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ABSTRACT

Deep Learning (DL) models to analyze source code have shown
immense promise during the past few years. More recently, self-
supervised pre-training has gained traction for learning generic
code representations valuable for many downstream SE tasks, such
as clone and bug detection.

While previous work successfully learned from different code ab-
stractions (e.g., token, AST, graph), we argue that it is also essential
to factor in how developers code day-to-day for learning general-
purpose representation. On the one hand, human developers tend
to write repetitive programs referencing existing code snippets
from the current codebase or online resources (e.g., Stack Overflow
website) rather than implementing functions from scratch; such be-
haviors result in a vast number of code clones. In contrast, a deviant
clone by mistake might trigger malicious program behaviors.

Thus, as a proxy to incorporate developers’ coding behavior into
the pre-training scheme, we propose to include code clones and their
deviants. In particular, we propose CONCORD, a self-supervised
pre-training strategy to place benign clones closer in the represen-
tation space while moving deviants further apart. We show that
CONCORD’s clone-aware pre-training drastically reduces the need
for expensive pre-training resources while improving the perfor-
mance of downstream SE tasks. We also empirically demonstrate
that CONCORD can improve existing pre-trained models to learn
better representations that consequently become more efficient in
both identifying semantically equivalent programs and differentiat-
ing buggy from non-buggy code.

CCS CONCEPTS

• Software and its engineering→ Language features; • Comput-

ing methodologies → Knowledge representation and reason-

ing.
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1 INTRODUCTION

Self-supervised pre-training with BERT-like models [17, 19, 55, 70]
(i.e., a stack of Transformer-encoder layers) has achieved impres-
sive success on many Software Engineering (SE) Tasks [7, 20, 30,
37, 45, 75]. The main advantage of these pre-trained models is that
they do not require manual labels or active supervision. Instead, by
leveraging huge existing code corpora (e.g., Github), these models
try to capture the statistical properties of source code, and use these
correlations to “estimate” the code properties. Such self-supervised
pre-training aims to embed the learned estimation to code repre-
sentations and consequently assists with various downstream SE
tasks like clone detection, bug finding, etc. during fine-tuning.

The early work in this line directly transplants models and pre-
training strategies from the Natural Language Processing (NLP)
field to large code corpora [7, 30, 45]. For example, Feng et al. [30]
propose CodeBERT, one of the pioneers of pre-trained code models.
They pre-train a BERT-like model on NL-PL pairs with two token-
based objectives: masked language model (MLM) and replaced to-
ken detection. Later researchers integrated structural properties of
code into the pre-training to better understand code syntax. For
example, GraphCodeBERT [37] uses structural information such as
abstract syntax trees (ASTs) 1 and data dependency graphs.

Limitations of Existing Work. Since previous work on source
code modeling mainly focuses on lexical or syntactic properties of
code (token, AST, and graph), they successfully learn the statistical
properties at the granularity of language constructs. However, as
pointed out by Hindle et al. [38] in their seminal paper “On the
Naturalness of Software”, as well as many years ago by Donald
Knuth in “Literate programming” [50], the art of coding goes beyond

1GraphCodeBERT does not explicitly take ASTs as input, but its data flow graph is
built on ASTs.
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1 TFStatus Eval(TfContext*

2 context , TfNode* node){

3 TfIntArray* output_shape =...;

4 const int lookup_rank =...;

5 TF_LITE_ENSURE(context ,...);

6 int k=0;

7 size_t embedding_size =1;

8 size_t lookup_size =1;

9 for(int i=0;i<lookup_rank -1;i++,k++)

10 {

11 const size_t dim =...;

12 lookup_size *= dim;

13 output_shape ->data[k]=dim;

14 }

15 }

(a) Original Code

1 TFStatus model_evaluation(
2 TfContext* ctxt, TfNode* nd){
3 TfIntArray* rand_name =...;

4 const int rank=...;
5 TF_LITE_ENSURE(ctxt ,...);
6 size_t lookup_sz=1;
7 int z=0;
8 size_t emb_sz=1;
9 int x=0;
10 while(x<rank-1){
11 const size_t dim =...;

12 lookup_sz *= dim;

13 rand_name->data[z]=dim;
14 x+=1;
15 z+=1;}}

(b) Code Clone

1 TFStatus Eval(TfContext*

2 context , TfNode* node){

3 TfeIntArray* output_shape =...;

4 const int lookup_rank =...;

5 TF_LITE_ENSURE(context , ...);

6 int k = 0;

7 int embedding_size =1;

8 int lookup_size =1;

9 for(int i=0;i<=lookup_rank -1;i++,k++)
10 {

11 const int dim =...;

12 lookup_size *= dim;

13 output_shape ->data[k]=dim;

14 }

15 }

(c) Buggy Clone-deviant

Figure 1: Motivation example: 1a is the original code; 1b is the clone of 1a; 1c is the deviant clone of 1a that accidentally introduces security

bugs. This example is adapted from CVE-2022-23559 [18] of Tensorflow [25] project.

using programming constructs – it is also a human experience
where developers follow some day-to-day coding practices.

For example, developers tend to introduce code clones, often by
common copy-paste practices, rather than implementing functions
from scratch [5, 22, 52, 53]. Developers need to then adapt the clone
to the new scope, such as reassigning the identifiers meaningful
names [50] and adjusting control-/data-flow. Unfortunately, the
introduction of subtle human errors is nearly unavoidable under
such adaptation—e.g., wrong identifiers [16, 53] and inconsistent
control / data flows [43, 66].

Ignorance of common coding behaviors and likely human errors
makes existing models inaccurately estimate code semantics in
certain cases. Figure 1 shows such an example collected from a
real-world project: 1a and 1b have identical functionalities, but they
do not share similar tokens or structures since developers refactor
it quite a bit (marked in green) after cloning. On the other hand,
1a and 1c are syntactically very similar, yet the subtle differences
in type and comparison operator (marked in red) can potentially
trigger integer overflow and out-of-array access issues in the latter.

Such examples can occur due to developers’ common coding
behaviors – copy-pasting and accidentally introducing bugs, respec-
tively. We refer to the former as code clones (a.k.a. code variants)
and the latter as clone deviants. Ideally, the pre-trained code model
should well-capture the functional similarity of programs [20]
rather than only textual overlaps, and encode 1a to be closer to 1b
than 1c in the representation space.

To better understand whether existing code models encode pro-
grams as expected, we visualize the code embeddings of {1a, 1b,
1c} generated by GraphCodeBERT in Figure 2a. Disappointingly,
as we see in Figure 2a, GraphCodeBERT ignores the functional
equivalence of code, where the clone is far away from the original
code. Also, it relies too much on syntactic similarities to represent
programs, leading to the deviant and some random code in the
wild being encoded closer to the original code. Other syntax-based
pre-trained models operate similarly. In contrast, Figure 2b shows
the desired embedding where original and its clone are closer in
the representation space rather than its deviant.

In this paper, we aim to address the limitation of existing pre-
trained code models by incorporating common coding behaviors

(a) Syntax-based Code Model (b) Improved by CONCORD

Figure 2: Visualization using Principle Component Analysis

(PCA) [39] of Figure 1’s code representations generated by Graph-

CodeBERT before (2a) and after CONCORD’s improvement (2b).

directly into the pre-training framework with a focus on devel-
opers’ code cloning practices. However, designing such a tool is
challenging because:

i. Lack of clone variants. To expose diverse cloning practices
commonly performed by developers, we need to train a model
with various clone variants for each original code sample.
However, manually collecting such data is almost impossible,
especially at the scale of pre-training. Similarly, collecting
deviants of clones is also non-trivial.

ii. Learning clone functionalities.CONCORD needs to learn that al-
though two code snippets may not be structurally similar, they
still may be functionally equivalent (e.g., Figures 1a and 1b).
Similarly, clone deviants can structurally resemble each other
but functionally deviate (e.g., Figures 1a and 1c).

