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High-utility sequential pattern mining (HUSPM) has emerged as an important topic due to its wide application

and considerable popularity. However, due to the combinatorial explosion of the search space when the HUSPM

problem encounters a low utility threshold or large-scale data, it may be time-consuming and memory-costly

to address the HUSPM problem. Several algorithms have been proposed for addressing this problem, but they

still cost a lot in terms of running time and memory usage. In this paper, to further solve this problem efficiently,

we design a compact structure called sequence projection (seqPro) and propose an efficient algorithm, namely

discovering high-utility sequential patterns with the seqPro structure (HUSP-SP). HUSP-SP utilizes the compact

seq-array to store the necessary information in a sequence database. The seqPro structure is designed to

efficiently calculate candidate patterns’ utilities and upper bound values. Furthermore, a new upper bound on

utility, namely tighter reduced sequence utility (TRSU) and two pruning strategies in search space, are utilized

to improve the mining performance of HUSP-SP. Experimental results on both synthetic and real-life datasets

show that HUSP-SP can significantly outperform the state-of-the-art algorithms in terms of running time,

memory usage, search space pruning efficiency, and scalability.
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1 INTRODUCTION
In the era of big data, sequence data is commonly seen in many domains. Sequential pattern

mining (SPM) [2, 14, 27, 41], which extracts frequent subsequences from sequence database, is an

interesting and important data mining topic in knowledge discovery in databases (KDD) [11]. In

the past two decades, SPM and the earlier developed frequent pattern mining (FPM) [3, 28] have

been applied in various domains, such as market basket analysis [9], biology [8], weblog mining [4],

and natural language processing [29]. The main selection criteria for sequential patterns in SPM is
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2 C. Zhang et al.

co-occurrence (or the support measure): sequences with a high frequency are considered to be more

interesting [2]. This characteristic contributes to the downward closure property (also known as the

Apriori property [3]), which plays a fundamental role in the search space pruning of SPM algorithms

and FPM algorithms, respectively. Note that SPM generalizes FPM by considering the sequential

ordering of sequences. The frequency-based models (SPM and FPM) fit some fields, and field

problems can generally be handled efficiently due to the inherent Apriori property. However, the

effectiveness of data mining algorithms always takes precedence over efficiency. As the frequency

measure only considers the objectivity of the data, the frequency-based models are no longer

applicable when the subjective variables are also regarded as important factors. For instance, the

patterns involving clingfilm are more likely to be obtained than those involving the refrigerator

when the frequency-based model is applied to department store sales data. The managers may

be more interested in the patterns containing refrigerators than clingfilm patterns, since they are

more likely to think that refrigerators are much more profitable than clingfilm. To address this

issue, another more comprehensive criteria, called utility, is introduced to utility-oriented pattern

mining (or utility mining for short) [21]. For example, there have been many studies related to

high-utility itemset mining (HUIM, from the perspective of transaction data) [10, 30], high-utility

sequential pattern mining (HUSPM, from the perspective of sequence data) [18, 43, 46, 47], and

utility-oriented episode mining (HUEM, from the perspective of sequence events) [19]. In addition,

of course, there are many case studies for incorporating utility mining into real-life situations.

In summary, HUSPM considers quantity, sequential order, and utility, which can usually provide

the user with more informative and comprehensive patterns. However, there are more challenges

in solving the HUSPM as described below. (1) The combinatorial explosion of sequences and utility

computation in HUSPM. (2) HUSPM cannot utilize the downward closure property of Apriori [3]

to efficiently prune the search space like the frequency-based algorithms. (3) The utility calculation

task is far more difficult than frequency computation. More details about addressing the HUSPM

problem have been summarized in [21, 49, 50]. Until now, there are several works have focused on

this issue and developed efficient algorithms to extract the complete set of high-utility sequential

patterns (HUSPs) from sequence data, such as USpan [46], HuspExt [7], HUS-Span [43], ProUM

[23], and HUSP-ULL [24]. In addition, many interesting issues of effectiveness in utility-oriented

SPM have been extensively studied, including the top-𝑘 model [43, 49], on-shelf availability [50],

explainable HUSPM [16], etc. HUSPM’s existing work has developed a variety of data structures

and pruning methods to improve mining efficiency. However, they are still expensive in terms of

execution time and memory usage. In particular, in the era of big data, the characteristics of big data

usually require data mining algorithms or models to have high efficiency and suitable effectiveness.

In order to improve the efficiency of utility-oriented sequence mining, we propose a faster

algorithm, abbreviated as HUSP-SP, for discovering high-utility sequential patterns with a sequence

projection (seqPro) structure and a new upper bound. The main contributions of this study can be

summarized as follows:

• A compact data structure. The designed seqPro consists of a sequence-array (seq-array)

and an extension-list, and it stores the corresponding projected database and some auxiliary

information for each candidate pattern. Based on the seqPro structure, HUSP-SP can efficiently

generate the candidate patterns and then calculate the candidate patterns’ real utility and

upper bound values.

• A new utility upper bound. We propose a tighter reduced sequence utility (TRSU) and

provide detailed proof that TRSU is much tighter than all the existing upper bounds for

HUSPM, such as reduced sequence utility (RSU) [43].
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• Powerful pruning strategy. A search space pruning strategy is designed, namely the early

pruning (EP) strategy based on TRSU. Generally, the combination of the irrelevant items

pruning (IIP) strategy [24] and the EP strategy can greatly reduce the search space.

• High efficiency. Experimental results show that HUSP-SP can efficiently discover the com-

plete set of HUSPs, and is superior to existing advanced algorithms in execution time, memory

usage, search space pruning efficiency, and scalability.

The rest of this article is organized as follows. Section 2 briefly reviews the work of HUIM and

HUSPM. Section 3 gives the basic definitions and formulates the HUSPM problem. In Section 4, we

propose a new data structure, upper bounds on sequence utility, and pruning strategies, and finally

introduce all the details of the HUSP-SP algorithm. The experimental evaluation of the HUSP-SP

method is given in Section 5. Finally, the conclusion and future work are discussed in Section 6.

2 RELATEDWORK
In this section, we separately review the literature on high-utility itemset mining and high-utility

sequential pattern mining.

2.1 High-Utility Itemset Mining
In utility mining, each item/object in the database is associated with a utility to represent its

importance. The task of HUIM [10] is to discover the complete set of high-utility itemsets (HUIs)

consisting of items whose sum of utility values is higher than the predefined minimum utility

threshold. Because HUIM no longer has the anti-monotone property of frequent pattern mining

or association rule mining (ARM) [3], mining HUIs has become extremely difficult as a result of

the loss of a powerful search space pruning strategy. Liu et al. [33] handled this problem well with

the transaction-weighted downward closure (TWDC) property. The Two-Phase algorithm [33]

efficiently extracts the candidate set of HUIs, called high transaction-weighted utilization itemsets

(HTWUIs), based on the TWDC property in phase I. And then, for mining the real HUIs, only one

extra database scan is performed to filter the overestimated itemsets. Inspired by the Two-Phase

algorithm, some tree-based algorithms (e.g., IHUP [6], UP-Growth [40], and UP-Growth
+
[38]) were

developed to achieve better performance by reducing the number of HTWUIs that are generated

in phase I. The main drawback of these algorithms is that they need to generate a large number

of candidates in phase I, which results in poor runtime and memory performance. After that,

several algorithms without two-phase operations, such as HUI-Miner [32], FHM [15], and EFIM

[51], were proposed. They can quickly discover HUIs without the candidate generation phase,

which reduces the costly generation and utility computation of a large number of candidates.

Besides the concentration on mining efficiency, there are also many works that concentrate on

addressing the effectiveness issue of HUIM, such as mining the concise representations of HUIs to

address the obscure mining result problem (large number while many of them are redundant) when

the minimum utility threshold is set too low [12, 34]; mining the top-𝑘 HUIs without setting the

minimum utility threshold [39]; exploiting the correlated HUIs that are not redundant [17], and so

on. Several comprehensive surveys [13, 20, 21] provide more details on utility mining advancements.

2.2 High-Utility Sequential Pattern Mining
The utility-driven HUSPM [18, 21] is an emerging problem that incorporates the utility concept

into sequential pattern mining (SPM) [14, 22, 41] to extract informative patterns by considering

rich information, including sequential order and utility. In the past, HUSPM has been used for

extracting web page traversal path patterns, web access sequences [4], and high utility mobile

sequences [38]. Similar to HUIM, the widely used downward closure property (also called the
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Apriori property [2]) in FPM and SPM is disabled by the introduction of utility, which makes

the traditional pruning methods no longer applicable to HUSPM. Ahmed et al. [5] first proposed
two algorithms, UtilityLevel and UtilitySpan. As two-phase algorithms, both of them generate

candidates by using a utility upper bound called sequence-weighted utilization (SWU) to prune the

search space in phase I and then compute the exact utilities of each candidate. However, there was

still no unified definition of HUSPM until Yin et al. [46] proposed a generic HUSPM framework and

the USpan algorithm. In USpan, a utility-matrix structure was designed to compact the sequences,

along with the sequence order and utility information of the processed database. The lexicographic

quantitative sequence tree (LQS-tree) was introduced to represent the search space of HUSPM.

