
LiResolver: License Incompatibility Resolution for Open Source
Software

Sihan Xu
xusihan@nankai.edu.cn

DISSec, NDST, College of Cyber
Science, Nankai University

Tianjin, China

Ya Gao
gaoya_cs@mail.nankai.edu.cn
DISSec, NDST, College of Cyber

Science, Nankai University
Tianjin, China

Lingling Fan∗
linglingfan@nankai.edu.cn

DISSec, NDST, College of Cyber
Science, Nankai University

Tianjin, China

Linyu Li
linyuli@mail.nankai.edu.cn

DISSec, NDST, College of Cyber
Science, Nankai University

Tianjin, China

Xiangrui Cai
caixr@nankai.edu.cn

DISSec, NDST, College of Computer
Science, Nankai University

Tianjin, China

Zheli Liu
liuzheli@nankai.edu.cn

DISSec, NDST, College of Cyber
Science, Nankai University

Tianjin, China

ABSTRACT
Open source software (OSS) licenses regulate the conditions un-
der which OSS can be legally reused, distributed, and modified.
However, a common issue arises when incorporating third-party
OSS accompanied with licenses, i.e., license incompatibility, which
occurs when multiple licenses exist in one project and there are
conflicts between them. Despite being problematic, fixing license
incompatibility issues requires substantial efforts due to the lack of
license understanding and complex package dependency. In this pa-
per, we propose LiResolver, a fine-grained, scalable, and flexible tool
to resolve license incompatibility issues for open source software.
Specifically, it first understands the semantics of licenses through
fine-grained entity extraction and relation extraction. Then, it de-
tects and resolves license incompatibility issues by recommending
official licenses in priority. When no official licenses can satisfy the
constraints, it generates a custom license as an alternative solution.
Comprehensive experiments demonstrate the effectiveness of LiRe-
solver, with 4.09% false positive (FP) rate and 0.02% false negative
(FN) rate for incompatibility issue localization, and 62.61% of 230
real-world incompatible projects resolved by LiResolver. We discuss
the feedback from OSS developers and the lessons learned from this
work. All the datasets and the replication package of LiResolver
have been made publicly available to facilitate follow-up research.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development.

∗Lingling Fan is the corresponding author. Email: linglingfan@nankai.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598085

KEYWORDS
Open Source Software, License, License Incompatibility Resolution
ACM Reference Format:
Sihan Xu, Ya Gao, Lingling Fan, Linyu Li, Xiangrui Cai, and Zheli Liu. 2023.
LiResolver: License Incompatibility Resolution for Open Source Software. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598085

1 INTRODUCTION
Open source software (OSS) significantly facilitates software de-
velopment. Developers do not need to reinvent the wheel but only
focus on their unique workflows and features. Despite the ben-
efits, misuse of OSS might also induce security issues and legal
risks [31, 32, 38, 39, 43]. Many issues arise from OSS licenses, which
regulate the conditions under which OSS can be legally reused,
distributed, and modified. Generally, an OSS license plays the role
as a contract signed between the software owner and the user who
reuses the code or binary. Once a user of OSS does not conform
to the conditions dictated by OSS licenses, license violation occurs
and legal risks are induced such as copyright infringement [40].

OSS licenses, which are legally binding, protect both the rights of
software owners and the freedom of OSS. Nevertheless, a common
issue arises when incorporating third-party OSS accompanied with
licenses, i.e., license incompatibility, which occurs when multiple
OSS licenses exist in the same project and there are conflicts be-
tween the conditions they state [14, 27]. For example, “CANNOT
sublicense” declared by the license of a third-party component but
“CAN sublicense” declared by the license of the whole project are in-
compatible with each other. In this case, conforming to the project
license cannot ensure that the requirements declared by the license
of the third-party component are satisfied simultaneously. License
incompatibility can also occur among the licenses of multiple third-
party components, e.g., “MUST contact author” from the license
of one component but “CANNOT contact author” from the license
of another component. In this case, at least one license is being
violated due to the license incompatibility issue.

License incompatibility represents a serious threat to all stake-
holders from a legal perspective. An empirical study on 1,846
GitHub projects shows that 72.91% of the investigated projects

ar
X

iv
:2

30
6.

14
67

5v
1

 [
cs

.S
E

]
 2

6
Ju

n
20

23

https://doi.org/10.1145/3597926.3598085
https://doi.org/10.1145/3597926.3598085

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sihan Xu, Ya Gao, Lingling Fan, Linyu Li, Xiangrui Cai, and Zheli Liu

suffered from license incompatibility [45]. Despite being problem-
atic, fixing license incompatibility issues requires substantial efforts
to either replace the reused code or migrate licenses. Worse still,
developers struggle when multiple licenses are involved in the same
project [1]. To address this issue, Kapitsaki et al. [25, 27] proposed
a solution based on the Software Package Data Exchange (SPDX)
specification [12]. They designed a directed graph with the compati-
bility relationships between licenses, based on which they proposed
SPDX Violation Tools (SPDX-VT) to detect license incompatibility
and recommend licenses to handle incompatibility issues. Besides,
Liu et al. [33] also proposed Automatic License Prediction (ALP) to
prevent license incompatibility issues induced by software changes.

Despite the progress, there are mainly three problems that limit
the application of previous studies. First, previous studies only
cover a small predefined set of licenses (e.g., 20 licenses supported
by SPDX-VT [25] and 25 licenses supported by ALP [33]). However,
there are 489 licenses and versions in SPDX [12], not to mention
potentially a considerable number of license exceptions and custom
licenses. Second, previous works only considered the names and
versions of some well-known licenses, lacking the capability to
comprehend license texts and understand the inherent reasons
of license incompatibility, which limits their abilities to resolve
incompatibility issues in a flexible and fine-grained way. Third, the
solutions to license incompatibility have been mainly focused on
recommending an official license as the new license for the whole
project (i.e., the project license). Whereas, this paper observes that
there may exist other licenses whose copyright holders are the
same with the project license, and thus can also be changed by the
licensor for resolving license incompatibility issues.

To address the aforementioned issues, it is desirable to provide a
fine-grained, scalable, and flexible solution to resolve license incom-
patibility issues. To this end, we propose LiResolver, an automated
tool to fix license incompatibility issues for open source software.
Specifically, given an OSS, it first extracts all licenses accompanied
with the project, and organizes them with a hierarchical structure
that represents the licensing scope. Then, it provides a fine-grained
understanding of the regulations stated by each license, based on
which LiResolver detects and localizes license incompatibility is-
sues. Finally, it resolves the constraints hidden in the licensing
context, and provides flexible suggestions for users to choose from.
Comprehensive experiments on real-world projects demonstrate
the effectiveness of LiResolver, with 4.09% false positive (FP) rate
and 0.02% false negative (FN) rate for incompatibility issue localiza-
tion, and 62.61% success rate for resolving 230 incompatible OSS on
GitHub. We made all datasets and the replication package publicly
available to facilitate follow-up research.

In summary, we made the following novel contributions:

• We propose LiResolver, a fine-grained, scalable, and flexible
approach to automatically interpret licenses, localize license
incompatibility issues, and provide licensors with useful
suggestions for resolving issues.
• Comprehensive experiments demonstrate the effectiveness
of LiResolver, with 4.09% FP rate and 0.02% FN rate for in-
compatibility issue localization, and 62.61% of 230 real-world
incompatible projects resolved by LiResolver.

• We further investigate the impacts of license hierarchy, copy-
right holders, and license exceptions on the effectiveness of
license incompatibility resolution. We made all the datasets
and the replication package publicly available to facilitate
follow-up research [6].

2 APPROACH
2.1 Overview
This section details our tool, LiResolver, a hybrid approach that
automatically understands license texts, detects license incompati-
bility, and provides useful suggestions for license incompatibility
resolution. The input of LiResolver is the path of a folder where the
target OSS is stored. As shown in Figure 1, given an OSS, LiResolver
first extracts all involved licenses for further analysis, including
the licenses accompanied with integrated software packages. Af-
ter preprocessing the extracted licenses, the main components of
LiResolver include three parts: (1) License understanding. As a fun-
damental step, LiResolver first understands the regulations implied
by licenses by fine-grained entity extraction and relation extraction,
so as to provide detailed information for further incompatibility
analysis and resolution. (2) Incompatibility issue localization. Based
on the fined-grained understandings of licenses, LiResolver detects
and localizes license incompatibility issues by considering both the
hierarchical structure and copyright holders of licenses. (3) License
incompatibility resolution. Given a license involved in an incompat-
ibility issue, LiResolver fixes the issue by resolving the constraints
obtained from the parent and child licenses of the target license.
Finally, LiResolver gives suggestions for license incompatibility res-
olution by recommending official licenses in priority. When none of
existing licenses are compatible with the license context, LiResolver
generates a custom license as an alternative solution. LiResolver
stores the license incompatibility issues, their locations, the cor-
responding suggestions, i.e., the name of recommended official
licenses or the full-text of custom licenses in an output file.

