
To Kill a Mutant: An Empirical Study of Mutation Testing Kills

Hang Du
University of California, Irvine

Irvine, USA
hdu5@uci.edu

Vijay Krishna Palepu
Microsoft, Silicon Valley Campus

Mountain View, USA
vijay.palepu@microsoft.com

James A. Jones
University of California, Irvine

Irvine, USA
jajones@uci.edu

ABSTRACT

Mutation testing has been used and studied for over four decades

as a method to assess the strength of a test suite. This technique

adds an artificial bug (i.e., a mutation) to a program to produce

a mutant, and the test suite is run to determine if any of its test

cases are sufficient to detect this mutation (i.e., kill the mutant). In

this situation, a test case that fails is the one that kills the mutant.

However, little is known about the nature of these kills. In this

paper, we present an empirical study that investigates the nature

of these kills. We seek to answer questions, such as: How are test

cases failing so that they contribute to mutant kills? How many

test cases fail for each killed mutant, given that only a single failure

is required to kill that mutant? How do program crashes contribute

to kills, and what are the origins and nature of these crashes?

We found several revealing results across all subjects, including

the substantial contribution of “crashes” to test failures leading to

mutant kills, the existence of diverse causes for test failures even

for a single mutation, and the specific types of exceptions that

commonly instigate crashes. We posit that this study and its results

should likely be taken into account for practitioners in their use

of mutation testing and interpretation of its mutation score, and

for researchers who study and leverage mutation testing in their

future work.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

mutation testing, mutant detection, test failure classification, em-

pirical study

ACM Reference Format:

Hang Du, Vijay Krishna Palepu, and James A. Jones. 2023. To Kill a Mutant:

An Empirical Study of Mutation Testing Kills. In Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3597926.3598090

1 INTRODUCTION

Mutation testing was first proposed by DeMillo [9] as a means to

assess the effectiveness of a test suite, and moreover to identify

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598090

weaknesses that can be strengthened through additional testing

efforts. To assess the effectiveness of a test suite, mutation testing

repeatedly injects an artificial bug (i.e., a mutation) into the tested

software to determine if any test cases fail due to the introduced

mutation. When at least one test case is sensitive enough to fail due

to the mutation, we consider the mutated program (i.e., themutant)

to be killed, and for that mutant, the test suite is considered to be

effective. In contrast, when no test cases fail on the mutant, the

mutant is said to survive, and this survival can be an indicator of a

weakness in the test suite (except in cases of equivalent mutants

that cannot be killed). In the end, a mutation score is computed as

the percentage of killed mutants among all non-equivalent mutants

that were created and tested — a higher mutation score connotes

a relatively effective test suite, whereas a lower score connotes a

relatively less effective suite.

Since its inception, mutation testing has been a well-researched

topic (e.g., [17, 19, 30, 33, 44]), been used for various purposes (e.g.,

[14, 16, 18, 29, 30, 38, 41]), and in recent years, has been made com-

putationally efficient enough to be useful in real-world development

and testing (e.g., [3, 8, 32]). However, despite all of these studies,

researchers and practitioners currently have an incomplete under-

standing of how mutation testing functions in practice, particularly

with regard to how mutants are killed.

Mutants can be killed in multiple ways. The most obvious way

is for a test case to fail its oracle. However, a mutant can also

cause a crash of the program, and in some cases, such crashes

are guaranteed if the mutation is executed (consider the situation

when the mutation is setting a variable’s value to 0 which is the

denominator of a division computation). Moreover, sometimes the

test will fail due to an assertion placed within the source code

(e.g., defensive programming practices [34]). Regardless of how the

test suite fails, the mutation is considered to be killed, and thus,

the mutation score reflects the increased effectiveness of the suite,

which could be misleading if the test suite, itself, is not the source

of the failure.

Some researchers have identified that some mutations are more

trivial than others (e.g., [2, 5, 13, 20, 24]) or that some mutations

always cause crashes when executed (e.g., [20, 26]). Most of these

observations were made during experimentation, and as such, they

were merely noted in their experimental designs to document how

they addressed such issues.

Some research efforts have directly studied howmutation testing

is affected by various types of killing behavior. For example, Just et

al. [20] deem amutant as trivial if all test cases that execute its muta-

tion lead to an exception. However, in this past work, no distinction

was made between exceptions that were thrown by the system

(e.g., divide-by-zero) versus those thrown by a developer-created,

defensive-programming assertion in the code. In the latter case

of the exception thrown by defensive programming, one possible

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

715

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598090
https://doi.org/10.1145/3597926.3598090
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598090&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Hang Du, Vijay Krishna Palepu, and James A. Jones

Source-code
Oracle Failure

Test Oracle
Failure

(System/3rd-party)

Exogenous
Library Crash

Test ‘C’
fails

Test ‘D’
fails

Test ‘A’
passes

Passing Test

Mutant X

Test A Test B Test C Test D

Test ‘B’
fails

Figure 1: Possible execution outcomes when multiple tests

execute a single mutant.

interpretation is that the testing is actually effective and desirable,

insofar as the test provides the necessary conditions to execute the

mutation, and the thorough checking of the state was performed

by the assertion in the code — in such case, perhaps the developers

should be recognized for effective defensive programming, and

perhaps also the mutation score should reflect that, rather than

considering the mutant as trivial and undesirable.

Such diversity ofmutation-killing behavior can (and often should)

be taken into account when using mutation testing. For example,

mutation scores may mislead developers as to the effectiveness of

the code under test. Or, developers may be encouraged to write

more test cases, when perhaps source-code-based defensive pro-

gramming practices are effective at catching bugs. Another example

is research techniques that use mutation testing as a dependent

technique (e.g., fault localization [18, 25, 29]), which may be affected

by ways in which tests fail.

To better understand these issues and thus to better inform

future mutation-testing tool implementations, mutation-score met-

rics, and research endeavors, we conducted an empirical study of

how mutations are killed in mutation testing. This work presents

the first focused study, specifically into how mutants are killed, in

practice. We provide a taxonomy of test-case failures as a result of

mutations, and we further develop an operationalization for how

to classify actual mutation-testing failures. To enable our empirical

investigation of mutation kills, we implemented an experimental

framework that involves extending a popular and well-known mu-

tation testing tool and source-code implementation. We studied ten

popular and widely used open-source systems, performed mutation

testing on over 50,000 mutants, executed over 2.5 million test runs,

and analyzed the specific actions of each test case that resulted in a

mutant kill.

We found a number of startling results that should give concern

to practitioners’ interpretations of mutation scores, as well as re-

searchers’ use of mutation testing for other automated techniques,

or at least, these results should be taken into consideration in such

Test Oracle

Failures

(A)

Exogenous

Crashes

(C)

Source-Code

Oracle Failures

(B)

S1 S3

S2

S4

Figure 2: Taxonomy of mutation killing reasons. Mutants

can be killed due to test-oracles failures, source-code oracles

failures, exogenous crashes, or any combination thereof.

future work. We found that crashes can cause as much as 46.2% of

failed test runs and as much as 43.8% of killed mutants (and thus

the mutation score). Moreover, regardless of the software system,

such crashes substantially contributed to the number of failures

(and kills). Additionally, test oracles (which are the traditionally

assumed cause of test failures and mutation kills) contributed as

little as 11.8% of test failures for one subject. All 10 subjects showed

mutants that were killed due to all failure causes from our taxon-

omy, with one subject exhibiting as much as 21.3% of all killed

mutants failing due to all of the failure causes (i.e., the test cases

that failed for that mutant failed due to each of the failure causes).

Moreover, we report additional findings on the exception types that

cause crashes and failures.

The contribution of this paper can be summarized as follows:

• We propose a mutation test-failure taxonomy that catego-

rizes the ways in which test cases can cause mutation kills.

• We implement our classification technique with custom

dynamic instrumentation and customized extensions to a

mutation-testing framework. Our implementation, experi-

mental setup, and experimental data are open source1 and

available for replication [10].

• We studied 10 popular open-source projects, performing mu-

tation testing on over 50,000 mutants, and executing over 2.5

million test runs. We found several revealing results across

all subjects, including that: (1) crashes contribute substan-

tially to test failures that kill mutants, (2) test-failure causes

are often diverse even for a single mutation, and (3) crashes

are caused by a variety of exception types.

2 BACKGROUND AND MOTIVATING
EXAMPLE

In this section, we introduce a taxonomy designed to categorize

the causes of test failures. We elucidate the variety of killing causes

within our taxonomy using a minimalist code example, demon-

strating how a single mutant can be eliminated in several ways.

Moreover, we discuss prior studies that have explored various defi-

nitions of mutant stubbornness and triviality.

