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BERKEN UTKU DEMIREL, LUKE CHEN, and MOHAMMAD ABDULLAH AL FARUQUE,
University of California Irvine, USA

This article presents a resource-efficient adaptive sampling methodology for classifying electrocardiogram (ECG) signals

into different heart rhythms. We present our methodology in two folds: (i) the design of a novel real-time adaptive neural

network architecture capable of classifying ECG signals with different sampling rates and (ii) a runtime implementation of

sampling rate control using deep reinforcement learning (DRL). By using essential morphological details contained in the

heartbeat waveform, the DRL agent can control the sampling rate and effectively reduce energy consumption at runtime. To

evaluate our adaptive classifier, we use the MIT-BIH database and the recommendation of the AAMI to train the classifiers.

The classifier is designed to recognize three major types of arrhythmias, which are supraventricular ectopic beats (SVEB),

ventricular ectopic beats (VEB), and normal beats (N). The performance of the arrhythmia classification reaches an accuracy

of 97.2% for SVEB and 97.6% for VEB beats. Moreover, the designed system is 7.3× more energy-efficient compared to the

baseline architecture, where the adaptive sampling rate is not utilized. The proposed methodology can provide reliable and

accurate real-time ECG signal analysis with performances comparable to state-of-the-art methods. Given its time-efficient,

low-complexity, and low-memory-usage characteristics, the proposed methodology is also suitable for practical ECG

applications, in our case for arrhythmia classification, using resource-constrained devices, especially wearable healthcare

devices and implanted medical devices.
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1 INTRODUCTION

Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide. According to a recent work
[2], the prevalence of CVDs is 48% for adults in the United States. In addition, according to the National Center for
Health Statistics, the age-adjusted death rate of CVDs was 219.4 per 100,000 in 2017, which equalled 859,125 dead
and 2.2 million people hospitalized in the United States [43]. It is now well established from various studies that
the death toll due to CVDs is more than cancer and chronic lung disease combined [3]. Furthermore, productivity
losses and medical costs of CVD were 555 billion US dollars in 2015. It is expected to reach $1.1 trillion in 2035
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[10]. Although the CVDs include arrhythmia, heart defect, dilated cardiomyopathy, and valvular heart disease,
arrhythmias are the most important ones among them, as they result in heart failure, heart attack, and sudden
cardiac arrest. The higher risk associated with recurrent heart attacks requires continuous monitoring of those
patients. Moreover, 1 out of 5 heart attacks is silent, where victims are unaware of the damage [1]. The mortality
rate significantly increases by 41%–62% if the treatment is delayed for more than two hours from MI initiation
[18]. The facts mentioned above show the importance of real-time monitoring and detecting of arrhythmias for
patients. Currently, most of the monitoring occurs in a clinical environment with bulky medical equipment that
lacks portability. Therefore, wearable devices represent a more convenient solution for continuous monitoring
daily [32, 36]. Hence, the need for developing long-lasting energy-efficient devices for cardiac activity monitoring
or classification is compelling.

The use of data-driven techniques in healthcare applications is popular given the success of deep learning
algorithms and their ability to learn and adapt to the complex and dynamic environments present in healthcare
applications [11, 27]. Decision-making and control optimization problems such as dynamic treatment, automated
diagnosis, and so on, are prominent in the automated healthcare systems. Traditional control-theory and super-
vised learning methods have been applied to tackle these problems, however, the former requires sophisticated
mathematical models that are often unavailable due to the complexity and partial information of the environment,
while the latter can learn given enough data, but require expert labels that may not always be available. Deep
Reinforcement Learning differs from them in that it does not require mathematical modeling of the environment,
nor does it need expert labels to learn an optimal control policy. DRL constructs adaptive controllers capable
of making optimal decisions by utilizing the contextual information in healthcare systems [49]. DRL solves
sequential-decision problems by taking into account the state observations of the system and learns through
trial-and-error the optimal action to take that will maximize the long-term expected reward based on the current
context and past experiences. State information in the form of the statistical, time-domain, frequency domain,
and other physiological features, like the morphology of ECG, can provide useful contextual information to the
learning agent.

Electrocardiogram (ECG) signal, which records the electrical signals of heart activity, is one of the most
effective and available methods for detecting cardiac arrhythmias [40], since the ECG measurement is a
non-invasive, simple, economical, fast, and safe method that can be accessed in hospitals, healthcare devices,
and wearable devices. Although wearable intelligent devices for long-term ECG monitoring have recently been
proposed, the main limitations of these algorithms are their memory and energy consumption burden on the
devices, limiting the continuous monitoring of patients. Recent developments in cloud computing paved the
way to analyze long-term recorded ECG signals offline using remote cloud servers. The proposed algorithms
in the cloud provide powerful classification performance. However, they cannot be implemented on resource-
constrained devices due to their memory requirements and high energy consumption [24, 35]. Moreover, since
all computing occurs in the cloud, the latency of the system increases, which endangers the users’ cardiac
situation, as it becomes an offline classification algorithm rather than a real-time one. Furthermore, the raw ECG
data recorded from wearable devices is transferred to a mobile phone or cloud system for further investigation.
This process of offloading raw data from wearable devices to mobile phones consumes tremendous energy for
communication, and as a result, reduces the battery life of wearable devices, as well as mobile phones [5, 26],
which ultimately decreases the monitoring time of patients.

To address the above-mentioned challenges, this article proposes a novel method for adaptive sampling of
ECG signals in runtime using deep reinforcement learning on a resource-constrained device to decrease energy
consumption of transmission and classification, thereby increasing the monitoring time of patients.

1.1 Motivational Example

We have conducted several experiments to show why adaptive sampling is needed and can be helpful in clas-
sifying ECG signals for resource-constrained devices. We have created five different classifiers, one for each
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Fig. 1. The classification performance of each beat type under different sampling rates.

decimation ratio of the original sampling rate (Fs/16, Fs/8, Fs/4, Fs/2) and one with the actual sampling rate of
the dataset (Fs), to detect N, SVEB (S), and VEB (V) in MIT-BIH dataset [29]. While performing the experiments,
we followed the common evaluation method, which is the intra-patient paradigm [22, 51], in the literature. For
each decimation rate and beat class, the positive predictive value (TP/(TP + FP )) in percentage is obtained and
reported in Figure 1.