2.2 License Hierarchy Extraction
OSS, especially in the form of frameworks or libraries, is often used
as a component of software products, which can be recursively
integrated into larger software. The hierarchical structure of OSS
accompanied with licenses leads to the hierarchical structure of
licenses. Previous studies regarded all licenses in a project indepen-
dently and equally [25, 27, 45], regardless of their licensing scopes.
For instance, Figure 2 illustrates a real-world example from Flask
JSONDash [9], a popular OSS to create chart dashboards. In this
example, the project license, which states the regulations for the
whole project, is the MIT license in the main directory of the project.
As shown in Figure 2(a), there are four component licenses in the
modules or integrated third-party packages which are incompatible
with the project license. The reason is that the component licenses
are more restrictive than the project license, so that anyone who
conforms to the project license (i.e., the MIT license) may violate
the component licenses (e.g., Apache-2.0). To address this issue, one
should either replace the third-party software packages or change
the project license in the root directory. In this paper, we observe
that the location of a license determines its scope of licensing, which
affects license incompatibility detection and resolution. Figure 2(b)

LiResolver: License Incompatibility Resolution for Open Source Software ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

OSS

License Hierarchy
Extraction

Fine-grained
Entity Extraction

Relation Extraction

License Understanding

Incomp. Detection

Copyright Holder
Filtering

Incompatibility Issue
Localization

License Hierarchy

Constraint Resolution

Off. Recommendation

Incomp. Resolution

License Generation

Resolution Suggestions

Official Licenses
 (in priority)

(include Exceptions)

Custom Licenses

Figure 1: Overview of LiResolver

Component
 licenses

MIT License

MIT License Apache-2.0 BSD-3-Clause Apache-2.0

Project license

Requirements

Requirements

ZPL 2.1
…\db.py

flask_jsondash

pymongo datetime re requests

…

…
MIT License

flask_jsondash\db.py

Apache-2.0
pymongo

ZPL 2.1
datetime

…
BSD-3-Clause

re
Apache-2.0
requests …

MIT License
…\...\wordcloud.py

Incompatibility

MIT License
flask_jsondash

(a) License Compatibility Analysis without Hierarchy Extraction

Component
 licenses

MIT License

MIT License Apache-2.0 BSD-3-Clause Apache-2.0

Project license

Requirements

Requirements

ZPL 2.1
…\db.py

flask_jsondash

pymongo datetime re requests

…

…
MIT License

flask_jsondash\db.py

Apache-2.0
pymongo

ZPL 2.1
datetime

…
BSD-3-Clause

re
Apache-2.0
requests …

MIT License
…\...\wordcloud.py

Incompatibility

MIT License
flask_jsondash

(b) License Compatibility Analysis with Hierarchy Extraction

Figure 2: Illustration of License Hierarchy

depicts a part of the license hierarchy of JSONDash [9]. It can be
seen that pymongo and datetime are two third-party packages im-
ported by the source code file db.py. However, their licenses (i.e.,
Apache-2.0 and ZPL-2.1) are incompatible with the license of db.py
(i.e., the MIT license). In this case, even if the project owner changes
the project license, license incompatibility still remains.

To address this issue, we extract the hierarchical structure of all
involved licenses in a project. Specifically, LiResolver first builds
the hierarchical structure according to the file structure. Then, it
extracts three types of licenses from the project, i.e., the declared
licenses, the referenced licenses, and the inline licenses. The de-
clared licenses state rights and obligations explicitly in license files
(e.g., LICENSE). The referenced licenses are obtained by their names,
versions, direct links, or the websites of incorporated third-party
packages. The inline licenses typically appear at the beginning of
source code files. Different licenses may have different licensing
scopes. For example, an inline license is only responsible for the
source code within the same source code file. The scope of the li-
cense accompanied with a third-party software package is only the
package itself. After obtaining the original file structure, LiResolver
removes the nodes without licenses from bottom to up and links its
children nodes to its parent node if necessary. Finally, the licensing
scopes of all licenses can be obtained by the hierarchy as shown in
Figure 2(b), as well as the dependencies between them, which can
be further used for license incompatibility resolution.

2.3 License Understanding
After obtaining the license hierarchy, LiResolver automatically un-
derstands the semantics of each license as a fundamental step. There

are mainly two reasons for automating license understanding. (1)
There exist a variety of official licenses (i.e., 552), and the number
keeps growing [13]. However, manually extracting the detailed
information from long and complicated licenses is time-consuming
and labor-intensive. (2) A previous study investigated 1,846 projects
and obtained 5,777 unique licenses, among which 24.56% were cus-
tom licenses with flexible expressions [45]. Motivated by them, it is
valuable to automatically understand licenses to facilitate further
analysis. In this paper, we cast license understanding as an infor-
mation extraction problem, which can be further decomposed
into an entity extraction task and a relation extraction task.

2.3.1 Fine-grained Entity Extraction. Unlike previous works that
regarded each right/obligation as a single entity [45], in this pa-
per, we observe that each right/obligation could be decomposed
into four types of entities (i.e., action, object, attitude, and condi-
tion) and construct a fine-grained structure to model it. Each entity,
regardless of its type, is a flexible expression that describes a spe-
cific action, object, attitude, or condition in the form of a word, a
phrase, or even a sentence in a license. For instance, from “you are
allowed to distribute modified works”, the previous study [45] identi-
fied the term “Distribute” and inferred an attitude CAN. However,
LiResolver extracts the action (“distribute”), the object (“modified
works”), the attitude (“are allowed to”), and the condition if there
exists. The definitions of four types of entities are as follows.

Action: the process of exercising a granted right or performing
an obligation enforced by a license, e.g., Disclose Source.

Object: the object to be acted upon, which is typically a software
artifact such as source code or binary.

Attitude: the attitudes of licensors towards licensees to grant
or reserve rights, or enforce obligations.

Condition: the obligations that licensees must comply with to
exercise the granted rights.

To extract the fine-grained entities from licenses, we employ
sequence labelling to identify the beginning and last token of each
entity. As a fundamental step, we first split each license text into
sentences and preprocess them by removing non-textual parts,
checking spellings, performing stemming and morphological. In
the training phase, we label each token in a license as illustrated
in Figure 3, where B-X and I-X represent the first token (i.e., the
beginning token) and an inside token of an entity whose type is 𝑋 ,
respectively. 𝑂 denotes a token outside any named entities. Note
that unlike LiDetector [45] which used 𝑋 to represent the 𝑋 𝑡ℎ

license term, in this work, we use 𝑋 to represent the type of the
entity. For instance, B-object in Figure 3 indicates that the token
source is at the beginning of an entity whose type is object.

Based on the labelled dataset, we train a NER model based on
spaCy [41] to identify and localize named entities. We first embed

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sihan Xu, Ya Gao, Lingling Fan, Linyu Li, Xiangrui Cai, and Zheli Liu

You distributecan the software provided that

you must have the source code disclosed …

B-attitude B-actionO B-object B-condition I-condition

O OB-attitude B-object I-objectO

O

B-action …

Figure 3: Illustration of the BIOMode for Entities in Licenses

words into vector with a pre-trained roberta-base model [34] to
employ its prior knowledge on word semantics and boost the word
embedding strategy using subword features. Then, we feed the
results of word embeddings into a transition-based parser, which
utilizes a deep convolutional neural network with residual connec-
tions to learn the representation of each license sentence and parse
named entities. In the inference phase, LiResolver sequentially pre-
dicts the label of each token in license text so as to identify and
localize entities in licenses. For the example in Figure 3, LiResolver
extracts seven entities, i.e., two action entities (distribute and dis-
close), two object entities (software and source code), two attitude
entities (can and must), and a condition entity (provide that).

2.3.2 Relation Extraction. Relation extraction in license under-
standing aims to extract structured knowledge about relations
between entities from unstructured license text. Unlike previous
studies [28, 45] which regarded a right/obligation as a whole entity,
in this paper, we decompose each regulation into four types of
entities, and propose a relation extraction model to reconstruct the
relations between these entities for a fine-grained and structured
understanding of licenses. Since there exists no tagged dataset
for entity relations in licenses and labelling is time-consuming,
inspired by the promising results of prompt-tuning for few-shot
tasks, we employ a prompt-based relation extraction model based
on KnowPrompt [7]. The basic idea is to leverage the knowledge
hidden in the pre-trained language model and formalize specific
tasks as cloze tasks. With the prompt template, LiResolver predicts
the mask and maps the prediction result to the classes, which are
the relations between input entities. Specifically, we extract five
types of relations, i.e., action-object, action-attitude, action-condition,
condition-action, and others. Action-object represents the relation
between an action and the object to be acted upon. Action-attitude
represents the relation between an action and the attitude towards
this action. Action-condition represents the relation between an
action and the condition of exercising the action. Condition-action
denotes the relation between a condition and the action required
in the condition. Finally, others represent the relations other than
the aforementioned relations. With these specific relations, LiRe-
solver organizes the extracted entities and constructs a fine-grained
understanding of licenses.

