
Programming J . J .  Horning* 
Languages Editor 

A Case Study of a 
New Code Generation 
Technique for 
Compilers 
J .  L a w r e n c e  C a r t e r  
I B M  T h o m a s  J .  W a t s o n  R e s e a r c h  C e n t e r  

Recent developments in optimizing techniques 
have allowed a new design for compilers to emerge. 
Such a compiler translates the parsed source code into 
lower level code by a sequence of steps. Each step 
expands higher level statements into blocks of lower 
level code and then performs optimizations on the 
result. Each statement has only one possible 
expansion-the  task of tailoring this code to take 
advantage of any special cases is done by the 
optimizations. This paper provides evidence that this 
strategy can indeed result in good object code. The 
traditionally difficult PL/I concatenate statement was 
investigated as a detailed example. A set of fairly 
simple optimizations was identified which allow the 
compiler to produce good code. More elaborate 
optimizations can further improve the object code. 
For most contexts of the concatenate statement, the 
code produced by a compiler using the expansion- 
optimization strategy described above compares 
favorably with the code produced by a conventional 
PL/I optimizing compiler. 
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Introduction 

Figure 1 sketches a new design for compilers. 
Standard parsing techniques are used to translate the 
source code into an intermediate language (IL). Each 
IL statement consists of an operation name followed 
by a list of operands. The meaning of the IL statements 
produced by the parser is intended to be exactly that 
of the corresponding source language statements. 
These "high !evel" IL statements are defined in terms 
of " lower level" IL s t a t emen t s -  ones closer to machine 
l a n g u a g e - b y  IL defining procedures in the IL proce- 
dure library. 

The procedures in this library have been written in 
IL. An IL defining procedure can be viewed as an 
interpretive routine for the corresponding operation.  
However ,  as will be explained in the next paragraph, 
the compiler can use the defining procedures in a 
different way. The IL statements used in a defining 
procedure may themselves be defined in the IL proce- 
dure library; however,  recursive calls among the IL 
defining procedures are not allowed. The IL procedure 
library may also contain the IL versions of some user 
written procedures.  For each procedure in the library, 
there must be some summary information which de- 
scribes the procedure 's  effect on the program (e.g. 
which parameters are defined, what error  routines 
may be invoked, etc.) This information is needed by 
the optimization routines to determine when the opti- 
mizations are legal. IL operations which do not have a 
procedure in the library are called IL primitives. The 
primitives are either operations that are close in mean- 
ing to machine instructions or invocations of proce- 
dures that are external to the compiler (such as system 
routines). 

The IL text is subjected to a series of optimizations. 
Procedure integration replaces an IL operation (or a 
call to a user-supplied procedure)  with the sequence of 
statements which it represents [2, 7]. Other  optimiza- 
tions can eliminate unnecessary temporaries,  remove 
code which is not executed, and so on. The optimiza- 
tions can be repeated until the IL program contains 
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only primitive statements, though this is not necessary. 
Leaving nonprimitive IL statements unintegrated 
makes the compilation faster but reduces the quality 
of the object code. 

The optimized IL text is then sent to the machine 
tailoring phase, which assigns storage and registers, 
chooses machine instructions for the primitive IL state- 
ments, translates the remaining IL statements into 
calls to the corresponding IL defining procedures, and 
attends to the details needed to produce object code. 

The philosophy behind the compiler is that the IL 
procedures are written to handle the most general 
case, and the optimizations will tailor the code to take 
advantage of special cases. The purpose of this paper 
is first to explore whether such a philosophy can 
actually work, and second to identify some of the 
requirements on the various parts of the compiler 
necessary to produce good object code. We do not 
describe the compiler design in detail, but it is hoped 
that the reader will gain an understanding of it through 
the examples. More information on the design can be 
found in [5]. 