The most interesting aspect of Figure 1 is that the classification performance of the neural network stays rel-
atively constant, around 97.6%−97.7%, for N-type (Non-ectopic) beats in each sampling rate. However, S-type
(Supraventricular Ectopic Beats (SVEB)) classification rate decreases heavily in low sampling rates, especially
Fs/16 with a 14% drop. Although it looks like V-type (Ventricular Ectopic Beats (VEB)) detection performance
stays close to constant in different sampling rates, its percentage is decreased by 9% from the best sampling rate
for the V-type. Surprisingly, when we decrease the sampling rate from Fs to Fs/2, resulting in a resolution de-
crease for beats, the classifier performance increases for VEB and SVEB beats while not changing for N types.
Although at first glance this result is unexpected, our findings reflect those of Zhai et al. [51], who also found
that the positive predictive value of S beats is sensitive to the input size and can increase with a smaller input size.
Although decreasing the sampling rate in ECG beats leads to information loss, it is quite common to increase the
performance by losing redundant information in ECG. For example, a recent paper showed [23] that ignoring
beats from different leads can improve the performance of the classifiers. Also, it should be noted that the clas-
sifier designed with Fs/8 has 8× fewer parameters and Floating point operations (FLOPs) compared to the
baseline model that is used for the original sampling rate. Overall, these results suggest that if the sampling rate
of the ECG signals is controlled precisely during runtime, then significant energy consumption can be prevented
without sacrificing the classification performance. Even, as can be seen from Figure 1, the classification perfor-
mance can be increased for VEB and SVEB if the sampling rate is chosen adaptively during inference instead of
a constant Fs.

1.2 Research Challenges

The idea of using an adaptive sampling rate with a CNN (Convolutional Neural Network) architecture
utilizing the Reinforcement Learning during inference phase instead of the constant input size introduces the
following research challenges:

• The input states of the reinforcement learning model should provide sufficient context needed for decid-
ing the sampling rate at runtime. The extraction of the required information from raw data should be
lightweight so its associated resource overhead does not overshadow the gains achieved by the adaptive
sampling.
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• The RL model execution time should be negligible as to enable real-time classification performance.
• The adaptive system should be energy-efficient while maintaining comparable classification performance

to the baseline architectures in state-of-the-art works.

1.3 Novel Contributions

The novel contributions of this article are as follows:

• An arrhythmia detection method using a sampling rate-adaptive CNN architecture that reaches or outper-
forms the state-of-the-art works on the well-known MIT-BIH datasets [29] in resource-constrained devices
while being energy- and memory-efficient.
• Development of reinforcement learning environment that discerns the contextual and temporal correla-

tions existing in the consecutive ECG segments to determine the rate of decimation to be applied to the
digitized signal for decreasing energy-consumption and latency while achieving comparable classification
performance. To the best of our knowledge, no state-of-the-art work has considered the current signals’
physiology to design such an adaptive system.
• Evaluation in terms of computational efficiency shows that our solution is 7.3× more energy-efficient

compared to our baseline where the sampling rate is constant. Moreover, evaluation on the hardware
demonstrates that our proposed solution is compatible with low-memory devices with a minimum 128 KB
of RAM.
• All of the analysis and results presented in this article are openly available at https://github.com/Berken-

demirel/AdaptiveSampling-DRL for further research and experimentation. Moreover, we have included
the RL agent with weights that can easily be run on another machine and potentially reused on a new
dataset.

The rest of the article is organized as follows: In Section 2, we review related works for changing sampling
rate in heart monitoring systems adaptively. Section 3 describes the proposed method. Section 4 shows the
experimental setup. Section 5 discusses the experimental results and analysis. Finally, a conclusion is drawn in
Section 8.

2 RELATED WORKS

A large volume of published studies investigates the role of sampling rate in finding the fiducial points (R peak
or QRS complex) in the ECG waveform or classifying ECG signals into different cardiac diseases. For instance,
to determine the effects of input size or resolution on the performance, Zhai et al. [51] compared six different
input sizes of CNN classifiers for detecting arrhythmic beats. They found that the classification performance for
S-type is the lowest degree at a small input size, which is likely due to the low resolution of input to capture the
necessary information of the original ECG signal. Yet, detection performance for V-type beat remains relatively
high, probably because V-type beats are usually well distinguished from other beat types. The adaptive sampling
can be seen as a non-uniform feature extraction/selection in the time domain for the Deep Learning models,
since the sampled signals are fed to the CNN or LSTM Long Short Term Memory for the classification [51]. The
non-uniform feature extraction was investigated before in the frequency domain instead of the time domain. For
example, authors in Reference [6] proposed to analyze the ECG signal only in the frequency domain by acquiring
more features in the low-frequency spectrum and fewer features in the high-frequency. After selecting features
in the frequency domain, the authors proposed a fast spectral artificial neural network to classify ECG signals.

Also, as the sampling rate of the signal directly affects the memory requirement and the energy consumption of
a device, much of the research for energy-efficient algorithms has focused on controlling the sampling frequency
during runtime. For example, a recent study from Demirel et al. [7] has proposed to use a sampling rate regulator
that is just controlled by binary classifier output, for changing the sampling rate of ECG signals to the degree
that the classification performance stays constant while decreasing the energy consumption of a classifier that
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Fig. 2. Overview of adaptive sampling rate using DRL.

runs on a resource-constrained device. However, the action space of this controller is minimal, as the overall
system is designed only for two different sampling rates (high or low). Moreover, since the change in sampling
rate is only controlled by classifying the current heartbeat as normal or abnormal, the controller does not utilize
the information about the present and past waveforms or heart rate variability to change the sampling rate of
the current waveform in a more realistic scheme. Since the transmission of the raw ECG signals from sensors
to mobile phones or cloud servers introduces additional energy consumption to the system, there is a large
volume of published studies describing the role of compressive sensing (CS) [39] to decrease the overall energy
consumption. CS is a widely used technique that joins both sampling and compression to decrease the intensity
of information obtaining and transmission [9]. The main difference between adaptive sampling and CS is that
compressed signals need to be reconstructed or sparse coded for further usage. While the proposed adaptive
sampling method in this work requires no post-processing of the signals.

