
Towards Efficient Fine-tuning of Pre-trained Code Models:
An Experimental Study and Beyond

Ensheng Shia,† Yanlin Wangb,§,† Hongyu Zhangc
Lun Dud Shi Hand Dongmei Zhangd Hongbin Suna,§

aXi’an Jiaotong University bSchool of Software Engineering, Sun Yat-sen University
cChongqing University dMicrosoft

s1530129650@stu.xjtu.edu.cn, wangylin36@mail.sysu.edu.cn, hyzhang@cqu.edu.cn
{lun.du, shihan, dongmeiz}@microsoft.com, hsun@mail.xjtu.edu.cn

ABSTRACT
Recently, fine-tuning pre-trained code models such as CodeBERT
on downstream tasks has achieved great success in many software
testing and analysis tasks.While effective and prevalent, fine-tuning
the pre-trained parameters incurs a large computational cost. In
this paper, we conduct an extensive experimental study to explore
what happens to layer-wise pre-trained representations and their
encoded code knowledge during fine-tuning. We then propose ef-
ficient alternatives to fine-tune the large pre-trained code model
based on the above findings. Our experimental study shows that
(1) lexical, syntactic and structural properties of source code are
encoded in the lower, intermediate, and higher layers, respectively,
while the semantic property spans across the entire model. (2) The
process of fine-tuning preserves most of the code properties. Specif-
ically, the basic code properties captured by lower and intermediate
layers are still preserved during fine-tuning. Furthermore, we find
that only the representations of the top two layers change most
during fine-tuning for various downstream tasks. (3) Based on the
above findings, we proposeTelly to efficiently fine-tune pre-trained
code models via layer freezing. The extensive experimental results
on five various downstream tasks demonstrate that training param-
eters and the corresponding time cost are greatly reduced, while
performances are similar or better.

CCS CONCEPTS
• Software and its engineering → Software development
techniques; Reusability.

KEYWORDS
Empirical study, Pre-Trained Language Models, Efficient Fine-
tuning, Probing Techniques, Representational Similarity Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA 2023, 17-21 July, 2023, Seattle, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recently, the pre-training with fine-tuning paradigm [2, 15, 17, 34]
has achieved substantial improvement in many software testing
and analysis tasks such as vulnerability detection [13, 17], patch
generation [9, 18], automatic program repair [27], code review [42,
55], code generation [2, 9, 17], and clone detection [13, 17, 18]. They
first pre-train large Transformer-base models to learn the general-
purpose code representations on a large amount of data. Then, to
adapt these models to the downstream tasks, they usually fine-tune
them on targeted tasks [2, 15, 17, 18, 40, 55, 63].

In this paradigm, fine-tuning pre-trained code models usually
achieves greatly better results on the downstream tasks. Although
effective, fine-tuning the pre-trained parameters incurs a large
computational cost with similarly large energy consumption. As
reported in CodeXGLUE [34], they usually require more than 10
hours to fine-tune the pre-trained model on a machine with two
P100 cards for downstream tasks. In particular, as pre-trained mod-
els or fine-tuned datasets become larger, the computational cost
becomes more expensive. For example, CodeT5 [63] which has
about 220MB of parameters spends over 40 hours fine-tuning it on
CONCODE [24] dataset for code generation. In fact, these actions
are contrary to low-carbon deep learning [48]. In the software engi-
neering area, there are only a few studies that explore what would
happen to pre-trained code models during the fine-tuning process.
Most related studies [15, 21, 30, 54, 58] aim to understand what
pre-trained code models know about source code. There is a clear
need to understand what happens to the pre-trained code
models during fine-tuning and further efficiently adapt the
pre-trained models to downstream tasks with less computa-
tional cost.

In this paper, we first explore what code properties are encoded
in layer-wise representations of pre-trained code models and what
happens to these representations during fine-tuning. Then, we
propose some efficient alternatives to fine-tuning for pre-trained
code models based on the above findings. Specifically, first, in-
spired by the compilation process [3] and static program analysis
techniques [38], we propose four probing tasks (introduced in Sec-
tion 3.2.1) involving the lexical, syntactical, semantic, and structural
code properties. Next, we conduct an empirical study to explore
what code properties are encoded in pre-trained code models and
what contributions of different layers are to the understanding of

§Yanlin Wang and Hongbin Sun are the corresponding authors.
†Work done during the author’s employment at Microsoft Research Asia.

ar
X

iv
:2

30
4.

05
21

6v
1 

 [
cs

.S
E

] 
 1

1 
A

pr
 2

02
3

https://doi.org/XXXXXXX.XXXXXXX


ISSTA 2023, 17-21 July, 2023, Seattle, USA Shi, et al.

the encoded properties. Furthermore, we conduct an extensive ex-
perimental study to delve into what happens to layer-wise represen-
tations during fine-tuning on five diverse downstream tasks (shown
in Table 1) including code search [16, 46], clone detection [11, 49],
code summarization [47, 61], code generation [25], and line-level
code completion [34]. Through extensive experiments, we obtain
the following major findings about pre-trained code models.

The first major finding is that pre-trained code models encode the
lexical property of source code mainly in the lower layers, recognize
syntactical property mainly in the intermediate layers, and under-
stand structural property mainly in higher layers. The semantic
properties are perceived across layers in the entire model. The sec-
ond major finding is that the process of fine-tuning preserves most
of the code properties. That is, during fine-tuning, the basic code
knowledge (or properties) encoded in lower and intermediate layers
is still preserved. Only the knowledge captured by higher layers
varies the most. In addition, our experimental study demonstrates
that, when fine-tuning the pre-trained models on five diverse down-
stream tasks, the representations of lower layers change slightly,
with only the top two layers showing substantial changes.

Based on the above findings, we propose Telly-𝐾 , for efficient
fine-Tuning of pre-trained code models via layer freezing. Differ-
ent 𝐾 values mean different variants of our approach. Specifically,
we decrease the trained parameters via freezing the pre-trained
parameters of the bottom 𝐾 layers that change insignificantly dur-
ing fine-tuning, where 𝐾 ∈ [0, 1, 2, 3, ..., 𝐿-1], the 0-th layer is the
embedding layer, and 𝐿 is the maximum number (typically 12) of
layers of the pre-trained code model. Thus, Telly-1 means freezing
the embedding and the 1-st encoder layer. We conduct extensive
experiments on five different downstream tasks from three aspects
including training parameters, time cost, and performance. The
evaluated pre-trained code models have 12 hidden layers. The ex-
perimental results show that (1) for almost all Telly-𝐾 (0 ≤ 𝐾 ≤ 11),
the training time cost and parameters are substantially reduced,
without significant changes in model performance. (2) When freez-
ing the bottom 𝐾 (0 ≤ 𝐾 ≤ 5) layers, training parameters are
reduced by about 30% to 65%, and the training time is saved ac-
cordingly by about 10% to 75%. The model performance generally
increases by 1% to 4% for different downstream tasks. (3) When
freezing the bottom 𝐾 (6 ≤ 𝐾 ≤ 9) layers, the training parameters
are reduced by 65% to 80%, correspondingly saving about 50% to
80% of training time, while the model performance only changes
slightly. (4) When the number of frozen layer is greater than nine
(10 ≤ 𝐾 ≤ 11), training parameters and corresponding training
time cost are tremendously reduced, while the model performance
also drops significantly.

Our main contributions are summarized as follows:
• We propose four probing tasks related to lexical, syntactic, se-
mantic, and structural code properties. We explore what and
how code properties are encoded in layer-wise representations
through the above probing tasks.

• To the best of our knowledge, we are the first to conduct an
extensive experimental study to analyze what happens to layer-
wise representations and their encoded code properties during
fine-tuning of pre-trained code models.

• We propose an efficient approach to fine-tune pre-trained code
models to downstream tasks via layer freezing. In addition, we
conduct extensive experiments on five different downstream
tasks to demonstrate the efficiency of our approach.
The rest of this paper is organized as follows. Section 2 intro-

duces the relevant background knowledge. Then, we conduct an
experimental study to understand what happens to pre-trained
code models during fine-tuning in Section 3. Based on the above
findings, in Section 4, we propose Telly-𝐾 and conduct the exten-
sive experiments on five different downstream tasks to show its
superiority. Section 5 discusses the importance of reducing fine-
tuning time, actionable guideline to better fine-tuning, and the
generality of our experimental findings, and identifies some threats
to validity. Section 6 presents related work. Finally, we summarize
our paper and discuss the future work in Section 7.

2 BACKGROUND
2.1 Pre-trained Code Models
Large pre-trained models have achieved substantial results in many
areas including natural language processing [12, 33], computer vi-
sion [7, 19] and software engineering [2, 15, 17, 18, 64]. In the soft-
ware engineering community, generally, they firstly pre-train large
models on amounts of source code-related data, and then fine-tune
them on downstream tasks to improve their performance. Recently,
many pre-trained code models [2, 15, 17, 18, 40, 63] have been
proposed and shown the surprisingly promising results on many
software engineering tasks involving software testing, security,
maintenance, and development [13, 17, 34, 42, 55]. We introduce
these models from three aspects as follows.

Basic architecture.Most recent pre-trained code models adopt
the multi-layer Transformer model [56] (typically, a Transformer
encoder) as the basic architecture. A Transformer encoder is essen-
tially composed of an embedding layer, a positional encoder, and
a stack of encoder layers. In general, given an input code snippet,
it is firstly embedded by the embedding layer and the positional
encoder to obtain the initial word embeddings. Next, they are fed to
the multiple stacked encoder layers to encode the input information
layer by layer.