Concatenation 

In order to study the worth of the above compiler 
scheme, we decided to write the IL procedures needed 
to handle the PL/I statement A = Bile; for character 
strings. These procedures were then used to generate 
object code for various examples, and this code was 
evaluated. 

We chose concatenation since it typically is a diffi- 
cult operation for compilers. In A =BIIc;, a or C may 
overlap A in storage. If so, it may not be possible to 
directly move S or e to A since during the move the 
unmoved portion may be destroyed. Yet substantial 
time can be saved by making a direct move in cases 
where it is safe to do so. Another  useful special case 
arises when A is the same as B, for then a need not be 
moved at all. Yet another consideration is that (on the 
IBM 360), only 256 bytes can be moved at a time; 
thus the primitive move operation must be in a loop. 
Still, we want to remove the loop in cases where it is 
known that no more than 256 characters are to be 
moved. Finally, there is the classical problem [4] of 
compiling LENGTH(BIIC) SO that only the code needed 
to do LENCTH(B) + LENGTH(C) is executed. 

Traditional compilers handle these problems by 
examining the context of the concatenate statement to 
decide which code sequence to generate. Our approach 
is to have only one IL procedure which performs the 
operation, but also to have optimizations which can 
modify the procedure to take advantage of the special 
cases. A result of this study is that fairly simple 
optimizations are indeed powerful enough to do as 
well or better than a traditional compiler and more 
sophisticated optimizations can improve the code fur- 
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ther. Before the IL procedures to handle concatenation 
are presented, a few optimizations will be outlined. 

Optimizations 

Procedure integration is an optimization which re- 
places a procedure call with the set of statements it 
represents and makes the appropriate substitutions for 
the parameters and labels. One of the advantages of 
integrating a procedure is that the compiler will then 
have more information about the procedure's varia- 
bles. For instance, if a parameter of a particular 
invocation of a procedure were a constant, and the 
procedure contained a test of that parameter,  then the 
test could be eliminated. The next two optimizations 
are particularly useful when procedures are being inte- 
grated. 

Constant propagation recognizes when all the oper- 
ands of an IL primitive are known at compile time, 
and it can replace the primitive with a simpler primi- 
tive. For instance, if A is known to have the value 3, 
then constant propagation will replace B = A with B = 
3,  B = A -4- A with B = 6, and I F  A = 3 G O  T O  L A B E L  

with GO XO LABEL. Dead code elimination removes 
statements which cannot be reached from the pro- 
gram's entry points or which define variables which 
are not used before being redefined. 

Another  optimization which is needed to produce 
reasonable code for concatenation is variable propaga- 
tion. If there is a statement which sets T equal to A, 
then, as long as A and v are not redefined, variable 
propagation can replace a subsequent use of v with a 
use of A and eliminate any subsequent statements 
which set X to A or which set A to T. One must be 
careful in applying variable propagation to ensure that 
the semantics of the program are not changed. In 
particular, if Sl is a statement which sets the first N 
bytes of v equal to A and s2 another statement, then 
we can replace a use of X with A in sz if all of the 
following criteria are met: 
(a) A and v are not aliases; that is, the memory cells 

assigned to A and T cannot overlap. This insures 
that when v is set to A, A is not changed. 

(b) sl backdominates s2; i.e. any possible path through 
the control graph which reaches sz must go through 

S1-  

(c) No intermediate statement in any path which goes 
from s~ to s2 without repeating s~ can modify A, T, 
or any variable aliased with A or T. 

(d) If s2 is a use of T which we wish to change to a use 
of A, then s2 may not modify A or T (or any of 
their aliases) and may not use more than N bytes 
of T. 

(e) If s2 is an assignment of X bytes of A to T (or vice 
versa) which we wish to eliminate, then K must be 
no greater than N. 

These conditions are not all neces sa ry - fo r  instance, 
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criterion (d) could be weakened to allow s2 to modify 
A or T provided that the modification occurred after 
the use of T. Also, the conditions could be rewritten to 
allow several statements which set T to A. However ,  
the conditions given here are sufficient for our purposes 
in this paper.  