Figure 4 illustrates the model construction of relation extraction.
It can be seen that given a license phrase “you can distribute the
software”, LiResolver first extracts the entities can, distribute, and
software. Then, taking the relations between distribute and software
as an example, LiResolver constructs a prompt template as “[CLS]
you can [E1] distribute [/E1] the [E2] software [/E2]. [SEP] [act]
distribute [/act] [MASK] [obj] software [/obj] [SEP]”, and feeds
it to the Mask Language Model (MLM) [10]. Here, [CLS] and [SEP]
mark the input sequence and its prompt, [E1], [/E1], [E2], and [/E2]
mark the beginning and end tokens of two input entities, [act],
[/act], [obj], and [/obj] represent virtual types of entities learned

[CLS] you can [E1] distribute [/E1] the [E2] software [/E2]. [SEP]

learnable continuous words entity words masked words

[act] distribute [/act] [Mask] [obj] software [/obj] [SEP]

Relation
Embedding Head

MLM Head

⊕ CE Loss

Structure Loss
action

relation object

Figure 4: Illustration of Relation Extraction from Licenses

during the prompt tuning process, and [MASK] denotes the output
prediction of the MLM model. After that, LiResolver obtains the
probability distribution of [MASK] over the vocabulary list, and
maps the prediction result to the embeddings of answer words,
which are the classes of relations between input entities. Finally,
LiResolver achieves the prediction result as the relation between two
entities distribute and software. Note that for official licenses whose
rights and obligations have already been known, we only extracted
fine-grained entities and relations automatically in the preparation
phase, and manually checked them to construct a database that can
be directly used for further analysis. The details of the database can
be seen in Section 2.5.2.

2.4 Incompatibility Issue Localization
2.4.1 Incompatibility Detection. Based on the outputs of license
understanding and hierarchy extraction, LiResolver identifies in-
compatibility issues in a given project together with the specific
localization, i.e., the packages or files involved in the incompatibility
issues. Previous works only distinguished between the project and
component licenses [45], in this paper, we extract license hierarchy
to obtain the licensing scope of each license, as well as the rela-
tions between multiple licenses. Then, we can obtain parent-child
pairs from the extracted license hierarchy. Given a license 𝑙 and
its child nodes 𝑙𝑐 , we define that the license 𝑙 is compatible with
its child nodes 𝑙𝑐 if anyone who complies with the license 𝑙 will
not violate any of its child nodes 𝑙𝑐 . Otherwise, there exists license
incompatibility. In other words, a parent license 𝑙 is supposed to be
equally or more restrictive than any of its child nodes 𝑙𝑐 . On this
basis, we propose to detect license incompatibility from bottom to
up, layer by layer according to the extracted license hierarchy, so
as to conduct a fine-grained license incompatibility detection.

For each parent-child pair of licenses, we extract the fine-grained
entities and relations as mentioned in Section 2.3. Then, a fun-
damental step for incompatibility analysis is semantic alignment.
Specifically, for each attidue entity (e.g., “are not allowed”), we fol-
low previous works [29, 45] to assign it a label (i.e., CAN, CANNOT,
or MUST) for further analysis. We also classify the entities of ac-
tions into 23 categories as previous studies [25, 28, 45]. Each group
represents a type of actions that licensees may do. To this end, we
trained a classification model with the Support Vector Machine
algorithm [22] based on the dataset provided in [45]. To conduct
an accurate analysis, we further distinguish the same actions with
different objects into different groups. For example, distribute source
code and distribute binaries are regarded as two different regulations.

By this means, we group the regulations from the parent-child
pair of licenses. Each group contains the regulations about the

LiResolver: License Incompatibility Resolution for Open Source Software ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

same action-object but multiple attitudes, and LiResolver detects
whether there exist conflict attitudes between a parent license and
its child license towards the same action-object. For example, if
LiResolver infers from a parent license that states can distribute
source code, while infers from one of its child licenses that claims
cannot distribute source code, in this case, anyone who conforms
to the parent license may violate at least one of its child licenses
by distributing source code. As for the conditions, if a condition
entity is extracted as well as its relations with other entities, we
consider the conditional cases separately, i.e., separately assume
two cases where the condition is 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒 , respectively. By
this means, we can identify incompatibility issues and the detailed
information about such issues, including the incompatible parent
and child nodes (i.e., licenses and the packages/files where they
are located), the incompatible action-object pairs, the attitudes and
conditions (optional) of the involved licenses, which are further
utilized for license incompatibility resolution. Note that as previous
studies [8, 45], the absence of a project license implies all rights are
reserved, i.e., nobody can copy, distribute, or modify the work. In
this case, LiResolver detects whether the licenses at the first level
of the hierarchy can be incorporated into the same project without
license violations, and reports incompatible licenses.

2.4.2 Copyright Holder Filtering. Previous research mainly focused
on the project license whose licensing scope is the whole project,
while ignoring other licenses in the project [25, 33, 45]. However,
in this paper, we notice that there are often more than one license
that can be changed for incompatibility resolution. The intuition
behind is that if a license has the same copyright holder with the
project license, the project owner ought to have the right to modify
or replace it. Actually, it is a common practice for developers of
large-scale OSS to place their own license claimers in the modules
implemented by themselves for copyright protection and ownership
assertion of these modules.

For the above reason, we propose to identify copyright holders
so as to enlarge the scope of licenses that can be modified for license
incompatibility resolution. Since we assume that a project owner
can always modify the project license, LiResolver first identifies the
copyright holder stated by the project license. Then, it examines all
licenses involved in license incompatibility issues, so as to localize
the module licenses (also known as component licenses) with the
same copyright holder as the project license, which indicates that
these licenses can also be modified by the project owner.

Specifically, we first identify the license sentences that claim
copyright holders. Since the expressions of copyright holders are
relatively fixed, we define a set of phrases as the signals of copy-
right claim, for instance, copyright (c) and authored by. The specific
expressions can be seen online [6]. We detect these keywords by
regular matching. After identifying the copyright-related sentences,
we utilize Stanford CoreNLP [21] to recognize named entities re-
lated to person names and organization names as the copyright
holder of the input license.

For the example in Figure 2(b), LiResolver first identified the
copyright holder Chris Tabor claimed in the project license. Then,
it detected 10 component licenses inside the project that have the
same copyright holder with the project license, such as the inline
licenses (i.e., the MIT license) at the beginning of source code files

Algorithm 1: License Incompatibility Resolution
Input: 𝑋 : the target project with license incompatibility issues
Output: 𝑆 : the resolution suggestions of the incompatibility issues

1 𝐿𝑅 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝐶𝑜𝑚𝑝𝑡 (𝑋) // obtain incompatible licenses that can be
changed.

2 𝑆 ← ∅ // resolution of the project.
3 foreach 𝑙 ∈ 𝐿𝑅 do

// iterate licenses in 𝐿𝑅 from bottom to top.
4 𝑙𝑝 ← getParent(𝑋, 𝑙)
5 𝑟𝑝 ← getReq(𝑙𝑝)
6 𝑙𝑐 ← getChildren(𝑋, 𝑙)
7 𝑟𝑐 ← ∅
8 𝑓𝑙 ← 𝐹𝑎𝑙𝑠𝑒 // initialize the flag for exception.
9 foreach 𝑐 ∈ 𝑙𝑐 do
10 𝑟 ← getReq(𝑐)
11 𝑟𝑐 , 𝑓 ← mergeReq(𝑟𝑐 , 𝑟)

// merge the requirements of child nodes.
12 𝑓𝑙 ← 𝑓𝑙 ∨ 𝑓 // if there are conflicts between child nodes.

13 𝑅𝑙 ← resolve(𝑟𝑝 , 𝑟𝑐) // resolve the constraints for license 𝑙 , i.e., no
more restrictive than 𝑟𝑝 but no more loose than 𝑟𝑐 .

14 if 𝑅𝑙 is None then
15 continue // if the constraints cannot be resolved, continue.
16 else
17 𝑠𝑙 .𝑜 ← checkOfficial(𝑅𝑙)
18 if 𝑠𝑙 .𝑜 is None then
19 𝑠𝑙 .𝑐 ← generateCustom(𝑅𝑙)
20 if 𝑓𝑙 is TRUE then
21 𝑠𝑙 .𝑐 ← addException(𝑅𝑙 , 𝑠𝑙 .𝑐)

22 𝑆 ← 𝑆 ∪ 𝑠𝑙
23 return 𝑆

db.py and wordcloud.py. In this case, there exist more than one
license that can be modified to resolve license incompatibility issues.

