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ABSTRACT

Fuzzing embedded systems is hard. Their key components – micro-
controllers – are highly diverse and cannot be easily virtualized;
their software may not be changed or instrumented. However, we
observe that many, if not most, microcontrollers feature a debug
interface through which a debug probe (typically controllable via
GDB, the GNU debugger) can set a limited number of hardware
breakpoints. Using these, we extract partial coverage feedback even
for uninstrumented binary code; and thus enable effective fuzzing
for embedded systems through a generic, widespread mechanism. In
its evaluation on four differentmicrocontroller boards, our prototyp-
ical implementation GDBFuzz quickly reaches high code coverage
and detects known and new vulnerabilities. As it can be applied to
any program and system that GDB can debug, GDBFuzz is one of
the least demanding and most versatile coverage-guided fuzzers.
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1 INTRODUCTION

Fuzzing —generating massive amounts of inputs to test a system’s
robustness—has become the method of choice to detect vulnerabil-
ities in programs. Most modern fuzzers follow the AFL model of
fuzzing [36], starting with a population of seed inputs which they
continuously evolve via small-scale mutations, guided by cover-
age in the system or software under test. Applying such fuzzers
to embedded systems, however, is hard. One reason for this is the
high diversity in terms of microprocessors, architectures, and oper-
ating systems. Most important, however, is that the software on a

microcontroller board is not easily changed, thus preventing instru-
mentation. Even when instrumentation is possible, the board needs
to provide storage space to capture coverage and other runtime
information; and finally, this information needs to find a way back
to the fuzzer through some hardware interface [7]. Hence, setting
up common fuzzers like AFL on hardware requires implementing
individual coverage collection solutions for every board.

A large share of recently published embedded fuzzing approaches
therefore virtualize the embedded system [15, 59]. Such virtualiza-
tion, however, requires a tradeoff between speed and fidelity [17, 58].
Worse even, it requires not only virtualization of the microprocessor
itself, but also of all other hardware components on the board as well
as virtualizing the way they communicate with each other. Given
the enormous diversity of available hardware peripherals [26], this
requires considerable setup costs, if possible at all [17, 58]. So called
peripheral modeling approaches [18] try to automate the emulation
of peripherals but in our experience fail for any interface beyond
serial ports.1

In this paper, we present an alternative approach for fuzzing
embedded systems as they are, without requiring virtualization,
yet using a unified approach applicable to a vast variety of embed-
ded systems. Most microcontrollers contain debug units, through
which a debug probe can set breakpoints, execute the program up
to a breakpoint, and inspect the current program state, including
the program counter and memory values. Hardware breakpoints
are dedicated registers in the debug unit that halt the execution
when the program counter equals the register value and can be set
even when the code is read only; they neither alter nor slow down
program code.

1We show this in Section 6.2.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: How GDBFuzz works. GDBFuzz leverages a Debug
Probe that is connected to an Embedded System to control

execution—notably to set (hardware) breakpoints and detect

which inputs trigger which code blocks, and thus obtain cov-

erage without having to instrument or virtualize firmware.

The key idea of this paper is that by systematically setting break-

points in the code based on the control flow graph of the program
and by checking which inputs trigger which breakpoints, we can
retrieve coverage information, and thus provide the necessary guid-
ance for a feedback-driven fuzzing strategy. As the number of hard-
ware breakpoints within a microcontroller is limited, we set them
to a subset of the program’s code blocks only, and relocate them
periodically. Since many debug probes are addressable via the GNU
Debugger (GDB), we have implemented the above strategy in a
fuzzer named GDBFuzz, which can leverage GDB interfaces in any

system to systematically generate test inputs guided by coverage.
The required setup is depicted in Figure 1.

Figure 2 summarizes the GDBFuzz operation. Based on the CFG
of the target program, GDBFuzz sets the available hardware break-
points to randomly chosen nodes from the CFG that are yet un-
reached. GDBFuzz then repeatedly generates input, sends it to the
target device, and checks if it triggers a breakpoint indicating new
code coverage, or if it crashes the target system.

In our experiments, GDBFuzz shows to be easily applicable on a
number of microcontroller boards and even regular user applica-
tions. It achieves a much higher coverage than black-box fuzzing
and solutions based on virtualization, and also detected a number
of known and new bugs. In summary, to the best of our knowl-
edge, GDBFuzz is the first hardware-based, architecture-agnostic,
source-code independent, non-invasive, and easy applicable method

for coverage-guided fuzzing of embedded systems, and we are happy
to recommend it to anyone who wants to systematically test the
robustness of embedded systems.

The remainder of this paper is organized as follows. Section 2
discusses the state of the art. Section 3 explains CFG algorithms
and CFG extraction of binaries. Section 4 presents the design of
GDBFuzz; Section 5 describes implementation details. We evaluate
our work in Section 6 and further discuss the results in Section 7.
Section 8 closes with conclusion and future work. GDBFuzz is
available as open source.

2 BACKGROUND

2.1 Coverage-Guided Fuzzing

Decades ago, Miller et al. [37] tested Unix command line tools with
random data, observed crashes resulting from software bugs, and
called this method “fuzzing”. By design, fuzzing can only detect
bugs in code that is actually executed, which is why reaching a
high code coverage is desired. Nowadays, tons of different fuzzing
techniques have been developed, mainly divided into model-based

Listing 1: Buggy function with possible stack overflow, in-

spired by [23].

void process_data(char* buffer , unsigned int length) {

char stack_array [20];

if( length > 0 && buffer [0] == 'b')

if( length > 1 && buffer [1] == 'u')

if( length > 2 && buffer [2] == 'g')

if( length > 3 && buffer [3] == '!')

memcpy(stack_array , buffer , length );

}

fuzzing, where test data is generated based on a specification of the
input language, and mutation-based fuzzing, where known inputs
to the program are randomly mutated. Mutation-based fuzzing is
attractive because only few sample inputs (seeds) for the target pro-
gram are required. The seeds are initially added to the collection of
base inputs (corpus), from which mutated test inputs are generated.
Mutation-based fuzzing is particularly effective when test inputs
that trigger previously unseen behavior of the target are added
to the corpus, called feedback-driven fuzzing. For coverage-guided
fuzzing, the execution of new code paths or blocks is considered as
previously unseen behavior.