In another study by Augustyniak [4], the authors proposed to sample the ECG signal adaptively by allocating
space in the output data stream accordingly to the information density in the input series by using an encoder and
decoder. Eventually, the authors showed that the proposed adaptive sampling, which has two parts: detection of
heartbeats (QRS complex) and detection of ECG wave borders, preserves the essential sections of the heartbeat
and maintains all diagnostic features of the original signal for reconstructing the initial ECG. Although these
two works focused on reconstructing the original sampled signal, recent outcomes show that using a sampling
frequency below the theoretically required Nyquist rate can be used to classify cardiovascular diseases. For
example, in contrast to these studies, a recent work conducted by Zanoli et al. [50] presented that the QRS
complex of ECG signals can be detected using a sampling frequency that is much below the theoretically required
Nyquist rate. By this technique, which is called event-based sampling, where the events represent the beats of the
heart, they have drastically reduced the average sampling frequency of the signal and, hence, the energy needed
to process it and extract the relevant heart rate information from ECG signals. Although the heart rate variability
features are helpful for the detection of abnormalities such as arrhythmias in ECG signals, its usage is limited
for a wide range of diseases. And, since they only aimed to detect the QRS complex in the complete signal, the
morphological waveform features are lost due to low sampling frequency. Therefore, developing a lightweight
runtime adaptive sampling controller is needed for realizing low-power continuous ECG monitoring devices.

3 PROPOSED METHODOLOGY

The following sections provide the details of our proposed method. The overview of our proposed method is
demonstrated in Figure 2. The proposed method can be divided into two main sections. The first one is the
analog section where the continuous ECG signals (xc (t )) are amplified and converted into a digital domain
using a constant rate ADC with a 360 Hz. The second Digital section starts with pre-processing of the digitized
signal (xd1

[nT ]) with R-peak detection. Then, it continues with segmentation and normalization of heartbeats to
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Fig. 3. POMDP state diagram.

decide the decimation ratio of the current beat. Finally, the decimated signal (xd2
[nTat ]) is fed to the adaptive

classifier for beat detection. Finally, the adaptive classifier gives one of the three classes, which are Non-ectopic
(N), Supraventricular Ectopic Beats (S), and Ventricular Ectopic Beats (V) as output for each beat. The detailed
description of each part is given in the following sections.

3.1 Pre-processing Steps

3.1.1 ECG Lead Selection. This study only used the modified lead II channel from the MIT-BIH database [29],
similar to other works [22, 51]. Automatic cardiac activity classification based on ECG is beneficial for portable
or wearable devices, and it is known that few channel numbers (even single-channel) would be found in these
devices. Hence, we developed our algorithm to run with a single channel of ECGs.

3.1.2 R-peak Detection. Although numerous robust methods have already been available for R peak detection
[31, 33], the R peaks have been labeled for the corresponding sample in the MIT-BIH dataset. Therefore, we used
the annotated R peak locations from the dataset without applying any peak detection algorithms. The algorithm
for improving R-peak detection is beyond the scope of this manuscript.

3.1.3 Segmentation. Similar to other work [30], we take 110 points before the peak and 145 points after the
peak (totally 256 points containing the R peak), which are used to represent the corresponding heartbeat.

3.1.4 Normalization. As the last step for preprocessing, the segmented beats are normalized to have a maxi-
mum value of 1 before feeding them to the RL agent and adaptive classifier.

3.2 Reinforcement Learning (RL)

We formulate the adaptive sampling rate problem as a partially observable Markov decision process

(POMDP) defined by the tuple <S,A,O,TR,Z ,R>. Here, S ⊆ Rm is the set of states, A ⊆ Rn is the set of
actions, O ⊆ Rj is the set of observations, TR : S × A → S is the transition function, Z : S × A → O is the
observation function, and R : O ×A→ Rk is the immediate reward function. A learned policy π : O → A maps
observations to actions over a time horizonT ∈ N,which is used to generate an action trajectory (a0,a1, . . . ,aT ).
Details on the POMDP state transitions can be observed in Figure 3, where s0, s1, . . . , sm represents the under-
lying ECG signal states and s1

0, s
2
0, . . . , s

n
0 represents the corresponding decimated signal states. P (s ′|s ) describes

the cardiac/beat to beat transition probability of the underlying ECG time-series data, and apr ev denotes the
previously chosen action.
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Fig. 4. Overview of proposed classifier (above) with reinforcement learning network (below). The “+” and “−” signs near the
convolutional layer show whether the batch normalization and/or activation are applied.

We consider a standard Reinforcement Learning (RL) setup leveraging the Double Q-Learning (DQL) [42]
algorithm that operates in an environment E. At each discrete timestep t , the agent observes ot = Z (st ,at−1),
picks an action at = π (ot ), and receives a scalar reward rt = R (st ,at ) and the next observation ot+1 = Z (st+1,at )
from E.

The objective of the DQL agent is to learn the estimates of optimal action values, or Q-values, through iterative
updates of a DNN, known as the policy network, to approximate the Q function that maps any s to a vector of
action values. The policy network is updated using Equation (1),

Q (st ,at ) = rt + γQ (st+1, arg max
a

Q (st+1,a;θt );θ ′t ), (1)

which comprises the immediate reward rt , received by taking at given st , and the expected total discounted
future rewards, represented by the product of γ , a discount factor ∈ [0, 1], and the Q-value of st+1. A second Q
function known as the target network, represented by the network weights θ ′t is used according to Reference
[42] to reduce Q-value overestimation.