2.5 License Incompatibility Resolution
2.5.1 License Constraint Resolution. As described in Algorithm 1,
taking the project with license incompatibility issues as input, LiRe-
solver obtains a set of problematic licenses (denoted by 𝐿𝑅) which
can be modified or replaced to handle the incompatibility issues
(Line 1). Based on hierarchy extraction mentioned in Section 2.2,
LiResolver iterates the licenses in 𝐿𝑅 from bottom to top for license
incompatibility resolution (Lines 3–23). Specifically, for each license
in 𝐿𝑅, LiResolver first obtains its parent and child nodes, and then
computes the requirements brought by them (Lines 4–12). Since
there may exists multiple child nodes for a license, we merge the
requirements from all child nodes by extracting the most restrictive
attitude towards each action (Line 11). Note that to obtain con-
straints, we only take into account the licenses without the same
copyright holder with the project license (i.e., the licenses that can-
not be modified by the software owner). The intuition behind is
that licenses with the same copyright holder of the project license
can be changed to address incompatibility issues, and thus should
not be the constraints for the current license/node. For the example
shown in Figure 2(b), there exist three licenses that can be modified
(i.e., one project license and two inline licenses stated in db.py and
wordcloud.py). In this case, LiResolver resolves the incompatibility
issues from bottom to top, and starts from a MIT license in a Python
file. Then, it computes the requirements from two child licenses,
which are imported by the third-party software packages. As for
the parent license, it can be seen that although the current license
should be no more restrictive than its parent node (i.e., the project

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sihan Xu, Ya Gao, Lingling Fan, Linyu Li, Xiangrui Cai, and Zheli Liu

license in this case), however, the project license can be changed
later to satisfy the requirements of compatibility, which should not
be considered as a source of constraints for the current node.

Based on the license actions, attitudes, conditions, and objects
extracted in the phase of license understanding, LiResolver resolves
the constraints brought by its parent and child nodes. The basic
idea is that the current license 𝑙 should be no more restrictive
than its parent license 𝑙𝑝 but no more loose than its child nodes 𝑙𝑐 .
Specifically, given a license 𝑙 , LiResolver merges the requirements
from its child nodes by grouping the action-object pairs mentioned
in Section 2.4.1, so that the requirements towards the same action-
object are within the same group. Then, for each action-object pair,
LiResolver merges the requirements from the children by obtaining
the most restrictive attitude towards the same action-object, which
serves as a constraint for this action-object. Similarly, LiResolver
obtains the requirements from the parent license, which serve as
another boundary of the constraints. By this means, LiResolver
achieves the constraints from the context and stores them in 𝑅𝑙 .

2.5.2 Official License Recommendation. After license constraint
resolution, we obtain the constraints for a current node, which is a li-
cense involved in license incompatibility and can be changed by the
project owner. However, we note that not all constraints from the
context can be resolved. According to the “one-way-compatibility”
definition, given a license, if it has a child license which is more per-
missive than its parent license, the requirements from the context
of the current license (i.e., its parent and child licenses) cannot be
satisfied simultaneously. In this case, the constraints for fixing the
incompatibility issue cannot be resolved, LiResolvermoves on to the
next target license. Hence, as described in Algorithm 1, LiResolver
only provides resolutions for licenses whose constraints from their
context can be resolved by LiResolver (Lines 17–22). Specifically, af-
ter resolving the constraints, LiResolver first checks whether there
exist official licenses that can satisfy the requirements. In this paper,
official licenses represent the licenses from the Software Package
Data Exchange (SPDX) [12] which are publicly available. Note that
the high priority of recommending official licenses comes from an
empirical study that reported official licenses counted for more than
half of the investigated licenses rather than custom licenses [45].
However, LiResolver also provides settings for users to set priority
of resolutions.

To recommend official licenses for license incompatibility resolu-
tion, we constructed a database of official licenses whose rights and
obligations have already been known by previous studies [29, 45].
We manually checked the license terms labelled by previous stud-
ies (e.g., CAN distribute), extracted the fine-grained entities and
relations mentioned in Section 2.3 using LiResolver, and verified
the labels by three authors and a lawyer to construct the database.
Finally, when more than one official licenses satisfy the constraints,
we rank these licenses according to their similarities to the original
license via cosine similarity.

2.5.3 Custom License Generation. Except official licenses, devel-
opers are also allowed to customize their own licenses, which are
named by custom licenses in this paper. As described in Algorithm 1,
given a set of constraints, it is possible that none of existing official
licenses can satisfy the constraints 𝑅𝑙 . In this case, as an alternative
way, we propose to generate a custom license for the project owner

to choose (Lines 18–21). We note that although there are no con-
ventions for custom licenses to comply with, however, as a type of
contracts between the owner and users of projects, the expressions
of licenses need to be precise and strict in most cases. For this rea-
son, despite the remarkable progress of text generation techniques
in natural language processing [46], we do not utilize machine
learning-based methods for license text generation. Instead, in this
paper, we propose a template-based approach to generate custom
licenses according to the constraints and fine-grained information
obtained in the aforementioned steps.

As displayed in Algorithm 1, 𝑅𝑙 represents the results of con-
straint resolution for a target license 𝑙 . Then, LiResolver automat-
ically generates a custom license by organizing the fine-grained
entities and their relations stored in 𝑅𝑙 . Specifically, for each action
in 𝑅𝑙 , if there exists an object and an action-object relation between
them, then LiResolver concatenates them directly or with a preposi-
tion determined by CoreNLP [21]. As for the attitude, we note that
the results of constraint resolution may contain multiple attitudes
toward the same action-object. For instance, given a parent node
with the attitude MUST and a child node with the attitude CAN to-
wards the same action-object, the result of constraint resolution for
the current node contains a set of attitudes [CAN, MUST] for this
action-object pair, which is no more restrictive than the parent node
and no more permissive than the child node. In this case, LiResolver
uses the most restrictive attitude in the set by default. In addition,
when a condition entity is found along with its relation with the
action (i.e., action-condition), LiResolver adds the condition at the
end of the current sentence, equipped with the action, attitude, and
object (optional) orderly found by the relations condition-action,
action-attitude, and action-object. For instance, after extracting an
action entity “modify” and an object entity “source code”, as well as
the action-object relation between them, LiResolver concatenates
them and generates “modify source code” as a result. If there exists
a condition entity “as long as” in 𝑅𝑙 and an action-condition relation
between “modify” and “as long as”, LiResolver extends the state-
ment and generates “modify source code as long as ...”. Finally, to
generate a clear and concise license, LiResolver merges the sen-
tences with the same objects (e.g., you can distribute and modify
copies of software).

Exceptions. In this paper, we observe that there may exist some
conflicts between the requirements of multiple child licenses which
cannot be modified by the project owner. A natural solution to
this problem is to replace the third-party packages involved in the
conflicts. However, since the replacement of a third-party package
requires substantial efforts due to the complex package dependency,
we also provide an alternative way by attaching an exception, which
grants an exception to the license or some additional permissions
(e.g., LLVM Exceptions [5]). Specifically, LiResolver first localizes
the files, packages or directories of the conflict licenses. Then, to-
wards the conflict action and object (optional), it assigns different
attitudes with different licensing scopes in the same license. By this
means, LiResolver attaches an exception to the target license, so as
to mitigate the incompatibility issue.

LiResolver: License Incompatibility Resolution for Open Source Software ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

3 EVALUATION
In this section, we present the evaluation results of LiResolver on
real-world datasets and answer the following research questions.

RQ1: Can LiResolver provide a fine-grained understanding of
license texts by effectively extracting entities and their relations?

RQ2: Can LiResolver outperform state-of-the-art approaches in
detecting and localizing license incompatibility issues?

RQ3: How effective is LiResolver for resolving license incompat-
ibility issues in real-world OSS?

3.1 Evaluation on License Understanding
In this section, we evaluate the performance of LiResolver on fine-
grained entity extraction and relation extraction. For both tasks
we performed labelling, training, and testing in sentences. The
sentence datasets were constructed based on the dataset from a
previous study [45]. To reduce bias, we did not set aside any li-
censes when evaluating the effectiveness of license understanding
provided by LiResolver. In total, there were 212 official licenses
and 188 custom licenses, comprising 21,844 license sentences (i.e.,
11,973 from tldrlegal [29] and 9,871 from GitHub). We manually
labelled the entities and relations. During labeling, we took Fleiss’
Kappa to assess the reliability of agreement among the raters. The
result is 0.83, indicating that the raters reach high agreement. We
randomly split each dataset into the training, validation and testing
datasets by 3:1:1.

3.1.1 Entity Extraction. To evaluate the performance of LiResolver
for entity extraction, we compare it with two state-of-the-art tools
(i.e., FOSS-LTE [28] and LiDetector [45]) and two natural language
processing techniques (i.e., regular matching [4] and semantic
similarity [17]). Specifically, FOSS-LTE [28] employed a topic
model named Latent Dirichlet Allocation (LDA) [24] to identify
license terms. LiDetector [45] utilized sequence labelling and senti-
ment analysis to identify license term entities (similar to the actions
in this paper) and attitudes. Regular matching [4] was implemented
by pre-defining a set of keyword patterns for entity extraction. Se-
mantic similarity [17] utilized the word2vec pre-trained language
model [35, 36] to measure the cosine similarity between the tokens
and predefined keywords. Note that the outputs of FOSS-LTE are
license term phrases mapped from topic sentences (e.g., MayGrant-
Patents). To conduct a fair comparison of license understanding,
we split the outputs of FOSS-LTE into four types of entities as other
baselines. Similarly, LiDetector naturally extracts license terms (e.g.,
Commercial Use), attitudes (e.g., CANNOT), and conditions (e.g.,
provided that) from license texts, which can be compared with the
actions, attitudes, and conditions in this paper. As for regular match-
ing and semantic similarity, we analyzed 900 license sentences and
summarized a set of keyword patterns for each type of entities as
shown online [6].