Mathematically, we denote the input tokens as𝑇 = [𝑡1, 𝑡2, ..., 𝑡𝑛],
where 𝑛 is the length of the input token sequence. The embedding
layer maps each token to a high-dimensional semantic space. The
positional encoder is used to encoder the positional information
and then injected it into input embedding by:

𝑤𝑖 = 𝑒𝑚𝑏𝑒𝑑 (𝑡𝑖 ) + 𝑝𝑜𝑠 (𝑡𝑖 ), 𝑖 = 1, 2, ..., 𝑛 (1)

where 𝑒𝑚𝑏𝑒𝑑𝑑 (∗) and 𝑝𝑜𝑠 (∗) denote the embedding layer and posi-
tional encoder, respectively.𝑊 = [𝑤1,𝑤2, ...,𝑤𝑛] is the initial word
embeddings. Next, the multiple stacked encoder layers produce a
set of layer-wise contextual representations 𝐻0, 𝐻1, ..., 𝐻𝐿 by:

𝐻0 = [𝑤1,𝑤2, ...,𝑤𝑛]

𝐻 𝑙 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑙 (𝐻 𝑙−1), 𝑙 = 1, 2, ..., 𝐿
(2)

where 𝐿 is the number of stacked layers, and 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑙 (∗) denotes
the 𝑙-th encoder layer. 𝐻 𝑙 = [ℎ𝑙1, ℎ

𝑙
2, ..., ℎ

𝑙
𝑛] denotes the contextual

representations of the 𝑙-th layer, and 𝐻0 is the initial word embed-
dings.



Towards Efficient Fine-tuning of Pre-trained Code Models ISSTA 2023, 17-21 July, 2023, Seattle, USA

Pre-training. Pre-training techniques, as one of the self-
supervised learning approaches, can leverage a big model to
learn the general representations with amounts of unlabeled
dataset [12, 19, 33, 43]. Typically, such techniques usually auto-
matically generate virtual labels from the unlabeled samples to
reformulate an unsupervised learning problem as one that is su-
pervised learning. The corresponding supervised tasks are named
pre-trained tasks. For example, CodeBERT [15] uses a 12-layer
Transformer encoder with 768-dimensional embedding and pre-
trains all parameters on a large-scale dataset named CodeSearch-
Net [23] (contains 2.1M bimodal data (code functions paired with
natural language comments) and 6.4M unimodal codes across six
programming languages (Ruby, JavaScript, Go, Python, Java, PHP)
with two pre-trained tasks, namely, masked language modeling and
replaced token detection. The former task is to predict the origi-
nal tokens of the masked positions, while the latter is to identify
whether a token is the original one or not. UniXcoder [17] takes
code/text sequence as input and is pre-trained on the C4 dataset
from T5 [43] and 4.1M unimodal code from CodeSearchNet with
five different pre-trained tasks.

Fine-tuning. After pre-training on the massive dataset, they
adapt pre-trained models to downstream tasks by fine-tuning all
the pre-trained parameters on the targeted dataset [2, 14, 15, 17,
18, 40, 63]. For example, in code search, previous studies [17, 34]
average the last-layer contextual representations (e.g. 𝐻𝐿) of mod-
els as the overall representation, measure the similarity between
representations of the source code and the query by vector distance,
and fine-tune them by pulling together the paired code and query
and pushing apart the unpaired code and query. Compared with
pre-trained models, the MRR values of fine-tuned models on code
search are improved from 0.001 and 0.156 to 0.694 and 0.713 for
CodeBERT and GraphCodeBERT, respectively.

2.2 Probing Techniques
Probing techniques have been extensively used in the NLP commu-
nity to study what linguistic properties are captured by pre-trained
language models. Specifically, they extract contextual representa-
tions (such as𝐻1,𝐻2 ) from the pre-trained model as frozen features,
feed them to a linear classifier, and only train it to predict probing
tasks relevant to linguistic properties. They also take random repre-
sentations as a baseline to demonstrate the ability of the pre-trained
representations to encode linguistic attributes for comparison. For
example, Tenney et al. [53] utilize different probing tasks such as
part-of-speech tagging, dependency parsing, semantic role labeling,
and coreference resolution labeling to examine the ability of pre-
trained models to understand linguistic properties, such as parts
of speech, dependencies, semantics, and coreferences. In software
engineering area, most related studies [21, 30, 58] aim to under-
stand what pre-trained code models know about source code. For
example, Wan et al. [58] propose a new probing task to investigate
whether the structure of ASTs is encoded in the representations
of pre-trained code models. Specifically, they extract layer-wised
pre-trained representations of two input code tokens from code
pre-trained models, feed them to a matrix, and train the matrix
to reconstruct the distance between two corresponding terminal
nodes in the AST, where the distance is used to represent the syntac-
tical structure. López et al [21] propose a new probing task named

AST-Probe, which recovers ASTs from hidden representations of
pre-trained language models. Specifically, AST-probe first maps the
layer-wise representations of pre-trained code models to a latent
space, called syntactic subspace, using the orthogonal projection
and then uses geometry of this space to predict the AST of the
input code snippet. Karmakar et al [30] also propose some new
probing tasks to investigate whether pre-trained language models
can understand some simple code properties. Motivated by the com-
pilation process [3] and static analysis techniques [38], we propose
four probing tasks (Section 3.2.1) related to different code proper-
ties. Besides probing pre-trained code models, we also study their
layer-wise representations during fine-tuning.

2.3 Representational Similarity Analysis
Representational similarity analysis (RSA) is originally used in
cognitive neuroscience [31] to study the relation between the neu-
ral activation patterns in human brains and representations of
a computational model for given a set of stimuli. Recently, it is
adopted to measure the similarity between two representational
spaces [1, 10, 37]. For example, given a set of inputs, different mod-
els generating different representational spaces would generate
different representations. Merchant et al. [37] construct two dis-
tance matrices. Each records the vector distances (such as cosine
similarity) between representations in one representational space.
Then the representational similarity of two representational spaces
is measured by the Pearson’s correlation [45] of these two distance
matrices. In general, a value of the correlation coefficient between
0.8 and 1 indicates that the two representational spaces are fairly
similar, while a value lower than 0.5 means the two representational
spaces are dissimilar [4, 45]. In this paper, we conduct represen-
tational similarity analysis to study the similarity of layer-wise
representations between pre-trained and fine-tuned models in Sec-
tion 3.3 and 3.5

3 AN EXPERIMENTAL STUDY ON
PRE-TRAINED CODE MODEL

3.1 Research Questions
While effective and prevalent, fine-tuning pre-trained code models
incur a large computational cost. In this work, we first conduct an
experimental study to investigate what code properties are encoded
in layer-wise pre-trained representations andwhat happens to these
representations during fine-tuning. The research questions on the
experimental study are introduced in detail as follows.

RQ1: What code properties are encoded in layer-wise pre-trained
representations? Probing techniques have been extensively used in
the NLP community to analyze and interpret pre-trained language
models. Motivated by the compilation process [3] and static anal-
ysis techniques [38], we first propose four probing tasks related
to lexical, syntactic, semantic, and structural properties of source
code. They are introduced in detail in Section 3.2.1. Then, we inves-
tigate what code properties are encoded by layer-wise pre-trained
representations via the above probing tasks in Section 3.2.2. At
the same time, we study how much representations of each layer
contribute to understanding these code properties. Further, we per-
form the same probing experiments for the model fine-tuned in a



ISSTA 2023, 17-21 July, 2023, Seattle, USA Shi, et al.

downstream task in Section 3.5, and intuitively understand what
happens to the code properties captured by the pre-trained model
during fine-tuning.

RQ2: What happens to the layer-wise representations during fine-
tuning? In the RQ1, we aim to roughly understand what happens
to a pre-trained code model when fine-tuning with the help of
probing tasks. We further conduct the extensive representation
similarity analysis (RSA) to study what happens to pre-trained rep-
resentations layer-by-layer when fine-tuning them on downstream
tasks. RSA introduced in Section 2.3 is a task-agnostic technique
and requires no prior knowledge of probing tasks. How to apply
RSA to the pre-trained and fine-tuned models is described in Sec-
tion 3.3. To ensure the generality of our experimental findings, we
conduct experiments on five diverse downstream tasks including
code search, clone detection, code summarization, code generation,
and line-level code completion.

3.2 Probing Pre-trained Code Models
We introduce the four code-related probing tasks and probing
pipeline as follows.

3.2.1 Four probing tasks. We design and show the four probing
tasks in Figure 1. They are related to lexical, syntactical, semantic
and structural code properties. We introduce them one by one in
detail.

Lexical probing. Lexical probing aims to measure how well
contextual representations encode the lexical properties of source
code. As we all know, when the source code is compiled, the first
step is lexical analysis, which tokenizes the source code string and
determines the type (such as Identifier, Keywords) of each code token.
Different types play very different semantic or syntactic roles in
subsequent program analysis and compilation. Thus, it is important
to understand whether pre-trained code models have captured the
lexical information of source code by contextual representations.
To achieve this, we first use the contextual representations of pre-
trained code models as frozen features, then feed them to a linear
classifier, and finally train it to predict the type of each code token.
As shown in Figure 1(d), each token belongs to one of the five
types including Identifier, Keyword, Operator, Number, and String.
Due to space limitation, the detailed definition of each type and
description of lexical probing can be found in the online Appendix
of the replication package [51].