1https://github.com/spideruci/MutationKills

716

https://github.com/spideruci/MutationKills

To Kill a Mutant: An Empirical Study of Mutation Testing Kills ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

2.1 Mutation Test-Failure Categorization

For the purposes of mutation testing, there are two main outcomes

when a single test executes a specific mutant: (1) the mutant sur-

vives if the test and all previously executed tests covering the muta-

tion pass; or (2) the mutant is killed because the test fails. However,

as we noted, a mutant kill can be caused by multiple types of test

failures. How a mutant dies in a test run becomes relevant, partic-

ularly when considering the motivations for the use of mutation

testing. For instance, when using mutation testing for its tradi-

tional purpose of assessing a test suite and strengthening it, we

may prefer to have more test cases fail due to the tests’ oracle (i.e.,

testing whether the actual output/behavior matches the expected

output/behavior) rather than failing due to a crash. In contrast, if

employing mutation testing to replicate crashes that real users en-

counter, it may be more useful to have mutants that die by crashes

(e.g., via uncaught runtime exceptions).

We classify test-case failures encountered during mutation test-

ing into three main categories: (1) test oracles, (2) source-code oracles,

and (3) crashes. In the first two categories of test oracles and source-

code oracles, test-case failures originate from within the program

and its test suite, and are considered endogenous failures. These en-

dogenous failures include test cases that fail in the traditional way

of failing its test oracle (e.g., JUnit’s assertEquals()method) and

also include failures that are caused by the developers’ defensive

programming (e.g., in-code pre/post-condition checks, boundary-

condition checks, java.lang.Assert calls). In both cases, the fail-

ure modes were anticipated by the developers or testers. Note that

traditional mutation testing only recognizes test oracles as a source

for test failures—perhaps understandably so, given its intention of

assessing test effectiveness.

The third main category of test failures are those that origi-

nate outside the first-party source code (i.e., exogenous failures),

and as such are outside the purview of the developers/testers.

These exogenous test failures likely could not be anticipated by

the developers, and as such, may be less useful for assessing the

strength of the test suite and/or error checking within the pro-

gram’s source code. We call this category of test-case failures ex-

ogenous crashes (or simply crashes), and these can stem from checks

in the virtual machine (e.g., a divide-by-zero error exhibited by

java.lang.ArithmeticException or a VM system error, such as

java.lang.OutOfMemoryError) or from 3rd-party code (e.g., li-

braries, frameworks) that throws exceptions that are uncaught.

Figure 1 depicts the different execution outcomes when a mutant

is executed by multiple tests — three of which are test failures with

different causes: test oracles, source-code oracles, and exogenous

crashes. Indeed, different mutations in a software system can be

killed due to specific or a combination of such reasons, illustrated

by the Venn diagram in Figure 2. Figure 2 shows a hypothetical

distribution of mutants in a program, bucketed into different killing

reasons, or their combinations. For instance, the S3 “slice” of the

Venn diagram depicts mutations killed by both test assertions and

exogenous crashes across different test runs. As such, we study both

facets of mutant kills: the manner of test execution failures that

kill mutants, and how the individual mutants can cause execution

failures of different types.

2.2 Motivating Code Example

We now use a minimal example to better illustrate how a mutant

gets killed by test oracles, source code oracles, or exogenous crashes

and discuss some relevant test failure scenarios.

Listing 1: Source Code Class Example

1 public class CodeClass {

2

3 public int getDivisor () {

4 return 3;

5 // mutation1: mutate the return value to 0

6 }

7

8 public int getDividend () {

9 return 0;

10 }

11

12 public int div1() {

13 int divisor = getDivisor ();

14 int dividend = getDividend ();

15 assert divisor != 0;

16 return dividend/divisor;

17 }

18

19 public int div2() {

20 int divisor = getDivisor ();

21 int dividend = getDividend ();

22 return dividend/divisor;

23 }

24 }

Listing 2: Testing Class Example

1 public class CodeTest {

2

3 @Test public void test0() {

4 CodeClass base = new CodeClass ();

5 assertNotEquals (0, base.getDivisor ());

6 }

7

8 @Test public void test1() {

9 CodeClass base = new CodeClass ();

10 assertEquals (0, base.div1());

11 }

12

13 @Test public void test2() {

14 CodeClass base = new CodeClass ();

15 assertEquals (0, base.div2());

16 }

17 }

Listing 1 presents a Java class, CodeClass, that computes division

results, and Listing 2 presents its JUnit test class, CodeTest that

tests CodeClass, with three test methods.

CodeClass includes two getters: getDividend and getDivisor,

used to perform division. Meanwhile, div1 and div2 are different

implementations of division: div1 is equipped with a precondition

check that examines if the divisor is zero while div2 lacks any such

precondition.

In CodeTest, test0 performs an explicit test to ensure that the

divisor (getDivisor) is never zero. test1 invokes div1 to verify if

the resulting division is as expected. Finally, test2 executes div2

to perform a test similar to test1.

In this test suite, all tests pass for CodeClass. No oracles are

in violation: neither the preconditions in the source code nor the

717

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Hang Du, Vijay Krishna Palepu, and James A. Jones

assert statements in the tests. However, if we generate a mutation

that mutates the return value of getDivisor from 3 to 0, the mutant

gets killed, but the cause of its death could be interesting:

For such a mutation at Line 4 in CodeClass, all three test cases

fail, but for different reasons.

(1) test0 fails due to a test oracle that requires the divisor to

be non-zero.

(2) test1 fails due to a source code oracle: an intentional pre-

condition check that throws as an AssertionError in div1, on

Line 15 in the source code.

(3) Finally, test2 fails due to a system-triggered crash, specif-

ically, an uncaught runtime exception: the Java Runtime

Environment (JRE) throws an ArithmeticException at Line 22

in div2, leading to the test failure.

The code example, while contrived and trivial, illustrates a po-

tential characteristic of mutation testing: a single mutant may die

by different tests, for different causes. In Section 2.3, we highlight

prior works that confronted some issues concerning the causes of

test failures in relation to mutation kills.

In this paper, we consciously do not make claims as to which

types of test failures are “better” or “worse.” In fact, we can imagine

reasons to attempt to target each type, depending on the applica-

tion context for mutation testing. But, absent an understanding

and study of the prevalence of these forms of test failure, each

application could be affected in unforeseen ways.

Indeed, we find that while mutation testing was originally de-

veloped to strengthen a test suite (and its test oracles), it has found

other useful applications. For instance, when applying mutation

testing to replicate crashes (or uncaught exceptions) occurring in

the wild, it may become useful to track mutants that trigger crashes

or uncaught exceptions. Similarly, when practitioners employ de-

fensive programming practices like using source-code oracles (e.g.,

in-code pre-/post-conditions, or boundary value checks) it becomes

useful to know if mutants are killed due to source code oracles.

2.3 Prior Works on Ease of Mutant Kills

Mutation testing is used for multiple applications such as test suite

evaluation and improvements, generation of test data and test suites,

and crash replication. The quality of mutants — assessed by the

difficulty in killing a mutant — is vital to applications of mutation

testing. In particular, a mutant that is hard to kill reveals gaps

in test data, test oracles, and program logic that were previously

unknown or not obvious. As such, a hard-to-kill, or “stubborn”

mutant necessitates additional test oracles with more test data, or

whole new tests to kill the mutant. Stubborn mutants may also

reveal exceptional program crashes, or boundary value faults that

are otherwise hard to reproduce with existing tests and data.

Stubborn Mutants. Prior works prefer “stubborn” or hard-to-kill

mutants, especially for test generation [7], evaluating test suites

[31], or prioritizing mutant selection [17, 39, 42]. Such works tend

to apply thresholds on mutant killing rates to classify mutants

as stubborn. A mutant is considered stubborn if it can be killed

by at most a certain threshold of tests in a test suite. Different

works applied different thresholds on killing test counts to classify

stubborn mutants [21, 27, 39, 40].

Trivial Mutants. In contrast, easily killed mutants, especially mu-

tants killed by numerous covering tests, are a lesser focus in muta-

tion testing research.Whenmodeling “mutant utility,” Just et al. [20]

define trivial mutants as those that cause all covering tests to crash

due to an (uncaught) exception. Indeed, multiple definitions for

trivial mutants have emerged in prior works [22, 24, 38].

Even while identifying stubborn and trivial mutants, the focus of

such prior works was not to perform a systematic study of stubborn

or trivial mutants, or how such mutants died. Such works did not

consider the causes of test failures that lead to a mutant kill (e.g.,

test oracles, source-code oracles, crashes). In the same vein, in our

literature review we find no prior study addressing the notion that

the same mutant can be killed in different ways (crash vs. oracles)

by multiple tests; and the impact that such a notion can have on

the applications of mutation testing.