We wish that as much as possible, the writer of the 
IL procedures need not be aware of how the optimiza- 
tions work. For example,  consider the two sequences 
of code given in Figure 2 (which for clarity are depicted 
as flow graphs.)  If  constant propagat ion were to be 
applied to the first sequence,  it would recognize that 
the first test could be replaced by a GOTO. However ,  
since there are two different definitions of T.TYPE 
reaching the second test, it could not proceed any 
further until the dead code eliminator got rid of the 
unreachable T.rVPE = Brr s tatement .  In fact, to deter- 
mine that Y = x could be replaced by Y = 2, one 
would have to perform constant propagat ion three 
times, with dead code elimination in between.  On the 
other hand,  the second code sequence requires only 
two applications of constant propagation.  We could 
therefore insist that the IL p rogrammer  always use the 
latter construction. However ,  we feel that this would 
be putting an unnatural  constraint on the programmer .  
It is bet ter  to assume that constant propagat ion,  dead 
code elimination, and variable propagat ion are all 
done together  or repeated enough times that no further 
application of any of them would change the code. 
Incidentally code such as this could easily arise in the 
course of expanding the IL  procedures.  

ECS Compiler 

This section briefly describes a compiler (called the 
Exper imental  Compiler  System compiler) which is cur- 
rently under development  at the IBM T. J. Watson 
Research Center.  This compiler  will use the procedure  
integration-optimization scheme described earlier. The 
following sections describe the results of hand-simulat- 
ing the ECS compiler on the PL/I  concatenation state- 
ment.  

Figure 3 lists the IL  statements which are needed 
to handle the concatenation of character strings. The 
concatenation statement does not need to worry about 
data conversions since the parser puts out separate  
instructions to do the conversions when they are 
needed.  We have taken the liberty of writing our IL 
statements in a flexible format  for the sake of clarity. 
Of  course the actual compiler  has a more restricted 
format.  The IL  defining procedures for some of the 
nonprimitive IL statements are given in Figure 4. 

The target machine of the ECS compiler  is the 
IBM 360 or 370; hence the IL  primitives reflect their 
machine language. For instance, the primitive assign- 
ment  s tatement  A = B (N + I BYTES) corresponds to 
the MVC irrstruction. Thus it moves one more byte 
than specified by the pa ramete r  N, and N must be less 

916 

than 256. On the other hand, the higher-level IL 
statement ASSIGN A FROM B (N BYTES) moves N bytes 
and N can be any nonnegative integer. 

Each variable x of the source program has several 
attribute variables, such as X.LEN (which is the current 
length of a string), x. UAXLEN (the maximum length 
of a varying string), and X.VARY (whether the string is 
varying or not.) At  the IL level, these attribute varia- 
bles are treated just like other variables. If A is a 
variable,  then :A: means the location that A is stored 
in and (A) means indirect on A, that is, the contents of 
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Fig. 3. Some IL statements. 

a=bl lc  

BUY t AND SET t = b  

IIc 
ASSIGN a FROM b (n 

BYTES) 

PAD a (n BYTES) 
BUY CHAR STRING 

t (n BYTES) 

a = b (n + 1 BYTES) 
o r a = b  

a = b  + c o r a  = b - c  

IF exp GOTO label 

EXTEND a (n + 1 
BYTES) 

N O O P  
GOTO label 
RETURN 
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Nonprimitives 
Performs the concatenation of the char- 

acter strings b and c and puts the result 
into a. 

Allocates a temporary t into which b and 
c are then concatenated. 

Moves the first n bytes of b to a. n may 
be any non-negative integer. Results 
are undefined if the storage allocated 
to a overlaps with that allocated to b. 

Fills the first n bytes of a with blanks. 
Allocates storage and makes the neces- 

sary declarations for t to be a new 
fixed-length character string of length 
n bytes. 