Each node in the LQS-tree was denoted as a sequential pattern, and USpan performed the mining

process to traverse the LQS-tree and extract the HUSPs. Additionally, two upper bounds, the SWU

and sequence-projected utilization (SPU), were utilized for pruning the search space. However,

the newly designed SPU-based pruning strategy has been proven to miss the real HUSPs in some

conditions [23, 37] which means USpan and other SPU-based algorithms can not return complete

HUSPs. Some works with tighter upper bounds and more compact data structures were proposed to

improve the mining efficiency. The HUS-Span algorithm [43] adopts two tighter upper bounds: the

prefix extension utility (PEU) for depth pruning and the reduced sequence utility (RSU) for breadth

pruning. The ProUM algorithm [23] comes up with a new upper bound, the sequence extension

utility (SEU), and a compact utility-array structure.

Besides, to simplify the parameter settings, e.g., the minimum utility threshold, some studies

focus on mining top-𝑘 HUSPs [43, 47, 49]. Other interesting topics for utility mining have been

extensively studied, such as incremental HUSPM [42], HUSPM over data streams [52], HUSPM with

individualized thresholds [26], HUSPM with negative item values [45], FMaxCloHUSM [36] for

mining frequent closed and maximal high utility sequences, HUSPM on the Internet of Things [35],

targeted high-utility sequence querying [48], and self-adaptive high-average utility one-off SPM

[44]. Gan et al. [25] proposed two algorithms, MDUS𝐸𝑀 and MDUS𝑆𝐷 , to discover multidimensional

high-utility sequential patterns. On-shelf utility mining based on sequence data was also studied to

improve on-shelf availability [50]. However, the above algorithms are still not efficient enough,

especially when dealing with complex sequence data and low utility thresholds. Gan et al. [24]
integrated two pruning strategies, Look Ahead Removing (LAR) and Irrelevant Item Pruning (IIP)

strategies, with the developed HUSP-ULL algorithm, which significantly improved the mining

efficiency of the HUSPM problem when processing sequence data.

3 DEFINITIONS AND PROBLEM STATEMENT
In this section, we detail the important definitions and notations used in this paper. Then, the

problem statement of HUSPM is presented.

Let 𝐼 = {𝑖1, 𝑖2, . . ., 𝑖𝑛} be a set of all distinct items in the database. An itemset 𝑒 is a subset of 𝐼 .

A sequence 𝑠 is an ordered list of itemsets (also called elements). Without loss of generality, the

items within each element are sorted alphabetically, and the "≺" is used to represent that one item

occurs before another item in an element. Furthermore, the number of elements in a sequence 𝑠 is

its size; the total number of items in 𝑠 is its length; and a sequence with a length of 𝑘 is known

as a 𝑘-sequence. For example, a sequence 𝑠 = ⟨{𝑎 𝑏}, {𝑏 𝑐 𝑑}, {𝑎 𝑒}⟩ composed of seven items and

three elements. Then, the size of 𝑠 is three, and it’s called a 7-sequence for its length is seven. The

sequence 𝑡 = ⟨ 𝑒1, 𝑒2, . . ., 𝑒𝑝⟩ is a subsequence of 𝑠 = ⟨𝑒 ′1, 𝑒 ′2, . . ., 𝑒 ′𝑞⟩, or 𝑠 contains 𝑡 , represented as

𝑡 ⊑ 𝑠 , if and only if there exists integers 1 ≤ 𝑗1 < 𝑗2 < . . . < 𝑗𝑝 ≤ 𝑞 such that 𝑒1 ⊆ 𝑒 ′𝑗1 , 𝑒2 ⊆ 𝑒 ′𝑗2 , . . .,
𝑒𝑝 ⊆ 𝑒 ′𝑗𝑝 .
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Table 1. A running example of a quantitative sequential database, D

itemset ,

quantity 2 3, 2 3

itemset , , , ,

quantity 2, 2, 1 1 1, 2, 1

itemset , , ,

quantity 1, 1, 1 1, 1 1

itemset , ,

quantity 2, 2 1 1,1

SID -sequence

Definition 3.1. (quantitative sequential database and quantitative sequence) A quantitative se-

quential database (QSDB) D is a set of tuples (𝑆𝐼𝐷, 𝑆), where each sequence 𝑆 is associated with a

unique identifier (SID). Moreover, the QSDB sequences express more information than the non-

QSDB sequences. In a QSDB, each item 𝑖 within an element 𝑒 𝑗 in a sequence 𝑆 = ⟨𝐸1, 𝐸2, . . ., 𝐸𝑝⟩
is associated with a positive integer 𝑞(𝑖, 𝑗, 𝑆), called the internal utility or quantity. Therefore,

we give the sequence in a QSDB a new name, called the quantitative sequence or 𝑞-sequence to

distinguish it from the non-QSDB whose items are not associated with quantity. Similarly, the

items and itemsets are called 𝑞-item and 𝑞-itemset, respectively, in a QSDB. Each distinct item 𝑖 in

a QSDB is associated with a unity utility (also known as external utility), which is denoted as 𝑒𝑢 (𝑖).
Table 1 shows a QSDB D with four 𝑞-sequence, and the unit utility (also called external utility)

of each distinct item in D is {𝑎: 3, 𝑏: 1, 𝑐 : 2, 𝑑 : 1, 𝑒 : 1, 𝑓 : 1}. They will be used as a running example

in this paper.

Definition 3.2. (utility of item, itemset and 𝑞-sequence in a QSDB) Given a QSDB D, 𝑞-sequence

𝑆 = ⟨𝐸1, 𝐸2, . . ., 𝐸𝑛⟩, the utility of an item 𝑖 within the 𝑗 th itemset 𝐸 𝑗 is defined as 𝑢 (𝑖, 𝑗, 𝑆) = 𝑒𝑢 (𝑖)
× 𝑞(𝑖, 𝑗, 𝑆), where 1 ≤ 𝑗 ≤ 𝑛. The utility of itemset 𝐸 𝑗 and its subset 𝑒 𝑗 ⊆ 𝐸 𝑗 is defined as𝑢 (𝑒 𝑗 , 𝑗, 𝑆)
=

∑
𝑖∈𝐸 𝑗∩𝑒 𝑗𝑢 (𝑖, 𝑗, 𝑆), and the utility of the 𝑞-sequence 𝑆 is defined as 𝑢 (𝑆) = ∑𝑛

𝑖=1 𝑢 (𝐸𝑖 , 𝑖, 𝑆).
Consequently, the utility of the QSDB D is 𝑢 (D) = ∑

∀𝑆 ∈D 𝑢 (𝑆).
For example, in Table 1, the utility of the item 𝑎 within the first 𝑞-itemset 𝐸 = {𝑎 𝑏} in 𝑆1 is

𝑢 (𝑎, 1, 𝑆1) = 𝑝 (𝑎) × 𝑞(𝑎, 1, 𝑆1) = 3 × 2 = 6. Then the utility of 𝐸,𝑢 ({𝑎 𝑏}, 1, 𝑆1) = 3 × 2 + 1 × 2 = 8, and

the utility of 𝑆1 is 𝑢 (𝑆1) = 𝑢 ({𝑎 𝑏}, 1, 𝑆1) + 𝑢 ({𝑓 }, 𝑆1) + 𝑢 ({𝑎 𝑑}, 𝑆1) = 8 + 1 + 4 = 13. Accordingly,

the utility of D, 𝑢 (D) = 𝑢 (𝑆1) + 𝑢 (𝑆2) + 𝑢 (𝑆3) + 𝑢 (𝑆4) = 13 + 6 + 16 + 12 = 47.

Definition 3.3. (sequence instance) Given a sequence 𝑡 = ⟨𝑒1, 𝑒2, . . ., 𝑒𝑝⟩, 𝑞-sequence 𝑆 = ⟨𝐸1, 𝐸2,
. . ., 𝐸𝑞⟩, 𝑡 ⊑ 𝑆 and ∃ 1 ≤ 𝑗1 < 𝑗2 < . . . < 𝑗𝑝 ≤ 𝑞 that 𝑒1 ⊆ 𝐸 𝑗1 , 𝑒2 ⊆ 𝐸 𝑗2 , . . ., 𝑒𝑝 ⊆ 𝐸 𝑗𝑝 , then it is said

that the 𝑞-sequence 𝑆 has an instance of sequence 𝑡 at position ⟨ 𝑗1, 𝑗2, . . ., 𝑗𝑝⟩.
For example, in Table 1, for sequence ⟨{𝑎}, {𝑎}⟩ and 𝑆1 = ⟨{𝑎 𝑏}, {𝑓 }, {𝑎 𝑑}⟩, {𝑎} ⊆ {𝑎 𝑏} and
{𝑎} ⊆ {𝑎 𝑑}, thus ⟨{𝑎}, {𝑎} ⟩ ⊑ 𝑆1 and 𝑆1 has an instance of sequence ⟨{𝑎}, {𝑎}⟩ at ⟨1, 3⟩.
Definition 3.4. (instance utility) Assume 𝑆 has an instance of 𝑡 at position ⟨ 𝑗1, 𝑗2, . . ., 𝑗𝑝⟩, the

utility of the instance of 𝑡 at position ⟨ 𝑗1, 𝑗2, . . ., 𝑗𝑝⟩ is defined as

𝑢 (𝑡, ⟨ 𝑗1, 𝑗2, . . . , 𝑗𝑝⟩, 𝑆) =
𝑝∑︁
𝑖=1

𝑢 (𝑒𝑖 , 𝑗𝑖 , 𝑆), (1)

where 𝑒𝑖 ⊆ 𝐸 𝑗𝑖 .
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6 C. Zhang et al.

For example, in Table 1, 𝑢 (⟨{𝑎}, {𝑎}⟩, ⟨1, 3⟩, 𝑆1) = 6 + 3 = 9.