We posit that mutant triviality or stubbornness is tied to the

stylistic choices that developers make when writing code. As such,

capturing mutant triviality or stubbornness with only counts of

failing tests may be inadequate. Studying the underlying causes of

the test failures in a mutant’s kills is vital.

For instance, one cannot easily conclude that a heavily (or easily)

killed mutant is uninteresting without understanding how they are

killed, or without understanding that they can be possibly killed due

to various causes. Just because all tests that execute a mutant fail

due to thrown exceptions does not mean that the mutant is trivial.

Often, production code involves developer-informed oracles in

source code. As shown in Listing 1, such a “source-code oracle” can

take the form of either an Assert-based pre-/post-condition check,

or an explicit thrown exception instantiated in the production code.

The resulting exception-induced kills may have varying causes

since they may be triggered by different source-code oracles, each

effectively functioning as an in-code test case.

3 APPROACH: DETECTING AND
CLASSIFYING CAUSES OF TEST FAILURES

In this section, we define how a test fails due to (a) source code

oracle, (b) test oracle, and (c) crash, and we describe the approach

that we use to detect failures by those three causes of test failure.

3.1 How Are Exceptions Instantiated, Thrown,
and How Do They Cause Test Failures?

In Java projects with test cases using the JUnit framework, a test

fails with at least one uncaught Throwable instance2. The occur-

rence of an exception or an error, as represented by the Throwable

class, can result in test failures. Such error and exception instances

are freshly created in the context of the exceptional situation and

are instantiated with context information stored in stack trace [28].

A Throwable instance stores a snapshot of the execution stack of

its thread at the time it was created [28].

Therefore, to categorize types of test failures, it is necessary

to determine where and how an uncaught throwable object was

instantiated and thrown. A Throwable instance could be instantiated

from some code, located in some code, and be thrown by some code.

2Some methods with specific annotations, such as @After, are guaranteed to run even
if a @Before or @Test method throws an exception.

718

To Kill a Mutant: An Empirical Study of Mutation Testing Kills ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Based on our classification, a Throwable object could be thrown

from:

(1) project code with throw statements, including project pro-

duction code and project test code;

(2) third-party packages with throw statements that come with

Java platform; or

(3) the Java Virtual Machine.

Stack traces provide the context of the exceptional situation that

helps locates the fault. An exceptional context could be located in:

(1) project production code (project source code) and project

test code;

(2) other Java packages; or

(3) nowhere: no exceptional context is available due to special

reasons, such as running out of memory.

A Throwable object could be instantiated through:

(1) current project’s explicit instantiation of a Throwable in-

stance;

(2) another package’s instantiation of a Throwable instance; or

(3) the Java Virtual Machine

In the next two subsections, we describe how we determine such

information.

3.2 Subject Instrumentation

To determine the necessary information listed above to classify

test failures, we instrument the bytecode of the software under

test. Although we expect that projects define some of their own

exceptional classes, the fact is: many projects throw exceptional

classes that were defined in JCL (Java Class Libraries). Therefore,

classifying a test failure as a “source-code oracle,” based only on

whether the exception type was defined in first-party code is not

ideal and would miss many such in-code checks. Instead, we use

ASM bytecode-manipulation library [6] to trace the instantiation

of exceptional classes. We place instrumentation probes after the

instantiation of all exception classes. As an initial heuristic, we

recognize these in the bytecode as instantiations of classes whose

names end in “Exception” or “Error”, which we will address below.

The probes record the exceptional context, including file name and

line number, which are going to be matched with the top element

of the failure stack trace of the failing test. Such matches indicate

source-code oracle failures.

We also place probes that record exceptional information after

the instantiation of exceptional classes in the project’s test code.

Some test cases have sanity checks by using a direct throw in test

cases to assert the absence of an exception without using asser-

tions provided by testing APIs. Additionally, try-catch blocks are

prevalent in test cases. Ma et al. [23] reported that 16.5% JUnit test

cases contain try-catch statements. Thus, if an instantiation of an

exception in test code directly leads to a test failure, we consider

the failure as a test-oracle failure.

Admittedly, the above method can produce both false positives

and false negatives when recognizing exceptional classes based on

class name, and we properly account for both situations. For false

positives, non-exceptional classes ending with “Error” and “Excep-

tion” that do not lead to test failures may be instrumented. However,

because they do not cause any failures, the instrumentation traces

are simply not matched or used and thus will have no impact on

our failure-cause analysis. To address false negatives stemming

from classes that do not end with “Error” or “Exception” that are

inherited from Throwable and do lead to test failures, we recognize

these, post hoc, by analyzing the types of uncaught exceptions that

PIT reports as the cause of failure.

Finally, if a test failure is not recognized as test-code oracle failure

or source-code oracle failure, it is labeled as an exogenous crash.

3.3 Modified PIT for Mutation Testing

Weuse PIT [8], a state-of-art open-source bytecodemutation testing

tool for Java, in our experiments. PIT runs the test suite and collects

coverage informationwithout anymutations during an initial phase,

and then selects only test cases that potentially cover the mutations

to speed up the execution time. In this experiment, we used all of

the normal mutation operators provided by PIT.

To acquire test failing reasons from PIT, we modified the on-

TestFailure method in CheckTestHasFailedResultListener.java in PIT

version 1.9.5. We print each uncaught Throwable instance’s excep-

tion type and the top element of the stack trace (if available) to

Standard Error, which includes the class name, file name, method

name, and line number.

PIT firstly collects basic block code coverage to determine which

test to run and labels mutants with no covering tests as NO_COVER

AGE without running any test cases. Then it labels all covered

mutants as SURVIVED or KILLED while labeling a proportion of

mutants as MEMORY_ERROR or TIMED_OUT due to technical and

performance issues. For such reasons, the status of those relevant

test runs is not included in our results.

3.4 Classifying Causes of Test Failures

We provide the following rules for classifying a failing test based

on failing reasons in the following order.

(1) If an uncaught Throwable Instance is of the project domain’s

type, the test case fails due to a source-code oracle.

(2) If an uncaught Throwable Instance is of a type from the

testing library, including JUnit, Mockito, and so on (by

examining the type of exceptions and the files that throw

them), the test case fails due to a test failure.

(3) If an uncaught Throwable instance is not of any type above,

then

• If this instance’s exception type and the top element’s

stack information (line number, and file name) match the

information specified in our probe for project source code,

we consider the test case to have failed due to a source-

code oracle.

• If this instance’s exception type and the top element’s

stack information (line number, and file name) match the

information specified in our probe for project test code, we

consider the test case to have failed due to a test failure.

(4) If a failing test does not apply to any situations above, we

consider the test to have failed due to an exogenous crash.

4 EXPERIMENTAL SETUP

In this section, we outline the experimental design to answer key

research questions about how mutants are executed and killed by

719

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Hang Du, Vijay Krishna Palepu, and James A. Jones

test cases. We start by enumerating four research questions, along

with the rationale for why we ask those questions. Next, to answer

those questions we performed mutation testing for 10 open-source

Java programs — we provide the specifics about those programs

and their version numbers to help with replicating this experiment.

We carried out the mutation test runs using the modifications we

made to PIT, as discussed in Section 3. During those test runs, we

tracked test-failure data to compute experimental variables used to

answer the research questions below.

4.1 Research Questions

In an effort to better understand mutation testing kills and to give

direction and focus to our investigation, we devised the following

set of research questions:

RQ1 Howmany tests execute a given mutation and what are their

failure rates?

RQ2 How does a test kill a mutant?

RQ3 Are certain mutation operators more prone to certain test

failure causes?

RQ4 What types of uncaught exceptions kill mutants?

These research questions are aimed at understanding how mu-

tant kills occur. The questions start with examining how multiple

tests execute a mutant. We then progress to examine the causes of

mutant kills and end with an exploration of factors behind the dif-

ferent causes of mutation kills. We now elaborate on the rationale

for these questions, starting with RQ1.

RQ1: How many tests execute a given mutation and what

are their failure rates? Past research has given labels to and as-

signed relative merit to mutations that cause various failure rates.

Section 2.3 discusses the prior research that labeled mutants as

“stubborn” if they were executed by multiple test cases and failed by

a threshold-limited percentage of test cases, or research that labeled

mutants as “trivial” if they were executed by multiple test cases and

failed by a too great percentage of test cases. To empirically under-

stand how often these conditions actually occur and thus inform

future mutation-testing research and uses thereof, we examine this

dichotomy in mutation testing by examining two phenomena: (a)

multiple tests executing a single mutant; and (b) the failure rates of

tests, per mutant; with the variables enumerated below.

