] uses evolutionary
algorithms that generate more complex test sequences to reach the
deep point in app. ACTEVE [44] applies concolic testing to identify
valid Ul events to explore more code branches.

9.2 Existing iOS Ul Testing Frameworks

UlIAutomation [29] is a native framework provided by Apple, which
provides convenient APIs to help testers to write test cases. With
UlAutomation deprecated from XCode8, Apple replaces it with
XCUTITest framework [17]. Based on it, Facebook proposes a Web-
Driver server named WebDriverAgent (WDA) [13], which invokes
XCUITest framework to achieve remote control of iOS devices.
While the master branch of WDA is archived by Facebook, Appium
[31] creates a forked branch and uses WDA to proxy the test com-
mands from Appium script to XCUITest framework. EarlGrey [73]
is another UI testing framework based on the XCUITest, developed
by Google. It provides strong UI synchronization to enhance the
test stability. However, all these tools requires human-implemented
scripts, which makes them inefficient. Because writing test scripts

10

Anon.

can be labor-intensive and the quality of scripts cannot be guaran-
teed. Meanwhile, all these frameworks cannot retrieve app context
information to map the current app state in the model, thus cannot
be applied to model-based testing.

9.3 iOS Analysis

PIOS [51] generates a control-flow graph for iOS app, and performs
reachable analysis on it to detect privacy leaks. Based on PIOS,
Cruiser [59] build a view controller graph to detect hidden screens
in Crowdturfing apps. iRiS [50] combines static analysis with binary
instrumentation to detect private APIs misuse. Chen et al. [48]
identify potentially harmful iOS libraries by comparing their API
sequences with Android counterparts. Feichtner et al. [52] lift iOS
binary to LLVM IR, and apply static analysis to IR code to find
improper usage of cryptographic APIs.

9.4 Cross-platform Test-cases Migration

Some works focus on cross platform test-cases mitigation. Qin et
al. [68] propose a framework, namely TestMig to mitigate the i0S
test cases to Android platform. In detail, to map the Ul events, it
calculate the similarity between iOS UI controls and Android UI
controls based on the UI control attributes (e.g., ID, label). While
TestMig is only allowed to generate test inputs for Android apps,
Talebipour et al. [71] presented MAPIT for bi-directional test case
transfer. MAPIT can automatically translate the source test script
(Appium, Robot [25]) into the script for target platform. It uses Ap-
pium to extract the Ul hierarchy and map the Ul event by calculating
the visual and textual similarity of the widget on the screen.

10 THREAT TO VALIDITY

In this work, we identified the following major threats to validity.
(1) Intrusiveness: The iPhone extension in CydiOS works on jail-
broken iPhones and hooks app to retrieve runtime information.
However, in practice, we find some apps either implement jailbreak
detection or enable anti-hook protection. To mitigate this threat,
we can leverage the tools (e.g., shadow [1]) to bypass the detection.
(2) Textual input: Some widgets like search bar, receive user textual
input. In this paper, we simply feed them a meaningless string.
However, in some cases, it cannot meet the condition (i.e., input
should be a city name) and trigger app behaviors, thus reducing
the testing effectiveness. In the future, we will follow previous
work [65] to extract statically-defined strings in the app, which
proves to improve the performance of search-based testing for web
app,and use these strings as textual input.

11 CONCLUSION

Automated Ul testing is a popular method to inspect app’s func-
tionalities and improve its reliability. In this paper, we take the
first step to study the Ul testing on iOS platform. Specifically, we
propose CydiOS, a model-based testing tool for iOS app. CydiOS
builds a static model for target app via an enhanced static analysis.
During the testing, we use an iPhone extension to retrieve runtime
information, which is further used by a potential-aware search
algorithm to guide testing effectively. Our evaluation results on
real world apps show that CydiOS can achieve both good screen
coverage and code coverage.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

CydiOS: A Model-based Testing Framework for iOS Apps

REFERENCES

(1]
(2]
(3]

(18]

[25]
[26]

[27]

[28]
[29]

[30]

[31]

[32]
[33]

[34]
[35]
[36]

[37]

[38]

2022. A jailbreak detection bypass for modern iOS jailbreaks. https:/https:
//github.com/jjolano/shadow/.

2022. A lightweight and modular front-end framework for developing fast and
powerful web interfaces. https://getuikit.com/.

2022. Android Debug Bridge (adb). https://developer.android.com/studio/com
mand-line/adb.

2022. App Review. https://developer.apple.com/app-store/review/.

2022. Apple Developer Forums. https://developer.apple.com/forums/.

2022. Brief discussion about i0S swizzle . https://juejin.cn/post/6844903856497
754126.

2022. class-dump: Generate Objective-C headers from Mach-O files. https:
//github.com/nygard/class-dump.