Syntactic probing. Syntax analysis typically comes after the
lexical analysis in the process of program compilation [3], where a
parser takes token sequence generated by the lexer as input and
produces data structures like parse tree or abstract syntax tree
(AST). Similarly, syntactic probing is designed to investigate how
well contextual representations perceive the syntactic properties
of source code. The basic idea is to identify whether a code and
an anonymous AST (named AST-Only shown in Figure 1(b)) are
paired. Specifically, we first parse the source code to obtain the
corresponding AST, which includes the non-terminal and terminal
nodes. The non-terminal nodes represent the syntactic informa-
tion, while terminal nodes consist of types corresponding to the
syntactic elements and values corresponding to code tokens in the
source code. It is easy for one model to identify whether the AST is

parsed by one code snippet according to the overlap of code tokens.
Therefore, as shown in Figure 1(b), we construct the AST-Only
by removing the values of terminal nodes. Next, we train a linear
classifier to determine whether the given AST-Only is parsed from
the given code snippet or not. The true pairs are constructed by
pairing the code with the corresponding parsed AST-Only, while
false pairs are constructed by pairing the code with an AST-Only
parsed by other different codes. Detailed descriptions of syntactic
probing can be found in the online Appendix [51].

Semantic probing. To understand to what extent pre-trained
code models are aware of code semantics, we perform semantic
probing (Figure 1(e)), which examines the ability to identify code
snippets with the same semantics but different implementations.
Specifically, we use POJ-104 [39] dataset, which consists of 104
problems and 500 C/C++ implementations for each problem, as
the evaluated dataset. We train a linear mapper taking the pre-
trained representations as input to map semantically similar code
snippets into similar embeddings. Thus, the implementations with
the same semantic can be easily recalled by the vector distance of
them. Detailed descriptions of semantic probing can be found in
the online Appendix [51].

Structural probing. In addition to lexical, syntactic, and se-
mantic properties, structural properties are also important for code
analysis. Cyclomatic complexity [36], which indicates the complex-
ity of a program and can be referred to control flow graph (CFG),
can be used as a structural property of code. Mathematically, the
cyclomatic complexity 𝑀 can be calculated based on the CFG of
source code by:

𝑀 = 𝐸 − 𝑁 + 2𝑃 (3)

where 𝐸 and 𝑁 are the number of edges and nodes of the graph,
respectively. 𝑃 is the number of connected components. Its value
is typically 1 because the CFG is a connected graph. As shown in
Figure 1(c), the CFG has 7 nodes and 7 edges, hence the cyclomatic
complexity of the code snippet is 7−7+2 = 2. We use the cyclomatic
complexity prediction as the structural probing task to investigate
howwell contextual representations understand the structural prop-
erty of source code. Detailed descriptions of structural probing can
be found in the online Appendix [51].

3.2.2 Probing pipeline. Following previous studies [37, 52], to in-
vestigate what code properties are encoded in layer-wise represen-
tations of the pre-trained model, we train a classifier that takes
these layer-wise representations as input to predict the probing
task associated with one of code properties. At the same time, we
learn a linear combination of contextual representations of all lay-
ers to study how much representations of each layer contribute
to understanding these code properties. Mathematically, for the
pre-trained layer-wise representations 𝐻0, 𝐻1, ..., 𝐻𝐿 , we combine
them by:

𝐹 =

𝐿∑︁
𝑙=1

𝜆𝑙𝐻 𝑙 , 𝜆𝑙 =
exp𝑎𝑙∑𝐿
𝑖=0 exp𝑎𝑖

(4)

where the layer-wise weight 𝑎𝑙 are jointly learned with the probing
classifier. On the one hand, we compare the performance between
combined representations 𝐹 and randomly initialized representa-
tions to study how well the pre-trained contextual representations



Towards Efficient Fine-tuning of Pre-trained Code Models ISSTA 2023, 17-21 July, 2023, Seattle, USA

1 

2 

3 

4 

5 

6 

 def max (x, y): 

     if x > y: 

         m = x 

     else: 

         m = y 

     return m 

 
(a) Source code snippet

FunctionDeclaration

Function Name Body Params

Block

Statement

Type: identifierType: identifierType: identifier
Value: a Value: x Value: y

IfStatement ReturnStatement

Cond Body Else

... ... ...

...

AST-ONLY

Is the AST-ONLY parsed by that Code?

(b) Syntactic Probing
=>  Cyclomatic complexity is 2

End

Start

x > y

Given x and y

m=x m=y

Return m

NY

(c) Structural probing
Token Type Keyword Identifier Operator Identifier

Code Token Def max ( x

Token Type Operator Identifier Operator …

Code Token , y ) …

(d) Lexical probing

Implemention 1

Semantic 1

Implemention 2

Implemention 3

…

Semantic 2 ...

Implemention 1

Implemention 2

Implemention 3

…

...

...

...

...

Implemention 14

Search other 

implementations 

with the same 

semantic.

(e) Semantic probing

Figure 1: An example of source code and probing tasks

Table 1: An overview of downstream tasks, which includes descriptions, and evaluated datasets, programming languages and
metrics. #Size shows the sizes of train, validation and test sets in order. For metrics, P, R, F1 are short for precision, recall and
F1-score, respectively. EM and Edit sim are short for Exact Match accuracy and Levenshtein edit similarity, respectively.

Task Description Dataset Name Language #Size Metrics

Code search Search semantically relevant code snippets
for a given natural language query.

CodeSearchNet [23] Python 251K/9.6K/1K MRR, R@1
Ruby 24.9K/1.4K/1.3K R@5, R@10

Clone detection Detect whether two code snippets
are functional equivalence.

BigCloneBench [49] Java 901K/416K/416K P, R, F1

Code summarization Generate the concise natural language
description for the given code snippet.

CodeSearchNet [23] Python 251K/9.6K/1K BLEU, Meteor,
Ruby 24.9K/1.4K/1.3K Rouge-L,Cider

Code generation Generate a function-level code snippet for
the given natural language description.

CONCODE [24] Java 100K/2K/2K BLEU, EM

Code completion Predict the next line of code for the given
previous code context.

Github Java Corpus [5] Java 12K/1.5K/1.5K Edit sim, EM

encode the properties of source code. We also compare the perfor-
mance between pre-trained and fine-tuned representations to study
what happens to the code properties during fine-tuned. On the other
hand, to investigate how much the representation of each layer con-
tributes to encoding a code property and to explore the differences
between pre-trained and fine-tuned models, we present layer-wise
weight 𝑎𝑙 of pre-trained and fine-tuned models for each probing
task and further analyze the experimental results Section 3.5.1.

3.3 Representational Similarity Analysis
Following the previous study [37], we randomly sample𝑁 code snip-
pets and obtain the layer-wise representations of the pre-trained
and fine-tuned model. Then, for each layer, we obtain distance
matrix 𝐴𝑙 (introduced in Section 2.3 and the size is 𝑁 × 𝑁 ) for
the 𝑙-th layer by calculating the cosine similarity between this
layer’s representational vectors of any two code snippets. Represen-
tational vectors are obtained by averaging that layer’s contextual
representations. Mathematically, we denote the 𝑙-th contextual rep-
resentations of the pre-trained or fine-tuned code model for the

𝑘-th code snippet as 𝐻𝑘
𝑙 . The distance matrix 𝐴𝑙 is calculated by:

𝐴𝑙
𝑖,𝑗 =

𝑣𝑙
𝑖
· 𝑣𝑙

𝑗

∥𝑣𝑙
𝑖
∥ ∥𝑣𝑙

𝑗
∥
, 𝑣𝑙

𝑘
=𝑚𝑒𝑎𝑛 (𝐻𝑘

𝑙 ), 𝑖, 𝑗, 𝑘 ∈ [1, 2, ..., 𝑁 ] (5)

Next, for the 𝑙-th layer, we calculate the Pearson’s correlation coef-
ficients 𝜌𝑙 between the two distance matrices obtained from pre-
trained and fine-tuned models, respectively. In particular, we con-
duct experiments on five diverse downstream tasks including code
search, clone detection, code summarization, code generation, and
line-level code completion. The overview of them is in Table 1. The
experimental results are shown in Section 3.5.2.

3.4 Experimental Settings
In this study, we analyze the state-of-art pre-trained code mod-
els UniXcoder [17] and GraphCodeBERT [18]. Both of them are
12-layer Transformer with 768 dimensions and the total param-
eters are about 120 MB. UniXcoder is a unified pre-trained code
model and can be used as an encoder, a decoder, or an encoder-
decoder architecture by a special indication token. GraphCodeBERT
considers the data flow information and pre-trains a large model
using a lot of bimodal data (code functions paired with natural



ISSTA 2023, 17-21 July, 2023, Seattle, USA Shi, et al.

Table 2: The performance of probing tasks for random, pre-
trained and fine-tuned representations.

Probing Task Performance

Random Pre-trained Fine-tuned

Lexical probing 76.14 99.98 99.95
Syntactic probing 64.70 95.60 95.10
Semantic probing 46.10 73.25 71.55
Structural probing 34.80 89.80 62.20

language comments) and unimodal codes data. We conduct the
experiment on UniXcoder and GraphCodeBERT because they all
achieve promising results on many code intelligence tasks.

For the experiments on probing, we construct the evaluation
datasets through CodeSeachNet and POJ-104 [39] shown in Ta-
ble 1. The lexical, syntactic, and structural probings employ the
CodeSeachNet dataset with Python, and semantic probing uses the
POJ-104 [39]. Following the fine-tuning experimental settings of
UniXcoder/GraphCodeBERT on code search, We fine-tune the pre-
trained model on CodeSeachNet dataset with Python, and probe
the pre-trained and fine-tuned model with the four probing tasks.
When probing, the maximum length of code snippets is set to 512.
The maximum epoch and batch size are set to 30 and 32, respec-
tively. We adopt the Adam optimizer with a learning rate of 1e-4
and perform early stopping on the validation set. We run the ex-
periments 3 times with random seeds 0,1,2 and display the mean
value in the paper.