Experimental Variables:

• Number of Multi-Test Mutants. This variable will track

the occurrence of multi-test mutants, i.e., mutants that are

executed by multiple tests, in a subject program’s test suites.

In addition to tracking the number of Multi-Test Mutants for

a subject, we will break down those counts by:

– Survived: Number of multi-test mutants that were not

killed by any executing tests.

– Wholly Killed: Number of multi-test mutants that were

killed by all of the executing tests.

– Partially Killed: Number of multi-test mutants that

were killed by a part of the executing tests.

RQ2: How does a test kill a mutant? Mutation testing’s original

motivation was to assess the strength of tests in a test suite [1, 9, 15].

Such a motivation would require that tests, when killing mutants,

fail due to test oracles. In RQ2, we examine if mutants necessarily

are killed due to failing test oracles. Specifically, we investigate

the degree to which the following causes of test failures contribute

to mutation kills: (a) test oracles; (b) source-code oracles; and (c)

exogenous crashes. Indeed, as we discuss in Section 2, different

causes of test failures that lead tomutant kills, would invite different

motivations for performing mutation testing.

Experimental Variables: For each type of failure cause (i.e., (a)

test oracles; (b) source-code oracles; and (c) exogenous crashes), we

track the following metrics:

(1) Number of Test Cases for each Failure Cause. This vari-

able counts the number of test cases that fail due to each of

the three failure causes, computed for each subject program.

Notably, if a test case encounters multiple causes of failure

across different test runs (for different mutations), we count

the test once for each unique cause of failure.

(2) Number of Test Runs for each Failure Cause. This vari-

able counts the number of test executions that fail due to

each of the three enumerated failure causes. A single static

test case can be executed for different mutants, to produce

multiple test runs. Further, note that each single test run can

fail due to one failure cause.

RQ3: Are certain mutation operators more prone to certain

failure causes? After studying how tests execute and kill mutants,

we examine any relationship between the causes of mutant kills

and the mutants themselves. Specifically, we examine how differ-

ent mutation operators induce test failures of various types (with

differing causes). For instance, results of RQ3 should help us assess

if certain mutation operators are more likely to induce exogenous

crashes than others. If so, applications of mutation testing can use

such results to include (or exclude) such mutation operators from

mutation testing runs for specific programs.

RQ4: What types of uncaught exceptions kill mutants? Our

data suggest that mutants are often killed by uncaught runtime

exceptions. This leads us to examine the types of runtime exceptions

that trigger test failures, and thus, mutant kills. Note that runtime

exceptionsmay be triggered by source-code oracles or by exogenous

factors (e.g., the Java Runtime Environment).

4.2 Subject Programs

We ran our experiments on 10 open-source Java projects. We se-

lected well-known, real-world projects that are built with Maven,

have unit tests written using the JUnit test framework by devel-

opers, and whose source code is available on GitHub. All studied

programs use the JUnit testing framework and have JUnit on the

classpath. Each column of Table 1 provides: (1) subject project, (2)

version analyzed, (3) lines of code, (4) number of tests involved

(excluding tests that failed on the unmutated program), (5) line

coverage (LC), and (6) mutation score (MS).

When selecting subject programs we excluded projects with

substantial numbers of failing tests (before any mutation). We also

excluded projects that included other factors that would be not suit-

able for mutation analysis, such as implicit test-order dependencies

or shared file access on disk. After the selection process, we also

configured PIT to exclude any failing tests when running without

any mutations from our experiments. Additionally, we configured

720

To Kill a Mutant: An Empirical Study of Mutation Testing Kills ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 1: Experiment Subject Programs

Subject Program Name Version LoC #Tests LC MS
commons-lang 3.12.0 84,788 4,967 95% 85%
commons-jexl 3.2.1 31,321 790 76% 59%
joda-time 2.12.2 88,190 5,501 90% 80%
commons-text 1.10.0 26,579 1,242 99% 84%
commons-io 2.11.0 40,379 1,771 89% 79%
xmlgraphics 2.7 35,355 188 42% 28%
gson 2.9.1 26,685 1180 89% 80%
jsoup 1.15.2 25,985 900 83% 62%
commons-csv 1.9.0 8,007 390 98% 93%
commons-validator 1.7 16,781 533 78% 73%

the JVM to enable assertions in the source code and to enable full

stack trace information when a test fails. Finally, we configured PIT

to not generate mutations on our instrumented code.

5 RESULTS

RQ1: Failure Rates for Multi-Test Mutants

The results for RQ1 are presented by Table 2. For each subject

program, the first three columns report: (a) All Mutants: the

total number of mutants whose data we tracked as part of our

experiments; (b) Single-Test Mutants: a subset of All Mutants

that were executed by only one test; and (c)Multi-Test Mutants:

a subset of All Mutants that were executed by at least two or

more tests. In addition, Table 2 reports the number of Multi-Test

Mutants as a percentage of All Mutants. For instance, Table 2

shows that in GSON we tracked 2549 mutants and found that 2303

(or 90.35%) of the 2549 mutants were executed by two or more tests.

Further, Table 2 breaks down the counts of such Multi-Test

Mutants into three categories: Survived; Wholly Killed; and

Partially Killed. As such, once again forGSON, we see that out of

the 2303 Multi-Test Mutants: 235 Survived; 678 were Wholly

Killed by causing all test cases that executed those mutants to fail;

and 1390 were Partially Killed, i.e., not all tests executing those

mutants failed. Further, the Survived mutants account for 9.22%

of all 2303 mutants we tracked in GSON; Wholly Killed mutants

account for 26.6% of All Mutants; and Partially Killedmutants

amount to 54.53% of all mutants in GSON.

We find that the number of Multi-Test Mutants form the

majority of mutants, across all ten subject programs. The proportion

of Multi-Test Mutants ranges from 90.35% in GSON to 62.36%

in Commons-Lang. Further, in nearly all programs, the majority

of such multi-test mutants are killed “partially” by some of the

mutants’ executing tests (exceptCommons IO andCommons-Lang).

Finally, we also find that a smaller proportion of multi-test mutants

do survive, i.e., all tests executing such mutants pass.

RQ2: How Does a Test Kill a Mutant?

The results for RQ1 suggest that substantial proportions of the

mutants in our subject programs are typically executed by multiple

tests. And as discussed in Section 2.3, multiple tests executing the

same mutant may result in failures by different causes.

As such, using Figure 3 and Table 3, we summarize the results

for RQ2. Table 3 breaks down the failing tests into the three failure

causes: (a) test oracles; (b) source-code oracles; and (c) exogenous

crashes. Whereas, Figure 3 summarizes the killed mutants across

all subject programs with their failure causes.

For each subject, Table 3 shows the Number of Test Cases im-

pacted by different failure causes. For instance, Commons-Lang has

4452 tests failing on mutations due to test oracles; 1487 tests failing

on source-code oracles and 3527 tests failing due to exogenous

crashes. Further, for each count of test cases, Table 3 also shows the

number of Test Runs for each failure cause, i.e., test executions

that failed when executing a specific mutation. For instance, in

Commons-Lang, the 4452 tests that fail due to test oracles, fail

across 60,897 test runs. Specifically, those 4452 tests were executed

repeatedly for different mutations and collectively failed 60,897

times due to failing test oracles. Similarly, the 1487 tests that are

failing due to source oracles, result in 11,101 failing test runs; while

3527 tests cause 26,177 crashing test runs.

Additionally, Table 3 shows the relative percentages of the Num-

ber of Failing Test Runs. Notably, these results show the outsized

role of exogenous crashes in test runs that execute and fail on mu-

tations. Exogenous crashes can account for as many as 46.22% and

37.33% of failing test runs in Jsoup and Commons-Jexl, respectively.

And among the subjects in our experiments, they contribute to at

least 22.11% of failing test runs, as in the case of Commons-Text.

Further, test oracles do not always form the majority failure cause

for a set of failing test runs. Commons-Jexl shows that test ora-

cles can cause as little as 11.82% of test runs to fail in a program’s

mutation test runs.

Additionally, Figure 3 illustrates the Failing Test Runs data by

attributing individual mutants to test failure causes. Specifically,

Figure 3 uses a grid of Venn diagrams — one per subject program

— to show how mutations introduced in a program are killed by

any of the three failure causes: test oracles, source-code oracles, or

crashes; and often are killed by multiple causes (i.e.,multiple failing

test cases for a given mutant, and those failing tests differ in their

failure cause).