2022. Collaborative List of Open-Source iOS Apps . https://github.com/dkhamsi
ng/open-source-ios-apps.

2022. Current ChildView Controller. https://stackoverflow.com/questions/1440
5490/current-childview-controller/.

2022. Cydia Substrate. http://www.cydiasubstrate.com/.

2022. Detect if iOS App is written in Swift. https://stackoverflow.com/question
$/32882208/detect-if-i0s-app-is-written-in-swif't.

2022. Dynamic instrumentation toolkit for developers, reverse-engineers, and
security researchers. https://frida.re/.

2022. Facebook WebDriverAgent. https://github.com/facebookarchive/WebDriv
erAgent/.

2022. Fastmonkey. https://github.com/zhangzhao4444/Fastmonkey.git.

2022. Global Premium Smartphone Market Sales Reach Highest Ever in
2021. https://www.counterpointresearch.com/global-premium-smartphone-
market-2021/.

2022. How to view crash reports in XCode. https://stackoverflow.com/question
$/69123921/how-to-view-crash-reports-in-xcode.

2022. introduction to ios test automation with xcuitest.
//testautomationu.applitools.com/introduction-to-ios- test-automation-
with-xcuitest/chapter1.html/.

2022. i0S App Dev Tutorials. https://developer.apple.com/tutorials/app-dev-
training/.

2022. iOS Interface Builder utility, implemented in python. https://github.com/d
avidquesada/ibtool.

2022. i0S UIWindow. https://developer.apple.com/documentation/uikit/uiwind
ow.

2022. iPhone Users and Sales Stats for 2022. https://backlinko.com/iphone-users/.
2022. Jump with Indirect Operand. http://www.c-jump.com/CIS77/ASM/FlowC
ontrol/C77_0040_jump_indirect.htm.

2022. objc_msgsend. https://developer.apple.com/documentation/objectivec/145
6712-objc_msgsend.

2022. Programming with Objective-C: About Objective-C. https:
//developer.apple.com/library/archive/documentation/Cocoa/Conceptual
/ProgrammingWithObjectiveC/Introduction/Introduction.html.

2022. robot framework. https://robotframework.org/.

2022. Simulate touch events for iOS User mode. https://github.com/Ret70/PTFak
eTouch.

2022. Testing with Xcode Code Coverage. https://developer.apple.com/library/
archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/cha
pters/07-code_coverage html.

2022. The Right Way to Swizzle in Objective-C. https://newrelic.com/blog/best-
practices/right-way-to-swizzle.

2022. The UlAutomation Driver for iOS. http://appium.io/docs/en/drivers/ios-
uiautomation/.

2022. The View Controller Hierarchy. https://developer.apple.com/library/arch
ive/featuredarticles/ViewControllerPGforiPhoneOS/TheViewControllerHierar
chy.html.

2022. The XCUITest Driver for iOS. https://appium.io/docs/en/drivers/ios-
xcuitest/.

2022. theos framework. https://github.com/theos/theos.

2022. UINavigationController. https://developer.apple.com/documentation/uiki
t/uinavigationcontroller.

2022. UlTabBarController. https://developer.apple.com/documentation/uikit/ui
tabbarcontroller.

2022. UlViewController presentedviewcontroller. https://developer.apple.com/
documentation/uikit/uiviewcontroller/1621407-presentedviewcontroller.

2022. Understanding Navigation in i0S. https://guides.codepath.com/ios/Unde
rstanding-Navigation-in-iOS.

2022. Understanding Windows and Screens . https://developer.apple.com/librar
y/archive/documentation/WindowsViews/Conceptual/WindowAndScreenGui
de/WindowScreenRolesinApp/WindowScreenRolesinApp.html.

2022. Unicorn Engine Introduction. https://ctf-wiki.mahaloz.re/reverse/unicorn/
introduction/.

https:

11

(39]
[40]
[41]

[42]

[45

[46]

(48

[49

[50]

[51

[53

[54

[57]

(58

[59

[61

ISSTA 2023, 17-21 July, 2023, Seattle, USA

2022. Using Segues. https://developer.android.com/studio/test/other-testing-
tools/monkey.

2022. Using Segues. https://developer.apple.com/library/archive/featuredarticles
/ViewControllerPGforiPhoneOS/UsingSegues.html.

2022. Write automated tests with UI Automator. https://developer.android.com/
training/testing/other-components/ui-automator.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated testing
of Android applications. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 258-261.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. 2014. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE software 32, 5 (2014), 53-59.

Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012.
Automated concolic testing of smartphone apps. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering.
1-11.

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages &
applications. 641-660.

Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based android
gui testing using multi-level gui comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. 238-249.
Patrick Carter, Collin Mulliner, Martina Lindorfer, William Robertson, and Engin
Kirda. 2016. Curiousdroid: automated user interface interaction for android appli-
cation analysis sandboxes. In International Conference on Financial Cryptography
and Data Security. Springer, 231-249.

Kai Chen, Xuegiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following devil’s
footprints: Cross-platform analysis of potentially harmful libraries on android
and ios. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 357-376.
Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of
android apps with minimal restart and approximate learning. Acm Sigplan Notices
48, 10 (2013), 623-640.

Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2015.
iris: Vetting private api abuse in ios applications. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 44-56.

Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011.
PiOS: Detecting Privacy Leaks in iOS Applications.. In NDSS. 177-183.
Johannes Feichtner, David Missmann, and Raphael Spreitzer. 2018. Automated
Binary Analysis on iOS: A Case Study on Cryptographic Misuse in iOS Applica-
tions. In Proceedings of the 11th ACM Conference on Security & Privacy in Wireless
and Mobile Networks. 236-247.

Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android
testing via synthetic symbolic execution. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 419-429.

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of An-
droid applications via model abstraction and refinement. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 269-280.

Vignir Gudmundsson, Mikael Lindvall, Luca Aceto, Johann Bergthorsson, and
Dharmalingam Ganesan. 2016. Model-based Testing of Mobile Systems—An
Empirical Study on QuizUp Android App. arXiv preprint arXiv:1606.00503 (2016).
Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. Puma: Programmable ui-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. 204-217.

Taeyeon Ki, Alexander Simeonov, Chang Min Park, Karthik Dantu, Steven Y Ko,
and Lukasz Ziarek. 2017. Fully automated ui testing system for large-scale android
apps using multiple devices. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services. 185-185.

Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max Van Kleek, and Nigel
Shadbolt. 2021. Are iPhones Really Better for Privacy? Comparative Study of
i0S and Android Apps. arXiv preprint arXiv:2109.13722 (2021).

Yeonjoon Lee, Xuegiang Wang, Kwangwuk Lee, Xiaojing Liao, XiaoFeng Wang,
Tongxin Li, and Xianghang Mi. 2019. Understanding {iOS-based} Crowdturfing
Through Hidden {UI} Analysis. In 28th USENIX Security Symposium (USENIX
Security 19). 765-781.

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE,
23-26.

Changlin Liu and Xusheng Xiao. 2021. ProMal: precise window transition graphs
for Android via synergy of program analysis and machine learning. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). IEEE, 144-146.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

https:/https://github.com/jjolano/shadow/
https:/https://github.com/jjolano/shadow/
https://getuikit.com/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.apple.com/app-store/review/
https://developer.apple.com/forums/
https://juejin.cn/post/6844903856497754126
https://juejin.cn/post/6844903856497754126
https://github.com/nygard/class-dump
https://github.com/nygard/class-dump
https://github.com/dkhamsing/open-source-ios-apps
https://github.com/dkhamsing/open-source-ios-apps
https://stackoverflow.com/questions/14405490/current-childview-controller/
https://stackoverflow.com/questions/14405490/current-childview-controller/
http://www.cydiasubstrate.com/
https://stackoverflow.com/questions/32882208/detect-if-ios-app-is-written-in-swift
https://stackoverflow.com/questions/32882208/detect-if-ios-app-is-written-in-swift
https://frida.re/
https://github.com/facebookarchive/WebDriverAgent/
https://github.com/facebookarchive/WebDriverAgent/
https://github.com/zhangzhao4444/Fastmonkey.git
https://www.counterpointresearch.com/global-premium-smartphone-market-2021/
https://www.counterpointresearch.com/global-premium-smartphone-market-2021/
https://stackoverflow.com/questions/69123921/how-to-view-crash-reports-in-xcode
https://stackoverflow.com/questions/69123921/how-to-view-crash-reports-in-xcode
https://testautomationu.applitools.com/introduction-to-ios-test-automation-with-xcuitest/chapter1.html/
https://testautomationu.applitools.com/introduction-to-ios-test-automation-with-xcuitest/chapter1.html/
https://testautomationu.applitools.com/introduction-to-ios-test-automation-with-xcuitest/chapter1.html/
https://developer.apple.com/tutorials/app-dev-training/
https://developer.apple.com/tutorials/app-dev-training/
https://github.com/davidquesada/ibtool
https://github.com/davidquesada/ibtool
https://developer.apple.com/documentation/uikit/uiwindow
https://developer.apple.com/documentation/uikit/uiwindow
https://backlinko.com/iphone-users/
http://www.c-jump.com/CIS77/ASM/FlowControl/C77_0040_jump_indirect.htm
http://www.c-jump.com/CIS77/ASM/FlowControl/C77_0040_jump_indirect.htm
https://developer.apple.com/documentation/objectivec/1456712-objc_msgsend
https://developer.apple.com/documentation/objectivec/1456712-objc_msgsend
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://robotframework.org/
https://github.com/Ret70/PTFakeTouch
https://github.com/Ret70/PTFakeTouch
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/07-code_coverage.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/07-code_coverage.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/07-code_coverage.html
https://newrelic.com/blog/best-practices/right-way-to-swizzle
https://newrelic.com/blog/best-practices/right-way-to-swizzle
http://appium.io/docs/en/drivers/ios-uiautomation/
http://appium.io/docs/en/drivers/ios-uiautomation/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/TheViewControllerHierarchy.html
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/TheViewControllerHierarchy.html
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/TheViewControllerHierarchy.html
https://appium.io/docs/en/drivers/ios-xcuitest/
https://appium.io/docs/en/drivers/ios-xcuitest/
https://github.com/theos/theos
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621407-presentedviewcontroller
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621407-presentedviewcontroller
https://guides.codepath.com/ios/Understanding-Navigation-in-iOS
https://guides.codepath.com/ios/Understanding-Navigation-in-iOS
https://developer.apple.com/library/archive/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/WindowScreenRolesinApp/WindowScreenRolesinApp.html
https://developer.apple.com/library/archive/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/WindowScreenRolesinApp/WindowScreenRolesinApp.html
https://developer.apple.com/library/archive/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/WindowScreenRolesinApp/WindowScreenRolesinApp.html
https://ctf-wiki.mahaloz.re/reverse/unicorn/introduction/
https://ctf-wiki.mahaloz.re/reverse/unicorn/introduction/
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