Primitives 
Assigns the first n + 1 bytes of b to a. n 

must be between 0 and 255 inclusive, 
since this may be translated into an 
MVC instruction. The default when n 
is not specified is 4 bytes. 

Addition or subtraction of 4-byte integer 
variables. 

An abbreviation for a variety of IL prim- 
itives doing conditional branching. 

Duplicates the leftmost byte of a into the 
next n + 1 bytes, n must be between 0 
and 255. 

Does nothing. 
Unconditional branch to label. 
Return statement for IL procedures. 
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memory location A. Thus the sequence of P = :A:, (P )  

= B would have the same effect as an A = B statement. 
The compiler will change any occurrence of CA:) to 
simply A. 

The optimizations used by the ECS compiler on 
the IL text are procedure integration, constant propa- 
gation, dead code elimination, and variable propaga- 
tion. The variable propagation optimization is able to 
recognize that (A) is a use of the variable A, as well as 
possibly being a use of (g). Thus, given the sequence P 
= :A:, (P) = a, variable propagation would replace the 
second statement by CA:) = B, which would then be 
changed to A = B. In the examples, some additional 
optimizations (such as range analysis) are mentioned 
to show how they could further improve the compiler. 

An interesting question arises as to what is the best 
order in which to apply the optimizations, but we 
largely avoid that question in this paper. Our strategy 
is to integrate one procedure at a time and after each 
integration to apply the other optimizations until no 

Fig. 4. Defining procedures for some IL statements. 

Expansion of A-a1 IC 

M.A.MAXLEN- B.LEN 

IF M>0 GOTOLI 

MOVE I •A.MAXLEN 

MOVE2=0 

EXTRA=O 

GOTO L2 

LI: MOVEI =B.LEN 

EXTRA=M-C,LEN 

IF EXTRA>O GOTOLS 

MOVE2=M 

EXTRAffi0 

GOTO L2 

L3: MOVE2.U.LEN 

L2: TOTAL MOVE= MOVEI + MOVE2 

BUYCHARSTBINGTI (MOVEI BYTES) 

BUYCHARSTR[NGT2 (MOVE2 BYTES) 

P2=:A:+ MOVEI 

ASSIGN TI FROM B (MOVEI BYTES) 

ASSIGN T2 FROM C (MOVE2 BYTES) 

ASSIGN A FROM TI (MOVEI BYTES) 

ASSIGN (P2) FROMT2 (MOVE2 BYTES) 

IF A.VARY.true GOTO L4 

P3ffi:A:+TOTAL MOVE 

PAD(P3) (EXTRA BYTES) 

RETURN 

L4: A,LEN=TOTAL MOVE 

RETURN 

E x p a n s i o n  o f  

ASSIGN A FROM B (N BYTES) 

TffiN 

IF T~<O GOTO LI 

XT=:A: 

YTffi:B: 

T f T - 2 5 6  

IF T<_O GOTO L2 

L3: (XT).(YT) (255+1 BYTES) 

XT-XT+256 

WI'.YT+2S6 

T.T--256 

IF T>0 GOTO L3 

L2:Tf f iT+255  

(XT).(YT) (T+I BYTES) 

LI: RETURN 

further applications can be made. Then another proce- 
dure will be integrated, and so on. In all the examples 
presented, it makes no difference on the final code 
which optimization is applied when there is a choice. 
However,  there are programs where the order of 
optimization does make a difference; so some research 
is needed to find heuristics to guide this choice. 

The ECS compiler also applies constant propaga- 
tion and dead code elimination after the storage map- 
ping phase. This allows expressions like :A: + 1 which 
really are constants at compile time to be recognized 
as such. We assume that the register allocator of the 
ECS compiler is good enough to avoid instructions 
which are obviously unnecessary, but we do not require 
it to find any sophisticated simplifications (such as 
combining two IL primitives into a single machine 
instruction.) 