For the representational similarity analysis, following the previ-
ous study [37], 𝑁 is set to 5,000. Following the fine-tuning experi-
mental settings of UniXcoder/GraphCodeBERT, we fine-tune it on
the five downstream tasks shown in Table 1.

3.5 Experimental Findings
In this section, we present and analyze the results of the above two
research questions.We present the results of UniXcoder-based Telly-
𝐾 only due to space limitation and put results of GraphCodeBERT-
based Telly-𝐾 in the online Appendix [51]. Conclusions and findings
that hold on UniXcoder generally hold for GraphCodeBERT.

3.5.1 RQ1: What code properties are encoded in layer-wise pre-
trained representations? We use the four probing tasks related to
lexical, syntactic, semantic and structural properties to explore
what code properties are encoded in layer-wise pre-trained repre-
sentations and how much representations of each layer contribute
to understanding these code properties. At the same time, we also
compare pre-trained and fine-tuned layer-wise representations in
the same setting. The performance on probing tasks is shown in
Table 2 and the layer-wise contribution are presented in Figure 2.

In Table 2, the results of lexical, syntactic, and structural prob-
ing are measured by accuracy. The results of semantic probing
are measured by mean average precision (MAP) [44]. For more
detailed descriptions of the accuracy and MAP metrics, please refer
to the online Appendix [51]. From Table 2, we can find that (1)
pre-trained and fine-tuned representations better understand code
properties than random representations; (2) after fine-tuning, lexi-
cal, syntactic and semantic code properties are still well captured,
while the ability to capture the structural property significantly
declines. The first finding is expected because pre-trained code

0 1 2 3 4 5 6 7 8 9 10 11 12
Different Layer

Structure
 Probing

Semantic
 Probing

Syntactic
 Probing

Lexical
 Probing

Pre-trained Fine-tuned

Figure 2: Layer-wise contributions on different probing
tasks for the pre-trained and fine-tuned code model.

models can take advantage of larger datasets and model sizes to
encode the basic code knowledge into their representations. After
fine-tuning, some code properties are still preserved. This may be
related to the characteristics of downstream tasks since code search
mainly relies on the lexical, syntactic, and semantic information of
the code rather than the structural information. It may also be the
result of vanishing gradients [8] because code properties encoded
in the lower layer change very little, and code properties encoded
in the higher layer change obviously. Actually, vanishing gradients
has little effect on the optimization of the pre-trained code model
as the basic architecture employed by the model uses the resid-
ual connection [20, 56] which can effectively avoid the vanishing
problem.

Figure 2 displays the layer-wise contributions (𝜆𝑙 in Eq. 4) for
the pre-trained and fine-tuned model. From Figure 2, on the one
hand, we can observe that for pre-trained or fine-tuned models,
lexical, syntactic, and structural properties of source code aremostly
captured in the lower, intermediate, and higher layers, respectively,
while the semantic property almost spans across the entire model.
We conduct the significance testing1 to examine the significance of
the contribution differences. The experimental result shows that for
lexical probing, the contributions of the 1-th, 2-th, and 4-th layers
are significantly greater than other layers. For syntactic probing,
the contributions of the 4-th to 7-th layers are significantly greater
than other layers. For semantic probing, the contributions among
different layers are not significantly different. For structural probing,
the contribution of the last layers of the pre-trained and fine-tuned
model is significantly greater than others. On the other hand, we
find that the process of fine-tuning preserves most of the code
properties. Specifically, basic code properties captured by lower

1The results are put in the online Appendix [51] due to space limitation



Towards Efficient Fine-tuning of Pre-trained Code Models ISSTA 2023, 17-21 July, 2023, Seattle, USA

0 1 2 3 4 5 6 7 8 9 10 11 12
Different Layer

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y 
Sc

or
e 

1 2 3 4 5 6 7

0.95

1.00

search
clone

summary
code generation

code_completion

Figure 3: Similarity scores between pre-trained and fine-
tuned models for five downstream tasks.

and intermediate layers are still preserved during fine-tuning. Only
the performance of structural probing task changes obviously.

Summary. For pre-trained layer-wise representations, lexical,
syntactic, and structural properties of source code are mainly
captured by the lower, intermediate and, higher layers, respec-
tively, while the semantic property almost spans across the entire
model. Meanwhile, the basic code properties captured by lower
and intermediate layers are still preserved during fine-tuning.

3.5.2 RQ2: What happens to the layer-wise representations during
fine-tuning? We also conduct extensive experiments on represen-
tational similarity analysis (RSA) to study what happens to the
layer-wise representations of the pre-trained model during the
fine-tuning for five diverse downstream tasks without the help of
probing tasks. The results are shown in Figure 3. From the presented
results, we can see that the correlation coefficients (similarity scores
in Figure 3) of the bottom 9 layers are all greater than 0.8. It means
that representations of the bottom 9 layers are similar between
pre-trained and fine-tuned models for the five downstream tasks.
The representations of the top layer are dissimilar (𝜌 ≤ 0.5) except
for code completion. This is because the top layer of the pre-trained
model UniXcoder are used to predict the masked tokens, which is
similar to the experimental setting of code completion. Furthermore,
we find that the representation of the bottom 7 layers (𝜌 ≥ 0.9)
are greatly related and the bottom 5 layers (𝜌 ≥ 0.95) are strongly
similar.
Summary. The representations of the bottom nine layers are
similar between the pre-trained and fine-tuned models for the five
downstream tasks. Only the representations of the top two layers
change greatly during fine-tuning.

4 EFFICIENT FINE-TUNING OF
PRE-TRAINED CODE MODELS

4.1 Research Question
RQ3: Are there efficient alternatives to fine-tuning? Based on the

results of the experimental study, we investigate more efficient
alternatives to fine-tune pre-trained code models. Our primary
motivation is to freeze the pre-trained parameters of those layers
that change only slightly during the fine-tuning of downstream
tasks. We propose Telly-𝐾 , which stands for efficient fine-Tuning
of pre-trained code models via layer freezing. Telly-𝐾 means freez-
ing the pre-trained parameters of the bottom 𝐾 layers and different
𝐾 means different variants of our approach. The 0-th layer is the

embedding layer, and the maximum number of layers of our studied
pre-trained code model is 12. If 𝐾 is set to 12, then Telly-12 will
freeze all parameters and the model will be reduced to the vanilla
pre-trained model. Therefore, for the comprehensiveness of the
experiments, we vary 𝐾 from 0 to 11 and conduct extensive experi-
ments on five downstream tasks for these 12 model variants. Next,
we introduce the experimental settings, results, and analysis.

4.2 Experimental Settings
Our experiments are conducted on five diverse downstream tasks
including code search, code detection, code summarization, code
generation, and line-level code completion. The overview of these
tasks is presented in Table 1. Code search is evaluated on the widely-
used CodeSeachNet dataset with Python and Ruby and the perfor-
mance is measured by mean reciprocal rank (MRR) and top-k recall
(R@k, k=1,5,10) [15, 18, 23]. For Clone detection, we experiment
on the commonly-used BigCloneBench dataset and use the preci-
sion (P), recall (R), and F1-score (F1) as evaluation metrics [17, 18].
For code summarization, we fine-tune pre-trained models [17, 18]
on CodeSearchNet dataset with Python and Ruby. The evalua-
tion metrics are sentence-level smoothing BLEU [41], Meteor [6],
Rouge-L [32] and Cider [57]. Code generation is evaluated on the
widely-used CONCODE dataset, and the performance is measured
by sentence-level smoothing BLEU [41] and Exact Match accuracy
(EM). For line-level code completion, We conduct the experiments
on the large dataset (named GitHub Java Corpus) in CodeXGLUE.
Similar to previous work [34], the performance is measured by EM
and Levenshtein edit similarity (Edit sim) [50]. The fine-tuning
of line-level code completion according to experimental settings
in CodeXGLUE [34]. Other tasks follow the settings of previous
studies [17, 18]. We adopt the Adam optimizer with the maximum
epoch of 30 and perform early stopping on the validation set. We
run the experiments 3 times with random seeds 0,1,2 and display
the mean value in the paper. All experiments are conducted on a
machine with Tesla A100 GPU. Detailed experimental settings can
be found in the online Appendix of the replication package [51].

4.3 Experimental Results
We conduct experiments with Telly-𝐾 , which freezes the bottom
𝐾 layers of the pre-trained code model when fine-tuning it on
the five downstream tasks. We first present and analyze the ex-
perimental results including training parameters, training time
cost and performance task by task, and then summarize the find-
ings on the downstream tasks. Due to space limitations, we only
present the results of UniXcoder-based Telly-𝐾 and we put results
of GraphCodeBERT-based Telly-𝐾 in the online Appendix [51].
Conclusions and findings that hold for UniXcoder also generally
hold for GraphCodeBERT.

4.3.1 Code search. We study the performance of 12 Telly-𝐾 vari-
ants on code search. The results are shown in Table 3. We only
show the results on Python dataset and put the results on Ruby
(which is similar to the results on Python) in online Appendix [51].

In Table 3, we present the numbers of trained parameters, train-
ing time and performance for the base model and 12 model variants.
The base model is to fine tune all pre-trained parameters, while the
different variants would freeze partial parameters. We report both
the training time of each epoch and time til model convergence.



ISSTA 2023, 17-21 July, 2023, Seattle, USA Shi, et al.

Table 3: Experimental results on code search. #Params is short for the number of training parameters. M is short for million.
The changing ratios compared to the base model are shown in parentheses.