Table 1 displays the experimental results of entity extraction for
five approaches. Note that since LiDetector does not extract the
objects of actions in license texts, the results of extracting objects by
LiDetector are denoted by “-”. In total, LiResolver achieves 74.07%
precision and 77.36% recall for entity extraction. It can be seen that
the precision of LiResolver is much higher than that of the baselines
by at least 26.03%, 53.47%, 3.95%, and 5.2% when extracting actions,

Table 1: Comparison on Fine-grained Entity Extraction

Tool
Actions Objects Attitudes Conditions Total

P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

Reg. Match. 54.76 65.07 5.32 22.38 2.58 47.61 46.87 61.64 14.74 49.41
Similarity 50.81 59.96 3.18 12.27 2.35 40.47 46.86 61.65 14.28 42.33
FOSS-LTE 35.98 23.12 5.76 19.13 3.06 26.19 66.67 21.92 14.30 21.12
LiDetector 43.14 55.79 - - 74.74 56.35 90.25 86.30 47.79 32.80
LiResolver 80.79 84.86 59.23 63.83 78.69 76.80 95.45 87.50 74.15 77.31

objects, attitudes, and conditions, respectively. It indicates that LiRe-
solver can precisely extract entities in license texts without much
noise. However, regular matching and similarity-based approaches
achieve low precision especially for objects and attitudes. By ana-
lyzing the results, a possible explanation could be the ambiguous
expressions for the two types of entities. Moreover, the recall scores
achieved by LiResolver are also higher than those of four baselines
by at least 19.79%, 41.45%, 29.19%, and 1.2% when extracting actions,
objects, attitudes, and conditions, respectively. Among four baselines,
LiDetector achieves a competitive performance with LiResolver on
extracting attitudes and conditions. However, the precision and re-
call scores of LiDetector on extracting actions are lower than those
of LiResolver. By analyzing the entities extracted by LiDetector,
we found that the entities extracted by LiDetector are more coarse-
grained, sometimes along with its objects or attitudes, which made
them longer than the entities extracted by other approaches, which
decreased the evaluation results of LiDetector.

3.1.2 Relation Extraction. Figure 5 shows the performance of two
approaches on relation extraction. Since FOSS-LTE [28] and LiDe-
tector [45] do not extract relations between entities, we did not
compare LiResolver with them. Instead, we implemented a heuris-
tic approach based on the positions and types of entities (denoted
by PTE). Specifically, it determined entity relations according to
their types and relative positions in the same sentence. For in-
stance, action-object indicates an action in front of object. Similarly,
action-condition and condition-action were also distinguished by the
relative positions of the action and condition. Finally, to conduct a
fair comparison, we fed both approaches the same pairs of entities
as input. Since the input of entity relation is a pair of entities, there
exist no false negatives and thus we evaluate the performance of
two approaches only with the accuracy metric. It can be seen that
LiResolver can effectively identify entity relations, achieving 95.69%
accuracy in total. We can also observe that the performance of LiRe-
solver is superior to that of the heuristic baseline for all types of
relations. The baseline only achieves comparable performance with
LiResolver on action-condition and condition-action. It indicates that
the relation between an action and a condition can be easier inferred
by their relative positions in the sentence compared to other types
of entity relations. However, since PTE requires the types of entities
as input, its performance relies on the accuracy of entity extraction,
while LiResolver has no requirements for such information.
Answer to RQ1: LiResolver can effectively extract fine-grained
entities and their relations from license texts, with 74.07% pre-
cision and 77.36% recall for entity extraction, 95.09% accuracy
for relation extraction, which provides detailed information for
license incompatibility localization and resolution.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sihan Xu, Ya Gao, Lingling Fan, Linyu Li, Xiangrui Cai, and Zheli Liu

87.43

69.09

87.51

99.22

74.06

98.46
93.87

86.88

100
95.09

0

20

40

60

80

100

120

Action-Object Action-Attitude Action-Condition Condition-Action Total

A
cc

u
ra

cy
 (

%
)

PTE LiResolver

Figure 5: Accuracy of Relation Extraction

3.2 Evaluation on Incompatibility Localization
3.2.1 Setup. We evaluate the performance of LiResolver on 300
real-world projects on GitHub. Specifically, we first crawled 10,000
popular projects with more than 1,000 stars. Then, we randomly
selected 300 projects and constructed a ground-truth dataset. Three
authors and a lawyer were involved in labelling and verifying the
dataset which has been made publicly available online [6]. In to-
tal, we extracted 81,402 licenses for incompatibility analysis. We
compare LiResolver with four state-of-the-art tools, i.e., the SPDX
Violation Tools (SPDX-VT) [27], Ninka [15] equipped with tldr-
legal [29], Librariesio [30], and LiDetector [45]. SPDX-VT [27],
which designed a directed graph to represent the compatibility
relations between a set of licenses in Software Package Data Ex-
change (SPDX) [12]. Ninka [15], which identified licenses with a
sentence-matching method. Combined with the summarized rights
and obligations provided by tldrlegal [29], Ninka can be utilized to
detect incompatibilities between licenses. Librariesio [30], which
checked compatibility between a predefined set of SPDX licenses.
LiDetector [45], which firstly introduced a learning-based method
to automatically identify license terms from arbitrary licenses and
detect license incompatibilities.

3.2.2 Results. Table 2 displays the experimental results of license
incompatibility localization. The results show the number of incom-
patible projects and incompatible issues reported by each approach.
Note that in this paper, an incompatible issue represents a pair
of licenses which are incompatible with each other and should be
resolved to reduce legal risks. We also report the false positive (FP)
rate and the false negative (FN) rate from both the project-level and
the issue-level for five approaches. From Table 2, it can be seen that
LiResolver is superior to all the baselines in terms of both FP and
FN rates. Specifically, LiResolver reported 231 incompatible projects
with 0.43% FP rate and no false negatives, which demonstrated its
ability to detect projects with license incompatibility.

It can also be seen that Ninka equipped with tldrlegal and SPDX-
VT have low FP rates (i.e., 2.94% and 2.63%, respectively) but high
FN rates (i.e., 42.61% and 67.83%). By analyzing their detection
processes and results, we found that both of them complied with
strict and predefined rules for license compatibility analysis, which
contributed to the low FP rates. However, relying on license identifi-
cation and manually defined compatibility rules, the applications of
these two approaches were limited to a small set of official licenses,
while ignoring other licenses in the projects, which causes their
high FN rates. Similarly, the performance of Librariesio is close to
that of Ninka and SPDX-VT. It categorized 35 official licenses into
five classes (e.g., permissive licenses), and manually defined a heuris-
tic rule based on the classification. It achieved a lower FN rate (i.e.,
33.91% at the project-level) than Ninka and SPDX-VT, since it took

Table 2: Comparison on License Incompatibility Localization

Tool
#Incomp. Projects #Incomp. Issues

#Report. FP (%) FN (%) #Report. FP (%) FN (%)
Ninka 136 2.94 42.61 32,289 86.46 86.31

SPDX-VT 76 2.63 67.83 54,530 65.33 99.28
Librariesio 171 11.11 33.91 18,874 36.22 68.32
LiDetector 228 3.51 4.35 56,634 81.04 66.42

LiResolver-Flat 230 2.61 2.61 25,238 33.81 47.75
LiResolver 231 0.43 0.00 33,340 4.09 0.02

more licenses into consideration. However, due to the course-fined
classification of licenses, it achieved the highest project-level FP
rate among all the approaches (i.e., 11.11%).

Among four baselines, LiDetector achieved the closest perfor-
mance to LiResolver for resolving license incompatibilities. Specifi-
cally, it reported 228 incompatible projects with 8 false positives
and 10 false negatives, mainly caused by its coarse-grained license
term extraction which did not distinguish between the same ac-
tions with different objects (e.g., Distribute source code vs. Distribute
binaries). Moreover, like other baselines, it also ignored the license
hierarchy of the projects.