Agent. We use a single RL agent to control the decimation ratio during runtime. During exploration, the agent
aims to maximize the overall reward of one episode that we define as one subject session, where each session
duration varies according to the number of collected data samples per subject. As shown in Figure 4, the DQL
agent comprises two hidden layers of size 128 and 16 + 1, with a four-node output-layer representing the value
estimate of each action for any s such that the optimal action is a = arg maxa Qπ (s,a) for the learned policy
π . During our experiments, we investigated several architectures for DQL agents through grid search over the
number of layers (1–4) and hidden nodes (2–512) such that the total memory usage does not exceed the runtime
constraints of the embedded device. It is noted that minimal to no policy improvements have been observed
when we increase the number of layers and nodes for the agent. Therefore, the architecture with two hidden
layers is used to make it efficient in terms of energy and execution latency. We concatenate the observation of the
previous action with the current ECG feature embeddings in the last hidden layer following a similar technique
in Reference [48] where it was shown that the concatenation of intermediate features with past observations
improved the performance compared to standard DQL. Instead of directly concatenating a low-dimension feature
(the previous action of size 1) with a high-dimension feature (an ECG segment of size 256), applying smaller
intermediate-layers acts as an encoder or a pooling layer of a CNN whereby higher feature abstractions can
be extracted while also achieving dimension reduction, which helps balance the influence of high-dimension
features and low-dimension features during the learning process.

State Observation. At every timestep, the agent observes a segmented beat of size 256 that is pre-processed
according to Section 3.1. Alongside the ECG segment, we also include the previous action into the observation
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and take advantage of the inherent temporal correlation between consecutive ECG segments in the decision
process. It is apparent that consecutive ECG segments are similar such that the action applied on a correctly
classified previous beat can likely be applied to the current beat with correct classification.

Action. The agent generates four different actions to control the sampling rate during runtime. The discrete
action space is chosen rather than continuous, because it is observed that the small changes in the sampling
rate have no notable effects on both energy and accuracy and make the environment unnecessarily complex,
which results in inefficient exploration during training. The actions for decimation, which is the extraction of
every N th sample from the digitized signal, are chosen as a ∈ {1, 2, 4, 8}. In other words, if the agent chooses the
action 8 during runtime, then the digitized signal is decimated by 8 before sending it to the classifier. The overall
process is explained in Equation (2):

xc (t )
Sampling
======⇒ xd1

[nT ]
Decimation
========⇒ xd2

[nTat ], (2)

where the xc ,xd1
,xd2

are the continuous, digitized, and decimated signals, respectively. And, the T represents
the original sampling rate of the signal from the Analog-to-Digital (ADC) converter.

Reward. The reward function of the agent considers both accuracy and energy savings, which are both affected
by the decision made by the agent. The accuracy portion aims to maximize the average classification of all
events (heartbeats) in the environment (patients). The energy-efficiency goal of the agent is to keep the overall
architecture FLOPs as minimum as possible. As the number of FLOPs are decreasing when the decimation ratio
is increased, the reward function is scaled by the inverse of the decimation. Considering these two objectives,
the reward for the agent is defined as follows:

Raдent =
⎧⎪⎨
⎪
⎩

λRF LOPs if the classification is correct

−p otherwise,
(3)

where λ is the reward scaling factors and p is the penalty value, when the classification is correct, the reward is
scaled with FLOPs improvement. Otherwise, the reward is a negative value to punish the agents. The λ and p
values were found empirically and set to unit value and 10, respectively. We normalize the reward between [−1,
1] to improve the convergence of the RL learning process. The RF LOPs is defined as a decrease in the number of
FLOPs for each action where the FLOPs are calculated as mentioned below.

FLOPs Computation. While calculating the total number of floating-point operations (FLOPs), we have
followed Reference [28], where the convolution is assumed to be implemented as a sliding window and that the
nonlinearity function is computed for free. For convolutional kernels, we have:

FLOPs = 2HW (CinK + 1)Cout , (4)

whereH ,W , andCin are the height, width, and number of channels of the input feature map,K is the kernel width,
andCout is the number of output channels. As we have only a single channel, the height H of the convolutional
kernel is taken as 1. For fully connected layers, we compute FLOPs as:

FLOPs = (2I − 1)O, (5)

where I and O are the input and output dimensionality, respectively. As the output dimension of the adaptive
pooling layer is the same regardless of decimation rate, the FLOPs for the last two dense layers are exempted
while calculating the reduction by the agent’s decision. When the agent chooses the decimation rate among the
{1, 2, 4, 8} values in the action space, theW of the input is decreased by the respective action value. For example,
if the agent chooses the action 8, then the size of the input beat decreases to K/8 from K , resulting in an 8×
reduction in FLOPs (i.e., RF LOPs = 8).
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3.3 Adaptive CNN Architecture

The designed classifier is a convolutional neural network, which takes as input only the raw heartbeat sam-
ples and no other patient- or ECG-related features and classifies a single heartbeat into three classes (N, SVEB,
VEB). The architecture is designed to extract various morphological features from the complete beat, such as P
and T waveforms, by employing different lengths of convolutional filters at different layers of the architecture.
While designing the architecture, we utilized both the Residual connections introduced by He et al. in Reference
[16] and the Inception architecture [41] that has been shown to achieve good performance while maintaining
computational and memory costs at low levels.

The Conv blocks in Figure 4 show the implemented original residual connections where the activation is
applied after addition. The model includes two residual blocks with different kernel sizes and filter numbers.
Every residual block subsamples its inputs by a factor of 2 by taking the maximum sample (i.e., max pooling
with stride 2). The Rectified Linear Unit (ReLu) is utilized as the activation function in the classifier. All
convolutional layers are implemented using a stride of 1 except the first filter, which moves two samples, resulting
in half of the samples K/2. Unlike the Inception architecture, the wider layer (one after the first residual block)
is not stacked up together; instead, we have used Residual blocks, which helps to reduce the dimension of the
network while combining the various features of a heartbeat. Otherwise, the sequential connections of these
wider layers result in a quadratic increase of computation and parameters, making the network inefficient and
prone to overfitting. As the sampling rate of the signals is controlled during runtime, the lengths of heartbeats,
represented as (K , 1) where the agent’s action determines the K value during runtime, can be different.