In general, writing the IL procedures was straight- 
forward. Little thought was given to details of the 
machine or optimizations. There were two exceptions 
to this claim. The loops of the ASSIGN and PAD proce- 
dures were partially unrolled so that the first iteration 
was done before entering the loop. This lets the 
optimizations remove the loop if the length is a con- 
stant less than 256. A side advantage of this construc- 
tion is that the loops have only one branch instruction. 
It does not seem unreasonable to request the IL 
programmer to use this form for loops. 

The other time that an IL procedure had to be 
written carefully to be sure that the optimizations 
would be able to work effectively was in the expansion 
of g = B IIC. As mentioned earlier, one cannot boldly 
move B and c to A because B or c may overlap A in 
memory. The most obvious way to avoid the overlap 
problem is to create a new, separate temporary T, then 
concatenate B and c into T, and finally move T tO A. 
One may hope that the optimizations will eliminate 
the extra motion in cases when it is not needed, but 
this would take an extremely sophisticated optimization 
since the distinction between a and c becomes lost 
once they are combined into T. However,  a much 
better method was discovered: First move B and c into 
separate temporaries T1 and T2, and then concatenate 
these variables into A. As the examples show, the 
variable propagation optimization described earlier is 
then able to eliminate the use of the temporaries when 
the variables are not aliased and to avoid moving A in 
the statement A = AIIc. 

Expansion of PAD A (N BYTES) 

T .N - - I  

IF T<0 GOTO LI 

A.b lank  (O+ I BYTES) 

If-" T=0 GOTO LI 

P=:A: 

TfT-256  

IF T_<0 GOTO L2 

L3: EXTEND(P) (255+1 BYTES) 

P .P+256  

TffiT-256 

iF T>0 GOTO L3 

L2 :T f f iT+255  

EXTEND(P) (T+I BYTES) 

LI: RETURN 

A Detai led Example 

We shall walk through an example to show how 
the ECS compiler can tailor the IL to a special case. 
Suppose a PL/I programmer wrote the program 

P: PROC OPTIONS (MAIN); 
DCL (B, C) CHAR(10), A CHAR(50); 
m = Bile; 
END; 
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This would be parsed into a set of assignments (B.TYPE 
= CHAR, B.LEN = 10 ,  B.MAXLEN = 10 ,  etc.) followed 
by the IL statement k = BIIC. The procedure integrator 
would replace the concatenate statement with the code 
of Figure 4. Then the variable propagation optimiza- 
tion would notice that T1 in ASSIGN A FROM T1 could be 
replaced by B. Similarly the T2 in the next s tatement  
would be replaced with c. The constant propagator  
and dead code eliminator would make a number  of 
simplifications, including determining the values of 
MOVE1, MOVE2, and EXTRA, eliminating all the condi- 
tional branch instructions, and determining that the 
statements defining T1 and T2 can be eliminated. The 
resulting code would be 

A = B (9 + 1 BYTES) 

The optimizations would act in a similar way on 
the other ASSIGN statement and on the PAD statement.  
Thus the original concatenate statement would become 

P2 = :A: + 10 
A = B (9 + 1 BYTES) 
(P2) = C (9 + 1 BYTES) 
P3 = :A: + 20 
(P3) = blank (0 + 1 BYTES) 
EXTEND (P3) (28 + 1 BYTES) 

The constant propagat ion which occurs after stor- 
age locations have been assigned would recognize that 
P2 and P3 are constants. The final code would be 

P2 = :A: + I0 
ASSIGN A FROM B (10 BYTES) 
ASSIGN (P2) FROM C (10 BYTES) 
P3 = :A: + 20 
PAD(P3) (30 BYTES) 

At this point,  procedure integration would replace 
the ASSIGN and PAD statements with the procedures 
they represent .  Let  us look at what happens to the 
expansion of the ASSIGN A FROM B (10 BYTES) s tatement  
as the optimizations work on it. First, the result of 
applying constant propagat ion is to produce the code 