Consider the code of the function process_data in Listing 1 that
causes a stack overflow when the first four characters of input
match "bug!" and length has a greater value than 20. While a
blackbox fuzzer needs to guess the first four characters correctly
from 28∗4 = 232 combinations at once, a coverage-guided fuzzer can
progress on each comparison step with 28 possible combinations
individually, increasing the overall probability of generating an
input that triggers the stack overflow during fuzzing.

Typical user programs are fuzz tested by leveraging source code

instrumentation, such that code coverage gets fed back to the fuzzer
by additionally inserted code. Alternatively, emulators are used to
obtain code coverage feedback when no source code, and therefore
no code instrumentation at compile time, is available.

2.2 Coverage-Guided Fuzzing for Embedded

Systems

Many approaches use emulation for fuzzing embedded systems. Em-
ulators allow high transparency of the target execution. Gathering
code coverage from an emulator is trivial and fuzzing in an emulator
can be easily scaled. However, re-hosting embedded software into
an emulator is an open research problem for decades [17, 58]. While
simulating the microprocessor and its instruction set is feasible, it is
emulating the exact behavior of hardware peripherals that remains
challenging. If hardware peripherals are not emulated precisely,
the emulated execution might diverge from an execution on real
hardware, or even fail completely.

Several approaches have been presented to tackle the re-hosting
problem. HALucinator [8] re-hosts embedded applications at the
Hardware Abstraction Layer (HAL) based on the observation that
HAL functions are somewhat device independent. Code that ac-
cesses the hardware directly, such as drivers, cannot be tested in
this way, and the method requires manually-written substitutions

for all hardware accessing functions. Avatar2 [38] forwards all I/O
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Figure 2: GDBFuzz in operation. After extracting the CFG (1), GDBFuzz sets breakpoints on unreached basic blocks (2). Next, it

generates a new test input, sends it to the target (3), and then waits for the execution to stop (4). If execution hits a breakpoint

(= new coverage), GDBFuzz saves input and coverage (5), sets new breakpoints (2) and keeps on fuzzing. If no breakpoint is hit
(= no new coverage), GDBFuzz tries a new input (3). If the program has crashed (6), GDBFuzz logs it and restarts the target.

requests from the emulator to the actual hardware device via a de-
bugging interface, termed as peripheral proxying. Transferring data
between the emulator and the actual device introduces execution
slowdowns of up to 80× [39] and requires a device-specific setup.

Recently, peripheral modeling has been proposed by Feng et

al. [18], alongside their tool P2IM, where the fuzzer is used to model
hardware peripherals iteratively. Their idea is to first fetch input
data from the fuzzer and then execute the embedded application
in a simulator. For each occurring read on the I/O address space a
portion of the fuzzing data is replied until the execution gets stuck,
or the input buffer is exhausted. As a result, the fuzzer learns which
values are required for further execution of the firmware, because
it then achieves more code coverage. The idea has been adopted
and refined in Jetset [28], µEmu [60], and Fuzzware [46]. Though
peripheral modeling approaches are supposed to work out-of-the-
box, it is unclear how transferable findings are. In our experience,
more complex input interfaces like USB pose tremendous problems
for peripheral modeling, as we show in our evaluation.

Other hardware-based approaches for coverage-guided fuzzing
are applicable in specific settings only. Harzer Roller [4] injects
function tracing and stack smashing detection into closed-source
object files. This, however, lacks fine granular code coverage, and
again requires the ability to change the program code. Boersig et
al. [7] use source-code instrumentation and transfer the data via
a debugging interface. Again, this requires the ability to change
the program code, and is available only for ESP32 microcontrollers.
Finally, µAFL [31] uses ARM’s tracing mechanism Embedded Trace
Macrocell (ETM) [54] with a conforming tracing hardware. Such
tracing hardware, however, is expensive and rarely available.

2.3 Debuggers and Breakpoints

Debuggers are common tools to observe program executions, no-
tably to understand unexpected program behavior. A popular de-
bugger for user programs is GDB [33]. It enables to halt the execu-
tion of the target program on desired points, to examine memory
values, and to single-step through the code. Microcontrollers fea-
ture different kinds of debug interfaces, such as a Joint Test Action
Group (JTAG) port. Using such a port, debug probes have direct
access to the hardware. Debug probes can implement the GDB re-

mote stub, such that GDB can perform debug operations via the
GDB remote serial protocol [21]. Typically, GDB runs on the pro-
grammer’s PC that hosts the development environment and the

source files of the application. From our observations, the GDB
remote stub is implemented by most available on-board and off-
boardmicrocontroller debuggers [35], for instance from Segger [47],
STMicroelectronics [49], or Lauterbach [30]. It can therefore serve
as a generic way to gain insights into the execution of an embedded
system.

Debug interfaces on commercial devices are ideally closed or
disabled to prevent attacks. However, it has been shown several
times in the past that disabled debug interfaces can be reopened,
using fault injection attacks like power or clock glitching [29, 48].
Also, the firmware from a commercial device can be transferred to
an equivalent development board with accessible debug interface,
and thus enable debugging.

Debuggers use breakpoints to stop the execution at desired loca-
tions [57]. Software breakpoints are realized by replacing the original
instruction in the software binary by a distinct instructionword that
triggers an interrupt when executed. Upon resuming execution, the
debugger re-inserts the original instruction. Software breakpoints
therefore require rewriting small parts of the target program.