Definition 3.5. (sequence utility) The utility of sequence 𝑡 in 𝑞-sequence 𝑆 is defined and denoted

as 𝑢 (𝑡, 𝑆) = max{𝑢 (𝑡, ⟨ 𝑗1, 𝑗2, . . . , 𝑗𝑝⟩, 𝑆) | ∀⟨ 𝑗1, 𝑗2, . . . , 𝑗𝑝⟩ : 𝑡 ⊑ ⟨ 𝐸 𝑗1 , 𝐸 𝑗2 , . . ., 𝐸 𝑗𝑝 ⟩}, that is the
maximum utilities of all the instances of 𝑡 in 𝑆 . Moreover, the utility of 𝑡 in a QSDB D is defined as

𝑢 (𝑡,D) =
∑︁

∀𝑆 ∈D∧𝑡⊑𝑆
𝑢 (𝑡, 𝑆). (2)

For example, in Table 1, the utility of ⟨{𝑎 𝑑}⟩ in 𝑆3 is calculated as𝑢 (⟨{𝑎 𝑑}⟩, 𝑆3) =max{𝑢 (⟨{𝑎 𝑑}⟩,
⟨1⟩, 𝑆3),𝑢 (⟨{𝑎 𝑑}⟩, ⟨3⟩, 𝑆3)} =max{7, 5} = 7. Accordingly, the utility of ⟨{𝑎 𝑑}⟩ inD is𝑢 (⟨{𝑎 𝑑}⟩,D)
= 𝑢 (⟨{𝑎 𝑑}⟩, 𝑆1) + 𝑢 (⟨{𝑎 𝑑}⟩, 𝑆3) = 4 + 7 = 11.

Problem statement: Given a QSDB D and a user-specified minimum utility threshold 𝜉 from 0

to 1, a sequence 𝑡 with 𝑢 (𝑡,D) ≥ 𝜉 × 𝑢 (D) is called a high-utility sequential pattern (HUSP). The

high-utility sequential pattern mining (HUSPM) problem is to discover all the HUSPs in D with

respect to the 𝜉 .

For example, given the QSDB Table 1 and 𝜉 = 0.2, then the minimum utility 𝜉× 𝑢 (D) = 0.2 × 47

= 9.4. ⟨{𝑎 𝑑}⟩ is a HUSP in D, for 𝑢 (⟨{𝑎 𝑑}⟩,D) = 11 ≥ 9.4, and the HUSPM problem is to find all

the sequences contained in the 𝑞-sequences of D with utilities no less than 9.4.

4 PROPOSED ALGORITHM
This section describes the proposed algorithm, HUSP-SP, for addressing the HUSPM problem

by generating and testing the database’s promising subsequences (patterns). Utilizing the newly

proposed upper bound TRSU and the TRSU based EP pruning strategy, HUSP-SP only needs to

generate and test a few patterns. Besides, the newly designed running data structure, called seqPro,

significantly reduces the memory usage of an algorithm and facilitates the utility computation

process. In general, HUSP-SP compacts the utility and sequence information of the QSDB into

memory by using the seq-array structure called seqPro. Then HUSP-SP first finds the 1-sequences

and then recursively projects the seqPro by prefix to find the more extended patterns. The entire

searching process forms a lexicographic 𝑞-sequence (LQS)-tree.

4.1 Search Space
To avoid generating patterns that do not appear in the database and repeatedly testing the same

patterns, HUSP-SP adopts the pattern-growth and projection database methods [27], which means

it starts from patterns composed of a single item and finds larger patterns by recursively appending

items to discovered patterns. The LQS-tree [43, 46] is used to formally describe the search space of

HUSP-SP. An LQS-tree is shown in Fig. 1, where each node represents a pattern and the lexico-

graphically ordered child nodes are generated by first applying I-Extension and then S-Extension

with the corresponding available 1-sequences, respectively.

Definition 4.1. (I-Extension and S-Extension [27, 46]) Let 𝑡 = ⟨𝐸1, 𝐸2, . . ., 𝐸𝑝⟩, extension is the

operation appending a sequence𝑤 = ⟨𝐹1, 𝐹2, . . ., 𝐹𝑞⟩ to the end of 𝑡 . Given ∀𝑖 ∈ 𝐸𝑝 , ∀𝑖 ′ ∈ 𝐹1, 𝑖 ≺ 𝑖 ′,
I-Extension is defined as 𝑡♦𝑖𝑤 = ⟨𝐸1, 𝐸2, . . ., 𝐸𝑝 ∪ 𝐹1, 𝐹2, . . ., 𝐹𝑞⟩. The S-Extension is defined as

𝑡♦𝑠𝑤 = ⟨𝐸1, 𝐸2, . . ., 𝐸𝑝 , 𝐹1, 𝐹2, . . ., 𝐹𝑞⟩. Additionally, notation ♦ can represent either I-Extension or

S-Extension.

For example, ⟨{𝑎}, {𝑎 𝑏}⟩ ♦𝑖 ⟨{𝑒}, {𝑎 𝑐}⟩ = ⟨{𝑎}, {𝑎 𝑏 𝑒}, {𝑎 𝑐}⟩; ⟨{𝑎}, {𝑎 𝑏}⟩ ♦𝑠 ⟨{𝑒}, {𝑎 𝑐}⟩
= ⟨{𝑎}, {𝑎 𝑏}, {𝑒}, {𝑎 𝑐}⟩, and ⟨{𝑎}, {𝑎 𝑏}⟩ ♦ ⟨{𝑒}, {𝑎 𝑐}⟩ equals ⟨{𝑎}, {𝑎 𝑏}⟩ ♦𝑖 ⟨{𝑒}, {𝑎 𝑐}⟩ or
⟨{𝑎}, {𝑎 𝑏}⟩ ♦𝑠 ⟨{𝑒}, {𝑎 𝑐}⟩. Note that ⟨{𝑎}, {𝑎 𝑏}⟩ ♦𝑖 ⟨{𝑏 𝑑}⟩ is forbidden for 𝑏 ≺ 𝑏 is not hold.

Similar to the previous HUSPM algorithms [23, 46, 47], HUSP-SP traverses the LQS-tree in a

depth-first manner and calculates the utility of the patterns with respect to the corresponding tree
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nodes. As shown in Fig. 1, HUSP-SP starts at the empty root node and first finds the 1-sequences,

which make up the first layer of the LQS-tree. Then HUSP-SP turns to the ⟨{𝑎}⟩ node, checks
whether ⟨{𝑎}⟩ is a HUSP by calculating the utility of ⟨{𝑎}⟩, and generates ⟨{𝑎}⟩’s possible children.
The same operation will be applied to the first children ⟨{𝑎 𝑏}⟩. The generation and check processes

will be recursively invoked until there is no other node that should be visited.

Consequently, for HUSPM methods to be effective and efficient, they usually need to be able to

handle the following two problems well:

• How to find the candidate items for the current testing pattern to generate an extended

pattern and calculate the utility of extended patterns efficiently?

• How to reduce the search space?

<>

{ } { } { } { } { }

S-Extension

I-Extension

{ }

{ }

{ }

{ }, { }

{ }, { }

{ }, { } { }, { }

{ }, { }{ }, { } { }, { }{ }, { }{ }

{ } { }, { }

{ }, { }

{ }, { }

Fig. 1. Partial of the LQS-tree for HUSPM with D in Table 1

4.2 Pattern Generation and Utility Calculation
Firstly, some necessary definitions and basic data structures for facilitating the description of the

detailed methods are presented. Given a 𝑘-length 𝑞-sequence 𝑆 , the items within 𝑆 are indexed

from 1 to 𝑘 by their sequential orders. For example, in Table 1, 𝑆1 is indexed from 1 to 5, and the

item name and quantity of the 𝑞-item with index 3 are 𝑓 and 1, respectively.

Definition 4.2. (extension item and extension position [43]) Given sequence 𝑡 = ⟨𝐸1, 𝐸2, . . ., 𝐸𝑝⟩,
𝑞-sequence 𝑆 = ⟨𝐸 ′1, 𝐸 ′2, . . ., 𝐸 ′𝑞⟩, and 𝑆 has an instance of 𝑡 at ⟨ 𝑗1, 𝑗2, . . ., 𝑗𝑝⟩. Then, the last item
of 𝐸𝑝 is called the extension item, and 𝑗𝑝 is called an extension position of 𝑡 in 𝑆 . In addition, the

index of the extension item is denoted as 𝐼 (𝑡, 𝑗𝑝 ).

For example, in Table 1, 𝑆3 has three instances of sequence ⟨{𝑑}, {𝑑}⟩ at ⟨1, 2⟩, ⟨1, 3⟩ and ⟨2, 3⟩
with common extension item 𝑑 , and the corresponding extension positions are 2, 3, and 3, separately.

Besides, the index of the extension item 𝑑 within extension position 3 is 𝐼 (⟨{𝑑}, {𝑑}⟩, 3), and it

equals 6 since it’s the 6𝑡ℎ 𝑞-item in 𝑆3.

Definition 4.3. (sequence utility with extension position [43]) The utility of 𝑡 with extension

position 𝑝 in 𝑆 is defined as the maximum utility of any instance of 𝑡 whose extension position is 𝑝 .

It is denoted as

𝑢 (𝑡, 𝑝, 𝑆) = max{𝑢 (𝑡, ⟨ 𝑗1, 𝑗2, . . . , 𝑝⟩, 𝑆) |∀⟨ 𝑗1, 𝑗2, . . . , 𝑝⟩ : 𝑡 ⊑ ⟨𝐸 ′𝑗1 , 𝐸
′
𝑗2
, . . . , 𝐸 ′

𝑝
⟩}. (3)
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8 C. Zhang et al.