CNN architectures are generally designed to work with incoming data of a fixed sampling rate, and changes
in the sizes of their inputs cause substantial performance loss, unnecessary computations, or failure in operation.
To handle these limitations, we have utilized the dimension-adaptive pooling (DAP) layer [25] that makes
DNNs flexible and more robust to changes in sampling rate. DAP layers addresses the aforementioned limitations
without enforcing assumptions on the CNN architecture to be used. By building upon global and pyramid-pooling
ideas, it maps the output dimensions of the last feature extractor layer into data whose dimensions match the
expected dimensions of the fully connected layer. The functionality of the DAP layer in our problem can be
explained as follows: Let (W ,H ) be the specified hyper-parameters for the pooling, where W and H represent
the width and height of the window. In our case, since the input is a 1D ECG signal, it can be represented as (W , 1).
DAP first calculates the pooling parameters for the received input segments with different lengths, depending
on the agent’s decision. Then, it chooses the maximum pooling value to create outputs at a fixed dimension
before the fully connected layer. Our readers can find a detailed explanation of the functionality of this layer in
Reference [25].

After each convolutional layer, we applied batch normalization [19] and/or a rectified linear activation. The
“+” and “−” signs near the convolutional layer show whether these operations are applied. We also used Dropout
[38] before the last dense layer with a probability of 0.5 to prevent overfitting. The final fully connected softmax
layer produces a distribution over the three output classes.

4 EXPERIMENTAL SETUP

4.1 Training CNN Classifier

We use data from the MIT-BIH Arrhythmia dataset [13, 29], which contains 48 half-hours of two-channel
ambulatory ECG recordings, digitized at 360 samples per second, obtained from 47 subjects. Only the lead-II
ECG signals are used for experiments for the MIT-BIH dataset. For a fair comparison with published results, we
follow the evaluation settings that were most frequent in the state-of-the-art works. We have excluded the four
paced records (102, 104, 107, 217) from the MIT-BIH dataset [29]. ECG beats in 22 recordings from the MIT-BIH
dataset are included in the training set. Additionally, we have followed the subject-specific classifier scheme
[17, 20, 22] where the training data consisted of two parts, a common part and a subject-specific part. The
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Fig. 5. The diagram showing how the training, validation, and test sets are curated.

common part of training data was selected from the first group (record # started with 1, also called DS100) and
is used for all testing subjects (second record group, record # started with 2, also called DS200). Following the
AAMI recommended practice, at most 5 minutes of recordings from a subject were used for classifier training
purposes. So, the subject-specific part of training data included the heartbeats from the first 5 minutes of the
ECG recording of each testing subject. The remaining 25 minutes of all records were used for testing. The
details of training, validation and testing are illustrated in Figure 5.

Moreover, since the length of each heartbeat is controlled during runtime, the CNN classifier should adapt
to the changes in the sampling rate. Therefore, we have used adaptive dimension training, which comprises
dimension randomization and optimization with accumulated gradients as in Reference [25]. This process works
by training the CNN on input data of several randomly selected dimensions (sampling rates). In this way, the
model can learn the waveform morphological features of different sizes of heartbeats.

The classifier network is trained with Glorot initialization of the weights [12]. L2-regularization with 0.0002
is applied for each convolution operation for Inception, while the last linear layers are trained with a 0.00005 L2
value. We used the Adam optimizer [21] with the default parameters β1 = 0.9 and β2 = 0.999 and a mini-batch
size of 80. The learning rate is initialized to 0.001.

While splitting the training data for validation, the first six minutes of the global training data (DS100) and
the first minute of the local training data (DS200) are used; the remaining 29 minutes of DS100 and the 4 minutes
DS200 are used for training. The training continues until 500 successive epochs, and the best model is chosen
as the highest F1 score on the validation data. In general, the hyper-parameters of the network architecture and
optimization algorithm were chosen by manual tuning. We essentially searched over the number of convolutional
layers, the size and number of the convolutional filters for the architecture optimization.

4.2 Training Agent

The validation data of the machine learning model, which is the first six minutes of the global training data
(DS100) and the first minute of the local training data (DS200), is used for training the agent. It is observed that
if the same training data that is employed before for training the ML model is also used for the RL model, the
agent becomes highly biased, since the reward function of the agent depends on the correct classification of the
current heartbeat and the trained model has already seen those data before in the training phase. To prevent this
biasing, the validation data of the machine learning model is used to create an environment for training the RL
agent. Additionally, since the temporal relationships play a crucial role in the RL agent performance, we did not
change the order of the beats for training, validation, and testing. Therefore, the agent observed transitions from
N to SVEB/VEB and vice versa in the same record.

The network that is used for reinforcement learning was trained using random initialization of the weights
with unit standard deviation. We used the Adam optimizer [21] with the default parameters β1 = 0.9 and β2 =

0.999, a replay memory of size 106, replay-batch size of 8, and ϵ-greedy for exploration with ϵ decaying from 1
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Table 1. Performance Comparison of Proposed Method with Related Works

Work/Classes VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Jiang and Kong [20] 98.1 86.6 99.3 93.3 96.6 50.6 98.8 67.9
Ince et al. [17] 97.6 83.4 98.1 87.4 96.1 62.1 98.5 56.7
Kiranyaz [22] 98.6 95 98.1 89.5 96.4 64.6 98.6 62.1
Zhai and Tin [51] 98.6 93.8 99.2 92.4 97.5 76.8 98.7 74.0
Ours (Baseline–Fs) 98.9 96.1 99.2 93.2 96.5 66.5 98.1 61.1
Ours (Baseline–Fs/2) 99.0 96.3 99.2 93.1 95.6 67.3 97.2 62.1
Ours (Baseline–Fs/4) 96.3 97.8 95.3 84.3 92.4 58.5 91.7 59.5
Ours (Baseline–Fs/8) 93.7 95.6 93.1 82.5 91.1 54.3 89.5 57.2
Ours (Baseline–Fs/16) 92.5 93.3 91.2 81.3 89.3 52.1 88.3 54.1
Ours (Adaptive) 97.6 92.1 98.2 85.2 97.2 62.1 98.9 75.2

to 0.01. The reward discount factor (γ ) is set to 0.99. The target network is updated every 100 steps, while the RL
agent is trained for 6 iterations over the training data.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Performance Evaluation of Adaptive CNN