ISSTA 2023, 17-21 July, 2023, Seattle, USA

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Xing Liu, Jigiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang. 2019. Pri-
vacy risk analysis and mitigation of analytics libraries in the android ecosystem.
IEEE Transactions on Mobile Computing 19, 5 (2019), 1184-1199.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 224-234.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 599-609.

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th international sympo-
sium on software testing and analysis. 94-105.

Leon J Osterweil and Lloyd D Fosdick. 1976. Program testing techniques using
simulated execution. ACM SIGSIM Simulation Digest (1976).

Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153-164.

Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. Testmig: Migrating gui test
cases from ios to android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 284-295.

Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: Beyond GUI testing
for Android applications. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 27-37.

12

[70]

(71

[72

[73

(74

[75]

[76

Anon.

Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 245-256.

Saghar Talebipour, Yixue Zhao, Luka Dojcilovi¢, Chenggang Li, and Nenad
Medvidovi¢. 2021. UI Test Migration Across Mobile Platforms. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 756-767.

Yutian Tang, Haoyu Wang, Xian Zhan, Xiapu Luo, Yajin Zhou, Hao Zhou, Qiben
Yan, Yulei Sui, and Jacky Wai Keung. 2021. A systematical study on application
performance management libraries for apps. IEEE Transactions on Software
Engineering (2021).

Aditya Atul Tirodkar and Sundeep Singh Khandpur. 2019. EarlGrey: iOS UI
automation testing framework. In 2019 IEEE/ACM 6th International Conference
on Mobile Software Engineering and Systems (MOBILESoft). IEEE, 12-15.

Heila Van Der Merwe, Brink Van Der Merwe, and Willem Visser. 2012. Verifying
android applications using Java PathFinder. ACM SIGSOFT Software Engineering
Notes 37, 6 (2012), 1-5.

Shenggian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-
nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition graphs
for Android. Automated Software Engineering 25, 4 (2018), 833-873.

Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated test input generation for android: Are we
really there yet in an industrial case?. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 987-992.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

	Abstract
	1 Introduction
	2 Background
	2.1 iOS UI
	2.2 Message Dispatch Mechanism

	3 CydiOS Overview
	4 Static Model Construction Module
	4.1 Identifying Screen Transitions
	4.2 Identifying Widget

	5 Run-time Information Retriever
	5.1 Retrieving App Context
	5.2 Labeling UI Element
	5.3 Injecting UI Events

	6 Potential-aware UI Testing
	7 Evaluation
	7.1 Environment Setup
	7.2 RQ1: Model Construction
	7.3 RQ2: App Context
	7.4 RQ3: Testing Coverage
	7.5 RQ4: Performance

	8 Application
	8.1 Fuzzing
	8.2 Privacy Leakage Detection

	9 Related Work
	9.1 Automated UI Testing for Mobile Apps
	9.2 Existing iOS UI Testing Frameworks
	9.3 iOS Analysis
	9.4 Cross-platform Test-cases Migration

	10 Threat To Validity
	11 Conclusion
	References