Definition 4.4. (remaining 𝑞-sequence [43, 46]) Given a 𝑝-length 𝑞-sequence 𝑆 and an item index

𝑞, 𝑞 < 𝑝 , the subsequence from the item at index 𝑞 + 1 to the end of 𝑆 denoted as 𝑆/𝑞 , is called the

remaining sequence of 𝑆 with respect to item index 𝑞.

For example, in Table 1,𝑢 (⟨{𝑑}, {𝑑}⟩, 3, 𝑆3) =max{𝑢 (⟨{𝑑}, {𝑑}⟩, ⟨1, 3⟩, 𝑆3),𝑢 (⟨{𝑑}, {𝑑}⟩, ⟨2, 3⟩, 𝑆3)}
=max{3, 3} = 3. 𝑆3 has an instance of ⟨{𝑎 𝑏}⟩ at ⟨1⟩, then 𝑆3/𝐼 ( ⟨{𝑎 𝑏 }⟩,1) = 𝑆3/2 = ⟨ {𝑑}, {𝑑}, {𝑎 𝑑 𝑒}⟩.
Definition 4.5. (Sequence-array) Given a 𝑞-sequence 𝑆 = ⟨𝐸1, 𝐸2, . . ., 𝐸𝑛⟩ with length 𝑘 , the

sequence-array (seq-array) of 𝑆 has four length 𝑘 arrays for storing the information of each item

(item array for item name, utility array for item utility, remaining-utility array for the utility of

the remaining 𝑞-sequence with respect to current item index, and element-index array for saving

the index of the current element index, i.e., the index of first item of current element). In addition,

the item-indices table field of the seq-array records the indices of each distinct item within 𝑆 . For

instance, the seq-array of 𝑆1 in Table 1 is shown in Fig. 2.

Array Index 1 2 3 4 5
Item array

Utility array 6 2 1 3 1

Remaining-utility array 7 5 4 1 0

Element-index array 1 1 3 4 4

Item-indices table
1, 4 2 5 3

Fig. 2. The seq-array of 𝑆1 in Table 1

Definition 4.6. (Extension-list) Assuming 𝑞-sequence 𝑆 of QSDB D has 𝑘 instances of sequence

𝑡 with extension positions 𝑝1, 𝑝2, . . ., 𝑝𝑘 , where 𝑝1 < 𝑝2 < . . . < 𝑝𝑘 . The extension-list of 𝑡 in 𝑆

consists of 𝑘 elements, where the 𝑖th element contains the following fields:

• Field acu is the utility of 𝑡 with extension position 𝑝𝑖 .

• Field exIndex is the 𝐼 (𝑡, 𝑝𝑖 ) (the index of the extension item with extension position 𝑝𝑖 ).

For example, in Table 1, 𝑆3 has three instances of sequence ⟨{𝑑}, {𝑑}⟩ at ⟨1, 2⟩, ⟨1, 3⟩ and ⟨2, 3⟩.
Thus, the extension-list of ⟨{𝑑}, {𝑑}⟩ in 𝑆3 has two elements “acu: 𝑢 (⟨{𝑑}, {𝑑}⟩, 2, 𝑆3), exIndex:
4", and “acu: 𝑢 (⟨{𝑑}, {𝑑}⟩, 3, 𝑆3), exIndex: 6". For the projection database of each LQS-tree node,

HUSP-SP introduces the Sequence Projection (seqPro) structure to represent the 𝑞-sequence. The

seqPro structure is composed of two fields:

• Seq-array: This is a pointer to the original seq-array of the 𝑞-sequence.

• Extension-list: It is a list that records the indices of extension items and the sequence utilities

with extension positions of the current node pattern.

Compared to the projection database structure, such as UL-lists proposed in HUSP-ULL [24], the

seqPro is more refined in modeling the 𝑞-sequence. Furthermore, with the newly introduced item-

index head table, seqPro avoids the problem of storing lots of null values in UL-lists. Additionally,

the introduced Extension-list makes seqPro more useful in facilitating pattern generation and utility

calculation.

According to Definition 3.5, the utility of a pattern in a 𝑞-sequence is the maximum utility of all

the pattern instances in the 𝑞-sequence, and the pattern utility is the sum of all the pattern utilities

of 𝑞-sequences in the QSDB that contain the pattern. Obviously, it is time-consuming for the utility
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calculation for each candidate pattern to find all the instances by scanning the sequences, then

compute the utility of each instance, select the maximum utilities, and sum them up at last. Thanks

to pattern growth and the database projection methods, the utility computation complexity of child

nodes is greatly reduced by recording the location and utility of the parent node pattern’s instances

(extension-list). For example, in Table 1, the utility calculation process of sequence ⟨{𝑑}, {𝑎}⟩ can
be described as follows. First, although the prefix sequence ⟨{𝑑}⟩ is contained in every 𝑞-sequence

in the database, only 𝑆3 needs to be considered since only 𝑆3 contains ⟨{𝑑}, {𝑎}⟩. Next, the utility
of ⟨{𝑑}, {𝑎}⟩ can be efficiently calculated in projected database 𝑆3 based on the recorded instances

of ⟨{𝑑}⟩. Specifically, the sequence ⟨{𝑑}, {𝑎}⟩ can be formed by appending item 𝑎 to instances of

⟨{𝑑}⟩ with extension positions 1 and 2, respectively. Notice that as there is only one extension

item of ⟨{𝑑}, {𝑎}⟩ in 𝑆3, 𝑢 (⟨{𝑑}, {𝑎}⟩) = 𝑢 (⟨{𝑑}, {𝑎}⟩, 3, 𝑆3) = max{𝑢 (⟨{𝑑}⟩, 1, 𝑆3), 𝑢 (⟨{𝑑}⟩, 2, 𝑆3)}
+ 𝑢 (𝑎, 3, 𝑆3) = max{1, 1} + 3 = 4. Furthermore, the extension-list of ⟨{𝑑}, {𝑎}⟩ is constructed for

facilitating the candidate items discovery, utility calculation, and upper bound calculation of newly

generated super-sequences.

4.3 Search Space Pruning
To reduce the search space, HUSP-SP not only adopts the utility upper bounds (prefix extension

utility (PEU) [43], and reduced sequence utility (RSU) [43]) but also proposes a new utility upper

bound, called tighter reduced sequence utility (TRSU). Furthermore, based on these upper bounds,

several powerful pruning strategies are designed in HUSP-SP.

Definition 4.7. (PEU [43]) The PEU of sequence 𝑡 in 𝑞-sequence 𝑆 with extension position 𝑝 is

defined as

PEU(𝑡, 𝑝, 𝑆) =
{
𝑢 (𝑡, 𝑝, 𝑆) + 𝑢 (𝑆/𝐼 (𝑡,𝑝) ), if 𝑢 (𝑆/𝐼 (𝑡,𝑝) ) ≥ 0;

0, otherwise.
(4)

The PEU of sequence 𝑡 in 𝑆 is defined as

PEU(𝑡, 𝑆) = max{PEU(𝑡, 𝑝, 𝑆) |∀extension position 𝑝 of 𝑡 in 𝑆} (5)

Note, PEU (𝑡, 𝑆) = 𝑢 (𝑆) when 𝑡 is null. Moreover, the PEU of sequence 𝑡 in QSDB D is defined as

PEU(𝑡,D) =
∑︁

∀𝑆 ∈D∧𝑡⊑𝑆
PEU(𝑡, 𝑆) (6)

For example, int Table 1, PEU(⟨{𝑎 𝑏}⟩,D) =𝑢 (⟨{𝑎 𝑏}⟩, 1, 𝑆1) +𝑢 (𝑆1/𝐼 ( ⟨{𝑎 𝑏 }⟩,1) ) +𝑢 (⟨{𝑎 𝑏}⟩, 1, 𝑆3)
+ 𝑢 (𝑆3/𝐼 ( ⟨{𝑎 𝑏 }⟩,1) ) = 8 + 5 + 8 + 8 = 29.

Theorem 4.8. For any extension of sequence 𝑡 in database D with a sequence 𝑤 (not null), 𝑡 ′ =
𝑡♦𝑤 , 𝑢 (𝑡 ′,D) ≤ PEU(𝑡,D) [43].