Classification performance is measured using the four standard metrics found in the literature [22]: classifi-

cation accuracy (Acc), sensitivity (Sen), specificity (Spe), and positive predictivity (Ppr). While accu-
racy measures the overall system performance, the other metrics are specific to each class, and they measure
the ability of the classification algorithm to differentiate certain events from nonevents. The respective defini-
tions of these four standard metrics using true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) are as follows: Accuracy is the ratio of the number of correctly classified beats to the total
number of beats classified, Acc = (TP+TN)/(TP+TN+FP+FN); Sensitivity is the rate of correctly classified events
among all events, Sen = TP/(TP+FN); Specificity is the rate of correctly classified nonevents among all nonevents,
Spe = TN/(TN+FP); and Positive Predictivity is the rate of correctly classified events in all detected events,
Ppr = TP/(TP+FP). While comparing the proposed method with the related works, specifically, we only compare
to studies in which the proposed classifier is trained only once using the combination of global training data and
5 minutes of each test patient rather than training a model for every patient individually [34, 45, 46]. Also, to
make a fair comparison with the related works, we have explicitly calculated and indicated specific performances
for supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB), as shown below.

Table 1 shows the performance of our proposed method in comparison to several other state-of-the-art works
that follow the AAMI recommended practice. We have included different baselines in Table 1, where each is
trained on the decimated version of the original sampling rate (360 Hz for MIT-BIH dataset) indicated by (Fs/x),
while the adaptive one changes the size of the beats according to the decision made by the agent during runtime.
The results, as shown in Table 1, indicate that the adaptive classifier puts more emphasis on the detection of the
SVEB class, since its positive predictive and specificity outperform all the related works. Even the percentage
difference achieves approximately 20%. However, it should be noted that the tradeoff between VEB and SVEB
detection performance becomes apparent when the adaptive classifier is used. A closer inspection of the table
shows that although the detection for the SVEB increases with adaptive classifier, the sensitivity (Sen) and
positive predictive (Ppr) values of VEB beat type decreases by 4%. In addition, we observe similar behavior
of our baseline to the architecture used in Section 1.1, where the performance of our baseline increases when
trained with Fs/2. However, if the sampling rate is reduced significantly, such as by 8 and 16, then the performance
degradation is more significant. The decrease in the number of calculations, which is the reduction of FLOPs,
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Fig. 6. Comparison of computational complexity and performance.

is not apparent in this table; therefore, we have compared the detection ratio of different classes with average
FLOPs for architectures in Figure 6. As a metric for detection performance, we have used positive predictive
value for different beat types similar to Section 1.1.

While comparing the FLOPs, we have only considered the architectures that are given explicitly (i.e., number
of layers with kernel sizes) and we followed the FLOPs computation mentioned in Section 3.2. Furthermore, any
preprocessing such as Fourier or wavelet transforms are ignored, and only the CNN architecture for classification
FLOPs is calculated, as explained in Section 3.2. As shown in Figure 6, the adaptive solution reduces the overall
FLOPs value by 30×, and 7.3× compared to Reference [51] and baseline where the adaptive sampling rate is
not utilized. Furthermore, the adaptive solution achieves a reduction in overall computation while maintaining
performance at a high level. This is exemplified by the SVEB beat type, where the positive predictive value
experiences a notable increase of 10%.

Although the adaptive sampling rate decreases the overall computation while achieving comparable classifi-
cation performance, it should be emphasized that one of the more significant contributions to emerge from this
study is that our proposed method is not a substitute for other methods concerning resource-constrained devices;
instead, it is a complementary method that can be used along with them. For example, pruning and quantization
of deep learning models are widely used in literature [37, 44]; once those dynamic compression techniques have
compressed a network, our adaptive sampling can still be applied to the ECG signals and fed to the compressed
network. Or, different deep learning architectures that are concerned about energy and memory are recently
proposed for ECG beat classification [34, 45]; our proposed method can be utilized with these architectures as
an additional preprocessing step.

5.2 Ablation Studies

5.2.1 Architecture Comparison. As previously noted, our proposed deep learning architecture has two con-
volutional blocks with an inception block. We perform an ablation study of the network by removing each of
these components individually and changing the number of kernels with size. To evaluate these components, we
perform the same evaluation scheme described in Section 4.

For the first two cases of the ablation study, we change the kernel size of the convolutional filters in the
Inception block. The first experiment {1, 3, 5} ← {1, 4, 16} represents the decrease in kernel sizes from 1, 4, 16
to 1, 3, and 5. While in the second case, we increase the kernel size to 1, 8, and 64. The third case shows the
performance when we exclude the Inception block completely from the architecture. And, in the last case, we
decrease the kernel size of the 1st Conv. Block from 9 to 7. All the ablation study is performed when the method
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Table 2. Performance Comparison of the Proposed Architecture and Its Ablation Variations across VEB and SVEB

Architecture VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Ours (Incept. Block Kernel width {1, 3, 5}← {1, 4, 16}) 92.3 86.6 94.6 83.2 91.1 53.4 84.4 58.9
Ours (Incept. Block Kernel width {1, 8, 64}← {1, 4, 16}) 95.4 90.7 98.1 85.1 96.3 60.1 98.3 72.7
Ours (w/o Inception) 91.2 83.3 93.1 81.5 89.1 51.5 86.4 58.0
Ours (1st Conv. Layer Kernel width 7← 9) 95.2 91.7 98.1 84.5 96.3 61.0 98.3 74.3
Ours (Baseline–Fs) 98.9 96.1 99.2 93.2 96.5 66.5 98.1 61.1
Ours (Adaptive) 97.6 92.1 98.2 85.2 97.2 62.1 98.9 75.2

Table 3. Performance Comparison of the Proposed RL and Contextual
Bandits across VEB and SVEB

Modeling Method VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Ours (Contextual Bandits) 97.6 91.3 98.2 85.7 97.0 54.2 98.1 74.1
Ours (Baseline–Fs) 98.9 96.1 99.2 93.2 96.5 66.5 98.1 61.1
Ours (Adaptive) 97.6 92.1 98.2 85.2 97.2 62.1 98.9 75.2

is Adaptive. Table 2 shows the performance of the classifier decreases as the kernel size of convolutional layers
decreases significantly. These results are likely to be related to dynamic change of beats during runtime. Since
the combination of varying-length filters can capture different features compared to only the shorter-length
implementation, the performance of the classifier heavily depends on the Inception block.