From the perspective of incompatibility issues, it can be seen
from Table 2 that LiResolver reported 33,340 incompatibility issues
with 4.09% FP rate and 0.02% FN rate, which demonstrated the
ability of LiResolver to detect license incompatibility issues. We
can also observe that the FP and FN rates of four baselines, ranging
from 36.22% to 99.28%, are much higher than those of LiResolver,
ranging from 0.02% to 4.09%. By analyzing the results, we found that
the false negatives of SPDX-VT, and Librariesio were mainly due
to their limited scope of licenses that can be handled. LiDetector
localized more incompatibility issues than the other three baselines,
due to the flexibility adaption to arbitrary licenses. However, it
treated all component licenses equally, and ignored the potential
hierarchy among them, which contributed to the false negatives.
• Effects of hierarchy extraction. To illustrate the usefulness
of the license hierarchy on incompatibility detection, we also im-
plemented LiResolver without hierarchy extraction, denoted by
LiResolver-Flat in Table 2. It can be seen that without hierarchy
extraction, LiResolver reported 230 incompatible projects with 6
false positives and 6 false negatives, similar to the results of LiDetec-
tor. The reason behind is that both LiResolver-Flat and LiDetector
treated all component licenses in modules or accompanied with
third-party packages equally important regardless of their licens-
ing scopes. To be specific, LiResolver-Flat reported a project with
licence incompatibility issues when there existed a component li-
cense that was more restrictive than the project license. However,
LiResolver reported an incompatible project when there existed
a child license more restrictive than its parent license. It can be
inferred that given the same project and the same results of license
understanding, the true positives found by LiResolver-Flat can the-
oretically be found by LiResolver. Nevertheless, when the parent
license is not the project license, but a license in a module of the
project, the parent and child licenses are regarded as two indepen-
dent licenses by LiResolver-Flat and LiDetector, which might lead
to a false negative. On the other hand, it can also be seen that the
false positive rate of the issues reported by LiResolver-Flat is also
higher than that reported by LiResolver. By observing the results,
we found that it was due to the projects without project licenses. In

LiResolver: License Incompatibility Resolution for Open Source Software ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 3: License Incompatibility Resolved by LiResolver

#Incompatible projects 230 100.00%
– #Resolved projects 144 62.61%
– #Projects that cannot be resolved 86 37.39%

#Incompatible issues 33,340 100.00%
– #Issues resolved by recommending official licenses 11,509 34.52%
– #Issues resolved by generating custom licenses 18,185 54.54%
– #Custom licenses generated w/o exceptions 13,858 41.56%
– #Custom licenses generated w/ exceptions 4,327 12.98%

– #Issues that cannot be resolved 3,646 10.94%

this case, LiResolver-Flat considered all rights reserved, and created
the most strict project license for incompatibility detection, which
resulted in the false positives.
Answer to RQ2: LiResolver can effectively identify OSS with li-
cense incompatibility issues, achieving 0.43% FP rate and no false
negatives for 230 real-world incompatible OSS, outperforming
four state-of-the-art approaches.

3.3 Evaluation on Incompatibility Resolution
3.3.1 Setup. The experiment on license incompatibility resolution
was conducted based on the same dataset with Section 3.2, which
consist of 230 incompatible projects detected and verified at the pre-
vious step. For each project, there exists at least one pair of licenses
which are incompatible with each other. Note that a project was
regarded as resolved if all incompatibility issues could be resolved
by LiResolver, and no new incompatibility issues were introduced
into the resolved project according to LiResolver. In addition, to
verify the correctness of resolutions provided by LiResolver, we
also randomly selected 5% of the licenses recommended/generated
by LiResolver (i.e., 1,484 licenses) for evaluation.

3.3.2 Results. Table 3 shows the experimental results of LiResolver
on license incompatibility resolution. Among the 230 incompatible
projects, LiResolver resolved 144 projects, accounting for 62.61% of
all incompatible projects. FromTable 3 it can also be seen that 11,509
out of 33,340 incompatibility issues were resolved by LiResolver
through recommending official licenses, accounting for 34.52% of
all incompatibility issues. Since a majority of the incompatibility
issues cannot be resolved via official licenses, as an alternative way,
LiResolver also resolved issues by generating custom licenses to
satisfy the constraints. In total, LiResolver generated 18,185 custom
licenses, among which only 4,327 custom licenses were attached
with specific exceptions to address with the problem when multiple
child licenses of a target license are conflict with each other, and
none of them can be modified by the software owner to resolve the
conflict.

From Table 3 it can also be observed that there are also some
license incompatibility issues that cannot be resolved by LiResolver.
The reasons are two folds. First, as mentioned in Section 2.5.1, not
all constraints from the context of a given license can be resolved;
there exists some cases where the parent license of the current
license is less restrictive than a child license of the current license.
Second, not all licenses are allowed to be modified or replaced
by the software owner. Some licenses were incorporated along
with third-party software packages, and the project owner has no
rights to change them. In total, 3,646 incompatible issues could

Table 4: Effects of Copyright Holder Detection

Modified
#Incomp. Projects #Incomp. Issues

#Resolved Pro. Suc. Rate #Resolved Issues Suc. Rate
PL 138 60.00% 26,523 79.55%
CH 76 33.04% 23,859 71.56%

PL+CH 144 62.61% 29,694 89.06%

PL: Only the project license can be changed to resolve license incompatibility.
CH: Only licenses whose copyright holder is the project owner can be changed.

not be resolved by LiResolver, accounting for 10.94% of the license
incompatibility issues detected by LiResolver at the previous step.

Finally, to verify the correctness of resolutions provided by
LiResolver, we randomly selected 5% of the 29,694 licenses rec-
ommended or generated by LiResolver. We manually verified and
cross-validated the correctness of these licenses. By analyzing the
results, we found that 1.48% of verified resolutions were incorrect,
mainly caused by the incorrect predictions in the phases of fine-
grained entity extraction and relation extraction, which affected
the license constraints for recommending official licenses and the
detailed information used for generating custom licenses.
• Effects of copyright holder. Table 4 displays the results of li-
cense incompatibility resolution when allowing different ranges
of licenses to be modified. In this paper, we classify licenses in a
project into the project license and other licenses (also known as
component licenses). Unlike previous studies that only focus on
the project license, this paper observed a considerable number of
component licenses which were also written by the project owner
and thus could be modified for resolving license incompatibility.
To investigate how the ranges of the licenses allowed to be mod-
ified affects the results of license incompatibility resolution, we
implemented LiResolver with different settings. The experiment
was conducted on the same dataset with Table 3.

From Table 4 it can be seen that 138 projects and 26,523 incom-
patibility issues could be handled with only the project licenses
allowed to be modified, accounting for 60.00% and 79.55% of the
incompatible projects and issues, respectively. However, when only
allowing the licenses with the same copyright holder with the
project license to be changed, LiResolver only resolved 76 projects
and 23,859 issues. By analyzing the results, we found that many
project licenses did not explicitly state their copyright holders in
their license texts, resulting in the low success rate of resolving in-
compatibility issues. In this paper, we propose to modify two types
of licenses (i.e., the project licenses and the component licenses with
the same copyright holder). The first intuition is that the project
owner is ought to have the rights to modify or replace the project
license, whose licensing scope is the whole project. The second
intuition is that only a component license states the same copyright
holder with as the project license states, the project owner should
be allowed to modify it. From Table 4 it can be seen that LiResolver
resolved 2.61% more projects and 9.51% more incompatibility issues
by adding copyright holder detection.
Answer to RQ3: By recommending official licenses in priority
and generating custom licenses as alternative solutions, LiRe-
solver resolved 144 incompatible projects, among which 34.52%
were resolved by official licenses, 41.56% and 12.98% were re-
solved by custom licenses w/o and w/ exceptions, respectively.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sihan Xu, Ya Gao, Lingling Fan, Linyu Li, Xiangrui Cai, and Zheli Liu

Table 5: Feedback from OSS Developers
Project #Stars Parent License Child License Issue State

cookiecutter 10.2k BSD-3-clause (/LICENSE) GPL3.0 (/project_slug/LICENSE) Ignored

bypy 6.7k MIT (/LICENSE) GPL3.0 (bypy/gui.py) Fixed
MIT (/LICENSE) GPL3.0 (bypy/__init__.py) Fixed

hypnotix 798 GPL3.0 (/README.md) AGPL3.0 (usr/lib/hypnotix/mpv.py) Denied

mitmproxy 30.1k MIT (/LICENSE)
LGPL2.1 (../../raw_display.py) Fixed

Apache2.0 (../tornado/__init__.py) Fixed
BSD-3-clause (../click/__init__.py) Fixed

webssh 3.4k MIT (/LICENSE) LGPL2.1 (tests/sshserver.py) Fixed

OpenNRE 3.9k MIT (/LICENSE)

Apache2.0 (../word_piece_tokenizer.py) Confirmed
Apache2.0 (../bert_tokenizer.py) Confirmed
Apache2.0 (../word_tokenizer.py) Confirmed
Apache2.0 (../basic_tokenizer.py) Confirmed

websockets 879 MIT (/LICENSE.txt) Apache2.0 (ws4redis/websocket.py) Denied
Apache2.0 (ws4redis/utf8validator.py) Denied

4 DISCUSSION
4.1 Developer Feedback
To evaluate the usefulness of LiResolver, we also collected the
feedback from OSS developers with regard to the incompatibility
detection results and suggestions. Since there exist 33,340 license
incompatibility issues in the dataset described in Section 3 and
it is impractical to report all of them, we systematically selected
and reported 50 issues according to the following rules. (1) We
selected active and popular repositories with high stars in GitHub,
which had discussions or active issues within twomonths before we
reported the issues. (2) We only selected issues that could be fixed
by LiResolver. For instance, it is difficult to resolve issues caused by
licenses of two third-party components unless at least one of the
components are replaced by others. (3) The selected issues covered
most popular licenses such as the MIT License, Zope Public License
2.1, Apache License 2.0, GPL 3.0, and BSD 3-Clause License. The
size of selected projects ranged from 100K to 1G. For each issue, we
reported the licenses involved in the incompatibility issues, their
locations, the inherent reason for license incompatibility, and the
suggestions to resolve this issue. So far, 14 reported issues have been
responded as shown in Table 5. Although the remaining issues have
been confirmed by ourselves, they are still waiting for responses
from OSS developers.