Proof. Let S𝑡 ⊆ D, S𝑡 ′ ⊆ D be the set of 𝑞-sequences containing 𝑡 and 𝑡 ′, respectively, we
have S𝑡 ′ ⊆ S𝑡 . For each 𝑞-sequence 𝑆 ∈ S𝑡 ′ , 𝑡 ′ = 𝑡♦𝑖𝑤 , we will proof the theorem by proofing that

𝑢 (𝑡 ′, 𝑆) ≤ PEU(𝑡, 𝑆). Assuming 𝑢 (𝑡 ′, 𝑆) = 𝑢 (𝑡 ′, ⟨ 𝑗1, 𝑗2, . . ., 𝑗𝑝⟩, 𝑆), then there is always

𝑢 (𝑡 ′, 𝑆) = 𝑢 (𝑡, ⟨ 𝑗1, 𝑗2, . . . , 𝑗𝑞⟩, 𝑆) + 𝑢 (𝑤, ⟨ 𝑗𝑞, 𝑗𝑞+1, . . . , 𝑗𝑝⟩, 𝑆). (7)

PEU(𝑡, 𝑗𝑞, 𝑆) = 𝑢 (𝑡, 𝑗𝑞, 𝑆) + 𝑢 (𝑆/𝐼 (𝑡, 𝑗𝑞 ) ) (8)

Observing the Eq. 7 and Eq. 8, it’s obviously that 𝑢 (𝑡, 𝑗𝑞, 𝑆) ≥ 𝑢 (𝑡 , ⟨ 𝑗1, 𝑗2, . . ., 𝑗𝑞⟩, 𝑆) and the

𝑤 ⊑𝑆/𝐼 (𝑡, 𝑗𝑞 ) , i.e., 𝑢 (𝑆/𝐼 (𝑡, 𝑗𝑞 ) ) ≥ 𝑢 (𝑤 , ⟨ 𝑗𝑞 , 𝑗𝑞+1, . . ., 𝑗𝑝⟩, 𝑆). Therefore, 𝑢 (𝑡 ′, 𝑆) ≤ PEU(𝑡, 𝑗𝑞, 𝑆). Ac-
cording to the Eq. 5, PEU(𝑡, 𝑆) ≥ PEU(𝑡, 𝑗𝑞, 𝑆). Thus, 𝑢 (𝑡 ′, 𝑆) ≤ PEU (𝑡, 𝑆) and ∑

∀𝑆 ∈S𝑡′ 𝑢 (𝑡
′, 𝑆) ≤∑

∀𝑆 ∈S′𝑡 PEU(𝑡, 𝑆) ≤ PEU (𝑡,D), i.e. 𝑢 (𝑡 ′,D) ≤ PEU (𝑡,D). In the same way, 𝑢 (𝑡 ′, 𝑆) ≤ PEU (𝑡, 𝑆)

when 𝑡 ′ = 𝑡 ♦𝑠𝑤 . □
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Theorem 4.8 indicates that, for any QSDB D, the candidate sequences with low PEUs (less than

𝜉 × 𝑢 (D)) can be pruned by HUSP-SP since the utilities of all these candidate sequences and their

extension sequences will be no greater than the PEUs.

Definition 4.9. (RSU [43]) Let sequence 𝑡 ′ be generated by one item Extension from sequence 𝑡 .

The RSU of 𝑡 ′ in 𝑞-sequence 𝑆 is defined as

RSU(𝑡 ′, 𝑆) =
{
PEU(𝑡, 𝑆), 𝑡 ′ ⊑ 𝑆;

0, otherwise.
(9)

Accordingly, the RSU of the sequence 𝑡 ′ in the database D is defined as

RSU(𝑡 ′,D) =
∑︁
∀𝑆 ∈D

RSU(𝑡 ′, 𝑆) (10)

Note, if 𝑡 ′ is a single item sequence, then RSU(𝑡 ′,D) is the same to the commonly known sequence-

weighted utilization (SWU) [46], since 𝑆𝑊𝑈 (𝑡 ′) = ∑
𝑆 ∈D{𝑢 (𝑆) |𝑡 ′ ⊆ 𝑆}.

For example, in Table 1, RSU(⟨{𝑏}, {𝑒}⟩,D) = RSU (⟨{𝑏}, {𝑒}⟩, 𝑆2) + RSU (⟨{𝑏}, {𝑒}⟩, 𝑆3) = PEU (⟨{𝑏}⟩, 𝑆2)
+ PEU (⟨{𝑏}⟩, 𝑆3) = 6 + 10 = 16.

Theorem 4.10. For any Extension of sequence 𝑡 in database D with sequence 𝑤 , which can be
empty, 𝑡 ′ = 𝑡♦𝑤 , 𝑢 (𝑡 ′,D) ≤ RSU(𝑡,D) [47].

Proof. Assuming 𝑡 is generated by one item Extension from sequence 𝑡𝑝 , 𝑡 = 𝑡𝑝♦𝑖 , then 𝑡 ′

= 𝑡𝑝♦𝑖♦𝑤 . Let S𝑡𝑝 ⊆ D,S𝑡 ⊆ D and S𝑡 ′ ⊆ D be the set of 𝑞-sequences containing 𝑡𝑝 , 𝑡 and

𝑡 ′ respectively, we have S𝑡 ′ ⊆ S𝑡 ⊆ S𝑡𝑝 . According to Definition 4.9 and THEOREM 4.8, for

each 𝑞-sequence 𝑆 ∈ S𝑡 ′ , RSU(𝑡, 𝑆) = PEU(𝑡𝑝 , 𝑆), 𝑢 (𝑡 ′, 𝑆) ≤ PEU(𝑡𝑝 , 𝑆). Hence, 𝑢 (𝑡 ′, 𝑆) ≤ RSU(𝑡, 𝑆),∑
∀𝑆 ∈S𝑡′ 𝑢 (𝑡

′, 𝑆) ≤ ∑
∀𝑆 ∈S′𝑡 RSU(𝑡, 𝑆) ≤ RSU(𝑡,D), i.e., 𝑢 (𝑡 ′,D) ≤ RSU(𝑡,D). □

HUSP-SP can efficiently calculate the RSU of the newly generated candidate pattern by adding

the PEU values of 𝑞-sequences that still contain the new pattern. Then, according to Theorem 4.10,

HUSP-SP can prune the candidates with low RSU values (less than 𝜉 × 𝑢 (D)). However, RSU only

utilizes the PEU of the prefix sequence for fast calculation, ignoring the help of the newly added item

to reduce the utility upper bound. For instance, the sequence ⟨{𝑏}⟩ generates ⟨{𝑏}, {𝑒}⟩ by one item
extension, and RSU(⟨{𝑏}, {𝑒}⟩,D) = PEU (⟨{𝑏}⟩, 𝑆2) + PEU (⟨{𝑏}⟩, 𝑆3) = 6 + 10 = 16. PEU (⟨{𝑏}⟩, 𝑆3) =
𝑢 (⟨{𝑏 𝑑}, {𝑑}, {𝑎 𝑑 𝑒}⟩, 𝑆3), where the subsequence between b and e, ⟨{𝑑}, {𝑑}, {𝑎 𝑑}⟩, is irrelevant
to the candidate pattern ⟨{𝑏}, {𝑒}⟩ and ⟨{𝑏}, {𝑒}⟩’s extended sequences but contributes to the

utility upper bound of ⟨{𝑏}, {𝑒}⟩. The same problem can be found in PEU (⟨{𝑏}⟩, 𝑆2). Therefore,
we designed a new tighter utility upper bound TRSU to overcome the disadvantages of RSU by

considering the newly added item and subtracting the utility value of the irrelevant subsequence

from the PEU under certain conditions. We shall learn later that the value of TRSU(⟨{𝑏}, {𝑒}⟩,D)
is 7, and it is much less than the value of RSU(⟨{𝑏}, {𝑒}⟩,D), 16.

Definition 4.11. (TRSU) Assuming 𝑞-sequence 𝑆 of QSDB D has 𝑘 instances of sequence 𝑡 with

extension positions 𝑝1, 𝑝2, . . ., 𝑝𝑘 , where 𝑝1 < 𝑝2 < . . . < 𝑝𝑘 . Let sequence 𝑡
′
be generated by one

item Extension from sequence 𝑡 . The TRSU of 𝑡 ′ in 𝑞-sequence 𝑆 is defined as

TRSU(𝑡 ′, 𝑆) =
{
PEU(𝑡, 𝑆) − [𝑢 (𝑆/𝐼 (𝑡,𝑝𝑖 ) ) − 𝑢 (𝑆/𝐼 (𝑡 ′,𝑝′1)−1)], 𝑡 ′ ⊑ 𝑆 , PEU(𝑡, 𝑆) = 𝑢 (𝑡, 𝑝1, 𝑆) + 𝑢 (𝑆/𝐼 (𝑡,𝑝1) );
RSU(𝑡 ′, 𝑆), otherwise.

(11)
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where 𝑝1 is the first extension position of 𝑡 , 𝑝 ′1 represents the first extension position of 𝑡 ′, and 𝑝𝑖 is
the first extension position of 𝑡 before 𝑝 ′1 (𝑝𝑖 may equal to 𝑝 ′1) in 𝑆 . Also, the TRSU of the sequence

𝑡 ′ in database D is defined as

TRSU(𝑡 ′,D) =
∑︁
∀𝑆 ∈D

TRSU(𝑡 ′, 𝑆). (12)

For example, in Table 1, TRSU(⟨{𝑏}, {𝑒}⟩,D) = TRSU(⟨{𝑏}, {𝑒}⟩, 𝑆2) + TRSU(⟨{𝑏}, {𝑒}⟩, 𝑆3) =
PEU(⟨{𝑏}⟩, 𝑆2) - [𝑢 (𝑆2/1) - 𝑢 (𝑆2/3)] + PEU(⟨{𝑏}⟩, 𝑆3) - [𝑢 (𝑆3/2) - 𝑢 (𝑆3/6)] = 6 - (5 - 3) + 10 - (8 -

1) = 7. Besides, as the example in Definition 4.9 states, the RSU(⟨{𝑏}, {𝑒}⟩,D) = 16, which is even

greater than twice the value of TRSU(⟨{𝑏}, {𝑒}⟩,D). It shows the TRSU is much tighter than the

RSU. Note that the TRSU and RSU are the same kinds of upper bounds that are designed based

on the look-ahead strategy [31]. Besides, TRSU provides an idea for further reducing the upper

bounds designed based on the look-ahead strategy.