Continuous rewriting of memory can take time and can wear out
the device’s (flash) memory. If the program is stored on a read-only
memory, such rewriting is impossible. Microcontrollers therefore
usually feature a number of hardware breakpoints. Hardware break-
points correspond to actual registers on the microprocessor and,
once activated, interrupt program execution when the program
counter value equals its register value. Hence, hardware break-
points can be set to any program address, regardless of the memory
type the respective code is stored in.

There are approaches that use software breakpoints for measuring
code coverage and obtaining fuzzing feedback, in order to avoid the
overhead and impediments of source code instrumentation [25, 40,
41]. The idea is to insert software breakpoints into unreached basic
blocks and therefore allow the program to execute at full speed until
new coverage is reached. Once the execution runs into a breakpoint,
the corresponding instruction is removed from the binary to avoid
further overhead. Oh et al. [44] use software breakpoints to measure
code coverage in embedded firmware. They extract the start address
of each basic block of the program during compilation and insert
software breakpoints at each of them, also removing them once
they are hit.
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3 CONTROL FLOW GRAPHS

Since we want to leverage hardware breakpoints for fuzzing feed-
back, we first need to determine at which memory addresses the
target program resides. Trivially, all addresses within the executable
memory regions of the device could be considered. However, only
a fraction of memory addresses contain instructions that are actu-
ally executed, rendering a trivial solution ineffective for fuzzing
feedback. Similar to state-of-the-art coverage-guided fuzzers, we
therefore work on the basic block level of the target program. Fur-
thermore, we extract a control flow graph (CFG) from the target
program, which represents basic blocks as nodes, and describes
possible transitions between them as edges. As we show in the
remainder of this section, this enables us to derive dominator rela-

tions of CFGs, which help us to reduce the number of breakpoint
interruptions during fuzzing and avoid unnecessary overhead.

3.1 Dominator Relations of Control Flow

Graphs

Dominator Relations describe further coherence between nodes in
the a control flow graph. We use the notion of pre- and postdomi-
nator from Agrawal [1] and assume that control flow graph G has
exactly one entry point and exactly one exit point2.

Definition 1 (Predomination). A nodeu ∈ G predominates another
node v ∈ G , denoted as u

pre

−−→ v , if every path from the entry node
to v contains u.

Definition 2 (Postdomination). A nodew ∈ G postdominates an-

other node v ∈ G , denoted asw
post

−−−→ v , if every path from v to the
exit node containsw .

The dominator relations can be represented as (dominator) trees
and be computed efficiently [9] for functions. The postdominator
tree equals the predominator tree from the reversed control flow
graph [1]. From any pre- and postdominator tree, we can derive
the following transitive knowledge about other nodes:

Theorem 1 (Reachability). If node v is reached, all parent nodes
in the predominator tree have been reached before and all parent
nodes in the postdominator tree will be reached afterwards.

3.2 Interprocedural Control Flow Graphs and

Dominator Relations

Interprocedural control flow graphs describe possible transitions
of basic blocks within whole programs instead of only functions.
In principle, we could connect the control flow graphs from each
function of the program (local CFGs) by adding all call and return
instructions as edges. However, this introduces ambiguities when
a function has multiple callers, because it creates paths from ev-
ery calling function to every return point. When traversing the
resulting interprocedural control flow graph to calculate a domi-
nator graph, a return edges must only lead back to the actual call
site of the current function, which requires context-sensitive algo-
rithms [2, 10]. Published context-sensitive algorithms are complex
and implementations are rarely available. GDBFuzz uses dominator
2For functions with multiple returns, the returning blocks are connected to a new
virtual return block leading to a single exit node in the CFG.

relations as a bonus for reducing overhead, only, and therefore we
developed the following simple approach.

We construct a semi-interprocedural control flow graph, where
we connect the function control flow graphs by inserting all calls
as edges from the call site to the callee. Return edges are omitted
when building the semi-interprocedural CFG, so no incorrect flow
can be introduced.

For the reversed semi-interprocedural control flow graph, we
reverse the local control flow graphs, skip call edges, and only
add the return edges. Again, we avoid inserting ambiguities by
removing context-sensitive call edges. The corresponding semi-
interprocedural dominator trees can then be calculated efficiently
with the algorithms for local control flow graphs. Compared to full
interprocedural dominator graphs, we might miss one dominance
relation per call edge in the worst case, which should not really
impair the fuzzing performance.

For convenience, we merge the pre- and postdominator graph:

{(u,v)|u
pre

−−→ v ∨ u
post

−−−→ v}, requiring us to only handle a single
dominator graph for the whole target program.

4 DESIGN

As shown in Figure 2, GDBFuzz leverages the control flow graph
of the target program to set available hardware breakpoints to
randomly chosen basic blocks that are yet unreached. It then re-
peatedly generates test cases by applying mutations to randomly
chosen inputs from the corpus, and sends the test cases to the target
input interface. If the debug probe signals a breakpoint hit, GDB-
Fuzz marks the corresponding node and its dominating nodes as
reached, and adds the responsible test case to the corpus. Test cases
that cause crashes or timeouts are preserved separately. When no
breakpoint interrupt occurred after a predefined amount of exer-
cised test cases, GDBFuzz relocates the hardware breakpoints to
newly chosen nodes. After each relocation, GDBFuzz first tests all
inputs from the corpus again to check if they already reach the
newly targeted basic blocks. Like coverage-guided fuzzing with
full code instrumentation, the evolutionary algorithm causes the
input corpus to grow over time with inputs that reach different
code areas.

The remainder of this section describes how we extract the CFG,
how we find a fuzzing entry point in the target application, and
how we detect and handle bugs during execution.