T =  10 
IF 10 -< 0 GOTO L1 
XT = :A: 
YT = :B: 
T = - 2 4 6  
IF - 2 4 6  - GOTO L2 

L3: (XT) = (YT) (255 + 1 BYTES) 
XT = XT + 256 
YT = YT + 256 
T = T - 256 
I F T  > O G O T O L 3  

L 2 : T = T +  255 
(XT) = (YT) (T + 1 BYTES) 

LI :  NO OP 

Dead code elimination would reduce this to 

XT = :A: 
YT = :B: 
T = - 2 4 6  
T = T + 255 
(XT) = (YT) (T + 1 BYTES) 

Another  iteration of constant propagat ion and dead 
code elimination would yield 

XT = :A: 
YT = :B: 
(XT) = (YT) (9 + 1 BYTES) 

Now variable propagat ion would change the code to 

XT = :A: 
YT = :B: 
(:A:) = (:B:) (9 + 1 BYTES) 

Finally, dead code elimination and (: :)-removal would 
reduce this to the single IL  statement  

A = B ( 9  + 1BYTES)  
(:A: + 10) = C (9 + 1 BYTES) 
(:A: + 20) = blank (0 + 1 BYTES) 
EXTEND (:A: + 20) (28 + 1 BYTES) 

Presumably,  the machine tailoring stage would trans- 
late this into three MVC's  and an MVI instruction in 
360 machine code. 

This example shows that the ECS compiler  gives 
quite good code on a simple concatenation.  In this 
case, traditional compilers also do well. In fact, the 
IBM OS PL/I  optimizing compiler (hereafter  called 
PLIOPT)  produces sl!ghtly bet ter  code. Since B and c 
happen to be stored contiguously, a peephole  optimi- 
zation is able to recognize that the first two move 
statements can be combined into one s ta tement .  Of  
course, if it is felt that combining adjacent moves is 
useful, then this peephole optimization can be applied 
in the ECS compiler as well. 

Performance on Other Sample Programs 

In this section we present a number  of other situa- 
tions involving concatenation and comment  on how 
well the ECS compiler performs.  

Example 2. 

A = B II C; where the declarations are DCL (A, B, C) CHAR(100)  
VARYING;  

Since it is known that A is not aliased with B or c, 
the moves to the temporar ies  can be eliminated as in 
the first example.  However ,  B.LEN and C.LEN are not 
known; so the constant propagator  cannot eliminate 
the loops in the assign statements.  The machine level 
code produced by a hand-simulation of the ECS com- 
piler had 46 instructions. On the same example,  
P L I O P T  produced code having 29 instructions, includ- 
ing a call to the compiler-generated subroutine 
I E L C G M V  which contains 33 instructions. Thus the 
ECS compiler  produces code which is 17 s tatements  
longer or 16 shorter,  depending on whether  you count 
the length of I E L C G M V .  If  B.LEN and C.LEN are both 
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nonzero and B.LEN q- C.LEN < 1 0 0 ,  then 32 statements 
would be executed using the ECS-produced code, 
while PLIOPT's  code would have 35 instructions exe- 
cuted. PLIOPT avoided the usual overhead in calling 
I E L C G M V  by using a nonstandard linkage. The calling 
program put the parameters in the exact registers that 
IELCGMV expected to find them. Further, I E L C G M V  
does all its work in those registers and therefore 
doesn't need to save registers or allocate itself memory.  

PLIOPT recognized that the move of B to A could 
be performed without using a loop since B.LEN ----- 256. 
However,  it failed to see that the move of c to A 
doesn't  require a loop either. This is mentioned to 
suggest the difficulty of "special casing." A traditional 
compiler which is to be able to handle a large number 
of different cases must contain code to recognize and 
deal with each of those cases. In the ECS compiler the 
task of tailoring the code is done by just a few 
optimizations. 