Model Note #Params Training time Performance

Each epoch Convergence MRR R@1 R@5 R@10

Base Fine-tuning all parameters 125.93M 17m14s 2h35m06s 0.720 0.612 0.838 0.889

Telly-0 Freezing the bottom 0 layers 85.0M(↓32%) 15m49s(↓8%) 2h06m32s(↓18%) 0.727(↑1%) 0.630(↑3%) 0.846(↑1%) 0.895(↑1%)
Telly-1 Freezing the bottom 1 layers 78.0M(↓38%) 14m53s(↓14%) 1h59m04s(↓23%) 0.727(↑1%) 0.629(↑3%) 0.848(↑1%) 0.895(↑1%)
Telly-2 Freezing the bottom 2 layers 70.9M(↓44%) 14m06s(↓18%) 1h52m48s(↓27%) 0.727(↑1%) 0.630(↑3%) 0.849(↑1%) 0.896(↑1%)
Telly-3 Freezing the bottom 3 layers 63.8M(↓49%) 13m12s(↓23%) 0h39m36s(↓74%) 0.724(↑1%) 0.626(↑2%) 0.842(↑0%) 0.895(↑1%)
Telly-4 Freezing the bottom 4 layers 56.7M(↓55%) 12m12s(↓29%) 0h48m48s(↓69%) 0.724(↑1%) 0.626(↑2%) 0.844(↑1%) 0.896(↑1%)
Telly-5 Freezing the bottom 5 layers 49.6M(↓61%) 11m42s(↓32%) 0h35m06s(↓77%) 0.726(↑1%) 0.628(↑3%) 0.848(↑1%) 0.896(↑1%)
Telly-6 Freezing the bottom 6 layers 42.5M(↓66%) 10m50s(↓37%) 0h32m30s(↓79%) 0.727(↑1%) 0.629(↑3%) 0.848(↑1%) 0.896(↑1%)
Telly-7 Freezing the bottom 7 layers 35.4M(↓72%) 9m57s(↓42%) 0h29m51s(↓81%) 0.725(↑1%) 0.627(↑2%) 0.847(↑1%) 0.896(↑1%)
Telly-8 Freezing the bottom 8 layers 28.4M(↓77%) 9m04s(↓47%) 0h36m16s(↓77%) 0.723(↑0%) 0.625(↑2%) 0.844(↑1%) 0.894(↑1%)
Telly-9 Freezing the bottom 9 layers 21.3M(↓83%) 8m14s(↓52%) 0h24m42s(↓84%) 0.718(↓0%) 0.620(↑1%) 0.838( 0%) 0.888(↓0%)
Telly-10 Freezing the bottom 10 layers 14.2M(↓89%) 7m10s(↓58%) 0h21m30s(↓86%) 0.710(↓1%) 0.612(↓0%) 0.829(↓1%) 0.882(↓1%)
Telly-11 Freezing the bottom 11 layers 7.1M(↓94%) 6m21s(↓63%) 0h19m03s(↓88%) 0.694(↓4%) 0.593(↓3%) 0.815(↓3%) 0.871(↓2%)

Table 4: Experimental results on clone detection and code summarization. #Params is short for the number of training param-
eters. M is short for million. The changing ratios compared to the base model are shown in parentheses.

Model
Clone Detection Code Summarization

#Params Training time Performance #Params Training time Performance

Each epoch Convergence Recall Precision F1-score Each epoch Convergence BLEU METEOR

Base 127.1M 20m21s 1h41m45s 0.95 0.95 0.95 125.93M 22m44s 1h53m40s 19.15 17.26

Telly-0 86.2M(↓32%) 19m29s(↓4%) 1h17m56s(↓23%) 0.96(↑1%) 0.94(↓1%) 0.95( 0%) 85.0M(↓32%) 21m30s(↓5%) 1h47m30s(↓5%) 19.19(↑0%) 17.32(↑0%)
Telly-1 79.2M(↓38%) 18m36s(↓9%) 1h14m24s(↓27%) 0.95( 0%) 0.95( 0%) 0.95( 0%) 78.0M(↓38%) 20m15s(↓11%) 1h41m15s(↓11%) 19.21(↑0%) 17.33(↑0%)
Telly-2 72.1M(↓43%) 17m34s(↓14%) 1h10m16s(↓31%) 0.95( 0%) 0.95( 0%) 0.95( 0%) 70.9M(↓44%) 19m11s(↓16%) 1h35m55s(↓16%) 19.17(↑0%) 17.30(↑0%)
Telly-3 65.0M(↓49%) 15m20s(↓25%) 1h01m20s(↓40%) 0.95( 0%) 0.95( 0%) 0.95( 0%) 63.8M(↓49%) 17m59s(↓21%) 0h53m57s(↓53%) 19.16(↑0%) 17.26( 0%)
Telly-4 57.9M(↓54%) 14m28s(↓29%) 0h57m52s(↓43%) 0.94(↓1%) 0.96(↑1%) 0.95( 0%) 56.7M(↓55%) 17m07s(↓25%) 0h51m21s(↓55%) 19.13(↓0%) 17.26( 0%)
Telly-5 50.8M(↓60%) 13m25s(↓34%) 1h07m05s(↓34%) 0.96(↑1%) 0.94(↓1%) 0.95( 0%) 49.6M(↓61%) 16m18s(↓28%) 0h48m54s(↓57%) 19.18(↑0%) 17.26( 0%)
Telly-6 43.7M(↓66%) 12m35s(↓38%) 0h50m20s(↓51%) 0.96(↑1%) 0.95( 0%) 0.95( 0%) 42.5M(↓66%) 15m10s(↓33%) 0h45m30s(↓60%) 19.36(↑1%) 17.35(↑1%)
Telly-7 36.6M(↓71%) 11m44s(↓42%) 0h58m40s(↓42%) 0.95( 0%) 0.93(↓2%) 0.94(↓1%) 35.4M(↓72%) 14m08s(↓38%) 0h28m16s(↓75%) 19.37(↑1%) 17.28(↑0%)
Telly-8 29.5M(↓77%) 10m41s(↓48%) 0h53m25s(↓48%) 0.95( 0%) 0.94(↓1%) 0.95( 0%) 28.4M(↓77%) 12m59s(↓43%) 0h25m58s(↓77%) 19.34(↑1%) 17.26( 0%)
Telly-9 22.4M(↓82%) 9m55s(↓51%) 0h29m45s(↓71%) 0.95( 0%) 0.92(↓3%) 0.93(↓2%) 21.3M(↓83%) 11m28s(↓50%) 0h22m56s(↓80%) 19.18(↑0%) 17.22(↓0%)
Telly-10 15.4M(↓88%) 8m51s(↓57%) 0h35m24s(↓65%) 0.97(↑2%) 0.92(↓3%) 0.94(↓1%) 14.2M(↓89%) 10m19s(↓55%) 0h10m19s(↓91%) 19.11(↓0%) 17.18(↓0%)
Telly-11 8.3M(↓93%) 8m00s(↓61%) 0h32m00s(↓69%) 0.96(↑1%) 0.92(↓3%) 0.94(↓1%) 7.1M(↓94%) 09m14s(↓59%) 0h09m14s(↓92%) 19.10(↓0%) 17.20(↓0%)

The changing ratios of different variant models compared to base
model are shown in parentheses. From the results of Table 3, we
can find that:
• For all variant models, both the training time cost (especially
the convergence time cost) and the training parameters are sig-
nificantly reduced compared with the base model, while the
performance does not change much across the four metrics. Es-
pecially, for Telly–11 that freezes the bottom 11 layers, the time
cost of model convergence and the trained parameters are re-
duced by 88% and 94%, respectively, while the performance only
drops by about 3%.

• For Telly-𝐾 (0 ≤ 𝐾 ≤ 8), they reduce the training parameters by
32% to 77%, correspondingly saving about 18% to 81% of training
time, with the performance increment of 0% to 3% across all
metrics.

• When freezing the bottom 9 layers, there is an 83% reduction in
training parameters and a corresponding 84% training time sav-
ing with a slight change in performance. For example, compared
with the base model, the values of MRR and R@10 for Telly-9

decrease by less than 1%, R@1 increases by about 1%, and the
R@5 is unchanged.

• For Telly-𝐾 (𝐾 ≥ 10), the performance consistently drops across
four metrics. However, even freezing the bottom 11 layers, the
performance does not drop significantly, while training parame-
ters and corresponding training time are greatly reduced.

Summary. In the code search task, the performance of Telly-𝐾
increases for 0 ≤ 𝐾 ≤ 8, changes slightly for 𝐾 = 9, and decreases
lightly for 𝐾 ≥ 10 compared to the base model.

4.3.2 Clone detection. We conduct experiments with different
Telly-𝐾 variants on clone detection and the results are shown in the
left half of Table 4. As the pre-trained code model adopts 2-layer
MLP as the classifier to determine whether two codes are clones or
not, the total parameters are about 127.1 million. The performance
is evaluated by precision (P), recall (R), and F1-score (F1) and they
are in the range of [0, 1]. From Table 4, we can find that:



Towards Efficient Fine-tuning of Pre-trained Code Models ISSTA 2023, 17-21 July, 2023, Seattle, USA

• For all variant models, training costs and parameters are signifi-
cantly reduced compared to the base model, while there is no
significant change in performance. In particular, when freezing
the bottom 11 layers, the convergence time cost and the training
parameters are reduced by 88% and 94%, respectively, while the
performance changes by only 1-3%.

• For Telly-𝐾 (0 ≤ 𝐾 ≤ 8), the training parameters are reduced by
32% to 77% and correspondingly about 23% to 51% training time
costs are saved. In addition, the performance is generally stable
for F1-score and slightly changes for precision and recall.