Again, consider the Venn-diagram for Commons-Jexl in Figure 3

(second in the first row). The Venn diagram for Commons-Jexl

clearly shows that 1146 mutants, i.e., 21.3%, of all killed mutants

we tracked getting executed by test runs that failed because of all

three failure reasons: test oracles, source-code oracles, or crashes.

Notably, every subject program has mutants that were killed by

all three test failure causes. Additionally, across all subjects, the

number of mutant kills due to exogenous crashes (shown as red

bubbles) forms a substantial portion of the mutants for a test subject.

Again, for Commons-Jexl, 2281 mutants (42.3% of all killed mutants

in Commons-Jexl) can be killed due to crashing test runs; of which

1146 can be killed by all three failure causes; 247 mutants can be

killed either by crashes or source-code oracles; 340 mutants can be

killed by test-oracles and crashes; while 548 mutants can be killed

by crashes alone.

RQ3: Are Certain Mutation Operators More
Prone to Certain Failure Causes?

To understand the influence of mutation operators on killing states,

we separate implicit kills, i.e., test failures due to exogenous crashes,

from explicit kills, i.e., test-oracle failures or source-code oracle

failures. We present the percentage of exogenous crashes among

721

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Hang Du, Vijay Krishna Palepu, and James A. Jones

Table 2: Mutants covered by multiple tests. (Percentages in the table use “All Mutants” counts as the denominator.)

Mutants Executed by Multiple Tests
Program Name All Mutants Single-Test Mutants Multi-Test Mutants Survived Wholly Killed Partially Killed
gson 2,549 246 (09.65%) 2,303 (90.35%) 235 (09.22%) 678 (26.60%) 1,390 (54.53%)
commons-jexl 7,085 744 (10.50%) 6,341 (89.50%) 1,466 (20.69%) 1,479 (20.88%) 3,396 (47.93%)
commons-csv 654 72 (11.01%) 582 (88.99%) 27 (04.13%) 211 (32.26%) 344 (52.60%)
jsoup 4,278 528 (12.34%) 3,750 (87.66%) 855 (19.99%) 965 (22.56%) 1,930 (45.11%)
joda-time 8,859 1,793 (20.24%) 7,066 (79.76%) 849 (09.58%) 2,274 (25.67%) 3,943 (44.51%)
commons-io 3,768 787 (20.89%) 2,981 (79.11%) 425 (11.28%) 1,436 (38.11%) 1,120 (29.72%)
commons-validator 1,760 366 (20.80%) 1,394 (79.20%) 185 (10.51%) 473 (26.88%) 736 (41.82%)
commons-text 4,240 1,062 (25.05%) 3,178 (74.95%) 389 (09.17%) 1,381 (32.57%) 1,408 (33.21%)
xmlgraphics 3,854 1,336 (34.67%) 2,518 (65.33%) 577 (14.97%) 932 (24.18%) 1,009 (26.18%)
commons-lang 12,441 4,683 (37.64%) 7,758 (62.36%) 838 (06.74%) 3,781 (30.39%) 3,139 (25.23%)

Table 3: Number of test runs and the underlying test cases that can fail due to different failure causes. (Percentages in the table

use “# of All Failed Test Runs” as the denominator.)

Counts of Tests (and Test runs) by Failure Causes
of All Failed Due to Test Oracles Due to Source Oracles Due to Crashes

Program Name Test Runs # of Tests # of Test Runs # of Tests # of Test Runs # of Tests # of Test Runs
commons-lang 98,175 4,452 60,897 (62.03%) 1,487 11,101 (11.31%) 3,527 26,177 (26.66%)
commons-jexl 390,973 770 46,209 (11.82%) 774 198,806 (50.85%) 786 145,958 (37.33%)
joda-time 349,514 4,958 140,368 (40.16%) 4,157 83,365 (23.85%) 4,554 125,781 (35.99%)
commons-text 45,315 1,191 23,874 (52.68%) 669 11,421 (25.20%) 976 10,020 (22.11%)
commons-io 33,586 1,549 16,340 (48.65%) 996 7,772 (23.14%) 1,330 9,474 (28.21%)
xmlgraphics 8,562 173 3,306 (38.61%) 99 2,621 (30.61%) 156 2,635 (30.78%)
gson 117,845 1,104 26,072 (22.12%) 1,129 50,434 (42.80%) 1,135 41,339 (35.08%)
jsoup 223,145 877 77,517 (34.74%) 855 42,483 (19.04%) 858 103,145 (46.22%)
commons-csv 16,092 362 7,842 (48.73%) 244 2,831 (17.59%) 339 5,419 (33.68%)
commons-validator 20,952 485 12,977 (61.94%) 169 1,837 (08.77%) 447 6,138 (29.30%)

491
7285

414

1811

33

821

144

commons-lang

1034 1263
811

548

247 340

1146

commons-jexl

662
3558

1037

1147

221

720

465

joda-time

244

1939

246

656

19

446

50

commons-text

242

1948
220

451

15

321

42

commons-io

359 1340
182

655

53

153

52

xmlgraphics

456

567
345

317

68
229

271

gson

179

1489
127

444

41
675

241

jsoup

10

300

68

106

1

95

34

commons-csv

19

1168
39

146

6

163

9

commons-validator

Source-code Oracle Failures Test Oracle Failures Exogenous Crashes

Figure 3: Relative number of killing reasons for mutants, including mutants killed for by combinations of failure types.

all failing tests for different projects in Table 4. We exclude the In-

vertNegs mutator in this table because few mutations are generated

by this mutator thus few failing tests are involved.

We find that 48.81%–93.18% of failing tests that cover mutants

from the Increments mutator are exogenous crashes. 48.16%–84.0%

test runs regarding NullReturnVals result in exogenous crashes

among all projects. Overall, we find that the Math mutator, Condi-

tionalsBoundary mutator, NullReturnVals mutator, Increments muta-

tor, NegateConditionals mutator usually result in much more exoge-

nous crashes. In turn, the PrimitveReturns mutator, BooleanFalseRe-

turnVals mutator, VoidMethodCall mutator, BooleanTrueReturnVals

mutator, and EmptyObjectReturnVals mutator are less prone to vio-

late checks in the Java virtual environment. However, such trends

are not always true for all projects. For example, the VoidMethodCall

722

To Kill a Mutant: An Empirical Study of Mutation Testing Kills ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 4: Percentages of 3rd Party Crashes among all failing tests for different mutation operators.

commons- commons- joda-time commons- commons- xml- gson jsoup commons- commons-
Mutator lang jexl text io graphics csv validator

PrimitiveReturns 02.82 05.81 07.40 03.46 01.36 14.93 00.72 15.24 00.48 00.00
Math 21.82 51.36 22.20 46.51 42.99 19.11 39.37 75.96 70.09 43.78
ConditionalsBoundary 56.77 61.47 49.85 22.39 22.98 53.38 82.80 63.56 89.40 48.96
NullReturnVals 68.89 70.16 78.78 76.85 78.37 57.82 61.38 78.59 84.00 48.16
BooleanFalseReturnVals 05.22 02.51 14.92 00.15 00.34 14.67 23.78 31.87 01.02 00.00
VoidMethodCall 08.97 50.26 09.91 05.51 19.56 16.03 02.16 36.18 04.66 21.60
BooleanTrueReturnVals 03.39 01.19 22.63 04.55 16.05 14.72 27.97 47.56 08.48 08.67
NegateConditionals 21.66 33.82 25.59 10.70 19.06 28.47 33.67 39.93 21.68 27.62
EmptyObjectReturnVals 07.15 35.80 02.80 00.95 11.45 11.99 10.53 23.36 38.25 29.25
Increments 70.53 93.18 57.99 49.90 62.04 48.81 85.40 49.23 85.71 50.00

mutator, which replaces a method call with a void method, gen-

erally generates fewer exogenous crashes. However, this mutator

leads to 50.26% crashes and 36.18% crashes among failing tests in

commons-jexl and jsoup, respectively.

RQ4: What Types of Uncaught Exceptions Kill
Mutants?

In Table 5, we list the top-5 exception-types from exogenous crashes

for each project. We observe that NullPointerException ranks as the

top crash-/exception-type across all projects. Prior work [26, 36] has

identified similar results about NullPointerException-induced fail-

ures. Violation of the index boundaries, including ArrayIndexOutof-

Bounds, StringIndexOutofBounds, and IndexOutofBounds is another

major contribution of exogenous crashes. Among them, ArrayIndex-

OutOfBoundsException ranks 2nd in 5 projects and is in the top-5

categories for all projects in this study.

