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ABSTRACT
The deep learning (DL) compiler serves as a vital infrastructure
component to enable the deployment of deep neural networks on
diverse hardware platforms such as mobile devices and Raspberry
Pi. DL compiler’s primary function is to translate DNN programs
written in high-level DL frameworks such as PyTorch and Ten-
sorFlow into portable executables. These executables can then be
flexibly executed by the deployed host programs. However, exist-
ing DL compilers rely on a tracing mechanism, which involves
feeding a runtime input to a neural network program and trac-
ing the program execution paths to generate the computational
graph necessary for compilation. Unfortunately, this mechanism
falls short when dealing with modern dynamic neural networks
(DyNNs) that possess varying computational graphs depending on
the inputs. Consequently, conventional DL compilers struggle to
accurately compile DyNNs into executable code. To address this
limitation, we propose DyCL, a general approach that enables any
existing DL compiler to successfully compile DyNNs. DyCL tackles
the dynamic nature of DyNNs by introducing a compilation mech-
anism that redistributes the control and data flow of the original
DNN programs during the compilation process. Specifically, DyCL
develops program analysis and program transformation techniques
to convert a dynamic neural network into multiple sub-neural net-
works. Each sub-neural network is devoid of conditional statements
and is compiled independently. Furthermore, DyCL synthesizes a
host module that models the control flow of the DyNNs and facil-
itates the invocation of the sub-neural networks. Our evaluation
demonstrates the effectiveness of DyCL, achieving a 100% success
rate in compiling all dynamic neural networks. Moreover, the com-
piled executables generated by DyCL exhibit significantly improved
performance, running between 1.12× and 20.21× faster than the
original DyNNs executed on general-purpose DL frameworks.
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1 INTRODUCTION
With the growing popularity of deep learning(DL)-based appli-
cations, optimizing, executing, and deploying these applications
becomes critical. DL compilers [3, 7, 11–13, 32, 33, 43, 53, 54] are
fundamental infrastructures for achieving these goals, enabling DL
application deployment on various hardware devices. DL compil-
ers translate DL models written in high-level DL frameworks (e.g.,
PyTorch [37] and TensorFlow [1]) into optimized and portable
executables.

Over the past few years, significant advancements have been
made in the development of DL compilers, aiming to streamline
the deployment of neural networks on diverse hardware platforms
[6, 8, 11, 44]. DL compilers offer two key advantages. First, they
enable the compiled DNN model to function as a executable pro-
gram, eliminating the need for model developers to install resource-
intensive DL frameworks on target platforms to parse and execute
the DNN models. Second, DL compilers optimize the inference
time overhead of a given DNN model, making it suitable for real-
time applications on resource-constrained platforms such as mobile
devices.

However, existing DL compilers heavily rely on the tracing mech-
anism [6, 33], which requires providing a runtime input to a neural
network program and tracing its execution path to generate the nec-
essary computational graph for compilation. Unfortunately, these
tracing mechanisms implicitly assume that a DNN model can be
abstracted as a “static” computational graph, with a fixed execution
path for computation. This assumption, however, does not hold for
modern dynamic neural networks (DyNNs), where the execution
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path is determined by individual inputs and varies with each invo-
cation [9, 15, 19, 34, 46, 49]. For instance, an encoder-decoder model
used in neural machine translation [4] may require invoking the
underlying decoder multiple times to produce translation outputs,
without specifying the exact number of invocations.

To understand the limitations of the tracing mechanism em-
ployed by existing DL compilers when it comes to compiling dy-
namic neural networks, we conducted an empirical study utilizing
two widely-used DL compilers (i.e., TVM [6] and OnnxRuntime [33])
to compile four types of DyNNs. The results revealed a discrepancy
between the outputs produced by running the compiled executa-
bles and the original DNN models within DL frameworks. This
discrepancy clearly indicates that the DL compilers fail to accu-
rately compile DyNNs.

To overcome the limitations of existing DL compilers, we intro-
duce an automatic tool, DyCL, which assists developers in accurately
compiling DyNNs automatically. Our primary objective is to enable
the flexible adaptation of optimizations found in current DL compil-
ers while ensuring the correct handling of the inherent dynamism
present in DyNNs. The design of DyCL is driven by two key obser-
vations. First, we identify that the main source of DL compilers’
inability to compile DyNNs lies in the presence of conditional state-
ments within DyNN programs (e.g., conditional statements). When
a source program does not contain such conditional statements,
a DyNN program effectively transforms into a regular DNN pro-
gram, with a computational graph that can be determined statically.
Second, we recognize that DL applications typically involve pre-
and post-processing stages, such as image normalization and token
mapping. Consequently, the compiled DNN executable cannot func-
tion as a standalone program. Instead, a host program (i.e., Listing
2) is responsible for running both the pre- and post-processing
stages, as well as invoking the DNN executable for inference. It
is worth noting that the host program is often developed using a
high-level programming language (e.g., Java, C/C++, and Python),
whose compiler is equipped to adequately handle dynamism.

Based on these observations, we design DyCL to move the dy-
namism of DyNN models to the host programs and reuse existing
DL compilers to compile the sub-DNN models without dynamism.
Specifically, DyCL coverts a DyNN into multiple standard neural
networks (we refer to the separated neural networks as sub-DNNs)
with conditional statements determining which sub-DNNs are in-
voked, and then apply the existing DL compilers to compile the
sub-DNNs and incorporate the conditional statements into the host
program.

We identify two challenges to correctly moving the dynamism
from DyNN programs to the host programs. The first challenge is
maintaining the essential contexts (i.e., concrete model instance and
model input shape) for compiling each sub-DNN. To address this
challenge, our insight is that each sub-DNN is a “fixed” part and
has no dependency on the DyNN inputs. In other words, we can
obtain the concrete DNN instance for each sub-DNN by performing
constant propagation. Motivated by such intuition, we developed
a program rewriting engine (Section 5.2) that first conducts loop
unrolling and then constant propagation to make each variable
that has no dependency on the DyNN’s input constant. As for
maintaining the input tensor shape for each sub-DNN, our insight

is that each sub-DNN input is the output of its predecessor sub-
DNNs. Based on this insight, we introduced a novel concept called
the Heterogeneous Control Flow Graph (HCFG) (Section 5.3), a
special type of control flow graph, to model the dynamic behavior
and the data flow of DyNNs. After that, we propose a novel traverse
algorithm (Section 5.5) to traverse the HCFG, trace each sub-DNNs
output shape, and use them as the input shapes for compiling the
subsequent sub-DNNs. By doing so, we can successfully collect the
necessary context to compile each sub-DNN.