• When (𝐾 ≥ 9), the performance of the different variants con-
sistently decreases in precision and F1-score but increases in
recall. However, even for Telly-11, all evaluation metrics have
high scores (greater than 0.9), while the training parameters and
the corresponding time cost are greatly reduced.

Summary. In the clone detection task, the performance of Telly-
𝐾 is generally stable for 0 ≤ 𝐾 ≤ 8 but lightly changes for 𝐾 ≥ 9
compared to the base model.

4.3.3 Code summarization. We conduct the experiments with dif-
ferent Telly-𝐾 on code summarization and the results are shown
in the right half of Table 4. The results of Rouge-L and Cider on
Python and all experimental results on Ruby are put in online Ap-
pendix [51] due to space limit. The reported metrics including BLEU
and METEOR are in the range of [0, 100]. From Table 4, we can find
that:
• For all variant models, both training time costs and parameters
are significantly reduced compared to the base model, while the
performance does not change much for all metrics.

• For Telly-𝐾 (0 ≤ 𝐾 ≤ 5), they reduce the training parameters by
32% to 61%, correspondingly saving about 5% to 57% of training
time, with stable performance. In particular, the performance
change is less than 1% for all evaluation metrics.

• For Telly-𝐾 (6 ≤ 𝐾 ≤ 9), training parameters are reduced by 66%
to 83%, corresponding to 60% to 80% saving in training time with
a generally slight increase in performance.

• When Telly-𝐾 (𝐾 ≥ 10), the performance slightly drops in terms
of four metrics. However, even freezing the bottom 11 layers, the
performance does not drop significantly, while both the train-
ing parameters and the corresponding time cost are extremely
reduced.

Summary. On the code summarization task, the performance of
Telly-𝐾 is stable for (0 ≤ 𝐾 ≤ 5), slightly increases for 6 ≤ 𝐾 ≤ 9,
but lightly decreases when 𝐾 ≥ 10 compared to the base model.

4.3.4 Code generation. We conduct experiments with different
Telly-𝐾 on code generation and the results are shown in the left
half of Table 5. The evaluation metrics including BLEU and EM are
in the range of [0, 100]. From Table 5, we can find that:
• For all variant models, both training time costs and parameters
are significantly reduced compared to the base model, while the
performance does not change much for all metrics except for
Telly-𝐾 (𝐾 ≥ 8).

• For Telly-𝐾 (0 ≤ 𝐾 ≤ 5), they reduce the training parameters by
32% to 61%, correspondingly saving about 10% to 55% of training

time, and the performance is slightly improved. Specifically, the
BLEU scores are increased by 0% to 2%, and the EM scores are
increased by 3% to 10%.

• For Telly-𝐾 (6 ≤ 𝐾 ≤ 9), training parameters are reduced by
66% to 83%, corresponding to 57% to 65% saving in training time.
The performance of these variants significantly drops under
BLEU but generally increases under EM. This is because BLEU
combines the n-gram precision (n=1,2,3,4) between the generated
code snippet and the ground truth for one sample, while EM is 1
if they are exactly the same, 0 otherwise. However, for the entire
set, only about 18% of the code snippets can be generated exactly
the same as ground truth. The other 82% samples also affect the
final result of BLEU scores. Therefore, the performance changes
for BLEU and EM behave differently.

• When Telly-𝐾 (𝐾 ≥ 10), training parameters and the corre-
sponding time cost are greatly reduced, and the performance of
variants also significantly drops on both metrics.

Summary.On the code generation task, the performance of Telly-
𝐾 is slightly improved for Telly-𝐾 (0 ≤ 𝐾 ≤ 5), obviously changes
for 6 ≤ 𝐾 ≤ 9, and significantly drops when 𝐾 ≥ 10 compared to
the base model.

4.3.5 Line-level code completion. We conduct the experiments with
all Telly-𝐾 on line-level code completion and the results are shown
in the right half of Table 5. The evaluated metrics including Edit
Sim and EM are in the range of [0, 100]. From Table 5, we can find
that:
• For all variant models, both the training time cost and parame-
ters are greatly reduced compared to the base model, while the
performance does not change significantly except the Telly-11.

• For Telly-𝐾 (0 ≤ 𝐾 ≤ 7), they reduce the training parameters by
32% to 72%, correspondingly saving about 13% to 75% of training
time. In addition, the performance of Telly-𝐾 (0 ≤ 𝐾 ≤ 3) is
lightly improved and the performance of Telly-𝐾 (4 ≤ 𝐾 ≤ 7)
slightly drops.

• For Telly-𝐾 (𝐾 ≥ 8), training parameters and corresponding time
cost are hugely reduced. The performance of variants generally
drops for two metrics. Especially, when 𝐾 = 11, the performance
significantly drops. Therefore, the pre-trained parameters of the
last layers need to be fine-tuned to learn to predict the next line
of code.
Summary. On code completion task, the performance of Telly-𝐾
is slightly improved for (0 ≤ 𝐾 ≤ 10 and significantly drops when
𝐾 = 11 compared to the base model.

4.3.6 Findings across all downstream tasks. After analyzing the ex-
perimental results task by task, we summarize the general findings
across various tasks as follows.
• For all Telly-𝐾 , both the training time cost (especially the con-
vergence time cost) and the training parameters are significantly
reduced compared to the base model. The performance does not
change much, except for Telly-10 and Telly-11 on code genera-
tion and Telly-11 on code completion.

• When 0 ≤ 𝐾 ≤ 5, Telly-𝐾 generally reduces the training param-
eters by 30% to 65%, correspondingly saving about 10% to 70% of
training time, with the performance generally increasing varying



ISSTA 2023, 17-21 July, 2023, Seattle, USA Shi, et al.

Table 5: Experimental results on code generation and line-level code completion. #Params is short for the number of training
parameters. M is short for million. The changing ratios compared to the base model are shown in parentheses.

Model
Code Generation Line-Level Code Completion

#Params Training time Performance #Params Training time Performance

Each epoch Convergence BLEU EM Each epoch Convergence Edit sim EM

Base 125.93M 12m25s 4h08m20s 33.82 17.4 125.93M 04m12s 0h37m48s 51.92 20.40

Telly-0 85.0M(↓32%) 11m43s(↓6%) 3h42m37s(↓10%) 33.88(↑0%) 18.1(↑4%) 85.0M(↓32%) 03m59s(↓5%) 0h31m52s(↓16%) 52.58(↑1%) 21.07(↑3%)
Telly-1 78.0M(↓38%) 11m07s(↓10%) 3h20m06s(↓19%) 34.43(↑2%) 17.9(↑3%) 78.0M(↓38%) 03m47s(↓10%) 0h18m55s(↓50%) 52.35(↑1%) 20.87(↑2%)
Telly-2 70.9M(↓44%) 10m32s(↓15%) 2h06m24s(↓49%) 33.85(↑0%) 19.1(↑10%) 70.9M(↓44%) 03m38s(↓13%) 0h32m42s(↓13%) 52.31(↑1%) 20.93(↑3%)
Telly-3 63.8M(↓49%) 09m52s(↓21%) 2h08m16s(↓48%) 34.24(↑1%) 19.0(↑9%) 63.8M(↓49%) 03m29s(↓17%) 0h20m54s(↓45%) 51.81(↓0%) 20.73(↑2%)
Telly-4 56.7M(↓55%) 09m15s(↓26%) 1h51m00s(↓55%) 34.02(↑1%) 18.6(↑7%) 56.7M(↓55%) 03m18s(↓21%) 0h26m24s(↓30%) 51.62(↓1%) 20.27(↓1%)
Telly-5 49.6M(↓61%) 08m44s(↓30%) 1h53m32s(↓54%) 34.36(↑2%) 18.6(↑7%) 49.6M(↓61%) 03m07s(↓26%) 0h09m21s(↓75%) 51.66(↓0%) 20.40(0%)
Telly-6 42.5M(↓66%) 08m13s(↓34%) 1h46m49s(↓57%) 32.90(↓3%) 18.1(↑4%) 42.5M(↓66%) 02m57s(↓30%) 0h11m48s(↓69%) 51.36(↓1%) 20.27(↓1%)
Telly-7 35.4M(↓72%) 07m41s(↓38%) 1h39m53s(↓60%) 32.92(↓3%) 18.0(↑3%) 35.4M(↓72%) 02m58s(↓29%) 0h14m50s(↓63%) 51.32(↓1%) 20.40( 0%)
Telly-8 28.4M(↓77%) 07m08s(↓43%) 1h32m44s(↓63%) 32.12(↓5%) 17.4( 0%) 28.4M(↓77%) 02m59s(↓29%) 0h14m55s(↓65%) 50.95(↓2%) 20.27(↓1%)
Telly-9 21.3M(↓83%) 06m42s(↓46%) 1h27m06s(↓65%) 31.33(↓7%) 18.1(↑4%) 21.3M(↓83%) 02m58s(↓29%) 0h14m50s(↓67%) 51.13(↓2%) 20.73(↑2%)
Telly-10 14.2M(↓89%) 06m03s(↓51%) 1h12m36s(↓71%) 30.43(↓10%) 16.6(↓5%) 14.2M(↓89%) 02m57s(↓30%) 0h11m48s(↓76%) 50.70(↓2%) 20.53(↑1%)
Telly-11 7.1M(↓94%) 05m22s(↓57%) 1h09m46s(↓72%) 27.71(↓18%) 14.3(↓18%) 7.1M(↓94%) 02m06s(↓50%) 0h06m18s(↓83%) 49.49(↓5%) 19.67(↓4%)

from 1% to 4% in terms for various downstream tasks. There-
fore, Telly-5 is usually the best choice among the variants which
reduce resource consumption and performance improvement.