While referencing null values and index-boundary checks are

two major causes for the Java virtual machine to throw an excep-

tion in mutation testing, we also show the proportion of the top-3

mutator-exception pairs among all exogenous crashes from Java

class libraries in Figure 4.

co
m
m
on
s-
la
ng

co
m
m
on
s-
je
xl

jo
da
-t
im
e

co
m
m
on
s-
te
xt

co
m
m
on
s-
io

xm
lg
ra
ph
ic
s

gs
on

js
ou
p

co
m
m
on
s-
cs
v

co
m
m
on
s-
va
lid
at
or

0.0

0.2

0.4

0.6

0.8

1.0

p
ro
p
o
rt
io
n
o
f
ex
ce
p
ti
o
n
-m

u
ta
to
r
p
a
ir

java.lang.NegativeArraySizeException EmptyObjectReturnVals

java.lang.ArrayIndexOutOfBoundsException Math

java.lang.StringIndexOutOfBoundsException Math

org.xml.sax.SAXParseException NegateConditionals

java.lang.ClassCastException NegateConditionals

java.lang.NullPointerException NullReturnVals

java.lang.NullPointerException NegateConditionals

java.lang.ArrayIndexOutOfBoundsException VoidMethodCall

javax.xml.transform.TransformerException NegateConditionals

Figure 4: Top 3mutator-exception pairs for 3rd Party Crashes.

In Figure 4, we find that some specificmutator-exception pairs ac-

count for a sizable proportion of exogenous crashes. Test cases usu-

ally fail with NullPointerException when running tests for Negate-

Conditionalsmutator andNullReturnValsmutator, which contributes

to 50% (approx.) of all exogenous crashes led by these two muta-

tors. One intuition is evident: the NullReturnVals mutator mutates

the return value to null, and if the tested program were written

carefully, it would have checked for null before dereferencing the

returned value. Such defensive programming would have moved

the failure type from an uncontrolled implicit failure (i.e., exoge-

nous crash due to a null dereference) to a controlled explicit failure

(e.g., a source-code oracle, which explicitly throws an exception),

or perhaps even could have avoided failure altogether by properly

recovering from the erroneous state.

6 DISCUSSION

Through our experiments we have uncovered several key findings

that challenge assumptions about mutation testing. We discuss our

findings below, followed by an enumeration of their implications.

First, not all uncaught exceptions are due to implicit checks. Ex-

ogenous crashes are prevalent in mutation testing, though assertion

violations are mainly expected by practitioners when applying mu-

tation analysis. Also, one should not assume that all explicit checks

are oracles in the test code.

Second, oracles in source code are designed intentionally by de-

velopers with error messages, no matter if it is in the form of an

Assert or an exception being thrown. Furthermore, when we sepa-

rate source-code oracle violations from all exogenous crashes, we

find such checks in source code are non-negligible in contributing

to the mutation score. Therefore, the mutation score indicates the

fault detection capabilities for explicit checks in the source code.

Third, certain mutation operators are prone to lead to exogenous

crashes. For example, many killing test runs for the NullReturnVals

mutator fail due to NullPointerExceptions. We think such trends

can give advice in selecting mutation operators when we insert

faults into programs for different purposes. Also, it alerts us that we

might increase the complexity of mutation operators, when possible.

For instance, instead of simply mutating the return value to null,

empty object, or zero, one might consider mutating the return value

to other non-zero values or objects with customized field values for

specific projects. Such practices might lower the ratio of exogenous

crashes, thus improving the quality of the mutation score.

Practical Implications. Our results and findings bear potentially

significant implications for both researchers and practitioners of

mutation testing. We organize our practical implications into the

following eight themes.

(1) Researchers should take a fresh look at mutation test-

ing, particularly for the original purpose of assessing

test-suite effectiveness. A sizable portion of the kills hap-

pen due to crashes (i.e., not test oracle failures), and this fact

723

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Hang Du, Vijay Krishna Palepu, and James A. Jones

Table 5: Top 5 categories of 3rd Party Crashes

Project Top-5 categories Project Top-5 categories

commons-lang

java.lang.NullPointerException (57.8%)

commons-jexl

java.lang.NullPointerException (42.0%)
java.lang.StringIndexOutOfBoundsException (14.0%) java.lang.ArrayIndexOutOfBoundsException (31.2%)
java.lang.ClassCastException (10.8%) java.lang.StackOverflowError (6.7%)
java.lang.ArrayIndexOutOfBoundsException (10.3%) java.lang.StringIndexOutOfBoundsException (4.7%)
java.lang.UnsupportedOperationException (1.1%) java.util.concurrent.ExecutionException (3.2%)

joda-time

java.lang.NullPointerException (67.2%)

commons-text

java.lang.NullPointerException (36.4%)
java.lang.ArrayIndexOutOfBoundsException (13.2%) java.lang.ArrayIndexOutOfBoundsException (29.0%)
java.lang.NoClassDefFoundError (10.5%) java.lang.StringIndexOutOfBoundsException (18.2%)
java.lang.StringIndexOutOfBoundsException (2.8%) java.lang.IllegalArgumentException (7.2%)
java.lang.StackOverflowError (1.9%) java.lang.IndexOutOfBoundsException (3.5%)

commons-io

java.lang.NullPointerException (52.8%)

xmlgraphics

java.lang.NullPointerException (61.8%)
java.lang.ArrayIndexOutOfBoundsException (24.2%) java.lang.ArrayIndexOutOfBoundsException (8.3%)
java.nio.file.DirectoryNotEmptyException (8.1%) javax.xml.transform.TransformerException (7.8%)
java.lang.IndexOutOfBoundsException (2.8%) java.lang.ClassCastException (3.5%)
java.lang.StringIndexOutOfBoundsException (2.2%) java.lang.StringIndexOutOfBoundsException (2.7%)

gson

java.lang.NullPointerException (55.8%)

jsoup

java.lang.NullPointerException (41.3%)
java.lang.ClassCastException (26.3%) java.lang.ClassCastException (17.5%)
java.lang.ArrayIndexOutOfBoundsException (9.4%) java.lang.IndexOutOfBoundsException (12.4%)
java.lang.IndexOutOfBoundsException (3.1%) java.lang.StackOverflowError (11.7%)
java.lang.StringIndexOutOfBoundsException (2.1%) java.lang.ArrayIndexOutOfBoundsException (9.6%)

commons-csv

java.lang.NullPointerException (81.4%)

commons-validator

java.lang.NullPointerException (34.0%)
java.lang.StringIndexOutOfBoundsException (6.6%) org.xml.sax.SAXParseException (32.1%)
java.lang.ArrayIndexOutOfBoundsException (6.3%) java.lang.ArrayIndexOutOfBoundsException (11.6%)
java.lang.NegativeArraySizeException (3.1%) java.util.NoSuchElementException (8.5%)
java.lang.UnsupportedOperationException (1.2%) java.lang.StringIndexOutOfBoundsException (4.0%)

challenges a prime motivation of mutation: improving the

quality of tests.

(2) It sheds light on a hidden way of killing mutants for

both researchers and practitioners. Rather than augment-

ing existing test suites, practitioners could consider adding

useful oracles in source code, which could be checked by

multiple tests.

(3) The study helps both practitioners and researchers un-

derstand what mutation score is actually composed of

and understand the implications of traditional muta-

tion score. Mutation testing assesses more than the fault

detectability of the test suite itself; oracles in source code

can sometimes contribute substantially to mutation scores.

(4) It sheds light on new possible research techniques.

While several research techniques focus on killing surviving

but killable mutants by automatically augmenting existing

test suites by adding test assertions, few suggest adding

source-code oracles to kill a mutant. Approaches like dy-

namic invariant detection [4, 11, 12] may be deployed to

identify invariants that could be checked by such source-

code oracles during mutation runs, consequently leading to

the additional kills of surviving mutants.

(5) It calls for more research studies to investigate the dif-

ference and relative importance of the three distinct

failing reasons in mutation analysis. The relative impor-

tance, in terms of assessing test-suite strength, bug-detection

sensitivity, and so on, of the different ways that mutants are

killed remains to be investigated.

(6) This study suggests the possibility of a weighted mu-

tation score for evaluating different aspects of a test

suite. Test assertions are traditionally assumed as the source

of mutation kills, however, these are the final check dur-

ing execution after several runtime checks and source-code

oracle checks. Thus, a new mutation metric may provide

variable weighting for each type of kill, and the effects of

such could be investigated.

(7) The definition of ease of mutant kills calls for recon-

sideration. Prior work has applied thresholds on mutant

killing rates through heuristics to determine if mutants are

stubborn or trivial [21, 22, 24, 27, 38–40]. However, our find-

ings suggest that a variety of causes for mutant failures could

potentially explain a portion of the perceived triviality and

stubbornness of mutants.