The second challenge we encountered involves co-optimizing
the host program and the compiled sub-DNNs to achieve enhanced
optimization. Our insight for tackling this challenge stems from the
observation that the host program and the compiled sub-DNNs are
typically executed on different devices, such as CPU and GPU. Con-
sequently, unnecessary overhead may arise due to data transfers be-
tween these devices. Thus, we can further optimize each sub-DNN
and put the computation-free operations (e.g., memory manipula-
tion) on the host program to reduce the data transfer overheads.
We then propose two strategies to identify the computation-free
operations (e.g., constant assignment and tensor copy) in each sub-
DNN and move the operations from the computational graph of the
sub-DNN to the corresponding host program to ensure semantic
equivalence.

We conducted extensive experiments to evaluate DyCL. Specif-
ically, we evaluate two open-source DL compilers, TVM [7] and
OnnxRuntime [33], on nine DyNN models, and we select two pop-
ular hardware platforms (i.e., Nvidia TX2 and Nvidia AGX) as the
backends. The selected DyNN models are diverse in terms of model
architecture, model size, and application. The selected hardware
backends are popular embedded platforms for deploying neural
networks to assist system decision-making. We evaluate DyCL in
terms of compilation correctness and acceleration. Moreover, we
conduct an ablation study to understand the contribution of our
proposed graph optimization module. The results show that DyCL
can 100% correctly compile all dynamic neural networks (i.e., the
final decision after the post-processing of the compiled DyNN has a
100% consistent rate with the decision of the original DyNN model),
and the maximum numeric error between the compiled DyNN and
the original DyNN is around 10−4.72, significantly less than directly
applying DL compiler to compile the DyNN (range from 100 to
104). Moreover, the compiled executables run 1.12× to 20.21× faster
than the original DyNNs running on the general-purpose DL frame-
works, indicating the benefits of applying DyCL to deploy DyNN
models. Finally, our ablation study shows that the proposed graph
optimization module can further benefit the compilation process.

This paper made the following contributions.

• We conduct an empirical study to use two popular DL com-
pilers (i.e., TVM and OnnxRuntime) to compile four types of
DyNNs. The study results illustrate the limitations of the
existing DL compilers when compiling DyNNs.

• We present a program rewriting approach that allows adapt-
ing many existing DL compilers to compile DyNNs correctly.
The key novelty of our approach is to identify and represent
the dynamism of DyNN programs in heterogeneous control
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Figure 1: An overview of design architecture of DL compilers.

flow graphs. The sub-DNNs in HCFGs are compiled indi-
vidually, and our approach generates a host API to call the
compiled sub-DNNs.

• Based on the novel ideas, we implement DyCL; our evaluation
results show DyCL can correctly compile nine DyNN models
and accelerate the DyNN’s inference time overheads range
from 1.12× to 20.21×.

2 BACKGROUND
2.1 Deep Learning Compiler
DL compilers are designed to optimize deep neural networks from
high-level deep learning frameworks (e.g., Pytorch [37], Caffe [22]
and TensorFlow [27]) and produce executables for AI-programs
running on different hardware platforms [25, 48]. As shown in
Fig. 1, a DL compiler primarily contains two parts [26]: the compiler
frontend and the compiler backend. To compile a DNN, the compiler
frontend first translates the DL model into high-level intermediate
representations (IR) for hardware-independent optimizations. After
that, the compiler backend converts the high-level IR into low-
level IR for hardware-specific optimizations and code generation.
The high-level IR in a DL compiler is typically represented by a
graph, called computational graph. In a computational graph, a node
represents an operation on a tensor or a program input, and an edge
represents the data dependence between operations. The low-level
IRs are language and machine-dependant, capturing the hardware
characteristics (e.g., memory management).

1# Load a pretrained model

2model = torchvision.models.resnet18(pretrained=True)

3model = model.eval()

4

5# Grab the TorchScripted model via tracing

6input_shape = [1, 3, 224, 224]

7example_data = torch.randn(input_shape)

8scripted_model = torch.jit.trace(model , example_data)

9

10# Transfer the PyTorch model to Relay

11input_name = "input0"

12shape_list = [(input_name , img.shape)]

13mod , params = relay.frontend.from_pytorch(scripted_model ,

shape_list)

14

15# Compile the model for the target platform

16target = tvm.target.Target("llvm", host="llvm")

17dev = tvm.cpu(0)

18with tvm.transform.PassContext(opt_level =3):

19lib = relay.build(mod , target=target , params=params)

Listing 1: Example of compiling DNNs.

1# Preprocess the image and convert to tensor

2img = Image.open(img_path).resize ((224, 224))

3my_preprocess = transforms.Compose ([

4transforms.Resize (256),

5transforms.CenterCrop (224),

6transforms.ToTensor (),

7transforms.Normalize(

8mean =[0.485 , 0.456, 0.406] ,

9std =[0.229 , 0.224, 0.225]) ,

10])

11img = my_preprocess(img)

12img = np.expand_dims(img , 0)

13

14# Load the compiled DNN and inference

15m = graph_executor.GraphModule(lib["default"](dev))

16img = img.astype("float32")

17m.set_input(input_name , tvm.nd.array(img))

18m.run()

19tvm_output = m.get_output (0)

20

21# Postprocess the inference results

22top1_tvm = np.argmax(tvm_output.numpy()[0])

23tvm_class_key = class_id_to_key[top1_tvm]

Listing 2: Example host program deploying compiled DNNs.

Listing 11 shows an example using TVM [6] to compile a DNN for
mobile programs. As shown in line 8, to compile a DNN, the first
step is to trace the DNN. The trace step requires two inputs: a DNN
instance (i.e., model) and an input example (i.e., example_data). It
outputs one scripted module. Listing 2 shows an example of how
the compiled DNNs are deployed in a mobile platform. Lines 1-12
show the pre-processing step to normalize the input image; lines
14-17 show how to load the compiled DNN and use it for inference.
Lines 21-23 show the post-processing step. In this paper, we refer
to the program that loads the compiled DNN executable as the host
program.

Input
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Conv 3
Dense 1

True
False

Output 

Input

Conv 1
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Dense 1

Output 

Standard Neural Networks Dynamic Neural Networks

Tensor Node
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Conditional Node

Figure 2: An overview of the standard neural networks vs.
dynamic neural networks.

2.2 Dynamic Neural Network Model
Before we introduce Dynamic Neural Networks (DyNNs), we first
introduce the basic concepts of standard neural networks. As shown
in the left subfigure of Fig. 2, a neural network can be abstracted as
1https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html

https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html
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a directed acyclic graph (DAG). The node in the graph represents
either the tensor or the kernel operators (e.g., convolutional op-
erator and dense operator), and the edge represents the data-flow
dependency between the nodes.