Suppose the ECS compiler also included a range 
analysis optimization (see Harrison [6]) which knew 
that if A is a string, then A.LEN "< A.MAXLEN. This 
optimization could determine that MOVE1 and MOVE2 
can be no greater than 100; so the loops in the ASSIGN 
procedures would never be executed. Thus more dead 
code could be eliminated, and the use of xT and YT 
would be avoided. The resulting code would have 30 
instructions, 26 of which would be executed when 
B.LEN and C.LEN are positive and sum to no more than 
100. If we throw in another opt imiza t ion-symbol ic  
in terpre ta t ion-which  recognizes that the successive 
statements T = T -- 256 and T = T + 255 could be 
changed to T = T -- 1, then two more instructions 
would be eliminated. Figure 5 summaries the data of 
this example. The "best possible" code that we could 
find had 15 instructions, including a BXLE,  a BCT, 
and an LA instruction, each of which does the work of 
two or three others. 

Example 3. 

N = LENGTH(BIIC);  where B and C are varying length strings 

One hopes the compiled code will simply perform 
N = LENGTH(B) + LENGTI~(C), but many compilers 
(including PLIOPT)  actually concatenate B with c. In 
the ECS compiler, the parser will produce the IL 
statements Buy s AND SET S = B I I c ,  N = S.LEN. What 
happens now depends on the expansion of the first of 
these statements. If it is expanded as 

K = B .LEN + C.LEN 
B U Y  C H A R  STRING S(K BYTES)  

S -- Bile 

then after these procedures are expanded, variable 
propagation would substitute i~ for S.LEN in the BoY 
CHAR STRING procedure. Then the dead code elimina- 
tor would eliminate the entire concatenation procedure 
since neither s nor any of its attributes would have any 
uses. In fact, the entire code is simplified to the IL 

Fig. 5. Summary  of example 2. 

Num b er  of in- 
structions exe- 

Number  of in- cuted when 
structions in ob- B .LEN > 0, 

ject code C .LEN > 0 and 
B .LEN + 

C .LEN __- 100 

PLIOPTcompi ler  29 
+ 35 

33 in I E L C G M V  
ECS compiler with basic optimi- 46 32 

zations 
plus range analysis 30 26 
plus symbolic interpretation 28 24 

Best possible code 15 14 

s t a t e m e n t s  K : B.LEN q- C.LEN, N = K. On another 
hand, i f  t h e  BUY S AND SET S : B HC procedure u s e s  a 

varying length temporary, then things are not handled 
quite as well. As before, variable propagation would 
eliminate the use of S.LEN, this time replacing it by 
TOTAL_MOVE, and all the ASSIGN procedures building 
up s would be eliminated. However,  the remaining 
code would be too tangled up for the optimizations to 
completely straighten out, and the resulting IL program 
would have 13 primitive statements, eight of which 
would actually be executed. 

Example  4. 

A = AIIC; 

Both ECS and PLIOPT recognize that the move of 
A is unnecessary. In the ECS system, this is accom- 
plished because the expansion of A = AIIC includes the 
IL statements 

ASSIGN T1 F R O M  A (MOVE1 BYTES) 

ASSIGN A F R O M  T1 (MOVE1 BYTES)  

Variable propagation eliminates the latter statement; 
then the dead code eliminator recognizes that since T1 
is not used, the former statement can also be elimi- 
nated. 

Example 5. 

P: P R O C E D U R E  (A,  B, C); 
DCL (A, B, C) CHAR(*); 
A = BIIC, 

Both the ECS and PLIOPT compilers put B and c 
into temporaries to prevent their possible overlap with 
A from producing erroneous results. The code pro- 
duced by the ECS compiler would have about 115 
machine instructions. PLIOPT code is shorter (43 
instructions plus 33 more in IELCGMV)  since it has 
three calls to IELCGMV.  It should be mentioned that 
if the 370's MVCL instruction were used, the ECS 
produced code sequence could be reduced by 40 to 50 
statements since the ASSIGN procedure would be sim- 
plified. The code from PLIOPT would remain the 
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same, however,  except that the MVCL instruction 
would replace the call of I E L C G M V .  