Our Approach. To address the first challenge, we propose a
novel clone-aware data augmentation scheme. We design multi-
ple code transformation heuristics, imitating human developers’
cloning behaviors. Using these heuristics, we generate two vari-
ants of each program in the dataset: a) Type-1, Type-2, Type-3,
and Type-4 clone, as defined by [67, 68, 74]—these are essentially a
near-miss or semantic clone with equivalent functionality and b) a
clone deviant with contradictory functionality (by injecting subtle
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bugs into the original program). To address the second challenge,
we then learn clone functionalities with the augmented dataset. We
encode the program and its clone variants with similar embeddings
and differentiate the buggy deviants with very distinct embeddings.
Concretely, we pre-train a language model, CONCORD, with a
contrastive learning (CLR) objective [14, 15, 31] to maximize the
similarity between the original code and its clone and minimize the
agreement between the original code and its clone deviant.

Besides the CLR objective, CONCORD also learns the token
representation of the original code using a masked language model
(MLM) and the structural code properties with a new tree-structure
prediction objective (LTSP) that can embed structural contexts into
each token representation. Thus CONCORD is designed to learn
statistical properties of PL constructs as well as developers’ cloning
behaviors in a single framework.

Results. We pre-train CONCORDwith only 1.55 Gigabytes (GB)
code2 in a multi-lingual setting with C, C++, and Java for only 40k
steps with batch size of 2048 samples during the first phase and
3k steps with batch size of 512 samples during the second phase
(details in § 3.2). In contrast, CodeBERT and GraphCodeBERT are
pre-trained for 100k-200k steps with batch size of 2048 samples on
20GB data.

Our results show that CONCORD achieves significantly better
performance in clone detection and bug detection even with much
cheaper training expense: CONCORD achieves 91.5% MAP@R on
CodeXGLUE POJ-104 [57, 61] for clone detection, outperforming the
best baseline by 5.5%, and reports the best F1 on three different bug
detection benchmarks. We also explore CONCORD’s extendability
by adapting our approach on existing pre-trained code models.
Our evaluation empirically shows that (1) CONCORD effectively
improves existing code models’ performance from 82.7% to 89.3%
in MAP@R for clone detection, from 53.1% to 60.6% in F1 for bug
detection, and from 67.6% to 69.7% in MRR for code search; and
(2) CONCORD enhances these models’ code representation with
semantic-aware signals, pulling the clone towards the original code
representation and pushing the deviant and irrelevant programs
away from it. Figure 2b visualizes this enhancement.

To summarize, the main contributions of this paper are:
(1) We design a data-augmentation technique to automatically syn-

thesize near-miss clones [67, 74], semantic clones and clone-
deviants emulating a daily developer practice. Our evaluation
reveals that CONCORD’s data augmentation is more effective
and controllable than the state-of-the-art deep-learning-based
augmentation strategy.

(2) We propose CONCORD, a clone-aware pre-training framework,
to effectively encode program semantics into code represen-
tations. Our evaluation shows that CONCORD outperforms
existing code models in downstream SE tasks while requiring
significantly less training resources (data and step size).

(3) We adapt our CONCORD approach to existing pre-trained code
models and successfully improve their performance and code
representation quality.

(4) We release CONCORD pre-trained model, data and code at:
https://github.com/ARiSE-Lab/CONCORD_ISSTA_23.

2The size is measured when the code is raw text.

2 OVERVIEW

CONCORD is constructed based on BERT [19]. Figure 3 shows the
overview of CONCORD. CONCORD contains three main stages: (1)
data augmentation, (2) pre-training to learn code representations,
and (3) task-specific fine-tuning.
Stage-1: Data Augmentation. The goal of our data augmentation
is to pair each original sample with a clone as the semantically
equivalent counterpart and a clone-deviant as the buggy counter-
part, so we design heuristics to augment the dataset by transforming
the original code into these counterparts. The generated clone is
syntactically distinct from the original sample while preserving the
semantics. The generated clone-deviant shares most tokens and a
similar structure to the original sample but is injected with bugs.
Such augmentation forces the model to contrast code semantics
rather than only syntactic properties of code during training.
Stage-2: Pre-training to learn code representations. With aug-
mented clones and clone-deviants, we pre-train CONCORD to learn
code representations. We propose two-phase pre-training to com-
prehensively capture code properties, from general and statistical
perspectives to structural and semantic features.

Phase-I applies the standard masked language model training
(MLM) [19, 30, 37, 55], where we randomly mask code tokens and
train the model to predict them back. This phase teaches the model
to generally understand code so that it can pick the correct to-
ken from the vocabulary given the code context. Based on such a
generic model, Phase-II conducts multi-task contrastive learning to
better capture the code structures and semantics. Specifically, we
introduce two more objectives besides MLM: local tree-structure
prediction (LTSP) and contrastive learning (CLR). LTSP trains the
model to construct the abstract syntax tree (AST) given the source
code, empowering it with structural knowledge of programming
languages. CLR trains the model to generate code representations
according to the program semantics. This objective optimizes the
model toward encoding code clones with similar representations
and pushing buggy deviants far from the benign code in the repre-
sentation space.

Such a two-phase pre-training also leaves more flexibility for
CONCORD, as we can adapt the multi-task contrastive learning on
top of the existing code models, extending CONCORD to distinct
tasks, and modalities. We will study such extensibility in § 5.4.
Stage-3: Fine-tuning for Downstream Tasks. Finally, we load
the pre-trained model as the encoder for the task-specific inputs
and keep optimizing the encoder with task-specific objectives (e.g.,
cross-entropy for classification) during the fine-tuning.

3 CONCORD

3.1 Stage-I: Data Augmentation

To augment a code sample, we first represent it as AST and trans-
form the AST with applicable heuristics to generate its clones and
clone-deviants.

3.1.1 Generating Clones. Real-world code clones are commonly
classified into four categories [67, 68, 74]. Type-1 defines the exact
clones that programs only differ in white space and comments.
Type-2 defines the clones that are syntactically similar but may
contain distinct identifier names, types, and literals. Type-3 clones

https://github.com/ARiSE-Lab/CONCORD_ISSTA_23
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Figure 3: Overview of CONCORD.

are still syntactically similar but considermore complicated patterns
than Type-2, such as statement-level modification. Type-4 defines
the semantic clones that programs are functionally equivalent but
might not be syntactically similar. In this work, we design heuristics
to generate clones, imitating the features of Type-2/3/4 clones.
1 Identifier Renaming.Motivated by Type-2 clone, we design
identifier (variable or function name) renaming rules to gener-
ate clones. We imitate the developers’ renaming behaviors with
semantic-preserving strategies: (1) If the name is a single character,
such as i, we rename it with another single-character variable, such
as j. (2) If the name is camel case or snake case, we will split the
name into sub-words by underscores or capitals and reconstruct the
name by permuting these sub-words or randomly removing part of
them: for example, if we have a name called client_server, we
rename it as server_client or client.

We also consider the names with more randomness. We collect
a vocabulary of all possible identifier names from our datasets, and
to generate clones, we will rename the identifiers in the original
program with randomly selected names from this vocabulary.