Contextual bandits as a control mechanism. In this case study, we examine a separate class of algorithms for
solving sequential decision problems. Specifically, we chose the variant of the multi-armed bandit algorithm, the
contextual bandits (CB). The CB problem is a sequential decision-making problem where an agent chooses
one of the possible actions (arms) based on the input context and receives a reward corresponding to the selected
arm. The main difference between CB and RL is that the former assumes its actions do not affect the states and
receives immediate rewards, whereas the latter assumes actions affect the states and the reward is the sum of
future discounted rewards taking into consideration potential actions taken in the future given that it follows
an optimal policy. Following the work in Reference [8], we apply the neural contextual bandits with Thompson
sampling and consider the problem of adaptive sampling problem as a contextualK-armed bandit problem, where
each arm represents the decimation actions and we have a finite number of rounds T . At every round t ∈ [T ],
the agent observes K contextual vectors of size d {xt,k ∈ Rd |k ∈ K }. When the agent selects an arm at it receives
a corresponding reward rt,at

. The goal is to maximize the total expected reward or in other words to minimize
the sum of regrets:

RT = E

⎡⎢⎢⎢⎢⎣

T∑
t=1

(rt,a∗
t
− rt,at

)
⎤⎥⎥⎥⎥⎦
, (6)

where a∗t is the optimal arm at round t that gives the maximum expected reward. CB takes the same ECG beats
as RL as the contextual input. Our experiments show that RL outperforms CB, as shown in Table 3. Since the
decimation action changes the ECG beat morphology that is used to classify the signal, RL is able to capture the
contextual and temporal correlations existing in the consecutive ECG segments.

The contextual bandit neural network is a single hidden layer network with an input size equal toK arms times
256 features, 128 hidden units, and 1 output node to approximate the mean reward. The input contextual vector
is constructed following Reference [52] such that each arm sees a corresponding vector in the form {x; 0; · · · ; 0;}
for arm 0, {0; x; · · · ; 0;} for arm 1, up to K where x is the feature vector. We set ν and λ to 1e-6 and 0.1. Each
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Table 4. Performance Comparison of the Proposed Methodology on Different Experimental
Setups

Method–Experimental setup VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Ours (Baseline–Fs)–CV 99.2 97.5 99.7 98.7 98.4 30.1 99.1 29.4
Ours (Adaptive)–CV 98.1 98.3 98.1 93.5 98.5 40.0 99.2 33.5

Ours (Baseline–Fs) 98.9 96.1 99.2 93.2 96.5 66.5 98.1 61.1
Ours (Adaptive) 97.6 92.1 98.2 85.2 97.2 62.1 98.9 75.2

context is trained for 100 iterations of stochastic gradient descent with a learning rate of 0.01 and weight decay
λ/counter where the counter increases by 1 up until the total training samples.

Performance of RL in different experimental setups. To observe the performance of reinforcement learning with
different data sizes, we conducted an ablation study by changing the experimental setup. We performed 11 cross-

validations (CV) in the MIT-BIH dataset, where we use records from four subjects to test such that at the end
of the cross-validations, all subjects are used for testing. Although cross-validation is not a common evaluation
scheme in the MIT-BIH due to heavily unbalanced beat distributions across subjects, we believe that this ablation
study shows the performance of the proposed methodology under different experimental setups. For validation
of the classifier and training of the RL model, we use four randomly selected subjects. The overall mean results
are given in Table 4.

Table 4 shows that the classifier performance decreases significantly when the subject-specific training is not
performed. However, our adaptive solution still performs better than the baseline while decreasing the over-
all energy consumption by ≈ 3–4 times. These results suggest that our proposed methodology outperforms or
reaches the baseline models while being more energy-efficient at different experimental setups.

5.2.2 Effect of Downsampling. During our ablation studies, we also investigated the performance of the clas-
sifier for different classes, especially VEB and SVEB. As can be seen from Table 1, the PPR of VEB drops by 8%
for the adaptive case compared to the baseline, which shows that downsampling produces beat patterns that
are harder for our adaptive model to classify. The difference between the Adaptive and Baseline cases is the
downsampled inputs to the classifier during training and inference. Therefore, first, we examined the frequency
contents of the original input samples to analyze the effect of downsampling. We take the Fourier transform of
original samples and calculate the ratio of high-frequency (HF) components in the whole spectrum, as shown
in Equation (7):

KH P =

∑K=fs /2 Hz

k=25
X̃ [k]∑K=fs /2 Hz

k=0
X̃ [k]

, (7)

where X [k] is the Fourier transform of the samples, k is the frequency bins, and KH P is the obtained ratio. After
calculating the frequency ratio, we show the distribution using the histogram as in Figure 7.

As can be seen from Figure 7, the frequency ratio of VEB samples is more spread compared to SVEB. In other
words, VEB samples are more diverse in terms of frequency contents. During downsampling, the frequency
contents of samples will spread more, as shown in Equation (13).

Xd1
(e jw ) =

∞∑
k=−∞

xd1
[k]e−jwk and Xd2

(e jw ) =
∞∑

k=−∞
xd2

[k]e−jwk , (8)

where xc (t ) ========⇒
Samplinд

xd1
[nT ] ==========⇒

Decimation
xd2

[nTat ] with a sampling rate T (9)

Xd2
(e jw ) =

∞∑
k=−∞

xd2
[k]e−jwk =

∞∑
k=−∞

xd1
[kat ]e−jwk (10)
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Fig. 7. Sample distributions in MIT-BIH according to the ratio of high-frequency components in the whole spectrum KH P ,
for VEB and SVEB.