4.1 Extracting the Control Flow Graph

Control flow graphs can be obtained trivially during program com-
pilation, because the compiler is aware of the whole control flow.
However, GDBFuzz is designed to work on binaries to broaden its
applicability, as source code may not be available for all software
components on an embedded system. Ghidra [42] is an open source
reverse engineering tool which supports most common processor
architectures, is scriptable, and is therefore well suited for our needs.
Like all binary disassembling approaches, Ghidra cannot guarantee
to detect all control flows, especially when it comes to indirect
branches or aggressive compiler optimizations [45]. Therefore, we
refine and update the control flow graph iteratively during fuzzing,
which we describe in Section 5.
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4.2 Finding the Entry Point

We focus fuzzing on a region in the firmware where input process-
ing of our targeted input interface occurs. Therefore, the extracted
CFG should start at the beginning of the input processing, termed
as entry point. Choosing the entry point is a task for the test en-
gineer, who thus needs knowledge about the target. However, the
following semi-automated way of finding a suitable entry point has
turned out to be useful in our analysis.

(1) Send a test input to the target device and interrupt the exe-
cution immediately.

(2) Use gdb find to rediscover the sent input in the memory of
the devices.

(3) Set a data watchpoint to the first address of the rediscovered
input data.

(4) Send the test input again.
(5) All program counter addresses on now occurring interrupts

are candidates for an entry point.
These steps are conducted once, as part of the GDBFuzz setup.

GDBFuzz can also work with symbol names as entry point if
they are included in the binary, to avoid the need of searching the
entry point after each re-compilation. This is particularly useful
in continuous integration setups, such that new software versions
can be fuzzed seamlessly.

4.3 Detecting Bugs

Bug oracles detect whether a bug is triggered during execution.
Since fuzzing origins from testing user applications, a common bug
oracle is to observe the target process on raised error signals, e.g.
segmentation faults. To find bugs that do not trigger faults directly,
sanitizers and assertions are used. These are usually deployed at
compile time, but there are methods to inject sanitizers directly
into binaries [11]. However, more sophisticated bug oracles are still
an open research problem [5] and out of scope of this work.

GDBFuzz relies on the triggered bugs being observable, meaning
that faults or other misbehavior must be triggered by the bug.
Silent corruptions, as demonstrated in [39], can therefore not be
discovered, unless additional sanitizers are used during compilation.
Faults can be detected, for instance, by occurring connection errors
like timeouts or error response codes. Additionally, breakpoints can
be set on locations of fault handlers via the debugging interface,
which also catches fault signals from deployed sanitizers.

Since the location of the fault handlers in the code usually does
not change during runtime, software breakpoints can be used to
detect their execution such that all hardware breakpoints are avail-
able for the coverage feedback mechanism. Software breakpoints
are well suited in this case, since they are not repositioned during
fuzzing. If software breakpoints are not available for the System
under Test (SuT), a subset of available hardware breakpoints can be
used, too, with the disadvantage of decreased fuzzing performance.3

Obtaining the locations of fault handlers is done in a manual to
semi-automated way, because embedded systems vary dramatically
in features, such as processors, operating systems, frameworks,
libraries, and sanitizers. In our experience, the default fault handlers
e.g. from freeRTOS [20], Arduino [3], and STM32CubeMX [53]
3We evaluate the influence of the number of available breakpoints on performance in
Section 6.

typically end in an infinite loop. Ghidra can identify functions with
infinite loops [43], which can then be considered as potential fault
handlers. For all our test applications, it was sufficient to rely on
timeouts that are provoked by the infinite loops in the fault handlers,
not requiring any further setup work for us.

4.4 Handling Bugs

Whenever GDBFuzz detects a crash or a timeout, it
(1) deduplicates the bug to identify whether the bug is unique,

i.e. whether it is the first time that this bug was found;
(2) preserves the input triggering this bug if the bug is unique;
(3) restarts the target system; and
(4) continues fuzzing.
The same bug may be triggered multiple times during fuzzing.

Analyzing each bug requires substantial efforts, which is why dedu-
plication is required. The goal is to provide the test engineer a
minimal set of inputs triggering only unique bugs. We use hashes
of the call stack [34] to uniquely identify and deduplicate bugs.

When a bug is triggered, the target system may be in a non-
recoverable state. Similarly, if a timeout occurs, the target system
may hang forever. For this reason, we reset the target system via
GDB after a fault has been discovered.

5 IMPLEMENTATION

GDBFuzz consists of the following components:
Test Data Generator. Like all coverage-guided fuzzers, GDBFuzz

preserves inputs that trigger different code areas in the input
corpus, and derives new inputs by mutating these. Dozens of
general purpose mutation-based fuzzers have been published
in recent years [34]. We therefore do not develop a mutation
algorithm from scratch, but reuse the mutation engine from
libFuzzer [32]. The actual mutation engine in GDBFuzz is
easily interchangeable.

GDB Controller. The GDB controller manages the debugging con-
nection to the SuT. Common debug probes usually provide
a GDB Server via a TCP socket. We use the Python package
python-gdb-mi for sending and receiving debugging com-
mands, like setting breakpoints or continuing the execution.

Target Connection. The target connection component is an ab-
straction for sending test inputs to the target device. It han-
dles connection or disconnection events depending on the
actual interface. It also handles error feedback from the pro-
tocol. Embedded systems can feature tons of different input
interfaces and channels from where untrusted input is con-
sumed. Popular interfaces includeWi-Fi, Bluetooth, NFC, but
also all kind of external facing buses like CAN, USB, Profibus,
or I2C . GDBFuzz can include custom interface adapters to
enable a broad applicability. For our case study, we imple-
mented adapters for TCP, Serial, andUSB connections, as well
as UNIX pipelines to enable fuzzing of Linux applications.

Ghidra Controller. We use the reverse engineering toolGhidra to
obtain the CFG of the target application. For interchanging
requests and data between Ghidra and GDBFuzz, we use the
ghidra-bridge Python package. GDBFuzz can connect to a
running Ghidra instance or start a headless instance on the
target binary.
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Table 1: Details of our development boards including archi-

tecture, utilized debug probe, and the number of available

hardware breakpoints.