We apply the semantic-preserving first and if not successful, we
apply the random renaming. We also make sure that our renaming
does not change the execution behaviors of original programs.
2 Statement Rewriting.We design rewriting rules to synthesize
Type-3 clones, imitating the developers’ behaviors of writing func-
tionally equivalent statements with varied patterns [33–35]. We
rewrite statements based on the three most frequent patterns: (1)
We transform the conditional/ternary operators into If-Else state-
ments. For example, we rewrite "y = (x != 0) ? 2/x : 0;" as
"if (x != 0) {y = 2/x;} else {y = 0;}". (2) We rewrite the
increment/decrement statements into other equivalent formats. For
example, we rewrite "y = x++;" as "y = x; x = x + 1;". (3) We
mirror the comparison statements without changing the control
flow. For example, "if (x > y)" will be rewritten as "if (y < x)".
3 BlockRewriting.To introducemore complicated Type-3 clones,
we also rewrite code blocks with two main categories: (1) Loops
rewriting.We design transformations to rewrite for-loop(s) as while-
loop(s) and vice versa. (2) If-Else block swapping. For example, given
the program "if (a < b) {A} else {B}", we will rewrite it as
"if (a >= b) {B} else {A}".

4 Dead Code Insertion.We create unreachable code blocks such
as if (False) {BLOCK} and while (2 < 0) {BLOCK} and inject
such blocks into the original code. For the statements in the BLOCK,
we randomly pick sequential statements from the original programs
and replicate them at the BLOCK part.
5 Declaration/Initialization Statements Permutation. To im-
plement this, we first conduct dependency analysis to identify a set
of local variables that do not depend on other values for initializa-
tion. Then we move their declaration statements to the beginning
of the function and permute them. For example, "int x; int y =
0;" will be rewritten as "int y = 0; int x;".

We randomly pick one or several applicable transformations to
generate the clone while maintaining the program behaviors

3.1.2 Generating Clone-deviants. Clone-deviants imitate the situa-
tion that code clones accidentally introduce flaws that maliciously
change the program behaviors while sharing most tokens and simi-
lar syntax with the original, benign code. We design heuristics to
generate such deviants based on the observations from a wide num-
ber of reported, real-world bug patterns [3, 12, 20, 21, 44, 46, 59, 60].
1 Operator Bugs.We randomly replace the comparison operator
with another of the same type to change the control flow and replace
arithmetic operator to trigger unexpected program behaviors.
2 Data-type Bugs.Wrong data types can trigger several security
flaws (e.g., integer overflow).We intentionally change the data types
in the original code to inject such bugs, while ensuring the new
code can still be compiled.
3 Variable Bugs. We induce such bugs with two approaches: (1)
we perform scope analysis on the AST and replace a variable with
another unexpected variable reachable in the same scope. (2) we
remove the initialization expression of variables.
4 Value Bugs. We inject bugs by replacing a Boolean value with
its opponent and an arithmetic value with random numbers.
5 Pointer Bugs. To inject such bugs, we randomly remove the
initialization expression during pointer declaration or set some
pointers to NULL.
6 Statement Bugs.We randomly remove small condition-checking
statements/blocks, which are typically used to check necessary
preconditions before doing critical operations (e.g., checking the
index’s validity before accessing an array)
7 Function-call Bugs. For a randomly selected function call, we
add, remove, swap or assign NULL value to arguments, forcing the
code to behave unexpectedly.

3.2 Stage-II: Pre-training

3.2.1 Input Representation. As shown in Figure 4a, given the pro-
gram, we parse it and flatten it as a sequence of code tokens 𝑆 =

{𝑠1, ..., 𝑠𝑚}. To alleviate the out-of-vocabulary concern of program-
ming languages [46], we train a SentencePiece [51] subword tok-
enizer based on such flattened code token sequences with vocabu-
lary size of 50,000. We use this tokenizer to divide𝑚 source code
tokens into 𝑘 sub-tokens (𝑚 ≤ 𝑘). Similar to BERT, we prepend
the special token [CLS] and append the special token [SEP] to the
sub-token sequence 𝐶 = {[𝐶𝐿𝑆], 𝑐1, ..., 𝑐𝑘 , [𝑆𝐸𝑃]}. Finally, CON-
CORD converts the pre-processed code sequence to vectors 𝑉 =

{𝑣 [𝐶𝐿𝑆 ] , 𝑣1, ..., 𝑣𝑘 , 𝑣 [𝑆𝐸𝑃 ] } with a token embedding layer.
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(a) Input Representation & MLM (b) Contrastive Learning

Figure 4: Details of Pre-training Tasks

3.2.2 Phase-I: Learning Code Texts. In Phase-I, we pre-train the
model with masked language model (MLM) [19] to capture the
naturalness [38, 65] of code text (Figure 4a). Concretely, given the
code sequence 𝐶 , we randomly choose 15% of tokens (e.g., size_t
in 4a) and replace them with a special token [MASK]. We denote the
set of masked token index as𝑀 , and the masked tokens as {𝑐𝑚 |𝑚 ∈
𝑀}. The model will learn to encode the surrounding contexts (e.g.,
lookup_size=1 in 4a) of [MASK]s into their hidden states output
by the model {ℎ𝑚 |𝑚 ∈ 𝑀}, and reconstruct the masked tokens
conditioned on them. We compute the negative log likelihood of
the masked tokens as the loss for this phase.

L𝑀𝐿𝑀 =
∑︁
𝑚∈𝑀

−𝑙𝑜𝑔𝑃 (𝑐𝑚 |ℎ𝑚) (1)

Equation 1 optimizes the model to minimize this negative loss
during training, which maximizes the likelihood of original to-
kens before masking, given their surrounding contexts. It guides
the model weights to fit the source code distribution in the wild.
Consequently, the trained model will be able to produce code rep-
resentations following such general distribution.

3.2.3 Phase-II: Learning Code Structures and Semantics. In Phase-II,
we load the model weights from Phase-I and continue to learn the
syntactic and semantic perspectives of programs.
Local Tree Structure Prediction (LTSP). To learn the code struc-
ture, we propose LTSP, teaching the model to predict the local ASTs
given the code text. Concretely, we assign every code token a local
AST label (Figure 5), 𝑡𝑡#𝑝𝑡 , comprising of the type of the corre-
sponding terminal node (𝑡𝑡 ) (e.g., keyword, identifier), and the type
of the immediate parent node (𝑝𝑡 )(e.g., for-statement, declaration).
For example, in Figure 5, the token size_t is a primitive type in
the variable initialization statement, so it will have a AST label of
primitive_type#variable_initialization. All sub-tokens of a token will
share the same label. Essentially, we are encoding the information
of a 2-layer sub-tree into the AST-Label, and with such labels, the
model can comprehensively capture the local dependencies, such as
the connection with parent, children, and sibling nodes. We parse
our dataset and exhaustively build the AST-Label vocabulary with
all possible labels.

Formally, we pre-define the AST-Label sequence by parsing the
code sequence, 𝑇 = {[𝐶𝐿𝑆], 𝑡1, 𝑡2, ..., 𝑡𝑘 , [𝑆𝐸𝑃]}, and we use this
sequence as the ground-truth of the LTSP task. Similar to Phase-
I, the model input is just the source code sequence (𝐶), and the
Transformer encoder will output a representation ℎ𝑖 for 𝑐𝑖 ∈ 𝐶 , and

Figure 5: Building AST-Label for LTSP.

we train the model to predict the local AST type for every token
based on ℎ𝑖 . We present the loss for LTSP as

L𝐿𝑇𝑆𝑃 =
∑︁
𝑖

−𝑙𝑜𝑔𝑃 (𝑡𝑖 |ℎ𝑖 ) (2)

Compared with other structure-based models [20, 37, 42], CON-
CORD has the advantage of not requiring structure input during
the pre-traing and fine-tuning, but is aware of code structures and
language grammars.
Contrastive Learning w/ Clones and Deviants. Contrastive
learning has been proven to be effective in learning the semantic
similarity of source code [6, 20, 36, 41, 75]. It is realized by optimiza-
tion functions that maximize the representation similarity among
semantically equivalent programs and enlarge the distances among
semantically distinct or irrelevant code. We apply the contrastive
learning objective to encode the clone-aware semantic signals into
the code representations.