However, standard neural networks cannot satisfy the modern
needs of many real-world applications. Take natural language pro-
cessing as an example, where the neural networks require different
input and output dimensions, making dynamic neural networks in-
herently necessary. In response to these demands, researchers have
proposed DyNNs [9, 15, 19, 28, 30, 35, 39, 46, 49]. DyNNs merge
neural networks with conditional logic, allowing their execution
paths to be modified based on varying inputs. In the right subfigure
of Fig. 2, DyNNs include additional components such as the If
conditional nodes alongside the tensor and kernel operator nodes.
When presented with specific input, the If conditional node utilizes
the computed intermediate tensor (e.g., the output tensor of the
Conv1 node in our example) to determine which sections of the
overall graph should be activated for computation. For instance,
in early-exit DyNNs, the If conditional node employs the com-
puted confidence score from its inter-classifier to decide whether to
continue the computation. Similarly, in neural machine translation
DyNNs, the If conditional node leverages the output token value
to determine whether the translation should be completed.

In this study, our focus lies on dynamic neural networks that
exclusively consist of input-independent loops, as the inclusion
of an input-dependent loop could potentially lead to an infinite
loop scenario. DyNNs are unique tensor programs in which the
parameters are learned from data rather than manually defined.
However, this reliance on trained parameters renders them sus-
ceptible to adversarial examples [4], where the adversarial agent
can manipulate the inputs to deceive the DNN and create an in-
finite loop. Consequently, to mitigate this vulnerability, current
implementations of DyNNs often incorporate a flag that enforces a
constant maximum number of iterations, independent of the inputs,
thus safeguarding against potential adversarial attacks. This imple-
mentation style has been seen in existing work [4] which studied
1,455 DyNN implementations and all of the studied DyNNs apply
such an implementation style.

3 EMPIRICAL STUDY
In this section, we perform an empirical study to understand if
existing DL compilers can correctly compile DyNN models.

3.1 Study Setup
Target DL Compilers. We target two DL compilers in this study:
Apache TVM [7] and Microsoft OnnxRuntime [33], both of which
are popular in academic research and industry work. TVM is a DL
compiler for deploying DNNs on various platforms. It first con-
verts a deep neural network into a static computational graph
for high-level optimization and then generates hardware-specific
code for each node in the transformed graph. On the other hand,
OnnxRuntime is a runtime-based framework. It also converts a deep
neural network into a graph representation for optimization. After
that, OnnxRuntime maps the graph node to pre-compiled kernel
operator functions.

Target DyNN Models.We selected DyNN models for our study
using the following four criteria. The selected DyNN models (i)
are the state-of-the-art models, which are published at top-tier
conferences and outperform others according to their publication;
(ii) are popularly used in work conducted by both academia and
industry; (iii) differ from each other in terms of input domains and
dynamic mechanisms; (vi) are publicly available, and their code can
be successfully executed.

Based on the above criteria, we selected four DyNNs from the sur-
vey by Huang et al. [17], listed in Table 1. Two of them are energy-
saving DyNNs [2]: Shallow-Deep and SkipNet [23, 47]. Shallow-
Deep is an early-termination DyNN that has multiple exits in a deep
neural network. If one of the exits is confident about the prediction,
the execution is stopped early. SkipNet is a conditional-skipping
network that decides to skip or execute a DNN block based on the in-
termediate gate values. AttentionNet [45] and En-Decoder [50] are
generative DyNNs. AttentionNet is a Neural Machine Translation
(NMT) model that uses an attention mechanism to draw depen-
dencies between input and output. En-Decoder uses two different
types of attention mechanisms to generate captions for images.

3.2 Study Process
To check whether existing DL Compilers can correctly compile the
DyNNs, our intuition is that a correct compilation process should
not change the semantics of the DyNNs. With this intuition, we
compare the semantics of the original DyNNs and the compiled
DyNNs. Specifically, we generate random inputs and feed the gen-
erated inputs to both the original DyNN and the compiled DyNN
for inference and collect the outputs. Given the same inputs, the
compiled and original DyNNs should produce identical outputs.
Otherwise, the compiled DyNN is not semantically equivalent to
the original DyNN, implying the compilation process fails.

Recall the original DyNN model first runs on a general-purpose
DL framework (e.g., PyTorch and TensorFlow) to train its parame-
ters. Thus, we can use kernel functions from the general-purpose
DL framework to launch the original DyNN, and we denote this
program as the vendor program V(·). We then follow each tar-
get DL compiler’s documentation to compile the original DyNN
and generate the compiled executable C(·). We randomly sample
1,000 inputs from a DyNN model’s hold-out testing dataset as the
test suite. We feed the test suite to both V(·) and C(·) and collect
the outputs before and after the post-prepossess (e.g., the variable
tvm_output in line 19 and tvm_class_key in line 23 in Listing 2).
We use the subscripts 𝑏𝑒 𝑓 𝑜𝑟𝑒 and 𝑝𝑜𝑠𝑡 to distinguish these two
outputs. We then define two metrics to evaluate whether the target
DL compiler can produce correct programs.

𝛿 = 𝑙𝑜𝑔

{
𝑁max
𝑖=1

| |C𝑏𝑒𝑓 𝑜𝑟𝑒 (𝑥𝑖 ) − V𝑏𝑒𝑓 𝑜𝑟𝑒 (𝑥𝑖 ) | | + 𝜖

}
𝜂 =

1
𝑁

𝑁∑︁
𝑖=1
I(V𝑝𝑜𝑠𝑡 (𝑥𝑖 ) ≠ C𝑝𝑜𝑠𝑡 (𝑥𝑖 ))

(1)

Metrics. As shown in Eq.(1), our first metric is maximum numeric
error 𝛿 , which computes the maximum numeric error between the
vendor and compiled DyNN programs outputs before the post-
prepossess (i.e., the maximum error between the outputs of line
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Table 1: The Subject DyNNs in Our Preliminary Study

DyNNs Domain Dynamic Mechanism # of Branch Github Star Citation

Shallow-Deep Image Classification layer wise early stopping DNN 13 24 89
SkipNet Image classification block wise selective executation 53 208 355

En-Decoder Image caption token wise caption generation 50 1.2k 8863
AttentionNet machine translation token wise caption generation 200 1.2k 40711

Table 2: The rate of inconsistency outputs predictions.

DL Compiler Shallow-Deep SkipNet En-Decoder AttentionNet ResNet

OnnxRuntime 0.83 1.00 0.87 0.83 0.00
TVM 0.83 1.00 0.87 0.83 0.00

19 in Listing 2), where 𝜖 is set as 10−10 to avoid the division-by-
zero issue. The DNN compilation process needs to perform some
numeric matrix operations, and errors naturally exist in the matrix
operations. Thus, numeric inconsistencies are inevitable in the DNN
compilation process.

However, some numeric inconsistencies may not affect DyNN
programs’ final decision after post-processing. Thus, besides maxi-
mum numeric error, we propose final inconsistent rate 𝜂 to measure
the inconsistent rate of the post-prepossessed outputs between the
vendor DyNN programs and the optimized DyNN programs, where
I is the identity function, and it outputs 1 if the expression inside
this function is evaluated to be true; otherwise 0. If the final incon-
sistent rate does not equal to 0, then it means that C will produce
different outputs withV given the same inputs, implying the DL
compiler changes the DyNN’s semantics. For classification DyNNs,
the post-processing step involves computing the predicted label.
This is achieved by searching for the category with the highest
confidence scores [18]. For generation DyNNs, we set the post-
prepossess as computing the generated sequences, which is done
by searching the token that has the maximum likelihood among
each output position [45].
Comparison Baselines. To show the compilation process is cor-
rect, we also compile a standard DNN program with no branches,
ResNet50 [18], as the baseline.