Board Arch. Debug Probe #HW Br.
STM32L4S5I [50] ARM STLinkv3 6
CY8CKIT-062-WIFI-BT [27] ARM KitProg3 6
ESP32-DevKitC_V4 [16] Xtensa J-Link Ultra 2
EXP430F5529LP [55] MSP430 eZ-FET lite 8

Table 2: Application classes and initial input seeds for our

case study on embedded hardware
5
.

Name Description Seed
Buggy Buggy program from Listing 1 None
JSON Parses serial data as json string "1000, 2000, 3000"
USB USB mass storage client 55 53 42 42 00. . .4

HTTP HTTP server via WiFi "GET / HTTP1.1"

Dynamic Control Flow Graph Refinement. Asmentioned ear-
lier, reverse engineering tools cannot guarantee to detect
the whole control flow of a program [45]. Missing control
flow manifests itself as a dangling node in the CFG without
successor that is not marked as terminal by Ghidra. When
finding a test input that triggers the execution of such a
dangling node, we perform the following steps:

(1) Set a breakpoint to the dangling node and send the test
input that triggers it to the SuT.

(2) When the interrupt occurs, perform a single step.
(3) Read the value of the program counter.
(4) Report the found edge to Ghidra and reanalyze the binary.
Ghidra is then usually able to recover even more control flow
based on the reported edge.

6 EVALUATION

In this section we evaluate GDBFuzz in two different settings,
guided by eight research questions (RQs).

(1) For the hardware-based setting we pick a variety of common
development boards, listed in Table 1 together with their
corresponding architectures, utilized debug probes, and the
number of available hardware breakpoints. On each develop-
ment board we deploy four different classes of applications,
listed in Table 2 with an initially given seed. The Buggy pro-
gram exposes the buggy function from Listing 1 to a serial
input interface and serves as a ground truth. The specific ap-
plications for each board are derived from examples shipped
with the development boards, or compatible toolchains5. The
HTTP and USB application classes require the appropriate
interface to exist on the target board.

(2) The application-based setting features 16 programs from
Google’s Fuzzer Test Suite [24], compiled as x86 linux ap-
plications, and provides a scalable and independently mea-
surable evaluation environment. GDBFuzz can execute an

5The actual applications and corresponding references are in the replication package
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Figure 3: Reached basic blocks over time for GDBFuzz and

blackbox fuzzing on embedded hardware (N=2).

application either in a QEMU instance, enabling live measur-
ing of reached code coverage, or with GDB directly, enabling
low overhead and unlimited amounts of breakpoints6. We
compile the applications with compiler optimizations (-O3),
and execute the corresponding experiments on a server with
four Intel Xeon Gold 6144 CPU’s and 1.48TB of RAM.

6.1 GDBFuzz vs. Blackbox Fuzzing

GDBFuzz enables coverage-guided fuzzing on systems where cov-
erage measurement is hardly possible7. We therefore utilize the
partial coverage extraction mechanism of GDBFuzz itself, to mea-
sure coverage differences between GDBFuzz and blackbox fuzzing
in our hardware-based setting. Specifically, we deploy GDBFuzz,
but omit adding new inputs to the corpus during fuzzing to simulate
a blackbox fuzzer. As a result, we can investigate how the evolution-
ary fuzzing algorithm of GDBFuzz performs, and can consequently
address our first research question:
RQ1: How does GDBFuzz compare against blackbox fuzzing on

embedded systems?
Figure 3 shows coverage over time plots for all board and ap-

plication class combinations. Each experiment is repeated twice,
leading to an accumulated experiment time of 56 days. Without
exception, GDBFuzz achieves a higher code coverage across all runs
than blackbox fuzzing and shows that it can greatly benefit from
the partial coverage information it retrieves via hardware break-
points. In particular for the Buggy program, blackbox fuzzing has
little to no chance to fulfill all conditions to trigger the contained
stack overflow bug, as theoretically described in Section 2.1. In this
application class, GDBFuzz achieves almost 100 iterations per sec-
ond on the powerful CY8CKIT board, while it can only reach about
1.5 iterations per second on the low performance MSP430 board.
This explains why it takes way longer for GDBFuzz to solve the
input constraints on the latter and we can also see how important

6QEMU theoretically enables an unlimited amount of breakpoints, too, but suffers
from an increasing execution overhead.
7Otherwise we would use the available mechanism for coverage-guided fuzzing
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throughput is for fuzzing. Nevertheless, GDBFuzz performs well
on all of our development boards, finds the bug in all cases, and
reports the resulting crashes properly.

Coverage-guided fuzzing with a limited amount of

breakpoints is effective and outperforms blackbox fuzzing

on embedded systems.

6.2 GDBFuzz vs. State of the Art

As mentioned in Section 2.2, there are multiple approaches that
claim to enable coverage-guided fuzzing for embedded systems,
raising the following question:

RQ2: How does GDBFuzz compare to existing embedded fuzzing
methods?

µAFL [31] is a hardware-based embedded fuzzer that uses the
ARM ETM interface to extract code coverage from an embedded
program. Our CY8CKIT-062-WIFI-BT development board features
such an ETM interface, and we have access to the tracing hard-
ware required therefore. However, the publicly available version of
µAFL reported implausible results on our setup, which we could
not resolve despite having vendor support. We noted that µAFL
uses raw trace data functions, which are unreliable in some imple-
mentations, and are marked for internal use only [22]. Also, and in
contrast to GDBFuzz, µAFL requires very specific hardware, which
is why it is not a direct competitor; we are not aware of a generic
hardware-based embedded fuzzing approach to compare GDBFuzz
against.

Most of published embedded fuzzing methods are emulation-
based, from which only peripheral modeling approaches can en-
able coverage-guided fuzzing for embedded systems on a scale
and are competitors to GDBFuzz. We therefore compare GDBFuzz
against the latest peripheral modeling approach Fuzzware [46],
whose authors claim embedded fuzzing on the actual hardware
to be impractical. Fuzzware works on all ARM Cortex-M-based
microcontrollers, so we can fuzz all applications from the first two
development boards in Table 1.