Theorem 4.12. For any Extension of sequence 𝑡 in the database D with sequence 𝑤 , 𝑤 can be
empty, 𝑡 ′ = 𝑡♦𝑤 , 𝑢 (𝑡 ′,D) ≤ TRSU(𝑡,D).
Proof. Assuming 𝑡 is generated by one item Extension from sequence 𝑡𝑝 , 𝑡 = 𝑡𝑝♦𝑖 , then 𝑡 ′ = 𝑡𝑝♦𝑖♦𝑤 .

Let S𝑡𝑝 ⊆ D, S𝑡 ⊆ D and S𝑡 ′ ⊆ D be the set of 𝑞-sequences containing 𝑡𝑝 , 𝑡 and 𝑡
′
respectively,

we have S𝑡 ′ ⊆ S𝑡 ⊆ S𝑡𝑝 . According to Definition 4.11, there are two scenarios for the computation

of TRSU(𝑡, 𝑆) for each 𝑞-sequence 𝑆 ∈ S𝑡 ′ . On the one hand, when PEU(𝑡𝑝 , 𝑆) = 𝑢 (𝑡𝑝 , 𝑝1, 𝑆) +
𝑢 (𝑆/𝐼 (𝑡𝑝 ,𝑝1) ), TRSU(𝑡, 𝑆) = PEU(𝑡𝑝 , 𝑆) - [𝑢 (𝑆/𝐼 (𝑡𝑝 ,𝑝𝑖 ) ) - 𝑢 (𝑆/𝐼 (𝑡,𝑝′1)−1)], where 𝑝1 is the first extension
position of 𝑡𝑝 , 𝑝

′
1 is the first extension position of 𝑡 , and 𝑝𝑖 is the first extension position of 𝑡𝑝

before 𝑝 ′1. According to THEOREM 4.10, 𝑢 (𝑡 ′, 𝑆) ≤ PEU(𝑡𝑝 , 𝑆), and it can be observed that the

sub 𝑞-sequence of 𝑆 from index 𝐼 (𝑡𝑝 , 𝑝𝑖 ) + 1 to 𝐼 (𝑡, 𝑝 ′1) − 1 is irrelevant to any 𝑡 ′ (there will be no
subsequence of 𝑡 ′ contained in this sub 𝑞-sequence). Therefore, 𝑢 (𝑡 ′, 𝑆) ≤ PEU(𝑡𝑝 , 𝑆) − [𝑢 (𝑆/𝐼 (𝑡𝑝 ,𝑝𝑖 ) )
- 𝑢 (𝑆/𝐼 (𝑡,𝑝′1)−1)], since the 𝑢 (𝑆/𝐼 (𝑡𝑝 ,𝑝1) ) contains the utility of the irrelevant sub 𝑞-sequence, that’s

to say, 𝑢 (𝑡 ′, 𝑆) ≤ TRSU (𝑡, 𝑆). On the other hand, TRSU (𝑡, 𝑆) = RSU (𝑡, 𝑆) = PEU (𝑡𝑝 , 𝑆), and we have

𝑢 (𝑡 ′, 𝑆) ≤ PEU(𝑡𝑝 , 𝑆). Hence, 𝑢 (𝑡 ′, 𝑆) ≤ TRSU (𝑡, 𝑆) also holds. In conclusion, 𝑢 (𝑡 ′, 𝑆) ≤ TRSU (𝑡, 𝑆),∑
∀𝑆 ∈S𝑡′ 𝑢 (𝑡

′, 𝑆) ≤ ∑
∀𝑆 ∈S𝑡′ TRSU(𝑡, 𝑆) ≤ TRSU(𝑡,D), i.e., 𝑢 (𝑡 ′,D) ≤ TRSU(𝑡,D). □

HUSP-SP can also efficiently calculate the TRSU of newly generated candidate patterns with

the help of the remaining-utility array. According to THEOREM 4.12, HUSP-SP can prune the

candidates with low TRSU values (less than 𝜉 × 𝑢 (D)). Based on the utility upper bounds, the

pruning strategies are described as follows. First, the IIP (irrelevant items pruning) strategy [24] is

adopted by HUSP-SP, and it is defined based on RSU in this paper as follows. IIP Strategy: Given
a sequence 𝑡 , and any item 𝑖 available for extension, if

∑
𝑆 ∈D RSU (𝑡♦𝑖) is less than the minimum

utility threshold (𝜉 × 𝑢 (D)), then 𝑖 can be removed from the seqPro structure of 𝑡 and 𝑡 ’s extension

sequences. The correctness of the IIP strategy and proof process have been given in HUSP-ULL

[24]. Then, according to THEOREM 4.12, an EP (early pruning) strategy is proposed to discard

unpromising candidate items early. EP Strategy: Given a sequence 𝑡 and any item 𝑖 available for

extension, two situations are considered: 1). If 𝑖 is an I-Extension candidate item, and TRSU (𝑡♦𝑖 ,D)
< 𝜉 × 𝑢 (D), then 𝑖 should be discarded. 2). If 𝑖 is an S-Extension candidate item, and TRSU (𝑡♦𝑠𝑖,D)
< 𝜉 × 𝑢 (D), then 𝑖 should be discarded.

4.4 HUSP-SP Algorithm
Based on the seq-array, the designed TRSU, and the EP strategy, the proposed HUSP-SP algorithm

can be stated as follows. Algorithm 1 gives the main steps of HUSP-SP. The algorithm first scans

the quantitative sequential database D to construct the storage structure, that is, the seq-array of

each 𝑞-sequence 𝑆 ∈ D (line 1). It also accumulates the utility of the 𝑞-sequences and gets the 𝑢 (D)

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: January 2023.



12 C. Zhang et al.

after scanning the database (line 1). Then, the projected database seqPro(⟨⟩) of the empty sequence

is constructed (lines 3-4). Following that, the empty sequence is treated as the prefix, and HUSP-SP

begins the depth-first search with the built projected database by invoking the PatternGrowth
procedure (line 5).

ALGORITHM 1: HUSP-SP algorithm

Input: D: a quantitative sequential database; UT : a utility table with external utility values for distinct

items in D; 𝜉 : a minimum utility threshold.

Output: the set of HUSPs.

1 scan D to build the seq-array for each 𝑆 ∈ D, and calculate 𝑢 (D);
2 seqPro(⟨⟩).seq-array← {seq-array of 𝑆 | 𝑆 ∈ D};
3 seqPro(⟨⟩).exList← NULL;
4 HUSPs← ∅;
5 call PatternGrowth(⟨⟩, seqPro(⟨⟩), HUSPs);
6 return HUSPs

ALGORITHM 2: PatternGrowth(prefix, seqPro(prefix), HUSPs)

1 seqPro(prefix)← IIP(seqPro(prefix)) // measured by IIP

2 scan seqPro(prefix) to get I-Extension items (iList) and S-Extension items (sList) of prefix // measured by

EP

3 for each item 𝑖 ∈ iList do
4 call UtilityCalculation(prefix♦𝑖𝑖 , seqPro(prefix), HUSPs);
5 end
6 for each item 𝑖 ∈ 𝑠𝐿𝑖𝑠𝑡 do
7 call UtilityCalculation(prefix♦𝑠𝑖 , seqPro(prefix), HUSPs);
8 end

ALGORITHM 3: UtilityCalculation(prefix ′, seqPro(prefix), HUSPs)

1 seqPro(prefix′).seq-array← {seq-array of 𝑆 | prefix′ ⊆ 𝑆∧ 𝑆 ∈ seqPro(prefix).seq-array};
2 calculate 𝑢(prefix ′), PEU (prefix ′) and construct seqPro(prefix ′).exList;
3 if 𝑢(prefix′) ≥ 𝜉 × 𝑢 (D) then
4 HUSPs← HUSPs ∪ prefix ′;
5 end
6 if PEU(prefix′) ≥ 𝜉 × 𝑢 (D) then
7 call PatternGrowth(prefix ′, seqPro(prefix′), HUSPs);
8 end

The PatternGrowth procedure (cf. Algorithm 2) shows the depth-first search process, i.e.,

the pattern growth process through the I-Extension and S-Extension operations. The algorithm

first removes the irrelevant items from the projected database by applying the IIP strategy, and

then updates the projected database, seqPro(prefix) (line 1). Then, the reduced projected database

seqPro(prefix) is scanned to get the promising I-Extension items (iList) and S-Extension items (sList)
of prefix by EP strategy (line 2). For each item 𝑖 of iList and sList, the algorithm generates a new one

length longer pattern by applying I-Extension and S-Extension with 𝑖 , respectively. Furthermore,
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the newly generated pattern, such as prefix ♦𝑠𝑖 , is evaluated by calling the UtilityCalculation
procedure (lines 3-8).