As shown in Figure 4b, for each program in the dataset (e.g.,
Program-X), the data augmentation generator (§3.1) creates a clone
(Clone-X) as the positive counterpart and a clone-deviant (Deviant-
X) as the negative counterpart. For each batch (Program-X, Y is
one batch), CONCORD builds one positive pair (green arrow), one
hard-negative pair (red, dashed arrow) and several random negative
pairs using other in-batch samples (yellow, dashed arrows). Given
all these pairs, we train the model to maximize the cosine similarity
of the positive pair’s representations and minimize the similarity of
negative pairs. Formally, we have a minibatch of 𝑁 programs, and
for each program, we use the encoder output of [CLS] token to
represent the whole sequence: z = ℎ [𝐶𝐿𝑆 ] . With the data augmen-
tation, the minibatch is extended to N triplets of (z, z+, z−), where
z+ corresponds to the generated clone, and z− corresponds to the
clone-deviant. We refer to the contrastive loss with hard negative
samples from Gao et al. [31] and we adapt it to our scope as follows.

L𝐶𝐿𝑅 = − log
esim(z,z+ )/𝜏∑𝑁

𝑛=1
(
esim(z,z+𝑛 )/𝜏 + esim(z,z−𝑛 )/𝜏

) (3)

In equation 3, we use cosine similarity as the 𝑠𝑖𝑚() function and
𝜏 is a parameter to scale the loss, and similar to [31] we use 𝜏 = 0.05.

Similar to existing works [30, 37], we keep learning the code
text using MLM during the second phase of pre-training, together
with LTSP and contrastive loss. Therefore, the final loss function
to optimize Phase-II pre-training is as follows, where 𝜆1 = 1.0,
𝜆2 = 0.1, 𝜆3 = 1.0 respectively.

L(𝜃 ) = 𝜆1 · L𝑀𝐿𝑀 (𝜃 ) + 𝜆2 · L𝐿𝑇𝑆𝑃 (𝜃 ) + 𝜆3 · L𝐶𝐿𝑅 (𝜃 ) (4)
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3.3 Stage-III: Fine-tuning

We apply the standard transfer learning strategy to the pre-trained
model for concrete downstream tasks: we load the pre-trained
model as the encoder to generate generic code representations and
keep optimizing the model with supervised fine-tuning. We con-
sider semantic-clone detection and bug detection as CONCORD’s
main applications.
Semantic Clone Detection. Detecting semantic clones is signif-
icant for software maintenance [48, 54] yet very challenging in
practice, since the token overlap among semantic clones is quite
limited and syntactic structures are not similar as well. This task
evaluates the model’s capacity of retrieving semantic clones: given
a program as query and a set of random programs as candidates,
the model needs to identify the semantic clones of the query out of
thousands of candidates.
Bug Detection. Human errors are the main causes for software
flaws. For example, when developers adapt clones into a new scope,
small errors, such as wrong identifier names and operators, are ac-
cidentally introduced [53, 66], and such bugs are only a few tokens
away from the benign version. Similarly, it is challenging for models
to identify bug-fixing patches as benign, if developers only repair
a few tokens [21]. Without attending to such human behaviors,
models struggle with false positives and false negatives [47, 63].
CONCORD alleviates such concerns by incorporating these behav-
iors into the pre-training, synthesizing clone-deviants as the hard
negative samples and forcing the model to differentiate bugs and
benign code that are syntactically similar.

We evaluate the model’s capacity of detecting software bugs
at function-level. Specifically, given a code function as input, the
model needs to classify it as buggy (positive) or benign (negative).

4 EXPERIMENTAL SETUP

4.1 Pre-training Dataset

We collect our pre-training corpus from open-source GitHub projects.
We rank Github repositories by the number of stars and focus on the
most popular ones. After filtering out forks from existing reposito-
ries, we collect the dataset for each language from top-100 reposito-
ries. We only consider the “.c”, “.cpp” and “.java” files for C, C++, and
Java repositories respectively. Similar to the existing datasets [40],
we extract the code functions/methods from the code files. The raw
datasets for C, C++, and Java are of size 662MB, 330MB, and 556MB
respectively. We use the state-of-the-art, multi-lingual AST parser,
Tree-sitter [73] to parse the source code.

4.2 Model Configuration

CONCORD applies a standard BERTBASE architecture [19] with
12 layers of Transformer-encoder, and each layer has 12 attention
heads and the hidden dimension is 768. The maximum sequence
length is 512 BPE tokens, and the longer sequence will be truncated.
As samples in our datasets are function-level code, truncation does
not frequently happen. Our experiments are conducted on 2 ×
24GB NVIDIA GeForce RTX-3090 GPUs. For Phase-I, we pre-train
CONCORD for 40k batches with a batch size of 2048, and we use
the learning rate of 5e-4. 1e-4 to 5e-4 is the common range for
learning rates of MLM-based code models [7, 20, 30, 37, 45], and

we follow [30] to select 5e-4. For phase-II, we further pre-train
CONCORD for 3k batches with a batch size of 512, and we use the
learning rate of 5e-5. For all the fine-tuning tasks, CONCORD uses
the learning rate of 8e-6. Learning rates typically decrease for later
phases [20, 30, 37], so CONCORD follows the same design. We use
Adam optimizer [49] with the linear learning rate decay.CONCORD
is implemented mainly with Pytorch [23] and Huggingface [28]
libraries.

4.3 Evaluation Datasets & Metrics

Semantic Clone Datasets. We consider two datasets for the se-
mantic clone detection: CodeXGLUE-POJ104 [57, 61] and CodeNet-
Java250 [64]. CodeXGLUE-POJ104 contains 104 programming chal-
lenges, and each has 500 C/C++ solutions submitted by different
students. CodeXGLUE [57] reconstruct it as a public benchmark by
splitting the dataset into Train (64 challenges), Dev (16 challenges),
and Test (24 challenges) sets, making sure that there is no over-
lapped challenges between any two sets. CodeNet-Java250 contains
250 Java programming challenges from online judge websites, and
each has 300 solutions from programmers. It splits the datasets
into Train (125 challenges), Valid (62 challenges), and Test (63 chal-
lenges) without overlapped challenges. The detailed statistics of
these two datasets can be found in Table 1.

We notice that some existingworks are evaluated onCodeXGLUE-
BigCloneBench [72]. We do not use this benchmark, because we
find that the labels are rather noisy and inaccurate 34.
Metrics of Clone Detection. Both CodeXGLUE [57] and Co-
deNet [64] are using MAP@R (Mean Average Precision @ R)5,
so we follow such a design. Average precision at R is a common
metric to evaluate the quality of information retrieval; it measures
the average precision scores of a set of the top-R clone candidates
presented in response to a query program. The "R" for CodeXGLUE
is 499 as it has 500 solutions for each challenge, and we do not
consider the code itself as a clone, and for CodeNet is 299, since it
has 300 solutions for each problem.

Table 1: Details of downstream tasks datasets.