3.3 Study Results
The number of inconsistent predictions from the compiled DL ex-
ecutable and the DL framework is shown in Table 2. The results
demonstrate that the majority of randomly selected inputs (more
than 80%) produce inconsistent outputs between vendor programs
and compiled executables, implying that the produced DNN exe-
cutable is semantically inequivalent to the original DyNN programs.
Failure Analysis. We attempted to comprehend the enormous
amount of inconsistent predictions in Table 2. In particular, we
would like to show that the inconsistency is caused by the design
limitation of the DL compiler rather than the numerical errors in the
compiler optimization process.We visualize the error distribution of
the outputs fromV(·) and C(·). The error distribution is shown in
Fig. 3 (for better presentation, we only show the results of SkipNet
and En-Decoder, more results could be found on our website), where

ResNet
SkipNet
En-Decoder

C
D

F

0

0.2

0.4

0.6

0.8

Absolute Error (log)
−20 −16 −12 −8 −4 0 4 8

Figure 3: The error distribution of standard DNN and DyNNs.

the x-axis represents the absolute error and the y-axis represents
the cumulative distribution function (CDF) [21]. We observe that
the absolute errors of ResNet are mostly located in the range of
[10−15, 10−13]. However, the errors of DyNNs are located in the
range of [10−1, 104], depending on the DyNN models. Such a
significant error gap (i.e., more than 1014×) demonstrates that the
discrepancy in DyNN is not due to numerical errors.

To gain further insight into the reasons for compilation failure,
we conducted an analysis focusing on consistent outputs (it is worth
noting that some DyNNs, as shown in Table 2, are capable of produc-
ing consistent outputs). In our analysis, we specifically tracked the
execution traces of these inputs and compared them to the traces
used during the compilation process of the DyNN. As indicated in
line 8 of Listing 1, the DL compiler relies on tracing an example
data to compile the model. During our investigation, we made a
crucial observation: these traces were found to be identical. This
observation can be attributed to a fundamental characteristic of ex-
isting DL compilers - their “static” nature of the tracing mechanism
in the compilation process. Consequently, during the compilation
process, the DL compiler disregards conditional branches (such as
if statements) and generates a fixed computational graph based on
the execution trace of the example input. As a result, the compiled
DyNN executable utilizes the same execution path for all inputs,
as dictated by the fixed computational graph. While it is possible
for inputs to follow the same execution path as the example data,
resulting in the compiled executable producing identical results
to the original DyNN program, the likelihood of this occurring is
exceptionally low. This is particularly evident in the case of SkipNet,
which encompasses an astounding 253 distinct execution paths.
Summary. Our experimental results confirm the limitations of
existing DL compilers. Specifically, while some of these compilers
do offer support for control flow, they struggle to correctly compile
DyNNs due to their reliance on tracing mechanisms for obtaining
computational graphs.
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1

2def adaptive_forward_compile(self , x):

3# some code for tensor computation

4

5for g in range (3):

6for i in range(self.num_layers[g]):

7

8if g == 0 and i < self.num_layers[g] - 1:

9i = i + 1

10

11name = 'group{}_ds{}'.format(g + 1, i)

12if name in self.attr_layers:

13model = self.attr_layers[name]

14prev = model(prev)

15

16if mask == 0:

17x = (1 - mask).expand_as(prev) * prev

18else:

19ly_name = 'group{} _layer {}'.format(g+1,i)

20layer = self.attr_layers[ly_name]

21x = layer(x)

22x = mask.expand_as(x) * x

23cnt = cnt + 1

24prev = x

25#### Some codes

Listing 3: An example to demonstrate the challenge of
identifying sub-DNNs from the source code.

4 CHALLENGES AND INTUITIONS
DyNN model compilation imposes several unique challenges com-
pared to standard “static” neural network model compilation. We
enumerate two major challenges and provide a high-level idea of
how DyCL addresses them.
Goal: Designing a general approach for various DLCompilers
using different types of IRs. To enable existing DL compilers
to effectively compile DyNNs, the initial step is to represent the
dynamic behavior of DyNNs within these compilers. Furthermore,
to fully leverage the capabilities of various optimization strategies
present in these DL compilers, a comprehensive approach needs
to be designed for each compiler, taking into account their unique
designs and characteristics.
Solution: Our solution is based on the following two observations.
First, the dynamic behavior of DyNNs comes only from conditional
statements (as shown in Fig. 2). DyNNs can be separated into mul-
tiple standard neural networks (we refer to the separated neural
networks as sub-DNNs) with conditional statements determining
which sub-DNN to be invoked, and each sub-DNN can be correctly
compiled by existing DL compilers. Second, a compiled DL pro-
gram consists of an external library function and a host program
(as shown in Listing 2). The host program is a program often im-
plemented by a modern high-level programming language (e.g.,
C/C++ and Python). These languages already have programming
constructs to represent the dynamic behaviors (i.e., conditional
statements). Combing these two observations, our idea is to split
the conditional statements from tensor computations in DyNNs,
and then apply the existing DL compilers to compile the tensor
computation part and incorporate the conditional statements into
the host program.

Challenge 1: Maintaining the contexts for compiling sub-
DNN. The first challenge is compiling each sub-DNN in the correct
contexts. Recall that in Listing 1, compiling a neural network needs
two contexts: the DNN model instance and a DNN model input.
Unfortunately, both contexts are not explicitly exhibited in the
DyNN implementation. Listing 3 shows an example of a simplified
implementation of SkipNet [47]. From the code snippet, it is not
easy to identify the necessary context for compilation because
some contexts are represented in an implicit way. For example, an
existing DL compile is unable to compile a basic block (e.g., lines
13-14) because the compiler is unable to obtain the concrete model
instance model (i.e.,model is determined by the variable name as the
statement in line 13 assigns self.attr_layers[name] to variable
model) nor the input tensor shape of the model instance.
Intuition 1: To address this challenge, our observation is that the
dynamic behavior of the DyNN model comes from its conditional
If node. Removing the conditional If node, the rest sub-DNNs are
“fixed”; thus, sub-DNNs have fixed context and have no dependency
on the DyNN inputs. In other words, we can obtain the concrete
DNN instance for each sub-DNN by performing constant propa-
gation and loop unrolling. As for the shape of each sub-DNN’s
input, our intuition is that we can start from the entry of the DyNN
models’ computational graph, iteratively compute the output shape
of each node in the graph, and set the output shape as the input
shape for the successor node.
Challenge 2: Co-optimization between the host program and
tensor computation. Recall that the compiled DyNNs will be
invoked as an API function in the host program. To ensure the
semantic equivalence between the generated API and the original
DyNNs, for each sub-DNNs, we need to track (i) the required input
variable of the corresponding code snippet and (ii) the live variable
after the corresponding code snippet, and then set these variables
as the input/output of the sub-DNNs. However, the output variable
of a sub-DNN may be a constant value or identical to one of the
sub-DNN’s input variables. Putting these variables to DL compilers
to get acceleration on the accelerator (e.g., GPU) may introduce
unnecessary data transfer time. Thus, it calls for a co-optimization
between the host program and the tensor computation.
Intuition 2: Our intuition is that DL compilers are designed to
accelerate the “computing” for modern hardware platforms. We
seek to reduce as many computation-free data transfer overheads
as possible to accelerate the inference process. Based on this in-
tuition, we propose two graph optimization strategies to further
optimize the computational graph of each sub-DNN. Our optimiza-
tion strategy will put computation-free data transfer left in the host
program to reduce the data transfer time from the host program to
the accelerator.