The UtilityCalculation procedure (cf. Algorithm 3) first establishes the seq-array field of the

projected database seqPro(prefix ′) based on the seqPro(prefix) (line 1). Then, the utility and PEU

value of prefix ′ are calculated based on the constructed seqPro(prefix ′); meanwhile, the Extension-

List field of the seqPro(prefix ′) is built (line 2). If the 𝑢(prefix ′) is not less than the minimum utility

𝜉 × 𝑢 (D), the prefix ′ is added to the HUSPs (lines 3-5). Furthermore, if the PEU(prefix′) is not less
than 𝜉 × 𝑢 (D), the PatternGrowth procedure is called to mine the HUSPs prefixed with prefix ′

(lines 6-8). Note, the utilization of PEU can result in missing patterns when the pruning condition

“if PEU(prefix′) < 𝜉 × 𝑢 (D) then stop the mining branch with prefix ′ as parent node" is executed
before displaying the result sequence “if (𝑢 (prefix′) ≥ 𝜉 × 𝑢 (D)) then output prefix ′" [37]. Finally,
HUSP-SP terminates when there are no newly generated candidate patterns, and returns the set of

HUSP, HUSPs.
To better illustrate the proposed algorithm, we give a running example below. Considering the

running example (Table 1 and Table ??), and 𝜉 = 0.5. After the first scanning of the database, we

build the seq-arrays for 𝑞-sequences of the database and obtain that the threshold value is 𝜉 ×
𝑢 (D) = 23.5, the SWU [46] value of ⟨{𝑎}⟩, ⟨{𝑏}⟩, ⟨{𝑐}⟩, ⟨{𝑑}⟩, ⟨{𝑒}⟩, ⟨{𝑓 }⟩ are 29, 35, 12, 47, 34,
31. Thus, the item 𝑐 is permanently deleted from the database as its SWU value is less than the

threshold value. Then we get the TRSU value of ⟨{𝑎}⟩, ⟨{𝑏}⟩, ⟨{𝑑}⟩, ⟨{𝑒}⟩, ⟨{𝑓 }⟩ are 29, 23, 22, 10,
and 10 by scanning the original seq-arrays. So, ⟨{𝑎}⟩ is the only promising candidate. Next, we

scan the original seq-arrays again to construct the projected database (seqPros) and calculate the

utility of ⟨{𝑎}⟩. The utility and PEU values of ⟨{𝑎}⟩ are 12 and 29, separately. Therefore, ⟨{𝑎}⟩
is not a HUSP, and we should call the PatternGrowth on it for mining its extension sequences.

Firstly, we get the RSU value of ⟨{𝑎♦𝑒}⟩ and ⟨{𝑎♦𝑓 }⟩ are 16 and 13 by searching the seqPro of ⟨{𝑎}⟩.
Thus, we delete the items 𝑒 and 𝑓 from the seqPro of ⟨{𝑎}⟩ based on the IIP strategy. Then, we
scan the reduced seqPro(⟨{𝑎}⟩), and we find two I-Extension sequences ⟨{𝑎, 𝑏}⟩ and ⟨{𝑎, 𝑑}⟩, whose
TRSU value are 27 and 25. The S-Extension sequences of ⟨{𝑎}⟩ include ⟨{𝑎}, {𝑎}⟩ and ⟨{𝑎}, {𝑑}⟩,
whose TRSU value are 21 and 24. According to the EP strategy, we can discard the ⟨{𝑎}, {𝑑}⟩ as
its TRSU value is less than 23.5. ⟨{𝑎, 𝑏}⟩, ⟨{𝑎, 𝑑}⟩ and ⟨{𝑎}, {𝑑}⟩ are the promising candidates, and

we call the UtilityCalculation for each of them. The mining process for ⟨{𝑎, 𝑑}⟩ and ⟨{𝑎}, {𝑑}⟩ is
terminated since their PEU values are 17 and 19. The utility and PEU values of ⟨{𝑎, 𝑏}⟩ are 16 and
27, so ⟨{𝑎, 𝑏}⟩ is not a HUSP. Finally, we call the PatternGrowth on ⟨{𝑎, 𝑏}⟩ and get one HUSP

⟨{𝑎, 𝑏}, {𝑎, 𝑑}⟩ with a utility of 25.

4.5 Complexity Analysis
Let |D| denotes the number of 𝑞-sequences in database D, 𝐿 denotes the length of the longest

𝑞-sequence in D, and |𝐼 | denotes the number of distinct items in D. HUSP-SP first scans the

database D to build the seq-arrays, whose time complexity is 𝑂 ( |D|𝐿). The memory complexity

of the seq-arrays is also 𝑂 ( |D|𝐿) since there are |D| seq-arrays, and the most extended length is

𝐿. Then, HUSP-SP calls the recursive function PatternGrowth after some initial operations and

finally returns the HUSPs. Thus, the time complexity of the HUSP-SP algorithm is 𝑂 ( |D|𝐿) + 𝑁 ×
timeComp_𝑃𝐺 , where 𝑁 denotes the number of times PatternGrowth is called, and timeComp_𝑃𝐺
denotes the time complexity of PatternGrowth. The memory complexity of HUSP-SP is𝑂 ( |D|𝐿) +
𝐻 ×𝑚𝑒𝑚𝑜𝐶𝑜𝑚𝑝_𝑃𝐺 , where H denotes the maximum depth of recursively calling PatternGrowth,
memoComp_𝑃𝐺 denotes the memory complexity of PatternGrowth.
As for PatternGrowth, the procedure first needs to scan the projected database three times

(lines 1-2), whose worst time complexity is 𝑂 ( |D|𝐿). Specifically, the IIP operation first takes one

scan to mark the extension items with low RSU as irrelevant items, and then scans the projected
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database again to update the projected database by deleting the utility of the irrelevant items in

the Remaining-utility array (Definition 4.5). After the IIP operation, PatternGrowth scans the

reduced projected database once to get the promising extension items, iList and sList. The remaining

operations of PatternGrowth are appending each item of iList or sList to the prefix and calculating
the utility of the generated candidate pattern (lines 3-8), whose worst time complexity is |𝐼 | ×
timeComp_𝑈𝐶 . Note that the timeComp_𝑈𝐶 represents the time complexity of UtilityCalculation.
Thus, the worst time complexity of PatternGrowth is𝑂 ( |D|𝐿) + |𝐼 | × timeComp_𝑈𝐶 . In addition,

the worst memory complexity of PatternGrowth is𝑂 ( |D|𝐿 + |𝐼 |). This is because the largest size
of the projected database can be |D| when each 𝑞-sequence in D contains the candidate pattern.

Moreover, the largest size of Extension-list can be 𝐿 when the candidate pattern is equal to any

subsequence of the same length in D. Therefore, the worst memory complexity of the projected

database can be𝑂 ( |D|𝐿). In addition, for marking deleted items, the IIP operation requires a global

array of length |𝐼 |.
Additionally, the worst time complexity of the UtilityCalculation is 𝑂 ( |D|𝐿). This is because

the projected database may contain at most |D| 𝑞-sequences. Besides, for each 𝑞-sequence, calcu-
lating the utility of the new candidate pattern needs to traverse the extension-List and Item-indices

table, which may contain at most 𝐿 elements. According to the above, the value of timeComp_UC
is 𝑂 ( |D|𝐿), and the value of timeComp_PG is 𝑂 ( |D|𝐿) + |𝐼 | × 𝑂 ( |D|𝐿), which equals 𝑂 ( |𝐼 | |D|𝐿).
Thus, the time complexity of the HUSP-SP algorithm is 𝑂 ( |D|𝐿) + 𝑁 × 𝑂 ( |𝐼 | |D|𝐿), which equals

𝑂 (𝑁 |𝐼 | |D|𝐿). Besides, the value of memoComp_PG is 𝑂 ( |D|𝐿 + |𝐼 |), and the memory complexity

of HUSP-SP is 𝑂 ( |D|𝐿) + 𝐻 × 𝑂 ( |D|𝐿) + 𝑂 ( |𝐼 |), which equals 𝑂 (𝐻 |D|𝐿 + |𝐼 |). Note that there is
only one global array of length |𝐼 | for marking deleted items; thus, the factor of |𝐼 | is one instead of

𝐻 . To sum up, the time complexity of the HUSP-SP algorithm is 𝑂 (𝑁 |𝐼 | |D|𝐿), and the memory

complexity is 𝑂 (𝐻 |D|𝐿 + |𝐼 |).
It is worth noting that the number of candidate patterns (LQS-tree nodes) is 𝑂 ( |𝐼 |𝐿), which is

equal to the value of 𝑁 . Furthermore, the length of the longest pattern is 𝐿, which equals the value

of 𝐻 . Therefore, the worst time complexity and memory complexity of the HUSP-SP algorithm are

𝑂 ( |𝐼 |2 |D|𝐿2) and 𝑂 ( |D|𝐿2 + |𝐼 |), separately. Nevertheless, the exact time and memory complexity

of HUSP-SP can be much smaller than the above theoretical values, as the proposed pruning

strategies can significantly reduce the search space (the number of candidate patterns).

5 EXPERIMENTS
In this section, sufficient experimental results were presented and analyzed to demonstrate the

performance of the proposed algorithm. The state-of-the-art HUSPM algorithms, including USpan

[46] (replaced the SPU by PEU), ProUM [23] and HUSP-ULL [24] were selected as the baselines. All

the compared algorithms were implemented in Java. All the course code and datasets are available

at GitHub
1
. The following experiments were conducted on a personal computer with an Intel Core

i7-8700K CPU @ 3.20 GHz, a 3.19 GHz processor, 8 GB of RAM, and a 64-bit Windows 10 operating

system.

5.1 Data Description
Five real-world datasets and one synthetic dataset were utilized in our experiment to evaluate the

performance of the compared algorithms. Table 2 lists the statistical characteristics of these datasets.

Note that the number of 𝑞-sequences is denoted as |𝐷 |, the number of different 𝑞-items is denoted as

|𝐼 |, the average/maximum length of 𝑞-sequences is denoted as avg(𝑆)/max(𝑆), the average number

of 𝑞-itemsets per 𝑞-sequence is denoted as #avg(IS), the average number of 𝑞-items per 𝑞-itemset is

1
https://github.com/DSI-Lab1/HUSPM
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denoted as #Ele, and the average/maximum utility of 𝑞-items is denoted as avg(UI )/max(UI ). The
values of #Ele parameter of these datasets indicate that the Sign, Bible, Kosarak10k and Leviathan

are composed of single item element based sequences, while the Yoochoose and SynDataset-160K

are composed of multi-item element based sequences. The utilization of both single-item and multi-

item element based sequence datasets makes the experimental results more convincing. Excluding

Yoochoose2, the other datasets can be obtained from an open-source data mining website
3
.