(8) Our reported mutator-crash-pair results may support

different objectives of using mutation. Techniques that

augment the existing test suite by adding new test oracles

can possibly focus on choosing mutation operators that lead

to fewer exogenous crashes. In contrast, objectives like crash

replication might favor crash-inducing mutation operators.

7 THREATS TO VALIDITY

Threats to internal validity may arise from the empirical setup that

we designed. We classified test-failure causes based on the types of

exceptions associated with the failures, the location of exception

instantiation, and the stack trace information. It is possible that the

stack-trace information could possibly be intentionally modified

for various reasons, thus making our results less accurate.

The primary external threats to our experimental validity stem

from the generalizability of our results. Our mutation testing exper-

iments focused on the unit tests for ten Java programs that used the

JUnit testing framework. Although other programming languages

may be tested differently andmay use other mutation operators, our

approach could easily be extended to those languages and testing

frameworks. Indeed, our experiment is limited to ten programs, as

such we are unable to definitively extrapolate our findings to other

programs. Additionally, there might exist some flaky tests in those

programs, leading to flaky results in our experiment [37]. However,

our experiment’s subject programs are real-world, open-source

724

To Kill a Mutant: An Empirical Study of Mutation Testing Kills ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

projects with mature test suites. As such, we are confident that

these results provide substantive evidence that multiple test-failure

causes do contribute to mutation testing results, and thereby war-

rant serious consideration. Future work will extend such studies

to other languages and platforms to determine the extent of the

differences. Moreover, we plan on replicating our study with other

mutation testing frameworks, as part of future work.

Threats to construct validity in our study could originate from

the mutation testing tool employed. We utilized a single mutation

testing tool, PIT, for generating mutations in our experiments, ren-

dering our study susceptible to implementation choices and faults

in PIT. However, PIT is a mature mutation testing framework that

is commonly used across practice and research [16, 37, 43].

8 RELATED WORK

Schuler et al. [36] devised a new metric called checked coverage

to evaluate oracle quality, which considers the backward dynamic

slice of covered statements that actually influence an oracle. They

found that a test suite with no assertions still detects over 50% of

the mutations detected by the original test suite. Around 80% of

these detected mutations are caught by implicit checks (uncaught

exceptions). They also found that 32–65% of the mutations are

detected by implicit checks, which is mainly due to NullPointerEx-

ceptions caused by mutations. However, we consider all defensive

programming practices, i.e., explicit expected exceptions thrown in

first-party source code, not limited to AssertionError.

Schuler et al. [35] also evaluates the impact of mutants by check-

ing the reasoned dynamic invariants from variables accessed by

methods in test execution. And they also found that mutations that

violate invariants are significantly more likely to be detectable by

a test suite. In contrast, in this work, we assess actual developer-

written oracles rather than potentially inferred oracles.

Linares et al. [22] systematically devise a taxonomy of 262 types

of Android faults grouped in 14 categories, identified a set of 38

mutation operators and implemented an infrastructure, MDroid+

to automatically seed mutations in Android apps with 35 of the

identified operators. They found some mutation operators inMajor,

PIT, and their MDroid+ tend to generate more trivial mutants that

can relate to NullPointerException.

Zhang et al. [43] found that assertions are strongly correlated to

test-suite effectiveness. They measured the explicit mutation score

of a test suite by subtracting the fraction of implicitly killed mutants

(ran without assertions) from the original mutation score. However,

even the same mutant can be killed due to various reasons. Also, a

test case can still fail due to a third-party crash even after removing

assertions if it fails due to assertion failure before.

Ma et al. [23] evaluated the quality of JUnit test cases. They

found 61% of all tests contain more than a single assertion, 16.5%

contains try-catch statements and 28.5% test cases use the JUnit

testing framework but do not contain any JUnit assertions. They

claim this is due to using assertions from testing libraries other

than JUnit assertions. In our study, we analyze all assertion failures,

including JUnit, Mockito, Hamcrest, AssertJ, commons-truth

from different libraries, and a direct throw in test code, based on

the stack trace information and our probes in test code.

9 CONCLUSION

In this work, we presented a taxonomy for understanding the causes

of test failures that contribute to mutation kills in mutation testing.

We also created a method to take execution information from actual

mutation testing runs and categorize test failures and mutation kills

using our taxonomy. We described our open-sourced implementa-

tion1 that enables our empirical study, as well as our experimental

data, which is also available for replication.

We found a number of startling results that should give concern

to practitioners’ interpretations of mutation scores, as well as re-

searchers’ use of mutation testing for other automated techniques,

or at least, these results should be taken into consideration in such

future work. We found that crashes can cause as much as 46.2% of

failed test runs and as much as 43.8% of killed mutants (and thus

the mutation score), while source oracle failures can contribute

as much as 50.9% failing test runs in one subject program. More-

over, regardless of the software system, such crashes substantially

contributed to the number of failures (and kills). Additionally, test

oracles (which are the traditionally assumed cause of test failures

and mutation kills) contributed as little as 11.8% of test failures for

one subject. All 10 subjects showed mutants that were killed due to

all failure causes from our taxonomy, with one subject exhibiting as

much as 21.3% of all killed mutants failing due to all of the failure

causes (i.e., the test cases that failed for that mutant failed due to

each of the failure causes). Moreover, we report additional findings

on the exception types that cause crashes and failures, and find that

NullPointerExceptions are consistently the most prevalent type,

which gives some potential directions for practitioners seeking to

bolster their programs, and also perhaps that source-code oracles

may be an effective way to safeguard against such exceptions.

In the future, we will extend these studies to include other pro-

gramming languages, platforms, and mutation-testing frameworks,

as well as extend them to more experimental subjects.

ACKNOWLEDGMENTS

The second author’s opinions expressed in this publication are

solely his and do not purport to reflect the opinions or views of his

employer, Microsoft.

REFERENCES
[1] Allen T Acree, Timothy A Budd, Richard A DeMillo, Richard J Lipton, and

Frederick G Sayward. 1979. Mutation Analysis. Technical Report. Georgia Inst of
Tech Atlanta School of Information And Computer Science.

[2] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. 2014. Establishing
theoretical minimal sets of mutants. In 2014 IEEE seventh international conference
on software testing, verification and validation. IEEE, 21–30. https://doi.org/10.
1109/ICST.2014.13

[3] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What it would take to use mutation testing
in industry—a study at facebook. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 268–
277. https://doi.org/10.1109/ICSE-SEIP52600.2021.00036

[4] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. 2006. From Daikon to
Agitator: Lessons and Challenges in Building a Commercial Tool for Developer
Testing. In Proceedings of the 2006 International Symposium on Software Testing
and Analysis (Portland, Maine, USA) (ISSTA ’06). Association for Computing Ma-
chinery, New York, NY, USA, 169–180. https://doi.org/10.1145/1146238.1146258

[5] Leonardo Bottaci. 2010. Type sensitive application of mutation operators for
dynamically typed programs. In 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops. IEEE, 126–131. https://doi.org/10.
1109/ICSTW.2010.56

725

https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1145/1146238.1146258
https://doi.org/10.1109/ICSTW.2010.56
https://doi.org/10.1109/ICSTW.2010.56

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Hang Du, Vijay Krishna Palepu, and James A. Jones

[6] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
117.5769

[7] Thierry Titcheu Chekam, Mike Papadakis, Maxime Cordy, and Yves Le Traon.
2021. Killing stubborn mutants with symbolic execution. ACM Transactions
on Software Engineering and Methodology (TOSEM) 30, 2 (2021), 1–23. https:
//doi.org/10.1145/3425497

[8] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. Pit: a practical mutation testing tool for java. In Proceed-
ings of the 25th international symposium on software testing and analysis. 449–452.
https://doi.org/10.1145/2931037.2948707

[9] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978. Hints on
test data selection: Help for the practicing programmer. Computer 11, 4 (1978),
34–41. https://doi.org/10.1109/C-M.1978.218136

[10] HangDu, Vijay Krishna Palepu, and JamesA. Jones. 2023. spideruci/MutationKills:
To Kill a Mutant: An Empirical Study of Mutation Testing Kills (ISSTA Replication
Package) (v1.0.0). https://doi.org/10.5281/zenodo.7939536

[11] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. 2001. Dynamically discov-
ering likely program invariants to support program evolution. IEEE Transactions
on Software Engineering 27, 2 (2001), 99–123. https://doi.org/10.1109/32.908957

[12] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming 69,
1 (2007), 35–45. https://doi.org/10.1016/j.scico.2007.01.015 Special issue on
Experimental Software and Toolkits.