• When 6 ≤ 𝐾 ≤ 9, Telly-𝐾 generally reduces the training pa-
rameters by 65% to 80% , correspondingly saving about 50% to
80% of training time, with the performance generally marginally
changes for various downstream tasks. Specifically, the perfor-
mance of code search and code generation varies from 1% to
5%, clone detection and code summarization varies from 0% to
1%, and code completion varies from 0% to 3%. Therefore, Telly-
9 is usually the best choice among the variants which reduce
resource consumption with a small change in performance.

• When𝐾 ≥ 10, both training parameters and time cost are greatly
reduced. The performance of Telly-𝐾 drops but not significantly
except for code generation and code completion.
The performance of models increases despite freezing some lay-

ers in the above experiments. One possible explanation is that the
reduction in the number of parameters alleviates overfitting, allow-
ing parameters fine-tuned on the training set to better generalize to
the testing set. However, the exact mechanism behind this phenom-
enon is still not well understood and requires further investigations,
such as studying more datasets with different distributions between
training and testing sets, to verify our conjecture.

Summary. For Telly-𝐾 across various downstream tasks, both
the training parameters and the time cost are extremely reduced
compared to the base model. In general, the performance of Telly-
𝐾 increases by 1% to 4% for 0 ≤ 𝐾 ≤ 5, slight changes for 6 ≤ 𝐾 ≤
9, and obviously drops when 𝐾 ≥ 10 compared to the base model.

5 DISCUSSIONS AND THREATS TO VALIDITY
5.1 Importance of Reducing Fine-tuning Time

Costs and the Advantages of Telly-𝐾 .
It is important to reduce fine-tuning costs especially time costs
because (1) the pre-training with fine-tuning paradigm shows in-
creasing adoption in many software engineering tasks [2, 15, 17, 34].
Reducing time cost is important as it typically takes much time

to fine-tune a model, especially on larger datasets. Reducing fine-
tuning time costs can also improve the development efficiency
of pre-trained code models, especially when developers need to
meet product launching deadlines, thereby saving costs and reduc-
ing unexpected losses. (2) GPUs are usually expensive computing
resources. We can save GPU resources with reduced time costs.
Moreover. Training deep-learning-based models, including fine-
tuning pre-trained models, can emit over 600K tons of CO2 each
year [48]. By reducing time costs, carbon emissions can be reduced.

In fact, many approaches [22, 26, 29, 35, 59, 60] have been pro-
posed to save fine-tuning time costs. Among them, distillation
techniques [29, 35, 60] are promising and popular. Specifically, they
propose different approaches to compress a large pre-trained model
into a smaller model, and fine-tune the smaller model to perform
downstream tasks. However, these techniques need to carefully
design and tune the architectures of small models and loss func-
tions to distill knowledge from big models. Therefore, generally
the process of distillation requires more manual design and is more
laborious. Our approach Telly-𝐾 is simple and can directly decrease
the training cost via layer freezing.
5.2 How to help better fine-tuning in the future
In this paper, we have not concluded a “one-method-to-rule-them-
all” suggestion for different tasks. However, our study of RQ2 and
RQ3 show that Telly-7, which freezes the bottom 7 layers, achieves
a good trade-off between efficiency and performance. Specifically,
(1) from Figure 3, we can see that the representations of the bot-
tom 7 layers between pre-trained and fine-tuned models are very
similar; (2) from Tables 3, 4 and 5, we can see that Telly–7 signifi-
cantly reduces the training time and parameters while maintaining
similar performance for all downstream tasks. Therefore, it is rec-
ommended to use Telly–7 in practice. In future work, we aim to
investigate automated layer freezing strategies to use layer-wise
representations more efficiently. For example, we plan to design
algorithms to automatically select features from different layers
and aggregate them to perform different downstream tasks.
5.3 Threats to Validity
We have identified the following threats to our study:



Towards Efficient Fine-tuning of Pre-trained Code Models ISSTA 2023, 17-21 July, 2023, Seattle, USA

Program Languages.We conduct experiments on five program-
ming languages (Python, Java, Ruby, C, and C++). Although in
principle, our studied models are not specifically designed for cer-
tain languages, models may perform differently on different pro-
gramming languages. Therefore, more experiments are needed to
confirm the generality of our findings and conclusions. In the future,
we will extend our study to more programming languages.

Evaluation Datasets.We conduct the experiments on widely-used
datasets. Besides, there are other datasets for each downstream task.
They are different in some aspects such as constructionmethods and
corpus sizes. Model may perform differently on different datasets.
Thus, we will conduct experiments on more datasets to confirm the
generality of our findings and conclusions.

Evaluation Metrics.We use as many commonly-used metrics as
possible to evaluate model performance in this study. However,
these metrics may have their inherent limitations. For example,
BLEU and METEOR are textual similarity-based metrics and cannot
measure the semantic similarity of two sentences. In the future, we
will use more metrics and human evaluation to confirm the findings
and conclusions in this study.

Pre-trained Code Models. Due to computational resource con-
straints, we focus on the state-of-art pre-trained code model UniX-
coder and GraphCodeBERT in this study. Other pre-trained code
models such as CodeGPT [34] and CodeT5 [63] are yet to be studied.

6 RELATEDWORK
6.1 Probing Pre-trained Models
In the natural language processing community, many studies [1,
10, 37, 52, 53] have investigated how pre-trained language models
understand natural language and what happens when fine-tuning
them. They are typically divided into two categories. The first em-
ploys probing techniques to study what linguistic properties are
captured by pre-trained language models [52, 53]. The second is
representational similarity analysis [1, 10, 37]. It is a task-agnostic
analysis and is used to measure the similarity between two different
representational spaces. However, in software engineering field, few
studies explore what happens to pre-trained code models during the
fine-tuning process. Most related studies [15, 21, 30, 54, 58] aim to
understand what pre-trained code models know about source code.
For example, Wan et al. [58] conduct a structural analysis to demon-
strate that the pre-trained models are aware of syntactic structure.
López et al [21] recover ASTs from hidden representations of pre-
trained language models. Karmakar et al [30] also propose some
new probing tasks to investigate what pre-trained code models
know about code. Inspired by the compilation process and static
analysis, we first propose four probing tasks involving the lexical,
syntactical, semantic, and structural code properties. Then we inves-
tigate what code properties are encoded in layer-wise pre-trained
representations and what happens to these representations during
fine-tuning.

6.2 Accelerating the Fine-tuning Process
There are many studies on accelerating fine-tuning process [22, 26,
29, 35, 59, 60]. These studies can be roughly categorized into two
categories. The first is to use the knowledge distillation technique
to compress large-scale pre-trained language models [29, 35, 60].

For example, Jiao et al. [29] propose TinyBERT to distill BERT and
only use about 28% parameter for natural language understand-
ing. The second is the adapter-based fine-tuning approach [22, 59],
where adapters are new trainable modules added between layers
of pre-trained models. For example, Houlsby et al.l [22] design
some adapters with two orders of magnitude fewer parameters to
fine-tune compared to full models and achieve similar performance
with fine-tuning all parameters of the pre-trained mode. In addition,
there are some studies on efficient neural network training from
scratch with layer freezing [28, 62]. For example, Wang et al. [62]
leverage the knowledge from a reference model to accurately evalu-
ate individual layers’ training plasticity, freeze the converged ones
and unfreeze the frozen layers to continue training. Our study could
motivate researchers to come up with more efficient fine-tuning
approaches.

7 CONCLUSION
In this paper, we firstly conduct extensive experimental study to ex-
plore what happens to layer-wise code knowledge and pre-trained
representations during fine-tuning. We then propose efficient al-
ternatives to fine-tune the large pre-trained code model based on
the above findings. Our experimental study shows that the lexical,
syntactic, and structural properties of source code are mainly cap-
tured in the lower, intermediate, and higher layers, respectively,
while the semantic property spans across the entire model. The
basic code properties captured by lower and intermediate layers are
still preserved during fine-tuning. Furthermore, we find that only
the representations of the top two layers change the most during
fine-tuning for various downstream tasks. Based on the above find-
ings, we propose Telly-𝐾 that efficiently fine-tunes pre-trained code
models via selective layer freezing. The extensive experiments on
five various downstream tasks demonstrate that both training pa-
rameters and time costs can be greatly reduced, while performance
is similar or even better.

Furthermore, our experimental study shows many useful find-
ings and promising directions for efficient fine-tuning of pre-trained
code models. For example, we find that pre-trained code models en-
code syntactic properties into intermediate layers. Therefore, when
the downstream tasks are syntax-aware such as code generation,
we could design some modules to make use of the contextual rep-
resentations of intermediate layers. In the future, we will continue
to explore various promising directions and propose more efficient
fine-tuning approaches.

Replication package including source code, datasets,
and online Appendix is available at: https://github.com/
DeepSoftwareAnalytics/Telly.

ACKNOWLEDGEMENT
We thank reviewers for their valuable comments on this work. This
research was supported by National Key R&D Program of China
(No. 2017YFA0700800) and Fundamental Research Funds for the
Central Universities under Grant xtr072022001.

REFERENCES
[1] Samira Abnar, Lisa Beinborn, Rochelle Choenni, and Willem H. Zuidema. 2019.

Blackbox Meets Blackbox: Representational Similarity & Stability Analysis of

https://github.com/DeepSoftwareAnalytics/Telly
https://github.com/DeepSoftwareAnalytics/Telly


ISSTA 2023, 17-21 July, 2023, Seattle, USA Shi, et al.