5 OUR APPROACH: DYCL
Given a DyNN model 𝑃𝐷𝑦𝑁𝑁 , our goal is to compile it and gen-
erate an optimized host API function 𝑃𝐻𝑜𝑠𝑡 that is semantically
equivalent to the 𝑃𝐷𝑦𝑁𝑁 . Formally denoted as

𝑃𝐷𝑦𝑁𝑁 (𝑥) = 𝑃𝐻𝑜𝑠𝑡 (𝑥) ∀𝑥 ∈ X (2)
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Input DyNN Program

Entrydef forward(self, x):
if len(x) == 1:

x = self.f1(x)
else:

x = self.f2(x)   
x = self.f3(x)

return x

Len(x) == 1

x = self.f1(x) x = self.f2(x)

x = self.f3(x)

Exit

2. HCFG Construction

Sub-DNN1

Sub-DNN2

1. Program Rewriting

Rewritten Program

def forward(self, x):
if len(x) == 1:

x = self.f1(x)
else:

x = self.f2(x)   
x = self.f3(x)

return x

3. Graph  Optimization

HCFG Optimized Graph

…
public Tensor predict(x):
// Synthesised API

if x.length() == 1:
x = this.m1(x)

else:
x = this.m2(x) 

return x 

Input

Conv 

Dense 

Output 

4. Sub-DNN  Compilation

……

Sub-DNN Executable

5. Host  API Generation

Figure 4: Design overview of DyCL.

For any inputs that belong to the program input domain, the host
API will produce the same output as the original DyNN. Moreover,
the host program can call the API using a similar way in Listing 2.

5.1 Design Overview
Figure 4 shows the design overview of our approach. The key
insight of DyCL is to partition a DyNN into several sub-DNNs with-
out dynamism for compilation and leave the dynamism part to the
host program. Based on this insight, DyCL carries out the following
five steps. 1○ DyNN source program rewriting. Given a DyNN pro-
gram from the high-level DL framework (e.g., PyTorch), DyCL first
rewrites it and makes the context for each sub-DNN explicit. 2○
HCFG Construction. After rewriting the DyNN program, the next
step is constructing a heterogeneous control flow graph (HCFG)
to represent the logic conditional nodes and sub-DNN nodes. 3○
Sub-DNN Optimization. In this step, we build a computational graph
for each sub-DNN and propose two strategies to optimize the com-
putational graph of each sub-DNN. 4○ Sub-DNN compilation. After
optimizing the computational graph of each sub-DNN, we start
from HCFG’s entry node and iteratively compile the node in the
HCFG to obtain a set of compiled DNN executables. 5○ Host API
generation. Finally, we modify the rewritten DyNN’s abstract syntax
tree (AST) and covert the modified AST back to a host API function.

Algorithm 1 HCFG Construction Algorithm.
Input: Rewritten DyNN program 𝑃𝐷𝑦𝑁𝑁 .
Output: HCFG of the input DyNN program.
1: CFG = ConstructCFG(𝑃𝐷𝑦𝑁𝑁 ) {get the CFG of 𝑃𝐷𝑦𝑁𝑁 }
2: HCFG = Dict() {Initlize HCFG as an dictionary}
3: for each N in CFG.Nodes do
4: s = N.statements[-1] {get the last statement of N}
5: if s is logic conditional statement then
6: s, N2 = BlockPartation(N) {partition node N}
7: HCFG.update(s) {Add statement s to HCFG}
8: N = N2. {Update N}
9: end if
10: HCFG.update(N) {Add node N to HCFG}
11: end for

5.2 DyNN Program Rewriting
Recall that the purpose of this step is to make the context for each
sub-DNN explicit so that we can automatically compile each sub-
DNN. To achieve this goal, we first conduct a loop unrolling process
to get a program that contains no cycle in its CFG. As we introduced
in Section 2, there is no cycle in the computational graph of the
DyNN model. Thus, we need to unroll all loop statements in the
original DyNN program. Recall that our tool focuses on DyNNs
that do not contain input-dependent loops. This restriction is in
place to avoid the potential introduction of infinite loops, as dis-
cussed in Section 2. Consequently, our loop unrolling technique is
always feasible within this scope. After that, we perform constant
propagation to make sure that all variables have no dependency
on the DyNN’s input constant. Consider the example provided in
Listing 3. Excerpts of the rewritten code are presented in Listing 4,
showcasing the unrolling of the for loop statements from lines 4-5
and lines 9-10 of Listing 4. These correspond to the for loop state-
ments found in lines 5-6 of Listing 3. Additionally, the if statement
present in lines 8-9 of Listing 3 is eliminated following constant
propagation.

1

2def adaptive_forward_compile(self , x):

3# some code for tensor computation

4g = 0

5i = 1

6name = 'group1_ds1 '

7#### Some repeated code

8

9g = 0

10i = 2

11name = 'group2_ds2 '

12#### Some repeated code

Listing 4: The code snippet of the DyNN after rewriting

5.3 HCFG Construction
After rewriting the original DyNN program, the CFG of the program
will be a DAG containing no cycle, and each variable that has no
data dependency on DyNN’s input will be presented as a constant.

Recall that our goal is to put the dynamic logic of DyNNs on the
host program. To achieve this goal, we propose a heterogeneous
control flow graph (HCFG), which is a special control flow graph
(CFG). HCFG includes two types of nodes, the first comprises only
one logic conditional statement, and the other contains multiple
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Strategy 1

Strategy 2

output::fwd = input::fwd
output::output = input:: output

output::output = constant 1
output::is_output = constant 2

Figure 5: The proposed graph optimization strategy.

sequential statements. The edges in HCFG represent the control
flow paths, similar to the edges in CFG. The HCFG construction
algorithm is shown in Algorithm 1. On line 1, we first construct the
CFG of the rewritten DyNN program. Then we traverse the basic
blocks in the CFG (line 3), and if the last statement of the block
is an if statement (line 5), we split the block into two blocks and
update the HCFG (lines 6-8). Each node in the HCFG is either an if
statement or a sequence of statements that contain only the tensor
computation statements. We treat each node that contains only the
tensor computation statements as a sub-DNN for compilation.