First, we need to agree on how we compare emulation-based
to hardware-based approaches. Li et al. [31] compared peripheral

modeling approaches to their hardware-based approach µAFL by
the number of the achieved fuzzing iterations per hour. We agree
that the number of executions per time is an important metric for
fuzzing. However, for a fair comparison, the same or at least simi-
lar code areas must be executed in that time. Peripheral modeling
approaches like P2IM [18] and Fuzzware [46] use fuzzing to itera-
tively carve an artificial execution environment for the firmware.
Over time the peripheral models are refined and the execution speed
decreases since the firmware can be further executed. By design,
peripheral modeling does not target specific code areas. This makes
throughput a meaningless measure for comparing these different
approaches, because it is unclear whether the same code parts are
executed in this time.

We therefore compare embedded fuzzing approaches based on
the number of reached basic blocks in a targeted region of the
firmware during fuzzing, as also done in [46].

Table 3: Covered basic blocks by Fuzzware with 16 cores,

and GDBFuzz after 24 hours of fuzzing.

Target Basic Blocks Covered
Fuzzware GDBFuzz

ST
M
32

buggy 11/17 (64.7%) 14/17 (82.3%)

json 435/560 (77.7%) 472/560 (84.3%)

usb 0/518 (0%) 220/518 (42.5%)

http 0/166 (0%) 126/166 (75.9%)

CY
8C

KI
T buggy 0/13 (0%) 11/13 (84.6%)

json 0/1217 (0%) 704/1217 (57.8%)
usb 0/456 (0%) 236/456 (51.8%)

http 0/402 (0%) 205/402 (51.0%)

Emulation-based approaches can be scaled up easily by using
multiple cores, which ismore complex and expensivewith hardware-
based approaches. To let Fuzzware benefit from its scalability, we
assign 16 cores for each trial, while GDBFuzz runs as a single in-
stance for the same amount of time. Afterwards, we evaluate how
many basic blocks from the target regions have been reached by
Fuzzware and GDBFuzz.

Table 3 lists the absolute and relative number of reached basic
blocks using Fuzzware and GDBFuzz. Although it had significantly
more computing power provided, Fuzzware did not reach any basic
block on six out of eight applications, whereas GDBFuzz covered
a substantial part of them. On the remaining two applications,
GDBFuzz reached more basic blocks than Fuzzware. The USB
controller on the STM32 board transfers data via Direct Memory
Access (DMA), which is not supported by Fuzzware, but is required
to execute the application. From our experience DMA is a widely
used mechanism to interact with hardware peripherals, and the
lack of DMA support by Fuzzware is a major drawback. The WiFi

and Transmission Control Protocol (TCP) protocol handling on the
STM32 board takes place in a separate chip connected via Serial
Peripheral Interface (SPI) to the microcontroller. In order to trigger
the execution of the HTTP parser, Fuzzware would need to model
the inter chip communication protocol correctly, which it did not.

On the CY8CKIT board Fuzzware can not execute any applica-
tion, because the boot phase of the CY8CKIT development board
requires interaction between the two contained processors, which
Fuzzware is not able to model.

For complex embedded programs with DMA and complex boot
routines, more computing power will not lead Fuzzware to reach
the targeted code. In general, the more complex the targeted input
interface, the harder it is for peripheral modeling approaches to
provide reasonable fuzz data.

GDBFuzz fuzzes software on embedded systems without

requiring any instrumentation or other software change.

6.3 Reveal Bugs with GDBFuzz

The main goal of fuzzing is to find software bugs, which leads to
the question:
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RQ3: Can the method reveal actual bugs in embedded software
code?

For answering RQ3, we first have a look at two known real-world
bugs. The USB enumeration handling of the STM32CubeL4 USB
Middleware [51] contains the known vulnerabilities CVE-2021-

34259 and CVE-2021-34268 that were found using µAFL [31]. We ver-
ify that GDBFuzz can detect such real-world vulnerabilities and use
a firmware based on the USB host mass storage device class (MSC)
example application version 1.17.1 from STM32CubeL4 [52]. The
STM32 microcontroller acts as USB host in this MSC application.
Our setup therefore is similar to that from the µAFL authors. To
generate USB traffic, we plug a common USB flash drive as USB
client into the USB port. We then introduce a fuzzing harness into
specific stages of the USB enumeration, where we replace the USB
data frame with fuzz data just before the USB host processes this
data. Namely, we replace the raw device descriptor or the device

configuration that is sent by the client device before any parsing of
the fuzz data. The introduced fuzzing harness receives fuzz data
from GDBFuzz via a serial interface. Both mentioned CVEs mani-
fest themselves as timeout when triggered, because the USB host
middleware gets wrongly configured by malformed device descrip-

tor or device configuration USB packets. Basically they are caused
by missing validity checks for the untrusted data from the USB
client. With GDBFuzz and the appropriate fuzzing harnesses, both
CVEs are triggered and detected in less than 5 minutes during our
experiments.

During evaluation we discovered three previously unknown
bugs, which we reported to the corresponding vendor:

(1) An infinite loop in the STM32 USB device stack, caused by
counting a uint8_t index variable to an attacker controlable
uint32_t variable within a for loop [13].

(2) A buffer overflow in the Cypress JSON parser, caused by
missing length checks on a fixed size internal buffer [12].

(3) A null pointer dereference in the Cypress JSONparser, caused
by missing validation checks [14].

GDBFuzz reveals real vulnerabilities in embedded software.

6.4 GDBFuzz vs. AFL++

The application-based setting allows us to fuzz Linux applications
with GDBFuzz, which raises the research question:

RQ4: How does GDBFuzz compare against the state-of-the-art
fuzzer AFL++?