Table 2. Features of the datasets

Dataset |D| |I| avg(S) max(S) avg(IS) #Ele
Sign 730 267 52.00 94 52.00 1.00

Bible 36,369 13,905 21.64 100 21.64 1.00

SynDataset-160k 159,501 7,609 6.19 20 26.64 4.32

Kosarak10k 10,000 10,094 8.14 608 8.14 1.00

Leviathan 5,834 9,025 33.81 100 33.81 1.00

Yoochoose 234,300 16,004 2.25 112 1.14 1.98

SynDataset-10k 10,000 7,312 27.11 213 6.23 4.35

SynDataset-80k 79,718 7,584 26.80 213 6.20 4.32

SynDataset-160k 159,501 7,609 26.75 213 6.19 4.32

SynDataset-240k 239,211 7,617 26.77 213 6.19 4.32

SynDataset-320k 318,889 7,620 26.76 213 6.19 4.32

SynDataset-400k 398,716 7,621 26.75 213 6.19 4.32

5.2 Efficiency Analysis
In the first experiment, the runtime performance of the proposed algorithm was compared with the

state-of-the-art algorithms. Then, on six datasets, a series of experiments with various minimum

utility threshold (denoted as 𝜉) settings were run, with the detailed results shown in Fig. 3.

It is shown that the proposed HUSP-SP is faster than the other existing algorithms in all cases.

Generally, HUSP-SP was a quarter faster than the state-of-the-art algorithm HUSP-ULL, one order

of magnitude faster than ProUM, and two or three orders of magnitude faster than USpan. For

example, except for the SynDataset-160k in Fig. 3(c), the runtime of HUSP-SP consumes around ten

seconds, while the other algorithms may consume hundreds to thousands of seconds. Furthermore,

HUSP-SP and HUSP-ULL are much more stable than ProUM and USpan in runtime efficiency when

𝜉 decreases. For instance, in Fig. 3(c), the runtime of USpan and ProUM increased by a hundred

seconds when 𝜉 decreased by 0.00005, while HUSP-SP ran only a few seconds longer. Note that

when the minimum threshold parameter is less than 1.2% on the Leviathan dataset, the USpan

algorithm cannot finish the experiment because it has run out of memory. In all parameter settings,

HUSP-SP is superior to all existing algorithms.

5.3 Effectiveness of Pruning Strategies
In order to evaluate the effect of pruning strategies, this subsection investigated the generated

candidate patterns and HUSPs of the compared algorithms under varying minimum utility thresh-

olds in the six datasets. The details are shown in Fig. 4. Note that #candidate is the number of

the generated candidate patterns, which must be checked, and #HUSPs is the number of the final

HUSPs discovered by the method.

2
https://recsys.acm.org/recsys15/challenge

3
http://fimi.ua.ac.be/data
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Fig. 3. Execution times of the compared methods under various minimum utility thresholds
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Fig. 4. Experimental results of generated candidates and patterns

As shown in Fig. 4, the number of candidate patterns generated by HUSP-ULL and HUSP-SP is

much smaller than the other two methods. The main reason for the huge difference in the number

of candidates is that HUSP-ULL and HUSP-SP adopt the IIP strategy. With the introduction of the

IIP strategy, the utility upper bounds decreased faster due to the utility deletion of irrelevant items.

Therefore, the search space was much smaller when the IIP strategy worked. Besides, HUSP-SP

generally generates half as many candidate patterns as HUSP-ULL. Therefore, it proves that the

proposed new upper bound TRSU and the EP pruning strategy are effective.
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It can also be observed that the number of candidate patterns of HUSP-SP and HUSP-ULL

increased much slower than USpan and ProUM. However, Fig. 4(f) shows that, in the dataset

Yoochoose, the compared algorithms generated a similar number of candidate patterns. Still, from

Fig. 3 and Fig. 5, we can find that the proposed HUSP-SP performed better in terms of runtime and

memory. Therefore, the proposed projected structure seqPro is more compact and more effective in

the HUSP mining process.

5.4 Memory Evaluation
In this subsection, the important algorithmic measure criteria for memory are evaluated. The

experiment results are shown in Fig. 5.
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Fig. 5. Memory usage results of the compared methods under various minimum utility thresholds

HUSP-SP outperformed all of the compared algorithms in terms of memory consumption across

all experiment parameter settings, as shown in Fig. 5. It can be observed that the memory usage

of the HUSPM method increased when the number of candidate patterns increased. For example,

Fig. 5(d) shows that USpan (ProUM) consumed about 600 megabytes more memory than HUSP-

SP (HUSP-ULL), while USpan (ProUM) generated over 100,000,000 more candidate patterns than

HUSP-SP (HUSP-ULL). The memory performance of USpan is generally poor. For instance, USpan

ran out of memory when the minimum utility threshold 𝜉 was less than 1.20% in Leviathan. Also, it

can be found that the data structures utilized by ProUM and HUSP-ULL are not compact enough in

some conditions. For example, in Fig. 5(a), the USpan consumed about 200 megabytes less memory

than ProUM and HUSP-ULL. However, the performance of the utility-matrix [46] utilized by USpan

was poor. In conclusion, the good memory usage performance of HUSP-SP proves that the newly

proposed seq-array structure is compact, and the search space of HUSP-SP is much smaller.

5.5 Scalability Test
The robustness of the compared algorithms is analyzed in this subsection through the scalability

test. The experiment was based on a synthetic multi-item element-based sequence dataset, namely
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C8S6T4I3D|X|K [1]. The detailed results are shown in Fig. 6, including runtime, candidate, and

memory efficiency. Note that the size of the SynDataset varied from 10K to 400K sequences, and

the minimum utility threshold 𝜉 was set to 0.001 throughout the experiment.
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Fig. 6. Scalability of the compared methods

As shown in Fig. 6, HUSP-SP had the best scalability among the compared algorithms for its

minimum runtime, memory consumption, and candidate pattern number in all the test results.

Furthermore, the runtime of HUSP-SP increased linearly as the number of dataset sequences grew.

From Fig. 6(b), it can be observed that the memory usage of HUSP-SP is relatively stable, excluding

the experiment with 10K sequences. Similar results can be found in Fig. 6(c) where the number of

candidate patterns was kept stable while the size of SynDataset varied from 80K to 400K. Therefore,

the growth in memory usage of HUSP-SP comes mainly from the expansion of the processed dataset.

The proposed HUSP-SP algorithm has good extensibility for dealing with large-scale datasets.

5.6 Ablation Study
We further conducted an ablation study on the proposed upper bound TRSU to evaluate its effects

on execution performance in terms of runtime, memory consumption, and the number of generated

candidates. Theoretically, introducing TRSU can reduce the search space and speed up the mining

process. To evaluate the effectiveness of TRSU, we developed another algorithm, HUSP-SP*, by re-

placing the upper bound of HUSP-SP from TRSU to RSU. We examined two datasets, SynDataset80k

and SynDataset160k, with different minimum utility threshold 𝜉 settings. The detailed study results

are shown in Fig. 7.

As we can see, HUSP-SP has a shorter runtime and fewer candidate patterns in all cases of

the study results. It proves that TRSU does contribute to the high performance of HUSP-SP. It is

interesting that HUSP-SP and HUSP-SP* have the same memory consumption result in all cases.

To explain this phenomenon, we perform a further experiment and find that when we continually

change the minimum utility threshold, e.g., set to 0.0004, the memory consumption of HUSP-SP on

SynDataset80K increases to 750 MB, and the candidate number increases to 7,888,232. That is to say,

the number of candidates increased by nearly 8,000,000 while memory consumption increased by

less than 100 MB. Besides, in all the study cases in Fig. 7, we can find that the number of candidates

varies by no more than 100,000. Therefore, it reflects that the memory consumption results are

the same within a dataset. Furthermore, it demonstrates the stability of the proposed HUSP-SP:

its memory consumption performance is not as sensitive to changes in 𝜉 . From the study result

comparison between datasets SynDataset80K and SynDataset160K, we can also find that HUSP-SP

has good scalability in terms of database size. In conclusion, the proposed upper bound TRSU

significantly contributes to improving the efficiency of the algorithms.
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Fig. 7. Ablation results of the TRSU

6 CONCLUSION
Due to its more comprehensive consideration of the sequence data, database-based sequence mining

has played an important role in the domain of knowledge discovery in databases. In general, utility

mining takes frequency, sequential order, and utility into consideration, while the combinatorial

explosion of sequences and utility computation make utility mining a NP-hard problem. This

article proposes a novel HUSP-SP algorithm that addresses the problem more efficiently than the

existing methods. HUSP-SP developed the compact seq-arrays to store the necessary information

from sequence data. Besides, the projected database structure, namely seqPro was designed to

efficiently calculate the utilities and upper bound values of candidate patterns. Furthermore, a new

tight utility upper bound, namely TRSU, and two search space pruning strategies are proposed to

improve the mining performance of HUSP-SP. Extensive experimental results on both synthetic

and real-life datasets show that the HUSP-SP algorithm outperforms the state-of-the-art algorithms,

e.g., HUSP-ULL. In the future, an interesting direction is to redesign HUSP-SP and develop a parallel

and distributed version, for example, utilizing MapReduce or Spark to discover the interesting

HUSPs on large-scale databases in distributed environments.
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