In terms of running time, the code produced by the 
ECS compiler is superior.  P L I O P T  allocates one tem- 
porary r of  length A.LEN and performs x = Bile, then 
a = x. Thus,  whenever A.LEN ~ B.LEN + C.LEN, it 
pads the end of x with blanks and then moves the 
blanks to A. As a result, if A is a long string while a 
and c are short, it will move nearly twice the number  
of characters needed.  The ECS produced code allo- 
cates two separate temporar ies  to hold B and e. Thus 
the allocation costs a little extra time, but only the 
exact required amount  of storage is allocated, and the 
temporaries  are not padded.  

In this example,  the ECS compiler  has a large 
advantage over  other compilers.  Interprocedural  data 
flow analysis [1, 8] might determine that in all calls of 
P, A could not be an alias for a or c. If so, the code for 
P could be substantially simplified. Also, if a particular 
call of v were to be integrated, then the code would 
reflect any favorable special cases which might be 
present in that call, such as a parameter ' s  being shorter  
than 256 bytes. 

Example 6. 

A = BIICIID;. 

This is a case where the ECS compiler does not do 
very well. Assuming the parser translates this into 
code which creates a t emporary  x and then performs T 
= Bile , A = T H D  , the optimizations described so far are 
not sufficient to remove  the use of the temporary  x. 
Things are even worse if more  arguments  are to be 
concatenated,  since each concatenation creates a new 
temporary  into which the entire partial string must be 
moved.  PLIOPT,  however ,  does this example without 
extra moves.  

To overcome this difficulty in the ECS compiler,  
an additional optimization could be introduced which 
changes the sequence T -- Bile, A = TIID to A = Bile, A 
= AIID. AS in example 4, the second statement  requires 
only a movement  of D. This optimization is investigated 
in [3]. 

Conclusions 

The experimental  compiler  methodology described 
here is characterized by having a built-in expansion of 
each high level s ta tement  into a lower level code 
sequence and also having a set of optimizations which 
can tailor the code to take advantage of any special 
cases which may occur. This methodology has several 
advantages described in more detail in [5]. They in- 
clude ease of compiler construction and maintenance,  
complete compatibility between interpretive and com- 
piling versions, and support  for run-time error  check- 
ing. 

We believe that the examples of this paper  provide 
evidence that the code produced by such a compiler 
will be quite good. In comparisons with a PL/I  optim- 
izing compiler,  hand simulation of the ECS compiler 
with only very basic optimizations produced code for A 
= B IIC which was typically a little longer but somewhat  
faster than the P L I O P T  produced code. With addi- 
tional optimizations, both the speed and length of the 
ECS code was reduced. Also,  interprocedural  data 
flow analysis enables the ECS compiler  to substantially 
improve its object code in places where traditional 
compilers have to make the most pessimistic assump- 
tions about  the aliasing and attributes of the operands.  

P L I O P T  benefit ted f rom using a nonstandard link- 
age to the compiler-supplied subroutine I E L C G M V .  
This enabled it to reduce the length of its object  code 
without the usual t ime cost involved in the calling 
sequence. Such a scheme should probably be employed 
in the ECS compiler  as well. 

To obtain good code for concatenation,  the optimi- 
zations of procedure integration, constant propagat ion,  
dead code elimination, and variable propagat ion were 
required. Range analysis also considerably improved 
the code in some cases, and there may be a need for 
some other  optimization to improve the code resulting 
from A = BIIclID. For source statements other  than 
concatenation,  additional optimizations such as redun- 
dant expression elimination, code motion,  and strength 
reduction (see [2]) may be useful. 
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