5.4 Sub-DNN Optimization
For each sub-DNN in the constructed HCFG, we perform further
optimization on its computational graph to avoid unnecessary data
transfer overheads between the host program and the accelera-
tor (e.g., GPU). As discussed in Section 4, we seek to identify the
computation-free operations in each sub-DNNs’ computational
graph and put these operations on the host program.

The first strategy is to eliminate the identity tensor copy oper-
ation. For this strategy, we start from each output node and enu-
merate all paths from the input node to this output node. If a path
contains only the identity operator, we will remove this path and
add a corresponding assignment statement in the host program.
The second strategy is similar to constant propagation in compiler
optimization. Firstly, we identify the output node for which all of
its sink nodes (nodes without any incoming edges) are constant; we
then remove these paths in the computational graph and add the
corresponding assignment statement in the host program. Fig. 5
shows an example of our proposed graph optimization strategy. For
each strategy, the first column shows the original computational
graph, and the second column is the optimized computational graph.
The third column shows the corresponding statements we add to
the host program.

5.5 Sub-DNN Compilation
Recall that using the DL compiler to compile a DNN model

requires feeding an example input to the compiler (i.e., line 8 in
Listing 1). To create such an example input, the input tensor shape
must be manually defined, which is a time-consuming process for
DyNNs with hundreds of sub-DNNs. To address this challenge, we
propose an automatic algorithm to compile each sub-DNNs.

Algorithm 2 Sub-DNN Compilation Algorithm.
Input: Heterogeneous Control Flow Graph (HCFG).
Input: Start Node (𝑁0).
Input: An example input of the DyNN model (𝑥0).
Output: A mapping from node to compiled sub-DNN (M).
1: 𝐿 = [ 𝑁0 ] {Maintain a search list 𝐿}
2: 𝑆 = Dict() {Maintain 𝑆 to store tensor shape}
3: while 𝐿 is nor empty do
4: 𝑁 = Select(L) {select N based on N’s precursor}
5: 𝑁𝑣𝑖𝑠𝑖𝑡 = True {set N as visited}
6: 𝑀 = 𝑁 .𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 {collect N’s successor}
7: 𝐿.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑀) {update the search list}
8: if 𝑁 is 𝑁0 then
9: 𝑜𝑢𝑡 = =Compute(𝑁, 𝑥0) {compute node N}
10: 𝑆 [𝑁 .𝑖𝑑] = 𝑜𝑢𝑡 {record the output shape for 𝑁 }
11: 𝑒𝑥𝑒 = =Compile(𝑁, 𝑥) {compile node N}
12: M[𝑁 .𝑖𝑑] = 𝑒𝑥𝑒 {store the executable 𝑁 }
13: else
14: if 𝑁 is Logic Node then
15: 𝑆 [𝑁 .𝑖𝑑] = 𝑆 [𝑁 .𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 ] {set output shape of logic

statement the same as its precursor}
16: Continue
17: else
18: 𝑥 = 𝑆 [𝑁 .𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 ] {get input shape from its precursor}

19: 𝑜𝑢𝑡 = =Compute(𝑁, 𝑥) {compute node N}
20: 𝑆 [𝑁 .𝑖𝑑] = 𝑜𝑢𝑡 {record the output shape}
21: 𝑒𝑥𝑒 = =Compile(𝑁, 𝑥) {compile node N}
22: M[𝑁 .𝑖𝑑] = 𝑒𝑥𝑒 {store the executable}
23: end if
24: end if
25: end while

Our automatic sub-DNN compilation algorithm is shown in Al-
gorithm 2, which takes an HCFG, a start node 𝑁0, and a DyNN
input 𝑥0 as inputs and outputs a mappingM from node id to the
compiled sub-DNNs. In general, the algorithm maintains a search
list 𝐿 and a dictionary 𝑆 that stores the output shape for each node.
While the search list 𝐿 is not empty, we select a node 𝑁 from 𝐿

iteratively, depending on whether all predecessors of 𝑁 have been
computed (line 4). We then set 𝑁 as visited and collect all non-
visited successors of 𝑁 to update our search list (lines 5-7). For each
node 𝑁 , there are three conditions: (1) 𝑁 is the start node 𝑁0; (2) 𝑁
is the logic conditional node; (3) 𝑁 is a regular node other than 𝑁0.
For the first condition, we compute 𝑁 ’s output shape and compile
node 𝑁 using input 𝑥0 (lines 8-12). For the second condition, we
set 𝑁 ’s output shape the same as its predecessor’s output shape
because the conditional statement will not modify the variable in
the program (lines 14-16). As for the third condition, we first obtain
an input 𝑥 from node 𝑁 ’s predecessors, then use 𝑥 to compile 𝑁 ,
and finally compute 𝑁 ’s output shape (lines 18-23). Our algorithm
iteratively fetches 𝑁 from the search list and compiles 𝑁 until 𝐿 is
empty (lines 3-4). Finally, our algorithm outputs the mappingM,
whose key is the node id and the value is the compiled sub-DNN.
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5.6 Host API Generation
Finally, we use a template-based approach to generate the code
that invokes each compiled sub-DNN. We modify the rewritten
DyNN program’s AST by replacing the original tensor computation
statements with the statements to invoke our compiled sub-DNNs.
We generate our host API function from the modified AST. Our
AST modification step only replaces the original tensor computa-
tion statements in the original DyNN program with a compiled
library function call. Considering the fact that existing DL compil-
ers have proven correct and effective in compiling standard neural
networks without conditional statements, the generated API call
will be semantically equivalent to the original DyNN model.

6 EVALUATION
6.1 Experimental Setup
In this section, we evaluate DyCL with empirical experiments and
answer the following research questions. Our code and data are
available on our website [5].2

• RQ1 (Correctness): Can DyCL correctly compile DyNNs and
produce semantic equivalent API for host programs?

• RQ2 (Acceleration): Can DyCL optimize DyNNs over multi-
ple platforms in terms of execution time?

• RQ3 (Ablation Study):Howmuch does the proposed graph
optimization module in DyCL enhance the execution time?

• RQ4 (Overhead):What is the overhead of DyCL in compiling
DyNNs?