Xd2
(e jw ) =

∑
k=integer
multiple of

a1

xd1
[k]e−jwk/at (11)

Xd2
(e jw ) =

∞∑
k1=−∞

xd1
[k]e−jwk/at since xd1

[k] = 0 when

{
k

at

}
� Z (12)

Xd2
(e jw ) = Xd1

(e jw/at ). (13)

Since the spreading increases when the downsampling rate at increases, features of samples in the frequency
domain overlap more, making it harder for the model to learn the discriminative features. This can also explain
why there is a performance increase in SVEB samples for the adaptive case compared to the baseline. When
we investigate the sample distribution in the MIT-BIH dataset, we can see that the frequency content of SVEB
samples is more in the high-frequency band. When we downsample the heartbeats, the samples from all classes
will spread more to the high frequency as shown above, which eventually makes the classifier converge to a
point to choose SVEB classes for most of the test samples. Another possible explanation for the performance
degradation in VEB class is that when we look at Figure 7, we can see that the VEB samples have more features
in the low band of the spectrum. Thus, when we downsample with a high rate, they will spread to the high-
frequency band as in Equation (13), distorting the features of the class. This also proves that adaptive training
tries to find common features in the same class across different decimation ratios. During our experiments, we
show that if the decimation ratio is chosen correctly by the RL agent, then the performance-energy tradeoff can
be optimized even though decimation results in loss of information.

6 MEMORY AND ENERGY CONSUMPTION EVALUATION

We evaluate our proposed method memory footprint and energy consumption on the EFM32 Giant Gecko ARM
Cortex-M3-based 32-bit microcontrollers (MCUs), which has a 1024 kB flash and 128 kB of RAM with a CPU
speeds up to 48 MHz. Table 5 shows the execution time, energy consumption, and required memory for each
operation that runs on the edge device. The operations are implemented and deployed to the target device using
MATLAB (MATLAB and Coder Toolbox Release R2020b, the MathWorks, Inc).
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Table 5. Memory Footprint, Execution Time, and Energy Consumption Evaluation on
EFM32 Giant Gecko Development Board

Operations
Exe.

Time (ms)
Avg.

Energy (μJ)
Flash Memory
Footprint (KB)

RAM Memory
Footprint (KB)

Pre-processing 1,200 580.2 9.4 20.7
RL Agent 49.24 2.27 44.4 29.3

Overall 1,249 582 ≤64 KB ≤32 KB

The overall execution time for a 5-second ECG segment takes 1, 249 ms in the edge device with 45.8 mW power
consumption. As the pre-processing operation includes filtering, peak detection, segmentation, and normaliza-
tion, its computational overhead dominates the overall operations. Also, our proposed method is compatible
with any device with a minimum RAM of 32 KB. As a result, our method guarantees high performance while
maintaining the low-power wearable devices’ requirements of being resource-efficient in terms of energy and
memory.

It is apparent from Table 5 that additional energy and time consumption due to the RL agent for choosing the
sampling rate can be ignored compared to the overall execution time and energy consumption. A quantitative
runtime analysis shows that the execution time of RL agent is 3.94% of the overall system. This overhead is much
smaller if the energy consumption of the complete algorithm (pre-processing and RL agent) is investigated. The
average energy consumption of the RL agent is only 0.38% of the entire system.

7 DISCUSSION AND FUTURE WORK

This article presents a novel and energy-efficient adaptive runtime sampling method to classify electrocardio-

gram (ECG) signals into different heart rhythms. To evaluate our methodology’s performance, we compare our
approach with several state-of-the-art methods that evaluate their classification results on the same datasets
with the same evaluation method. We show that our proposed methodology reaches or outperforms the current
state-of-the-art works in terms of classification performance for three different classes while being energy- and
memory-efficient. Also, our proposed approach is not a replacement for other methods concerning resource-
constrained devices that are used for continuous monitoring of patients; instead, it is a supportive method that
can be used together with them. However, questions remain about whether the proposed approach’s perfor-
mance is excellent despite these promising results. Therefore, it is important to evaluate the limitations of our
methodology.

First, in our proposed method, the state, the agent’s features, heavily depends on the R-peak detection perfor-
mance, since the observed state is defined based on the waveform of the current heartbeat. It is observed that
when the detected R-peaks are wrong, the decision performance decreases severely due to improper segmenta-
tion. Second, even though deep reinforcement learning with Double Q-learning (DQL) [42] algorithm is used
for making decisions during runtime, the different types of RL can be investigated using different features as
state values. Also, although we have used the observation of the previous action with the current ECG feature
embeddings in the last hidden layer, it could be beneficial to add additional past information, since the temporal
correlation of ECG beats extends to more than just the previous beat. For example, the long-range dependence
among the cardiovascular states has been shown in the literature several times [14, 47], therefore, models that
concern long-range dependence of physiological signals [15] can give better results. We believe that further
research should be undertaken to investigate the different modeling systems to increase performance while de-
creasing energy consumption. Finally, the MIT-BIH [29] is the most commonly used ECG dataset in literature;
most state-of-the-art works and our proposed method focus on identifying small numbers of cardiac abnormali-
ties (VEB, SVEB) that can be insufficient to represent the complexity and difficulty of ECG signals. Therefore, we
believe there is abundant room for further progress in controlling the sampling rate for various ECG beats. For

ACM Transactions on Computing for Healthcare, Vol. 4, No. 3, Article 19. Publication date: September 2023.



Data-driven Energy-efficient Adaptive Sampling Using Deep Reinforcement Learning • 19:17

example, this article showed that increasing the sampling rate has no direct correlation with classification per-
formance for some beat types. In future investigations, it might be helpful to use more comprehensive datasets
to explore this phenomenon.

8 CONCLUSION

In this article, we propose a methodology for real-time adaptive sampling of ECG signals on low-power resource-
constrained medical devices in terms of memory and battery (e.g., wearable devices) using a deep reinforcement
learning setup leveraging the Double Q-Learning. Moreover, we also presented a data-driven novel RL agent
that uses the inherent temporal correlation between consecutive ECG signals with waveform morphology to
determine up to which degree to decimate the ECG signal without sacrificing the classification performance.
Evaluation on the MIT-BIH dataset shows that our proposed adaptive sampling solution requires 32 KB of RAM
and achieves up to 7.3× energy efficiency in the overall dataset without sacrificing any classification performance.
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