As shown in Table 5, 10/14 responses confirmed or fixed the
reported issues. One developer ignored the reported issue and 3/14
responses denied that there existed license incompatibility in their
projects. Moreover, we also investigate the reasons that prevent
some developers from fixing license incompatibility issues and ob-
tain several findings. (1) OSS developers have different awareness
and knowledge about OSS licenses. For example, one developer
believed that the MIT license and the Apache 2.0 license were two
similar licenses and thus should be compatible with each other.
Actually, the Apache 2.0 license is more restrictive than the MIT
license in several aspects such as Use Trademarks and State Changes.
As a result, when the project license is the MIT license and its child
license is the Apache 2.0 license, there exists license incompatibility
which might bring legal risks to the users of this project. (2) It
is inconvenient for some large-scale projects with many contrib-
utors and users to fix license incompatibility issues, since every
contributor should be contacted for the agreement to change the
licenses which may also affect many users. Therefore, paying atten-
tion to the license incompatibility problem especially at an early
stage of software development is necessary. (3) There exist different

opinions towards the licenses of imported packages. Some devel-
opers believed that there was no need to consider the licenses of
imported packages, which was actually against the intentions of
some licenses (e.g., the Apache 2.0 license, the GPL 3.0 license, and
the MPL 2.0 license).

4.2 Lessons Learned
We summarize several lessons that might be learned from this work.
First, developers should pay more attention to the licenses when
reusing OSS code. One reason is that the incorporated licenses
might be more restrictive than the project license, and thus de-
velopers have to modify the regulations for the whole project to
comply with the incorporated licenses. The second reason is that
licenses accompanied with different third-party software packages
might be incompatible with each other. In this case, developers
are enforced to either replace the incompatible package with an
alternative one, which requires substantial efforts due to the com-
plex package dependency, or attach an exception to the project
license that states different regulations towards different source
code, which might not be encouraged by the community. Second,
not all license incompatibility issues can be resolved. Among the
investigated 230 incompatible projects, 37.39% of them cannot be re-
solved unless developers replace the involved third-party packages.
The main reason is that a project owner has no rights to change
the licenses accompanied with the integrated third-party packages.
Another reason is that the constraints from the license hierarchy
cannot be resolved in some cases. For instance, given a license,
when its parent license is more permissive than one of its child
licenses, the constraints from the parent and child nodes cannot
be resolved. Third, official licenses can only resolve a small part
of license incompatibility issues. It can be seen that only 34.52%
of the incompatibility issues can be addressed by recommending
a new official license. Sometimes developers have to create their
own licenses (i.e., custom licenses) to satisfy the requirements of
all incorporated OSS licenses. Otherwise, they have to migrate the
packages whose licenses are involved in incompatibility issues. Fi-
nally, although it is a common practice for developers of large-scale
OSS to place their own licenses in the modules implemented by
themselves, developers should be aware of the license hierarchy
that represents the licensing scope of each license, where a module
license should not be more permissive than all the licenses in this
module, and should not be more restrictive than the licenses in the
upper-level module that contains this module simultaneously.

4.3 Limitations and Threats to Validity
The limitations are from two aspects. First, given an arbitrary
project, if it has no project license or its project license does not
state its copyright holder, LiResolver cannot find any internal li-
censes (also known as component licenses) that can be changed
according to the copyright holder. Second, LiResolver has not taken
into consideration irrelevant licenses (e.g., licenses only for testing
purposes). Besides, multiple project licenses in the root directory
of the project are considered as the supplements of each other,
which might also affect the performance of LiResolver on license
incompatibility localization and resolution.

LiResolver: License Incompatibility Resolution for Open Source Software ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Threats that may affect the results of evaluation include the fol-
lowing two aspects. First, the quality of manual labelling could
be a threat to validity. The performance of LiResolver on license
understanding and incompatibility resolution was evaluated on the
ground-truth datasets comprising 21,844 license sentences and 300
real-world OSS, the labelling quality of which may threaten the
results. To mitigate this problem, three authors and a lawyer manu-
ally verified and cross-validated the datasets. Second, as previous
studies [29, 45], we categorized actions into 23 types. However,
there could be a few cases where special requirements outside the
scope of these actions are claimed by the licensor, which might
influence the results of LiResolver.

5 RELATEDWORK
5.1 License Detection and Semantic Extraction
Much research has been done to automatically identify official
licenses and extract the semantics from license texts.
License detection. Gobeille et al. [16] presented the first study on
license detection. They exploited a binary Symbol AlignmentMatrix
algorithm to identify OSS licenses. Tuunanen et al. [42] designed
license templates and identified some well-known licenses based on
regular expressions. Ninka [15], a notable tool for automated license
identification, was implemented based on sentence-matching. On
this basis, Higashi et al. [23] employed a clustering algorithm to
further identify licenses that could not be handled by Ninka.
Semantic extraction. To extract license semantics, many studies
conducted the ontology study on licenses [2, 3, 11, 18–20]. For exam-
ple, Alspaugh et al. [2] [3] extracted tuples from licenses to model
10 licenses. Unlike the ontology-based approaches that required
much prior knowledge, Kapitsaki et al. [28] proposed FOSS-LTE to
identify license terms with a topic model. Despite the progress, the
topic model might induce much noise and cause low accuracy [45].

5.2 License Incompatibility Detection
A major of studies on license incompatibility detection are the
graph-based approaches [26, 27, 37, 44]. Generally, these studies
manually constructed a directed graph to represent the compatibil-
ity relationships between licenses. Then, they detected license in-
compatibility issues by examining the graph to determine whether
two licenses can reach the same node. Despite being strict, there
are only a small number of licenses are supported (e.g., 20 licenses
and their versions supported by SPDX-VT [27]). It is difficult to
manually analyze all the compatibility relations between licenses.
Unlike these approaches, LiResolver provides a flexible solution
that can be applied for arbitrary licenses without prior knowledge.

LiDetector [45] was the first work that proposed a machine
learning-based method for license incompatibility detection. The
main differences between LiResolver and LiDetector range from
license understanding to incompatibility detection. (1) Different
granularities of entities. LiDetector regarded each right/obligation
as a single entity, while LiResolver splits it into four types of entities,
followed by a relation extraction model to organize them. By this
means, LiResolver models a regulation more accurately, which as
a result benefits license incompatibility detection and resolution.
(2) Different models. LiResolver first embeds words with a roberta-
base model, and then feeds them into a transition-based parser.

In addition, LiDetector regarded each entity independently, while
LiResolver employs a prompt-based model to extract the relations
between entities. (3) Different licensing scopes. LiDetector treated
all licenses except the project license equally and independently,
while LiResolver observes that the location of a license determines
its scope of licensing, and thus extracts license hierarchy for license
incompatibility detection and resolution. (4) Different detection
strategies. Based on license hierarchy extraction, LiResolver obtains
parent-child pairs of licenses from the license hierarchy, and de-
fines that a license is compatible with its child nodes if anyone who
complies with the license will not violate any of its child nodes. On
this basis, LiResolver detects license incompatibility from bottom to
up, layer by layer according to license hierarchy. Moreover, the de-
tection strategy of LiResolver is more fine-grained than LiDetector,
which benefits from its fine-grained license understanding.

5.3 License Recommendation
Based on the aforementioned graph-based methods for license in-
compatibility detection, Kapitsaki et al. [25] proposed FindOSSLi-
cense to recommend OSS licenses. It considered user requirements
through a set of answers to questions, the licenses used by similar
users or similar projects, and also license compatibility informa-
tion according to the directed graph proposed in [27]. To this end,
a hybrid approach was proposed to combine the content-based,
constraint-based, and collaborative filtering techniques in the rec-
ommendation system. However, the license graph only covered a
small number of licenses. Licenses not covered in the license graph
were marked with “caution”. Liu et al. [33] observed that software
changes might lead to license updates. Based on this observation,
they proposed to predict source code file-level licenses in the pres-
ence of software changes. However, the license prediction tool is
only applicable for software changes, which limits its application
scope. Compared with these approaches, LiResolver automatically
models license texts in a fine-grained way, analyzes the inherent rea-
sons of license incompatibility for arbitrary licenses, and provides
flexible solutions for resolving license incompatibility issues.