DyNNmodels. In addition to the four DyNNmodels in Table 1, we
apply DyCL on other five DyNN models. The IDs and names of our
subject DyNNs are shown in columns 1 and 2 in Table 3 and we will
use IDs to represent these DyNNs in all future tables. The selected
DyNN models cover different model architectures (e.g., MobileNet
and ResNet), different applications (e.g., image classification and
text generation), and different scales (e.g., model sizes range from
2.3MB to 430MB). More detailed information about the evaluated
DyNN models can be found on our website.
DLCompilers.We consider the DL compilers used in our empirical
study as the target compilers: TVM and OnnxRuntime.
Hardware Platforms.We choose two different NVIDIA platforms
imposing different architectural features as our hardware platforms
to show DyCL can benefit the process of deploying DyNNmodels on
various hardware platforms. The first hardware platform is NVIDIA
Jetson TX2, which has 6 ARM-based cores and a 256-core Pascal-
based GPU. The second platform is NVIDIA Jetson AGX Xavier
[36], a powerful platform for robotics and autonomous driving with
an 8-core NVIDIA Carmel CPU and a 512-core Volta-based GPU.
Comparison Baselines. Recall that DyNNs compiled by exist-
ing DL compilers can only correctly infer the inputs that have the
same execution paths as the example input used in the compila-
tion process. Thus, comparing DyCL with existing DL compilers is
meaningless in terms of correctness. Therefore, for the correctness
(RQ1) and the acceleration (RQ2) evaluation, we compare DyCLwith
original DyNNs without compilation (i.e., using the original DL
framework). We refer to the baseline as vendor.

2https://github.com/DyCL

Experimental Process and Metrics. For RQ1, we use DyCL to
compile each vendor version DyNN V(·) and get the compiled
version C(·). Similar to our study process in Section 3, we feed 100
randomly generated inputs to these two versions and collect the
outputs before and after the post-prepossess (i.e., as shown in the
last two lines in Listing 2), and use the metrics defined in Eq.(1)
to evaluate the correctness of compilation. If DyCL can correctly
compile the DyNN model, then the results for the metric final in-
consistent rate should be zero, and the results for the metric numeric
maximum error should be significantly different from the numeric
errors in Fig. 3.

For RQ2, we first deploy the vendor version DyNNV(·) and the
compiled version C(·) on two different hardware platforms. After
that, we feed the same inputs to these two versions for inference
and record the inference overheads. For each input, we infer five
times and report the average inference overheads.

For RQ3, we remove the graph module in DyCL and apply DyCL to
compile each DyNN and get the compiled DyNN C𝑛𝑜 (·). After that,
we deploy C𝑛𝑜 (·) and C(·) on five different hardware platforms and
evaluate their inference overheads, similar to the process in RQ2.
Intuitively, if our proposed co-optimization method can benefit the
compilation process, then the compiled DyNN C(·) will have lower
runtime overhead.

For RQ4, we report the time overheads of each module in DyCL
when compiling each DyNN.

6.2 RQ1: Correctness

Table 3: Correctness of DyCL.

ID Base DNN
Final Inconsistent Rate Max Numeric Error

Nvidia TX2 Nvidia AGX Nvidia TX2 Nvidia AGX
TVM OnnxR TVM OnnxR TVM OnnxR TVM OnnxR

1 MobileNet 0 0 0 0 -10.00 -10.00 -10.00 -10.00
2 VGG19 0 0 0 0 -9.17 -9.35 -9.17 -9.35
3 ResNet50 0 0 0 0 -4.84 -4.94 -4.89 -5.53
4 WideResNet 0 0 0 0 -4.72 -5.60 -4.75 -5.48
5 ResNet38 + RNN 0 0 0 0 -5.62 -5.81 -5.62 -5.81
6 ResNet38 + Dense 0 0 0 0 -6.45 -6.45 -6.45 -6.45
7 ResxNext + LSTM 0 0 0 0 -10.00 -10.00 -10.00 -10.00
8 GoogLeNet+ LSTM 0 0 0 0 -10.00 -10.00 -10.00 -10.00
9 FlatResNet32 0 0 0 0 -10.00 -10.00 -10.00 -10.00

The compilation correctness results are shown in Table 3. Col-
umn 2 shows the names of the DyNN models under evaluation;
columns 3 to 6 show the final inconsistent rate (𝜂 in Eq.(1)) be-
tween the outputsV𝑝𝑜𝑠𝑡 (·) and C𝑝𝑜𝑠𝑡 (·), and the last four columns
show the maximum numeric error (𝛿 in Eq.(1)) between the outputs
V𝑏𝑒 𝑓 𝑜𝑟𝑒 (·) and C𝑏𝑒𝑓 𝑜𝑟𝑒 (·).

We made the following observations. First, for all the evaluation
subjects, DyCL can succesfully compile the original DyNN models
for deployment, and the final outputs of the deployed host programs
(i.e., the results after post-process) are the same as the final outputs
of the original DyNNs. This shows that the DyCL compiled DyNN
is semantic-equivalent to the original DyNN, indicating that DyCL
can correctly compile the DyNN model. Second, the differences
of maximum numeric error between the outputs of the compiled
DyNN and original DyNN are small, ranging from 0 to 10−4.72. The
differences of numeric errors are within an allowed error range
(i.e., PyTorch sets a maximum default error as 10−5 for the compi-
lation process). Recall that in Fig. 3, directly applying existing DL

https://github.com/SeekingDream/ISSTA23_DyCL
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compilers to compile the DyNN models results in the maximum
error range [100, 104]. The small differences of maximum numeric
error also confirm the correctness of DyCL; otherwise, if there is a
difference between the execution path between the original DyNN
and the DyCL compiled DyNN, the maximum numeric error will be
much larger.

Answers to RQ1: With DyCL, existing “static” DL com-
pilers can successful compile the DyNN models. The
numeric error between the original DyNN and the com-
piled DyNN is minimal and does not affects the final
prediction.
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Figure 6: The inference overhead of the original DyNNs and
the DyCL compiled DyNNs.

6.3 RQ2: Accelaration
The overheads of the original DyNNmodel and the compiled DyNN
model are shown in Fig. 6, where the x-axis represents the DyNN
model ID, and the y-axis shows the average inference overheads
in seconds. The different color bars represent different running
mechanisms. We observe that for all our experimental settings, the
compilation process can accelerate the DyNN models’ inference,
and the acceleration rate range from 1.12× to 20.21×. Such signif-
icant acceleration shows the advantage of compiling the DyNN
model for deployment, especially for deploying the DyNNmodel on
resource-constrained platforms. Another interesting observation is
that no DL compiler can consistently outperform the others on all
experimental subjects, indicating that the optimization strategies in
existing DL compilers are complimentary. This result demonstrates
the benefit of DyCL’s capability of adapting different DL compilers
to compile DyNNs.

Answers to RQ2: DyCL compiled DyNN models are con-
sistently faster than the original DyNN models in terms
of inference time, across different platforms and DL com-
pilers.

Table 4: The inference overheads of compiled DyNN that are
compiled with and without the graph optimization module.