For a fair comparison between GDBFuzz and AFL++ [19], we let
them operate on the uninstrumented binary using QEMU mode for
AFL++ (-Q) and GDBFuzz with QEMU, too. As live measurement is
impossible with the modified QEMU version included in AFL++, we
replay the respective input corpuses after fuzzing and measure the
reached number of basic blocks thereby. We configure GDBFuzz
to use eight breakpoints, which is a realistically low number of
breakpoints available in real microcontrollers.

Figure 4 shows coverage over time plots for GDBFuzz and AFL++.
Obviously, AFL++ covers more code over time than GDBFuzz.
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Figure 4: Basic block covered by GDBFuzz and AFL++ on ap-

plications where code instrumentation is possible (N = 10).

AFL++ is designed and optimized for exactly these kind of ap-
plications and can benefit from its exhaustive code instrumentation.
However, we think that GDBFuzz with just eight utilized break-
points is not too far away. On some application, GDBFuzz could
even reach a similar number of basic blocks. We also emphasize
that AFL++ falls back to blackbox fuzzing in scenarios where emu-
lation and instrumentation is not available—and this is again where
GDBFuzz is superior.

If one can deploy AFL at little cost, use it; otherwise, consider

GDBFuzz as a potentially less demanding alternative.

6.5 Boost by Dominance Relations

Let us now evaluate specific elements of the GDBFuzz design. As
described in Section 4, GDBFuzz makes use of dominance relations

to mark multiple basic blocks as reached with a single breakpoint
interrupt, which leads to the question:
RQ5: Howmuch does GDBFuzz benefit from dominance relations?

To answer RQ5, we analyze the average number of breakpoint
interrupts, as well as the average number of reached basic blocks
during the previous experiments in Table 4.

Across all our experiments, each breakpoint interrupt led to
3.15 marked basic blocks on average, meaning that the number
of probed basic blocks is reduced by 68.25%. This ratio is better
than in experiments of the efficient code instrumentation algorithm
presented in [56], where the authors achieved to reduce the number
of instrumentation points only by 34% to 49% in their experiments.
GDBfuzz can presumably reduce the overhead further, because
we additionally use post dominance relations and the described
semi-interprocedural CFG.

As we can see in the Precision column, the vast majority of the
marking dominating basic blocks was correct. Incorrectly marked
basic blocks can result from incorrect reverse engineered control
flow. The reached precision of mostly more than 99% is sufficient
for coverage-guided fuzzing since it is a stochastic process and
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Table 4: Averaged results of the evaluation benchmark

(N=10)

Target #Interrupts Basic Blocks Precision New Blocks New Edges
boringssl 511.6 1398.8 99.69% +674.16% +708.61%
freetype2 1281.1 3537.8 99.91% +433.22% +460.42%
guetzli 258.3 2274.4 99.68% +21.52% +21.36%
harfbuzz 1086.2 2668.2 99.88% +13.86% +14.11%
json 306.5 736.0 97.69% +0.0% +0.0%
lcms 229.6 813.3 99.04% +12.24% +12.2%
libarchive 152.3 431.0 99.26% +0.36% +0.23%
libjpeg 534.0 1403.7 98.96% +148.02% +150.58%
libpng 370.4 1050.5 97.21% +0.03% +0.02%
libssh 303.2 1013.5 99.61% +19.29% +19.94%
libxml 260.8 732.1 98.73% +0.05% +0.21%
openssl 109.8 286.7 100.0% +0.64% +0.6%
proj4 182.6 437.8 99.8% +3.26% +3.15%
re2 589.1 1613.0 99.88% +4.13% +3.95%
sqlite 1080.0 4364.3 98.19% +1.59% +1.65%
vorbis 400.44 1387.0 99.57% +12.77% +12.36%

does not rely on 100% correct coverage data. Popular fuzzing tools,
like AFL++, store coverage data in hash maps and also miss some
coverage during fuzzing due to hash collisions.

Across over our experiments, dominance relations reduced

required breakpoint interruptions by more than two thirds.

6.6 Revealing Control Flow

GDBFuzz can guide reverse engineering tools to reveal undetected
control flow, as we described in Section 5 and we investigate by the
question:
RQ6: How well can GDBFuzz aid reverse engineering tools to

reveal unrecognized control flows?
We answer RQ6 by compareing the average relative number of

additional revealed basic blocks and edges against the ones that
Ghidra initially detects. Since the targets have been compiled with
activated compiler optimizations, recovering the control flow is
particularly hard for reverse engineering tools. In Table 4, we can
see that up to 674.16% additional basic blocks and 708.61% additional
edges could be revealed during our experiments. A lower number
of newly found control flow does not necessarily show a lower
performance from GDBFuzz, but rather a good reverse engineering
performance of Ghidra.

GDBFuzz reveals undetected basic blocks and edges for

reverse engineering during fuzzing.

6.7 Number of Available Breakpoints

The amount of available breakpoints varies across different micro-
controller families and models, which raises the question:
RQ7: How does the number of available breakpoints affect the

fuzzing performance?
For estimating how different numbers of breakpoints influence the
fuzzing performance, we execute the applications directly with
GDB and use ordinary software breakpoints for the feedback, since
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Figure 5: Fuzzing performance of GDBFuzz on four applica-

tions using different numbers of virtual breakpoints (N=2).

QEMU does not scale well with an increasing amount of break-
points. This way we have arbitrarily many breakpoints available
without affecting execution time, and can estimate how their num-
ber affects the achieved coverage over time. To answer RQ7, we
execute GDBFuzz in the application-based setting using an expo-
nentially increasing number of virtual breakpoints from 1 to 65536.
Representative, Figure 5 shows the reached basic blocks over time
on four applications8, averaged from 2 runs.

Unsurprisingly, more used breakpoints lead to more covered
code blocks per time. In our experiments, it roughly seems that
doubling the number of breakpoints yields to a linear improve-
ment of fuzzing performance. Exponential correlations between
effort and revenue are common in the research area of fuzzing [6].
Likewise, our experimental observation between the number of uti-
lized breakpoints and coverage over time suggests an exponential
correlation.

Linearly more coverage over time

requires exponentially more breakpoints.