Task Dataset Lang. Train Valid Test

Clone Detection CXG-POJ104 C/C++ 32,000 8,000 12,000
CN-Java250 Java 37,500 18,600 18,900

Bug Detection
REVEAL C/C++ 15,867 2,268 4,535
D2A C/C++ 4,644 597 619

CXG-Devign C/C++ 21,854 2,732 2,732

Bug Datasets.We choose three public datasets: REVEAL (RV) [12],
D2A [78], and CodeXGLUE-Devign (CXG-DV) [57, 79]. Chakraborty
et al. curated REVEAL, imitating the real-world scenario that bugs
are always rare compared to the normal programs, so it ends upwith
the ratio of the buggy to benign samples being roughly 1:10. D2A is
a balanced dataset focusing on bug-fixing commits and annotates
the previous version of modified functions as buggy and the fixed
version as benign. CodeXGLUE-Devign is another balanced dataset
introduced by Zhou et al. [79], and CodeXGLUE reconstructs the
3Corresponding GitHub issue: https://github.com/microsoft/CodeXGLUE/issues/93
4Corresponding GitHub issue: https://github.com/microsoft/CodeXGLUE/issues/99
5https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_
average_precision

https://github.com/microsoft/CodeXGLUE/issues/93
https://github.com/microsoft/CodeXGLUE/issues/99
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
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dataset as a public benchmark, fixing the train/valid/test splits so
that all models can be evaluated with the same splits.
Metrics of Bug Detection. REVEAL is a super imbalanced dataset,
so following the design of the original paper, we use Precision, Re-
call, and F1 as the evaluation metrics. D2A and Devign are balanced
datasets, so we use Accuracy and F1.

5 EVALUATION

CONCORD aims to learn more meaningful code representations
by incorporating common coding behaviors directly into the pre-
training framework, focusing on code clones and bugs introduced
by these behaviors. In this section, we present the evaluation results
and analysis. In particular, we ask the following five RQs:
• RQ1: How effective is CONCORD w.r.t. state-of-the-art baselines
for (1) clone detection and (2) bug finding?

• RQ2: How effective is CONCORD’s data augmentation w.r.t.
state-of-the-art deep-learning-based data augmentation?

• RQ3: Can CONCORD’s LTSP pre-training objective help to learn
better code presentations with code structures?

• RQ4: Can CONCORD’s pre-training improve existing code mod-
els for downstream tasks?

• RQ5: Can CONCORD learn more meaningful representations
and better identify semantic similarity of programs than existing
code models?

5.1 RQ1. Comparing CONCORD to Baselines

5.1.1 RQ1-A. Semantic Clone Detection. We present the baselines
and results of semantic clone detection in this section.
Baselines. We choose the best-performing pre-trained models re-
ported byCodeXGLUE-POJ104 [57] : RoBERTa [55], CodeBERT [30],
and GraphCodeBERT [37]. These pre-trained models have already
been proven to be more effective than previous work [57], such as
SourcererCC [69] and Aroma [58], so we no more include these
older approaches in our results. We also consider two contrastive-
learning-based code models: Corder [6]6 and DISCO [20]7. We
directly compare the originally reported results from the paper
(e.g., Corder) or the benchmark (e.g., CodeBERT and RoBERTa), if
available. Otherwise, we will fine-tune the baselines.
Results. The results are shown in Table 2. CONCORD achieves
91.5% MAP@R for CodeXGLUE-POJ104 and 86.5% for CodeNet-
Java250. Even if pre-trained with a very small dataset (7.5% size of
GraphCodeBERT’s dataset), CONCORD is still a clear winner with
a significant margin. Comparing CONCORD with syntax-based
baselines (i.e., CodeBERT, GraphCodeBERT, and RoBERTa), the
results reveal the effectiveness of contrastive learning: learning
to contrast code functionalities can improve the model’s perfor-
mance while reducing the training cost. Interestingly, we found
that CONCORD can also outperform other contrastive-learning-
based approaches, which empirically proves the effectiveness of
CONCORD’s data augmentation and multi-task pre-training. We
will conceptually discuss the different design options among these
contrastive-learning-based code models in Related Work (§ 6)
6Corder has several variants, and we reported Corder-Transformer results according
to the original paper, as CONCORD applies the same model architecture.
7For a fair comparison, we re-implement and pre-train DISCO with the same setting
as CONCORD (e.g., library versions). The evaluation shows the new implementation
slightly improves the original version [20] with acceptable error bound.

Table 2: MAP@R (%) Results of Semantic-clone Detection

Models Data Size CodeXGlue-POJ104 CodeNet-J250

Corder∗ 1.9 GB 72.0 -
DISCO 1.8 GB 82.5 76.5
Corder∗ 9.3 GB 84.1 -
RoBERTa 160 GB 76.7 75.5
CodeBERT 20 GB 82.7 81.1
GraphCodeBERT 20 GB 86.7 84.3
CONCORD 1.5 GB 91.5 86.5

*Corder applies a slightly different setting from the commonly used
CodeXGLUE benchmark on POJ-104: it randomly samples 50 programs for
each problem in POJ-104, resulting in 5,200 samples, and reports the mean
average precision (MAP). In the strict Corder’s setup, CONCORD reports
90.4 MAP in POJ-104.

5.1.2 RQ1-B.Bug Detection. We present the baselines and results
of bug detection in this section.
Baselines.We compare CONCORD with Transformer-based pre-
trained models containing a similar number of Transformer layers
(12 layers in total), since Transformer models with more layers
always significantly outperform those with fewer parameters [19,
27, 55, 76]. Thus, we consider either 12-Layer Transformer-Encoder
models or 6-Layer Transformer-Encoder-Decoder models.: Again,
for released pre-trained models, we conduct full experiments on
all three benchmarks, and for the others, we directly take their
reported results in the original paper.

Table 3: Results of Bug Detection.

Model

Data RV D2A CXG-DV

Size P. R. F1. Acc. F1. Acc. F1.

DISCO 1.8 GB 47.9 46.4 47.2 60.2 57.9 64.2 58.5

CodeBERT 20 GB 47.0 47.7 47.3 59.2 63.6 63.4 53.1
GraphCodeBERT 20 GB 55.9 39.9 46.6 61.0 66.1 62.9 56.3
PLBART 576 GB 44.9 41.6 43.2 57.0 61.2 62.5 57.9
CodeT5 >20 GB 47.1 46.7 46.9 58.9 56.1 62.8 58.3
CONCORD 1.5 GB 47.8 49.3 48.6 62.1 67.1 63.7 58.3

Results. From Table 3, we can see that, pre-trained with clone-
aware signals, CONCORD is effective at reducing the false positives
and false negatives: CONCORD reported better F1 for all three
benchmarks than those pre-trained models focusing on code syn-
tax. In particular, when all the baselines are reporting many false
negatives in REVEAL, due to the rareness of positive samples in
it, CONCORD achieves significantly higher recall than competing
models, even if these baselines are pre-trained with significantly
more samples. This result empirically reveals that CONCORD’s
augmented deviants help the model reduce the confusion when
differentiating buggy from benign code, even if they are sometimes
syntactically similar. Interestingly, we notice DISCO [20] performs
slightly better in the CodeXGLUE benchmark, which also demon-
strates the effectiveness of contrastive learning for code. However,
CONCORD outperforms DISCO in all other bug detection bench-
marks as well as the clone detection tasks, proving CONCORD is
in general more effective at learning code semantics than DISCO.
Result-1: Even if pre-trained with significantly less data,
CONCORD outperforms the state-of-the-art baselines that are
not trained with the clone awareness in downstream tasks.
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5.2 RQ2. Effectiveness of CONCORD’s data

augmentation

Data augmentation is the key to the success of contrastive learning
models [14, 31]. It integrates strong bias regarding the semantic
similarity of data into the model, since, during training, the model
learns to maximize/minimize the similarity of the original sample
with its positive/negative counterparts, which are completely gener-
ated by the pre-defined data augmentation strategy. In this section,
we compare CONCORD’s data augmentation with the state-of-the-
art deep-learning-based approach.