ID.
TVM ONNX

C𝑛𝑜 C Accelerate C𝑛𝑜 C Accelerate

1 0.530 0.525 0.939 0.417 0.412 1.222
2 0.589 0.455 29.449 0.621 0.562 10.576
3 0.056 0.055 1.325 0.088 0.090 -2.524
4 0.525 0.429 22.297 0.585 0.564 3.685
5 0.058 0.051 13.030 0.026 0.024 10.241
6 0.054 0.053 1.873 0.020 0.019 6.796
7 0.236 0.205 15.482 0.162 0.157 3.593
8 0.407 0.406 0.329 0.311 0.304 2.252
9 0.074 0.074 0.219 0.037 0.037 0.223
Avg 0.281 0.250 9.438 0.252 0.241 4.007

6.4 RQ3: Ablation Study
The results of our ablation study are shown in Table 4. We show
the results on Nvidia AGX platform due to the limit of space, more
results could be found on our website. Column 1 shows the same
subject DyNN IDs as in Table 3. The data in columns C and C𝑛𝑜
represent the inference time overheads of the programs that are
compiled by DyCLwith and without the graph optimization module,
respectively. We observe that for most settings, the graph optimiza-
tion module can accelerate the compiled DyNN with an average
acceleration rate ranging from 4.007% to 9.438%. Considering that
existing DL compilers have almost done extreme optimization on
the tensor computation on modern hardware platforms, the acceler-
ation results in Table 4 are significant. This result confirms that our
graph optimization strategy can benefit DyCL in compiling dynamic
neural networks.

Answers to RQ3: The graph optimization module of
DyCL further accelerates the compiled DyNNs, on av-
erage 4% to 9% faster than those compiled without the
module.

6.5 RQ4: Overheads

Table 5: The overheads of DyCL.

ID.
DyCL (s) Original Overheads (s) Extra Percentage (%)

Rewriting Graph Opt OnnxR TVM OnnxR TVM

1 0.06 9.19 37.18 191.53 24.87 4.83
2 0.04 14.24 56.17 155.84 25.42 9.16
3 0.05 0.28 68.23 374.62 0.48 0.09
4 0.08 1.95 94.35 283.78 2.15 0.71
5 0.14 0.85 59.67 607.27 1.65 0.16
6 0.16 0.76 202.80 594.12 0.45 0.16
7 0.09 8.96 80.85 323.92 11.20 2.80
8 0.06 49.09 219.30 445.60 22.41 11.03
9 0.14 0.85 210.20 746.98 0.47 0.13
Avg 0.091 9.573 114.307 413.740 9.900 3.230

Table 5 shows the overheads of DyCL. The second and third
columns show the overheads of the rewriting and the graph opti-
mization module (overheads of other modules are ignorable), the
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fourth and fifth columns show the overheads of applying the exist-
ing DL compiler to compile all sub-DNNs, and the last two columns
show the overhead percentage of DyCL in terms of the total over-
heads of the compilation.

From the results, we observe that the main overheads of DyCL
come from the graph optimization module. This is because each
sub-DNN may be a computational graph with hundreds of nodes,
thus emulating all paths from the input node to the output node is
time-consuming. Moreover, the overheads of DyCL are ignorable
when compared with the overheads of applying the DL compiler to
compile the sub-DNNs. DyCL occupies only 3.23% to 9.90% percent-
age of the total overheads of compiling all sub-DNNs.

Answers to RQ4: DyCL is a lightweight approach and
does not significantly increase compilation overheads.

7 THREATS TO VALIDITY
Our selection of the DyNN systems, namely, ShallowDeep, SkipNet,
AttentionNet, and En-Decoder, etc., might be a threat to the external
validity of our experimental conclusions. We have tried to alleviate
this threat through the following efforts: (1) The DyNNs are very
popular, which can be seen through the number of citations of the
works (Table 1); (2) the underlying DNN models are state-of-the-
art models, which are used significantly; (3) these systems differ
from each other in terms of model architecture and functional-
ity. Therefore, our experimental conclusions should generally hold
because of the diverse model subjects. Moreover, it is important
to address the issue of noisy latency measurements, as it can po-
tentially impact the validity of our experimental conclusions. To
tackle this challenge, we conducted multiple latency measurements
and recorded both the average and variance values. Our results
demonstrate that the variances are significantly smaller than the
average value, indicating that the impact of system noise on our
experiments is minimal and does not compromise the validity of
our findings.

8 RELATEDWORK
Dynamic Neural Networks. As discussed in Section 2, Dynamic
Neural Networks can be separated into two categories: Energy-
saving DyNNs and Generative DyNNs. The Energy-saving DyNNs
can be divided into two categories: Conditional-skipping DyNNs
and Early-termination DyNN. Among conditional-skipping mod-
els, Hua et al. [20] and Gao et al. [16] explored channel gating to
determine computational blind spots for channel-specific regions
unessential to classification. Liu et al. [31] presented a new type
of DyNN that utilizes reinforcement learning to achieve selective
execution of neurons. SkipNet [47] used gating techniques to skip
residual blocks. On the other hand, Figurnov et al. [14] and Surat
et al. [42] presented SACT and BranchyNet respectively, which
are Early-termination DyNNs. SACT terminates the computation
within a residual block early based on intermediate outputs, while
BranchyNet uses separate exits within network for early termina-
tion.

Deep Learning Compilers. Deep learning Compilers have been
one of the main focuses of the research community due to the re-
quirement of flexibly deploying ML models on modern hardware
platforms [10, 24, 29, 41, 51, 52, 55, 56]. Compilers like Apache
TVM [6], Facebook’s Glow [11], Intel’s nGraph [8], Nvidia’s Ten-
sorRT [44], Google’s XLA [38] and Tensorflow Lite [27] are note-
worthy compilers that are widely used to compile deep learning
models. These compilers are fed with a Deep Learning model and
generate highly optimized code as output. However, these com-
pilers are not able to generate the correctly optimized code that
is needed to represent DyNNs, as shown in Section 3. Recently,
Nimble [40] proposed a virtual machine (VM)-based compiler that
can handle the control flow execution logic and the DNN kernels ac-
cordingly. However, such VM-based solution increases the DyNN’s
inference time overheads. The contributions of Nimble and DyCL
are orthogonal, because VM-based compiler can not generatemodel-
persistence DNNs, and it is not feasible to re-design all existing
non-VM based DL compilers run on VMs.

9 CONCLUSION
In this work, first, we study the limitation of existing DL compilers
to compile Dynamic Neural Networks. The significant inconsistent
rate in our study results validates that existing DL compilers can-
not handle dynamic neural networks. Then, we propose a program
rewriting approach to split the tensor computation and the con-
ditional statements, apply the DL compiler to compile the tensor
computation parts and leave the conditional statements to the host
program. Based on this idea, we propose DyCL, the first tool that
can reuse the existing “static” DL compiler in the context of dy-
namic neural networks. Our evaluation of nine publicly available
DyNN models shows that DyCL can correctly compile DyNN mod-
els. Moreover, evaluation results show that DyCL can achieve up to
20× inference time acceleration.
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