6.8 GDBFuzz vs. Blackbox Fuzzing

As pointed out in Section 6.4, AFL++ falls back to blackbox fuzzing

when no conforming instrumentation mechanism is available. This
motivates our final research question:
RQ8: How does GDBFuzz compare to blackbox fuzzing on the

application-based setting?
To compare GDBFuzz against blackbox fuzzing, we measure

reached basic blocks directly during fuzzing using QEMU, because
there is no corpus to replay for blackbox fuzzing.

Figure 6 shows measured coverage over time results for black-
box fuzzing, GDBFuzz, and a trimmed version (GDBFuzzSimple)
that does not make use of dominance relations as described in Sec-
tion 3. This larger scale benchmark with independent code coverage
measurements confirms the results from the development boards:
8Plots for all other applications available in the repository
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Figure 6: Reached coverage fromGDBFuzz with andwithout

using dominance relations, and blackbox fuzzing measured

by QEMU (N = 10).

GDBFuzz outperforms blackbox fuzzing in all experiments. Further-
more, we can see that using dominance relations to gain transitive
knowledge led to more and faster code coverage on most target ap-
plications. Nevertheless, even GDBFuzzSimple greatly outperforms
blackbox fuzzing in all experiments.

GDBFuzz outperforms blackbox fuzzing in an

application-based setting on a larger scale, too.

7 DISCUSSION

Now that we showed how well GDBFuzz works, we want to discuss
the design choice of using code block coverage as metric, how
fuzzing with GDBFuzz works in practice, and the threats to validity
of our evaluation experiments.

7.1 Block and Branch Coverage

Whilemost state-of-the-art fuzzers like AFL++ [19] and libFuzzer [32]
leverage edge coverage, we use block coverage to guide the evo-
lutionary fuzzing algorithm. Extracting edge coverage with our
methods, would require to probe already reached blocks multiple
times, which would increase overhead drastically. Nagy et al. [40]
use software breakpoints to detect the execution of new basic blocks
for normal software. They find that edge coverage cannot benefit
from its finer granularity because of the required constant instru-
mentation overhead. Since edge instrumentation would introduce
even more overhead in our setting than source code instrumenta-
tion on normal software, we estimate block coverage as the only
feasible coverage metric in GDBFuzz.

7.2 Fuzzing Firmware Drivers

Fuzzing drivers, or the middleware of embedded software, can be
implemented in a blackbox approach, by injecting fuzz data to
external facing interfaces, or as a whitebox approach, by compiling
a fuzz harness into the firmware to fetch and redirect the fuzz data

to the driver function. Whitebox approaches offer more flexibility
since driver functions can be called directly and an acknowledgment
signal can be fed back to the fuzzer, which indicates a function has
properly returned. However, expert knowledge about the code and
the system is required to implement a suitable fuzzing harness. Also,
an implemented harness works on a distinct code base only, and
false positives can be produced since input can be sanitized in the
hardware already before the tested driver function is reached [31].
A whitebox approach was suitable for replicating the known CVE’s,
revealed by µAFL, since the faulty functions were known and the
original finders have chosen the same way.

A blackbox approach usually requires less setup effort, because
data routes to the targeted interface should exist in most test setups
anyway, and the test engineer therefore justs needs to connect an
existing route to GDBFuzz by implementing a suitable Python class.
As a consequence, our connection adapters work out of the box
e.g. for all existing USB device drivers. The previously unknown
bugs we found with GDBFuzz, have been triggered without the
development and use of extensive harnessing functions, but on the
unchanged firmware.

7.3 Threats to Validity

Empirical studies are necessarily fraught with threats to validity.
To address external validity doubts, we have tested the method on
different development boards with different debuggers and architec-
tures and made sure that we can find real-world bugs. Additionally,
we conducted a larger case study on known fuzzer benchmarking
targets. To minimize the risk of systematic errors and addressing in-
ternal validity doubts, we decoupled coverage measurements from
our tool during evaluation and repeated each experiment multiple
times. The implementation of GDBFuzz is publicly available to
allow reproduction of our results (Section 9).

8 CONCLUSION AND FUTUREWORK

The field of embedded fuzzing lacks generic, easy applicable, and
efficient solutions. We propose a debugger-driven fuzzing method
that relies only on the presence of a GDB compatible debug probe
and hardware breakpoints on the microcontroller. GDBFuzz there-
fore enables cheap, non-intrusive, and source code agnostic coverage-
guided fuzzing on embedded systems. It is designed to work out of
the box for a wide variety of microcontrollers and input interfaces.
In contrast to earlier assertions, we showed that hardware-based
embedded fuzzing is practical, revealing software bugs. As fuzzing
is performed on the raw hardware, execution is fast and naturally
accurate. Detected failures are real and can be easily replicated.

We evaluated our implementation GDBFuzz on four embedded
application classes featuring four different microcontrollers, show-
ing that it beats blackbox fuzzing and the latest emulation-based
approach Fuzzware in all cases. Furthermore, we tested GDBFuzz
in an emulated environment on popular fuzzer benchmarking tar-
gets to gain more exeriment data and statistics. We showed that
leveraging dominance relations boosts the performance of GDB-
Fuzz, and that already a single hardware breakpoint is sufficient for
enabling coverage-guided fuzzing. We also showed that GDBFuzz
can reveal control flow that is missed by a reverse engineering
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tool during fuzzing. All in all, if an embedded system provides a
debugger interface, GDBFuzz provides a practical fuzzing solution.

Future work on GDBFuzz will focus on enhanced strategies
for choosing basic blocks to probe and incorperating established
fuzzing optimizations, like Corpus Minimization, Dictionaries, or
different Seed Schedules. Also, fuzzing for stateful embedded systems
is part of future work.

9 DATA AVAILABILITY

The open source implementation of GDBFuzz, the evaluation setup,
and raw results are available at

https://github.com/boschresearch/gdbfuzz
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