The state-of-the-art deep-learning-based data augmentation [31,
36] for code relies on the model’s randomness to generate posi-
tive/negative counterparts implicitly, which is difficult to control
and interfere with domain knowledge. Differently, CONCORD pro-
poses to explicitly augment code datasets with carefully crafted
heuristics (§ 3.1), by imitating the developers’ behaviors of cloning
existing code.
Baseline and Setup. SimCSE [31] is the state-of-the-art contrastive
learning framework for natural languages, and it has been proven
to be effective in learning better code representations [36]. Sim-
CSE leverages “dropout” [71], a deep-learning technique initially
proposed to avoid model over-fitting, to generate positive samples.
Concretely, the dropout mechanism randomly disables certain neu-
rons in the neural network following Bernoulli distribution, and
the randomness of each neuron is independently seeded. Therefore,
SimCSE passes the same sample twice through the model and with
dropout, it will get two slightly different embeddings, which will
be regarded as semantic equivalent pair. SimCSE builds negative
samples using randomly sampled data points within the same batch.

To conduct the comparison, we augment the original dataset
with SimCSE data augmentation rather than CONCORD’s, and re-
train the model with the SimCSE-augmented dataset. We report
results from the original CONCORD and CONCORD-SimCSE (i.e.,
SimCSE for short in Table 4) on downstream tasks.

Table 4: Performance of CONCORD with SimCSE-augmented

dataset and CONCORD-augmented dataset.

Task Clone Det. Bug Detection

Dataset P104 J250 RV D2A CXG-DV

Metric MAP@R P. R. F1 Acc F1 Acc F1

SimCSE 88.5 86.5 50.9 46.5 48.6 61.3 67.0 63.6 56.3
CONCORD 91.5 86.5 47.8 49.3 48.6 62.1 67.1 63.7 58.3

Results and Analysis. The results are shown in Table 4. CON-
CORD performs marginally better than CONCORD-SimCSE. Be-
sides, CONCORD’s augmentation is easily controlled by heuristic
designs while SimCSE completely relies on dropout randomness.
CONCORD’s clone-aware augmentation is a proof-of-concept of
integrating developers’ cloning behaviors into code representation
and using the same philosophy, we could propose heuristics that
align with other human requests, while SimCSE does not have such
flexibility.
Result-2: CONCORD’s data augmentation proposes carefully
crafted heuristics to imitate developers’ cloning patterns and

bugs, and it reports comparable performance with state-of-the-
art deep-learning-based data augmentation in clone detection
and bug finding tasks.

5.3 RQ3. Effectiveness of CONCORD’s LTSP

pre-training objective

CONCORD proposes a new pre-training objective, LTSP, to guide
the model to learn the code syntax during the pre-training. In this
RQ, we study the effectiveness of this new pre-training objective.
Setup. To conduct a strict comparison, we pre-train a CONCORD
variant by removing the LSTP objective but keeping all other set-
tings the same as the main model. As we mentioned in § 3.2.3, LTSP
objective does not require any parsing or pre-processing on the
source code during the fine-tuning for downstream tasks. There-
fore, we evaluate CONCORD-without-LTSP using exactly the same
fine-tuning data and strategies as discussed in § 5.1 and compare
its performance with the main model.
Table 5: The comparison of CONCORD’s performance betweenwith

and without LTSP objective during pre-training.

Task Clone Det. Bug Detection

Dataset P104 J250 RV D2A CXG-DV

Metric MAP@R P. R. F1 Acc F1 Acc F1

w/o LTSP 91.3 86.1 48.7 46.9 47.8 60.0 56.1 63.4 56.1
w/ LTSP 91.5 86.5 47.8 49.3 48.6 62.1 67.1 63.7 58.3

Results. In Table 5, we conclude that removing LTSP hurts the
model’s performance in general, degrading clone retrieval perfor-
mance slightly and F1 of bug detection significantly. The results
empirically reveal the necessity of learning code structures for bet-
ter code representations and the effectiveness of our proposed LTSP
objective in learning such information.
Result-3: CONCORD’s LTSP pre-training objective effectively
improves the model’s performance in downstream tasks by guid-
ing the model to learn code structures.

5.4 RQ4. Applying CONCORD to Existing

Pre-trained Code Models

As we introduced in §3.2.3, CONCORD’s two-phase pre-training
strategy leaves the flexibility of replacing CONCORD’s first phase
with other BERT-like pre-trained code models. In this RQ, we ex-
plore CONCORD’s extensibility by applying it to existing syntax-
based code models. We expect that CONCORD is able to improve
the performance of pre-trained code models, and meanwhile, these
existing models can help CONCORD to extend to more tasks.
Setup.We choose the two most popular models for experiments:
CodeBERT and GraphCodeBERT. Specifically, we load the pre-
trained weights from CodeBERT and GraphCodeBERT to initialize
the Transformer-encoder layers within CONCORD architecture,
and further train these models with CONCORD’s multi-task sec-
ond phase. We name these variations as CONCORD-CB (initialized
with CodeBERT) and CONCORD-GCB (initialized with GraphCode-
BERT). We fine-tune these models on the same downstream tasks
discussed in § 5.1.

Another benefit of using CodeBERT and GraphCodeBERT is
that they are pre-trained with bi-modal datasets, where natural
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language and code both exist, so that we could extend CONCORD
to bi-modal downstream tasks with these models.
Extending CONCORD to Bi-modal Task: Code Search. Code
search is the task of retrieving programs that match the natural
language description, from tens of thousands of candidates. It re-
quires the model’s capacity of capturing semantic similarity of texts
(between natural languages and code) rather than only syntactic
similarity. Empowered by the bi-modal pre-trained models, we
expect CONCORD to perform well in code search, as its semantic-
aware contrastive learning aligns well with this task.

CodeSearchNet [40] is the most popular benchmark for code
search. It pairs each function with a natural language descrip-
tion, relating to the code comments. CodeSeachNet does not have
datasets for C and C++, so we choose to evaluate CONCORD on
its Java dataset. Again, we take the reconstructed benchmark from
CodeXGLUE, which has 164,923 / 5,183 / 10,955 samples for train /
valid / test splits respectively. We follow the benchmark’s design,
using MRR (mean reciprocal rank) as the evaluation metric, and
use the originally reported scores8 for comparison.
Results.Table 6 summarizes the comparison between the existing
pre-trained models and their CONCORD enhanced variants. We
could see that CONCORD variants win on all tasks with a clear
margin. These results empirically prove that CONCORD can sig-
nificantly improve the performance of existing code models. Also,
the code search result also reveals that CONCORD can be extended
to multi-modal tasks and perform well by loading a multi-modal
pre-trained model.
Table 6: Results of applying CONCORD to existing pre-trained code

models.

Task Clone Det. Bug Detection Search

Dataset P104 J250 RV D2A CXG-DV CSNet

Metric MAP@R F1 Acc F1 Acc F1 MRR

CodeBERT 82.7 81.1 47.3 59.2 63.6 63.4 53.1 67.6
CONCORD-CB 89.3 85.1 48.7 61.5 65.5 64.6 60.6 69.7

GraphCodeBERT 86.7 84.3 46.6 61.0 66.1 62.9 56.3 69.1
CONCORD-GCB 91.6 84.8 47.2 62.3 70.0 64.2 60.1 70.5

Result-4: CONCORD framework is flexible to be adapted with
existing pre-trained code models and improve their perfor-

mance in downstream tasks.