6 CONCLUSION
In this paper, we propose LiResolver, an automated tool to resolve
license incompatibility issues for open source software. Given an
OSS, it first extracts all licenses along with their licensing scopes
and dependencies. Then, it conducts a fine-grained understanding
of license texts, based on which it detects and localizes license
incompatibility issues. Finally, for each incompatible license that
can be modified by the software owner, it computes the constraints
from the context of the license, and provides useful and flexible
suggestions. Comprehensive experiments on 300 real-world OSS
demonstrate the effectiveness of LiResolver.

ACKNOWLEDGEMENTS
This work was supported by the National Key Project of China
(No. 2020YFB1005700), the National Natural Science Foundation of
China (No. 62202245, 62102197, and 62002178), and the National
Science Foundation of Tianjin (No. 22JCYBJC01010).

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sihan Xu, Ya Gao, Lingling Fan, Linyu Li, Xiangrui Cai, and Zheli Liu

REFERENCES
[1] Daniel A Almeida, Gail C Murphy, Greg Wilson, and Mike Hoye. 2017. Do

software developers understand open source licenses?. In 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). IEEE, 1–11.

[2] Thomas A Alspaugh, Hazeline U Asuncion, and Walt Scacchi. 2009. Intellectual
property rights requirements for heterogeneously-licensed systems. In Proceed-
ings of the 17th IEEE International Requirements Engineering Conference. 24–33.

[3] Thomas A Alspaugh, Walt Scacchi, and Hazeline U Asuncion. 2010. Software
licenses in context: The challenge of heterogeneously-licensed systems. Journal
of the Association for Information Systems 11, 11 (2010), 2.

[4] Benjamin Andow, Samin YaseerMahmud,WenyuWang, JustinWhitaker,William
Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. Policylint: investigating
internal privacy policy contradictions on Google Play. In Proceedings of the 28th
USENIX Conference on Security Symposium. 585–602.

[5] Apache. 2004. LLVM Exception. https://foundation.llvm.org/relicensing/LICENSE.
txt

[6] Anonymous Authors. 2022. LiResolver. https://github.com/anonymous123rainy/
LiResolver

[7] Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei
Huang, Luo Si, and Huajun Chen. 2022. KnowPrompt: Knowledge-Aware Prompt-
Tuning with Synergistic Optimization for Relation Extraction. In Proceedings
of the ACM Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22).
Association for Computing Machinery, New York, NY, USA, 2778–2788. https:
//doi.org/10.1145/3485447.3511998

[8] choosealicense. 2012. Choose an open source license. https://choosealicense.com/
no-permission/

[9] christabold. 2016. Flask JSONDash. https://github.com/christabor/flask_
jsondashh

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186.

[11] Gordon Thomas F. 2010. Report on prototype decision support system for oss
license compatibility issues. Qualipso (2010), 80.

[12] Linux Foundation and its Contributors. 2015. A common software package data
exchange format, version 2.0. https://spdx.org/sites/spdx/files/SPDX-2.0.pdf.

[13] Linux Foundation and its Contributors. 2023. spdx-github.
https://github.com/spdx/license-list-XML.

[14] GR Gangadharan, Vincenzo D’Andrea, Stefano De Paoli, and Michael Weiss. 2012.
Managing license compliance in free and open source software development.
Information Systems Frontiers (2012), 143–154.

[15] Daniel M. German, Yuki Manabe, and Katsuro Inoue. 2010. A sentence-matching
method for automatic license identification of source code files. In Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering.
437–446.

[16] Robert Gobeille. 2008. The fossology project. In Proceedings of the 2008 Interna-
tional Working Conference on Mining Software Repositories. 47–50.

[17] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[18] Thomas F. Gordon. 2011. Analyzing open Source license compatibility issues
with Carneades. In Proceedings of the 13th International Conference on Artificial
Intelligence and Law. 51–55.

[19] Thomas F. Gordon. 2013. Introducing the Carneades web application. In Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Law
(Rome, Italy). 243–244.

[20] Thomas F. Gordon. 2014. A demonstration of the MARKOS license analyser.
In Proceedings of the 5th International Conference on Computational Models of
Argument. 461–462.

[21] Stanford NLP Group. 2020. corenlp. https://stanfordnlp.github.io/CoreNLP/.
[22] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard

Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their
applications 13, 4 (1998), 18–28.

[23] Yunosuke Higashi, Yuki Manabe, and Masao Ohira. 2016. Clustering OSS license
statements toward automatic generation of license rules. In Proceddings of the
7th International Workshop on Empirical Software Engineering in Practice. 30–35.

[24] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li, and
Liang Zhao. 2019. Latent dirichlet allocation (LDA) and topic modeling: models,
applications, a survey. Multimed Tools Appl (2019), 15169–15211.

[25] Georgia M Kapitsaki and Georgia Charalambous. 2021. Modeling and recom-
mending open source licenses with findOSSLicense. IEEE Transactions on Software
Engineering 47, 5 (2021), 919–935.

[26] Georgia M. Kapitsaki and Frederik Kramer. 2014. Open source license violation
check for SPDX files. In Software Reuse for Dynamic Systems in the Cloud and
Beyond. 90–105.

[27] Georgia M. Kapitsaki, Frederik Kramer, and Nikolaos D. Tselikas. 2017. Automat-
ing the license compatibility process in open source software with SPDX. Journal
of Systems and Software (2017), 386 – 401.

[28] Georgia M. Kapitsaki and Demetris Paschalides. 2017. Identifying terms in open
source software license texts. In Proceedigns of the 24th Asia-Pacific Software
Engineering Conference. 540–545.

[29] kevin. 2012. Software Licenses in Plain English. https://tldrlegal.com/.
[30] librariesio. 2015. Check compatibility between different SPDX licenses for check-

ing dependency license compatibility. https://github.com/librariesio/license-
compatibility

[31] Open Source Licensing. 2004. Software freedom and intellectual property law.
[32] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.

2022. Demystifying the vulnerability propagation and its evolution via depen-
dency trees in the npm ecosystem. In Proceedings of the 44th International Con-
ference on Software Engineering. 672–684.

[33] Xiaoyu Liu, LiGuo Huang, Jidong Ge, and Vincent Ng. 2019. Predicting licenses
for changed source code. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 686–697.

[34] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).

[35] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[36] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[37] Demetris Paschalides and Georgia M Kapitsaki. 2016. Validate your SPDX files
for open source license violations. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 1047–1051.

[38] Ryan Paul. 2009. Cisco settles FSF GPL lawsuit, appoints compliance offi-
cer. http://arstechnica.com/information-technology/2009/05/cisco-settles-fsf-
gpl-lawsuit-appoints-compliance-officer.

[39] ProgrammerSought. 2021. The first case of GPL agreement in China is settled. How
should the relevant open source software be controlled?

[40] Jaideep Reddy. 2015. The Consequences of Violating Open Source Licenses.
https://btlj.org/2015/11/consequences-violating-open-source-licenses/.

[41] spacy. 2022. spacy. https://spacy.io/usage/training.
[42] Tuunanen Timo, Koskinen Jussi, and Kärkkäinen Tommi. 2009. Automated

software license analysis. Automated Software Engineering 16 (2009), 455–490.
[43] Steven Vaughan. 2015. VMware sued for failure to comply with Linux license.

http://www.zdnet.com/article/.
[44] David A. Wheeler. 2007. The free-libre / open source software (FLOSS) license slide.

Retrieved January 26, 2017 from http://www.dwheeler.com/essays/floss-license-
slide.pdf

[45] Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji. 2021. LiDetector:
License Incompatibility Detection for Open Source Software. ACM Transactions
on Software Engineering and Methodology (2021).

[46] Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji,
and Meng Jiang. 2022. A survey of knowledge-enhanced text generation. ACM
Computing Surveys (CSUR) (2022).

Received 2023-02-16; accepted 2023-05-03

https://foundation.llvm.org/relicensing/LICENSE.txt
https://foundation.llvm.org/relicensing/LICENSE.txt
https://github.com/anonymous123rainy/LiResolver
https://github.com/anonymous123rainy/LiResolver
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://choosealicense.com/no-permission/
https://choosealicense.com/no-permission/
https://github.com/christabor/flask_jsondashh
https://github.com/christabor/flask_jsondashh
https://github.com/librariesio/license-compatibility
https://github.com/librariesio/license-compatibility
http://www.dwheeler. com/essays/floss-license-slide.pdf
http://www.dwheeler. com/essays/floss-license-slide.pdf

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 License Hierarchy Extraction
	2.3 License Understanding
	2.4 Incompatibility Issue Localization
	2.5 License Incompatibility Resolution

	3 Evaluation
	3.1 Evaluation on License Understanding
	3.2 Evaluation on Incompatibility Localization
	3.3 Evaluation on Incompatibility Resolution

	4 Discussion
	4.1 Developer Feedback
	4.2 Lessons Learned
	4.3 Limitations and Threats to Validity

	5 Related Work
	5.1 License Detection and Semantic Extraction
	5.2 License Incompatibility Detection
	5.3 License Recommendation

	6 Conclusion
	References