Neural Language Models and Brains. In BlackboxNLP@ACL. Association for
Computational Linguistics, 191–203.

[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.
Unified Pre-training for Program Understanding and Generation. In NAACL-HLT.
Association for Computational Linguistics, 2655–2668.

[3] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers:
principles, techniques, & tools. Pearson Education India.

[4] Haldun Akoglu. 2018. User’s guide to correlation coefficients. Turkish journal of
emergency medicine 18, 3 (2018), 91–93.

[5] Miltiadis Allamanis and Charles Sutton. 2013. Mining Source Code Repositories
at Massive Scale using Language Modeling. In 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE, 207–216.

[6] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for
MT Evaluation with Improved Correlation with Human Judgments. In IEEvalua-
tion@ACL.

[7] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. 2022. BEiT: BERT Pre-
Training of Image Transformers. In ICLR. OpenReview.net.

[8] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[9] Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar Devanbu,
and Baishakhi Ray. 2022. NatGen: Generative pre-training by" Naturalizing"
source code. (2022).

[10] Grzegorz Chrupala and Afra Alishahi. 2019. Correlating Neural and Symbolic Rep-
resentations of Language. In ACL (1). Association for Computational Linguistics,
2952–2962.

[11] Yingnong Dang, Song Ge, Ray Huang, and Dongmei Zhang. 2011. Code clone
detection experience at Microsoft. In Proceedings of the 5th International Workshop
on Software Clones. 63–64.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT (1). Association for Computational Linguistics, 4171–4186.

[13] Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray,
and Saikat Chakraborty. 2022. Towards Learning (Dis)-Similarity of Source Code
from Program Contrasts. In ACL (1). Association for Computational Linguistics,
6300–6312.

[14] Lun Du, Xiaozhou Shi, Yanlin Wang, Ensheng Shi, Shi Han, and Dongmei Zhang.
2021. Is a Single Model Enough? MuCoS: A Multi-Model Ensemble Learning
Approach for Semantic Code Search. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 2994–2998.

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and Natural Languages. In EMNLP
(Findings).

[16] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
ICSE. ACM, 933–944.

[17] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In ACL
(1). Association for Computational Linguistics, 7212–7225.

[18] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/
forum?id=jLoC4ez43PZ

[19] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B.
Girshick. 2022. Masked Autoencoders Are Scalable Vision Learners. In CVPR.
IEEE, 15979–15988.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[21] José Antonio Hernández López, Martin Weyssow, Jesús Sánchez Cuadrado, and
Houari Sahraoui. 2022. AST-Probe: Recovering abstract syntax trees from hidden
representations of pre-trained language models. In 37th IEEE/ACM International
Conference on Automated Software Engineering. 1–11.

[22] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-Efficient Transfer Learning for NLP. In ICML (Proceedings of Machine
Learning Research, Vol. 97). PMLR, 2790–2799.

[23] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 http://arxiv.org/abs/
1909.09436

[24] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018. Map-
ping language to code in programmatic context. arXiv preprint arXiv:1808.09588
(2018).

[25] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018.
Mapping Language to Code in Programmatic Context. In EMNLP. Association
for Computational Linguistics, 1643–1652.

[26] Junguang Jiang, Yang Shu, Jianmin Wang, and Mingsheng Long. 2022. Transfer-
ability in Deep Learning: A Survey. arXiv preprint arXiv:2201.05867 (2022).

[27] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. In ICSE. IEEE, 1161–1173.

[28] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A unified architecture for accelerating distributed {DNN} training in
heterogeneous {GPU/CPU} clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 463–479.

[29] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, FangWang,
and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural Language Under-
standing. In EMNLP (Findings) (Findings of ACL, Vol. EMNLP 2020). Association
for Computational Linguistics, 4163–4174.

[30] Anjan Karmakar and Romain Robbes. 2021. What do pre-trained code models
know about code?. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 1332–1336.

[31] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. 2008. Represen-
tational similarity analysis-connecting the branches of systems neuroscience.
Frontiers in systems neuroscience (2008), 4.

[32] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In ACL.

[33] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[34] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

[35] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. Twinbert: Distilling knowledge to
twin-structured compressed bert models for large-scale retrieval. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
2645–2652.

[36] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[37] Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and Ian Tenney. 2020. What
Happens To BERT Embeddings During Fine-tuning?. In BlackboxNLP@EMNLP.
Association for Computational Linguistics, 33–44.

[38] Anders Møller and Michael I Schwartzbach. 2012. Static program analysis. Notes.
Feb (2012).

[39] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional neural net-
works over tree structures for programming language processing. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence. 1287–1293.

[40] Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo.
2022. SPT-Code: Sequence-to-Sequence Pre-Training for Learning Source Code
Representations. In ICSE. ACM, 1–13.

[41] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. InACL. ACL, 311–318.

[42] Julian Aron Prenner and Romain Robbes. 2021. Automatic Program Repair with
OpenAI’s Codex: Evaluating QuixBugs. arXiv preprint arXiv:2111.03922 (2021).

[43] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[44] Mark Sanderson. 2010. Christopher D. Manning, Prabhakar Raghavan, Hinrich
Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
ISBN-13 978-0-521-86571-5, xxi+ 482 pages. Natural Language Engineering 16, 1
(2010), 100–103.

[45] Patrick Schober, Christa Boer, and Lothar A Schwarte. 2018. Correlation coeffi-
cients: appropriate use and interpretation. Anesthesia & Analgesia 126, 5 (2018),
1763–1768.

[46] Ensheng Shi, Wenchao Gub, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han,
Dongmei Zhang, and Hongbin Sun. 2022. Enhancing Semantic Code Search with
Multimodal Contrastive Learning and Soft Data Augmentation. arXiv preprint
arXiv:2204.03293 (2022).

[47] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dong-
mei Zhang, and Hongbin Sun. 2022. On the Evaluation of Neural Code Summa-
rization. In ICSE.

[48] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. Energy and
Policy Considerations for Modern Deep Learning Research. In AAAI. AAAI Press,
13693–13696.

[49] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 476–480.

https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436


Towards Efficient Fine-tuning of Pre-trained Code Models ISSTA 2023, 17-21 July, 2023, Seattle, USA

[50] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433–1443.

[51] Telly. 2023. Replication Package. ISSTA (2023). https://github.com/
DeepSoftwareAnalytics/Telly

[52] Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT Rediscovers the Classical
NLP Pipeline. In ACL (1). Association for Computational Linguistics, 4593–4601.

[53] Ian Tenney, Patrick Xia, Berlin Chen, AlexWang, Adam Poliak, R. ThomasMcCoy,
Najoung Kim, Benjamin Van Durme, Samuel R. Bowman, Dipanjan Das, and Ellie
Pavlick. 2019. What do you learn from context? Probing for sentence structure
in contextualized word representations. In ICLR (Poster). OpenReview.net.

[54] Sergey Troshin and Nadezhda Chirkova. 2022. Probing Pretrained Models of
Source Code. arXiv preprint arXiv:2202.08975 (2022).

[55] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using Pre-Trained Models to Boost Code
Review Automation. In ICSE. ACM, 2291–2302.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[57] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. CIDEr:
Consensus-based image description evaluation. In CVPR.

[58] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022.
What Do They Capture? - A Structural Analysis of Pre-Trained Language Models

for Source Code. In ICSE. ACM, 2377–2388.
[59] Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Guihong

Cao, Daxin Jiang, Ming Zhou, et al. 2020. K-adapter: Infusing knowledge into
pre-trained models with adapters. arXiv preprint arXiv:2002.01808 (2020).

[60] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. Minilm: Deep self-attention distillation for task-agnostic compression of
pre-trained transformers. Advances in Neural Information Processing Systems 33
(2020), 5776–5788.

[61] Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang.
2020. Cocogum: Contextual code summarization with multi-relational gnn
on umls. Technical Report. Microsoft, MSR-TR-2020-16. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/cocogum-contextual-
code-summarization-with-multi-relational-gnn-on-umls.

[62] Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury.
2022. Efficient DNN Training with Knowledge-Guided Layer Freezing. CoRR
abs/2201.06227 (2022).

[63] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In EMNLP (1). Association for Computational Linguis-
tics, 8696–8708.

[64] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program
understanding and generation. In ISSTA. ACM, 39–51.

https://github.com/DeepSoftwareAnalytics/Telly
https://github.com/DeepSoftwareAnalytics/Telly
https://www.microsoft.com/en-us/research/publication/cocogum-contextual-code-summarization-with-multi-relational-gnn-on-umls
https://www.microsoft.com/en-us/research/publication/cocogum-contextual-code-summarization-with-multi-relational-gnn-on-umls

	Abstract
	1 Introduction
	2 Background
	2.1 Pre-trained Code Models
	2.2 Probing Techniques
	2.3 Representational Similarity Analysis

	3 An Experimental Study on Pre-trained Code Model
	3.1 Research Questions
	3.2 Probing Pre-trained Code Models
	3.3 Representational Similarity Analysis
	3.4 Experimental Settings
	3.5 Experimental Findings

	4 Efficient Fine-tuning of Pre-trained Code Models
	4.1 Research Question
	4.2 Experimental Settings
	4.3 Experimental Results

	5 Discussions and Threats to Validity
	5.1 Importance of Reducing Fine-tuning Time Costs and the Advantages of Telly-K.
	5.2 How to help better fine-tuning in the future
	5.3 Threats to Validity

	6 Related Work
	6.1 Probing Pre-trained Models
	6.2 Accelerating the Fine-tuning Process

	7 Conclusion
	References