5.5 RQ5. Semantic-aware Code Representations

When we further study and visualize the code representations, we
found that, even after fine-tuning, existing code models still strug-
gle to encode programs based on semantic similarity. We take six
coding challenges from the test split of POJ-104 dataset, and gen-
erate these samples’ representations using the models fine-tuned
on the POJ-104 to study their distributions. For better comparison
and visualization, we use principle component analysis (PCA) [39]
to reduce representations’ dimensions and plot the 2-d data points
in Figure 6: 6a is generated by CodeBERT, and 6b is generated
by CONCORD-CodeBERT, and each color represents one coding
challenge. Clearly, CodeBERT’s representations of distinct cod-
ing challenges significant overlap, which makes it difficult for the
8Reference: https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/
codesearch

model to retrieve the semantic clones and tend to make mistakes.
In contrast, CONCORD-CodeBERT’s representations have clear
boundaries among different clusters, so retrieving clones of the
same code challenging becomes efficient.

(a) Existing Code Model (b) CONCORD

Figure 6: Visualization of data points in clone detection using PCA.

Different colors represent distinct coding challenges in POJ-104

Motivated by this finding, we study the general quality of code
representations of existing pre-trained code models and their en-
hanced variant withCONCORD.We design experiments to compare
the similarity of code representations between the original code
and its clone / clone-deviant / random code. Ideally, the model
with decent awareness of code semantics should generate code
representations following the order of Sim[Original, Clone] >
Sim[Original, Deviant] > Sim[Original, RandomCode], where
Sim[] is the cosine similarity of two vectors, since the clone is se-
mantically equivalent to the original code, and clone-deviant is
buggy but textually more similar than other random code in the
wild.
Setup. We randomly sampled 10,000 samples from the held-out
dataset to ensure the programs are from real developers, and CON-
CORD models have never seen these code during training. Then
we run CONCORD’s data augmentation tool to pair each sample, 𝑥 ,
with a clone, 𝑥+, and a deviant, 𝑥− . We end up with 10k triplets of (𝑥 ,
𝑥+,𝑥− ) as the dataset of this section. Thenwe encode every program
in the dataset with different pre-trained models we are studying.
For the convenience of discussion, we define the set of original pro-
grams as 𝑋 = {𝑥𝑖 |𝑥𝑖 is original code}, where 𝑖 ∈ [0, 10, 000), and
augmented programs as 𝑋 = {𝑥 𝑗 |𝑥 𝑗 is clone or deviant}, where
𝑗 ∈ [0, 20, 000), since one original program is augmented by two
counterparts (clone and deviants). Finally, we exhaustively com-
pute the cosine similarity of every possible pair of {𝑥𝑖 , 𝑥 𝑗 }. All the
experiments are conducted with the zero-shot setting.
Metrics.We use two metrics to evaluate this RQ. First, we compute
average pair-wise similarity to measure the similarity of original
code and its clone, deviant and other random code within the same
dataset. Specifically, we compute

Avg. Clone Pair Similarity = E𝑥∈𝑋𝑆𝐼𝑀 (𝑥, 𝑥+)
Avg. Deviant Pair Similarity = E𝑥∈𝑋𝑆𝐼𝑀 (𝑥, 𝑥−)
Avg. Random Pair Similarity = E𝑥∈𝑋E𝑥∈�̂�/{𝑥+,𝑥− }𝑆𝐼𝑀 (𝑥, 𝑥)

Second, we evaluate the models’ capacity of retrieving semantically
similar code using the learned code representations. For each 𝑥 ∈
𝑋 , we retrieve its Top-1 similar code from 𝑋 , and we check how
often the retrieved code is 𝑥 ’s clone (i.e., 𝑥+), deviant (i.e., 𝑥−), and
irrelevant code respectively.

https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
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Table 7: Code representation similarities between the original code

and clone / clone-deviant / irrelevant code. Pair-wise Similarity is

compared horizontally (↔) within the same model; Top-1 similar is

compared vertically (↕) across models.

Model

Avg. Pair-wise Similarity (↔) Top-1 Similar @ 20K (↕)
Clone Deviant Rand. Clone Deviant Rand.

CodeBERT 99.3 99.8 97.5 12.1 85.8 2.1
CONCORD-CB 95.5 25.8 2.9 97.1 1.0 1.9

GraphCodeBERT 90.5 97.2 72.9 9.2 87.4 3.4
CONCORD-GCB 95.7 22.7 2.2 97.6 0.8 1.6

Results. Results are in Table 7. Unfortunately, both CodeBERT
and GraphCodeBERT assign higher similarity score to (original,
deviant) pairs than (original, clone) pairs, and purely MLM-based
CodeBERT assigns very high scores even to (original, random)
pairs. These results show that existing code models have a weak
sense of semantic similarity of source code, as they always encode
syntactically similar code as closer representations. On the con-
trary, after training these models with CONCORD’s approach, their
representations become more aware of semantic similarity: both
CONCORD-CodeBERT and CONCORD-GraphCodeBERT regard
(original, deviant) pairs as less similar than (original, clone) pairs,
and give (original, random) pairs the least similarity scores. Sim-
ilarly, syntax-based models tend to wrongly retrieve the deviant
as the top-1 similar program in most cases, while CONCORD can
always pinpoint the semantically equivalent programs from tens
of thousands of candidates.
Result-5: CONCORD effectively improves syntax-based models
to learn better code representations for identifying semantic
similarity.

6 RELATEDWORK

Self-supervised Pre-training for Code. Researchers have been
passionate about pre-training Transformer models for source code.
There are three main architectures for existing models: Encoder-
only [6, 7, 20, 30, 37, 45, 75], Decoder-only [4, 26, 77], and Encoder-
decoder [1, 11, 29, 36, 62]. Encoder-only models are commonly pre-
trained with cloze tasks (e.g.,masked language model) and sequence
understanding tasks (e.g., next statement prediction). Decoder-only
models are mostly trained with autoregressive, left-to-right lan-
guage model (LM) Encoder-Decoder models are pre-trained with
different tasks including denoising autoencoding to reconstruct the
wrongly permuted tokens [1], predicting missing identifiers [76],
recovering method names [62], etc. In recent years, with the rapid
development of computing devices, such as GPUs and TPUs, re-
searcher also shed light on the incredible power of extremely large
Transformer models (up to hundreds of billions of parameters) for
understanding and generating code [4, 26, 29, 32].

Contrastive Learning for Code. Most recently, self-supervised
contrastive learning has gained a lot of interest in learning source
code representations [6, 13, 20, 36, 41, 56, 75]. Contrastive learning
models for source code typically include two steps: (1) augmenting
datasets with semantically equivalent programs as positive samples
and contradictory programs as negative samples. (2) learning to
maximize the vector similarity of equivalent samples and mini-
mize the similarity of contradictory samples. Ding et al. proposes

DISCO [20] that generates the functionally equivalent code by re-
naming identifiers and permuting independent statements, and
involves small security bugs as hard-negative samples. Besides the
contrastive learning objective, DISCO also introduces NT-MLM to
capture the code syntax. Corder [6] designs semantically preserving
AST transformations to produce positive samples. ContraCode [41]
uses the compiler to conduct the source-to-source compilation,
a.k.a.,transpilation, which is originally for code optimization and
obfuscation, to generate positive counterparts for JavaScript. We
will compare CONCORD with these state-of-the-art contrastive
learning code models in § 7.