[13] Antonia Estero-Botaro, Francisco Palomo-Lozano, Inmaculada Medina-Bulo,
Juan José Domínguez-Jiménez, and Antonio García-Domínguez. 2015. Qual-
ity metrics for mutation testing with applications to WS-BPEL compositions.
Software Testing, Verification and Reliability 25, 5-7 (2015), 536–571. https:
//doi.org/10.1002/stvr.1528

[14] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven generation of unit
tests and oracles. In Proceedings of the 19th international symposium on Software
testing and analysis. 147–158. https://doi.org/10.1145/1831708.1831728

[15] R. Geist, A.J. Offutt, and F.C. Harris. 1992. Estimation and enhancement of real-
time software reliability through mutation analysis. IEEE Trans. Comput. 41, 5
(1992), 550–558. https://doi.org/10.1109/12.142681

[16] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. 19–30. https://doi.org/10.
1145/3293882.3330559

[17] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.
2015. How hard does mutation analysis have to be, anyway?. In 2015 IEEE
26th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
216–227. https://doi.org/10.1109/ISSRE.2015.7381815

[18] Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. 2015. Mutation-based fault localization for real-world
multilingual programs (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 464–475. https://doi.org/10.1109/
ASE.2015.14

[19] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.
https://doi.org/10.1109/TSE.2010.62

[20] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring mutant utility from pro-
gram context. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 284–294. https://doi.org/10.1145/3092703.3092732

[21] Marinos Kintis, Mike Papadakis, and Nicos Malevris. 2010. Evaluating muta-
tion testing alternatives: A collateral experiment. In 2010 Asia Pacific Software
Engineering Conference. IEEE, 300–309. https://doi.org/10.1109/APSEC.2010.42

[22] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Mas-
similiano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2017. Enabling mutation testing for android apps. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 233–244.
https://doi.org/10.1145/3106237.3106275

[23] Dor D Ma’ayan. 2018. The quality of junit tests: an empirical study report. In 2018
IEEE/ACM 1st International Workshop on Software Qualities and their Dependencies
(SQUADE). IEEE, 33–36. https://doi.org/10.1145/3194095.3194102

[24] Phil McMinn, Chris J Wright, Colton J McCurdy, and Gregory M Kapfhammer.
2017. Automatic detection and removal of ineffective mutants for the mutation
analysis of relational database schemas. IEEE Transactions on Software Engineering
45, 5 (2017), 427–463. https://doi.org/10.1109/TSE.2017.2786286

[25] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In 2014 IEEE Seventh

International Conference on Software Testing, Verification and Validation. IEEE,
153–162. https://doi.org/10.1109/ICST.2014.28

[26] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario Linares-Vásquez,
Gabriele Bavota, Christopher Vendome, Massimiliano Di Penta, and Denys Poshy-
vanyk. 2018. Mdroid+: A mutation testing framework for android. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). IEEE, 33–36. https://doi.org/10.1145/3183440.3183492

[27] Miloš Ojdanić, Wei Ma, Thomas Laurent, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2022. On the use of commit-relevant mutants.
Empirical Software Engineering 27, 5 (2022), 1–31. https://doi.org/10.1007/s10664-
022-10138-1

[28] Oracle. 2020. Throwable (Java Platform SE 7). Retrieved April 15, 2023 from
https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html.

[29] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.
https://doi.org/10.1002/stvr.1509

[30] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are
mutation scores correlated with real fault detection? a large scale empirical
study on the relationship between mutants and real faults. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE, 537–548.
https://doi.org/10.1145/3180155.3180183

[31] Matthew Patrick, Manuel Oriol, and John A Clark. 2012. MESSI: Mutant eval-
uation by static semantic interpretation. In 2012 IEEE Fifth International Con-
ference on Software Testing, Verification and Validation. IEEE, 711–719. https:
//doi.org/10.1109/ICST.2012.161

[32] Goran Petrović and Marko Ivanković. 2018. State of mutation testing at google. In
Proceedings of the 40th international conference on software engineering: Software
engineering in practice. 163–171. https://doi.org/10.1145/3183519.3183521

[33] Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes, and
Márcio Ribeiro. 2019. A systematic literature review of techniques and metrics to
reduce the cost of mutation testing. Journal of Systems and Software 157 (2019),
110388. https://doi.org/10.1016/j.jss.2019.07.100

[34] David S. Rosenblum. 1995. A practical approach to programming with assertions.
IEEE transactions on Software Engineering 21, 1 (1995), 19–31. https://doi.org/10.
1109/32.341844

[35] David Schuler, Valentin Dallmeier, and Andreas Zeller. 2009. Efficient Muta-
tion Testing by Checking Invariant Violations. In Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis (Chicago, IL, USA)
(ISSTA ’09). Association for Computing Machinery, New York, NY, USA, 69–80.
https://doi.org/10.1145/1572272.1572282

[36] David Schuler and Andreas Zeller. 2011. Assessing Oracle Quality with Checked
Coverage. In 2011 Fourth IEEE International Conference on Software Testing, Verifi-
cation and Validation. 90–99. https://doi.org/10.1109/ICST.2011.32

[37] August Shi, Jonathan Bell, and DarkoMarinov. 2019. Mitigating the effects of flaky
tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 112–122. https://doi.org/10.1145/
3293882.3330568

[38] Ben H Smith and Laurie Williams. 2009. On guiding the augmentation of an
automated test suite via mutation analysis. Empirical software engineering 14, 3
(2009), 341–369. https://doi.org/10.1007/s10664-008-9083-7

[39] Thierry Titcheu Chekam,Mike Papadakis, Tegawendé F Bissyandé, Yves Le Traon,
and Koushik Sen. 2020. Selecting fault revealing mutants. Empirical Software
Engineering 25, 1 (2020), 434–487. https://doi.org/10.1007/s10664-019-09778-7

[40] Willem Visser. 2016. What makes killing a mutant hard. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. 39–44.
https://doi.org/10.1145/2970276.2970345

[41] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash reproduction
via test case mutation: Let existing test cases help. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. 910–913. https:
//doi.org/10.1145/2786805.2803206

[42] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A study of equivalent and
stubborn mutation operators using human analysis of equivalence. In Proceedings
of the 36th international conference on software engineering. 919–930. https:
//doi.org/10.1145/2568225.2568265

[43] Yucheng Zhang and Ali Mesbah. 2015. Assertions are strongly correlated with test
suite effectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. 214–224. https://doi.org/10.1145/2786805.2786858

[44] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. 2018. A systematic
literature review of how mutation testing supports quality assurance processes.
Software Testing, Verification and Reliability 28, 6 (2018), e1675. https://doi.org/
10.1002/stvr.1675

Received 2023-02-16; accepted 2023-05-03

726

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769
https://doi.org/10.1145/3425497
https://doi.org/10.1145/3425497
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.5281/zenodo.7939536
https://doi.org/10.1109/32.908957
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1002/stvr.1528
https://doi.org/10.1002/stvr.1528
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1109/12.142681
https://doi.org/10.1145/3293882.3330559
https://doi.org/10.1145/3293882.3330559
https://doi.org/10.1109/ISSRE.2015.7381815
https://doi.org/10.1109/ASE.2015.14
https://doi.org/10.1109/ASE.2015.14
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1145/3106237.3106275
https://doi.org/10.1145/3194095.3194102
https://doi.org/10.1109/TSE.2017.2786286
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1145/3183440.3183492
https://doi.org/10.1007/s10664-022-10138-1
https://doi.org/10.1007/s10664-022-10138-1
https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1109/ICST.2012.161
https://doi.org/10.1109/ICST.2012.161
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1109/32.341844
https://doi.org/10.1109/32.341844
https://doi.org/10.1145/1572272.1572282
https://doi.org/10.1109/ICST.2011.32
https://doi.org/10.1145/3293882.3330568
https://doi.org/10.1145/3293882.3330568
https://doi.org/10.1007/s10664-008-9083-7
https://doi.org/10.1007/s10664-019-09778-7
https://doi.org/10.1145/2970276.2970345
https://doi.org/10.1145/2786805.2803206
https://doi.org/10.1145/2786805.2803206
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1145/2786805.2786858
https://doi.org/10.1002/stvr.1675
https://doi.org/10.1002/stvr.1675

	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 Mutation Test-Failure Categorization
	2.2 Motivating Code Example
	2.3 Prior Works on Ease of Mutant Kills

	3 Approach: Detecting and Classifying Causes of Test Failures
	3.1 How Are Exceptions Instantiated, Thrown, and How Do They Cause Test Failures?
	3.2 Subject Instrumentation
	3.3 Modified PIT for Mutation Testing
	3.4 Classifying Causes of Test Failures

	4 Experimental Setup
	4.1 Research Questions
	4.2 Subject Programs

	5 Results
	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