7 DISCUSSION

In this section, we discuss and compare CONCORD with several
most relevant code models using contrastive learning: DISCO [20],
Corder [6], and ContraCode [41]. The comparison will be explained
with respect to (1) data augmentation and (2) pre-training strategy.
DISCO. For data augmentation, DISCO’s oversimplified data aug-
mentation approach hurts its performance. Its positive heuristics
for generating functionally equivalent code focus on renaming vari-
ables and functionswith abstract names like "VAR_0" and "FUNC_0",
which are rare in real programs, resulting in unnatural clones. In
contrast, CONCORD incorporates real developers’ cloning patterns
into pre-training through several clone generation rules, inspired
by patterns drawn from the existing studies [11, 33–35, 67, 74]
and pre-defined clone types (Type- 1,2,3,4). As a result, Table 2
and Table 3 show that, in the same evaluation setup, CONCORD
outperforms DISCO with a clear margin.

Beyond downstream tasks, we also compare the impacts of
DISCO’s and CONCORD’s data augmentation on code representa-
tions quality, regarding identifying semantic similarity.We augment
the original dataset with DISCO data augmentation, and train CON-
CORD on top of it (called CCD-DISCO). We reuse the zero-shot
setup discussed in § 5.5 that first encodes the program with pre-
trained models, and then computes the average of Sim[Original,
Clone] and retrieves the top-1 similar code. Table 8 shows that, due
to the oversimplified and unnatural transformations used to gener-
ate clones, CCD-DISCO has significantly lower cosine similarity
between the representation of the original code and the clone, and
a higher chance of failure in retrieving clones with the zero-shot
setting when compared to CONCORD.

Table 8: Comparison of the quality of code representations in iden-

tifying code similarity between CCD-DISCO and CONCORD. ↑ indi-

cates that a larger value represents a better representation, while ↓
indicates that a smaller value represents a better representation.

Model

Avg. Similarity Top-1 Similar @ 20K

with Clone (↑) Clone (↑) Deviant (↓) Rand. (↓)
CCD-DISCO 71.7 64.4 3.7 31.8
CONCORD 94.8 95.7 2.2 2.1

DISCO’s pre-training strategy also has limitations compared to
CONCORD. First, it couples the multi-task pre-training into one
single phase. This makes it less flexible to leverage large pre-trained
code models, and also empirically less effective as the randomly
initialized model struggles to learn multiple perspectives of source
code at once. As a comparison, CONCORD proposes multi-phase
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pre-training that first learns the general perspective of code text and
then specializes to learn the syntax and semantics during the second
phase. Second, DISCO pre-trains a mono-lingual model for each pro-
gramming language (PL) that fails to unify the common knowledge
across distinct PLs and degrades the quality of the learned code
representations [24]. Training mono-lingual models separately also
wastes training resources. In contrast, CONCORD is a multi-lingual
model that learns comprehensive code representations across dis-
tinct PLs with cheaper training costs. Third, CONCORD’s LTSP is
by design more capable of encoding code structures than DISCO’s
NT-MLM, as the former predicts local ASTs for the whole program
while the latter only reconstructs the node type for the masked
token.
Corder. For data augmentation, Corder proposes AST transforma-
tions to synthesize semantic preserving samples. However, Corder
does not consider any types of hard negative samples that are guar-
anteed to behave differently from the original code. This overlook
might weaken the model’s capacity in contrasting the semantic sim-
ilarity of code, especially in differentiating the benign and buggy
samples that are textually similar (e.g., Figure 1a vs. Figure 1c). In
contrast, CONCORD enhances the learning with clone-deviants as
hard negative samples, which include bugs that maliciously change
the original program behaviors. During pre-training, Corder takes
AST-based intermediate representation as input and ignores learn-
ing the source code text directly. Such ignorance could make the
model less capable of understanding the rich semantics underneath
the source code text, such as variable/function names and com-
ments, which are the main resources to expose developers’ inten-
tions during coding [8–10], and consequently, degrade the quality
of learned code representations.
ContraCode. ContraCode smartly leverages the off-the-shelf com-
piler to generate optimized or obfuscated programs as semantic pre-
serving samples. While the optimized and obfuscated code provides
precise and formal semantics [8], they tend to be unnatural, intro-
ducing data structures and variable names that are not commonly
used in human-written programs. Existing studies have argued that
such formal but unnatural programs are less favorable to human
developers [9, 10] and obstruct the code models’ learning [11]. Also,
ContraCode does not generate semantically contradicting programs
as hard negative samples. In contrast, CONCORD imitates the de-
velopers’ cloning patterns to augment the dataset with clones and
clone-deviants, better aligning with human-written programs. For
pre-training, ContraCode does not learn code syntax, such as ASTs,
which might hurts the model’s performance. ContraCode performs
poorly in our evaluation datasets (e.g., its best variant only reports
65.6 MAP@R on POJ-104) due to the above limitations as well as
other practical restrictions, such as the model size being too small
to compete with other baselines we discussed.

8 THREATS TO VALIDITY

We argued that incorporating real developers’ coding patterns into
pre-training helps to learn better, generic code representations.
As a proof of concept, we choose clone-related coding behaviors
as our main focus, since code clones are happening all the time
in daily development. However, there are still other interesting
patterns, such as how developers name variables/functions [2, 13],
that will help deep-learning models understand source code and

can be integrated into the pre-training. Also, our data augmentation
only generate the variants of the same programming language as
the original code, and our model might have limited capacity in
detecting cross-lingual semantic clones.

Our data augmentation is trying to imitate the developers’ cloning
behaviors and have designed multiple transformation rules, but
they may not cover all the clone patterns, as programming is a very
personal activity [50], and different persons can implement the
same function with drastically distinct algorithms. It is also very
difficult to guarantee that clone-deviants will exhibit malicious
behaviors, but we expect the model to be sensitive to unexpected
changes as they are highly likely to introduce software flaws. In
addition, during contrastive learning, we consider in-batch samples
as random negative samples, since we assume that samples inside
the same batch do not have similar functionalities. This assump-
tion might not hold for 100% cases. However, because the batch
is randomly sampled from millions of programs, it should be very
rare that the in-batch programs share the same functionalities.

Another limitation is that CONCORD is pre-trained with multi-
ple objectives, such that weights of different loss functions might
have impacts on the quality of pre-training [31]. We design the
weights to be 𝜆1 = 1.0, 𝜆2 = 0.1, 𝜆3 = 1.0 based on the intuition that
giving high weights to LTSP might force the model to focus too
much on code syntax and diminish the impacts of semantic-aware
contrastive learning. We also conducted experiments with 𝜆2 = 0.1,
0.5, and 1.0, and 𝜆2 = 0.1 reports the best performance on down-
stream tasks but their difference is not significant: e.g., 𝜆2 = 0.1
reports 91.5/86.5 MAP@R in the clone detection datasets, while
𝜆2 = 0.5 reports 91.5/86.4 MAP@R, and 𝜆2 = 1.0 reports 91.3/86.3
MAP@R, respectively. Pre-training code models is expensive, so we
did not exhaustively search for the best weights for each objective.
Other weights might improve CONCORD’s performance.

9 CONCLUSION

In this paper, we incorporate into pre-training a common devel-
oper practice, copy/paste, to improve the quality and efficiency of
learning code representations. We first introduce an automated
tool to augment the code datasets with both semantic clones and
buggy clone-deviants. With these augmented datasets, we pre-train
CONCORD with MLM, LTSP, and CLR objectives. Our evaluation
reveals the effectiveness and efficiency of our approach, showing
that even with much cheaper training expenses, CONCORD still
outperforms SOTA codemodels. In addition,CONCORD’s approach
can easily be applied to existing code models to improve their code
representation quality.
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