
Programming J . J . Horning*
Languages Editor

A Case Study of a
New Code Generation
Technique for
Compilers
J . L a w r e n c e C a r t e r
I B M T h o m a s J . W a t s o n R e s e a r c h C e n t e r

Recent developments in optimizing techniques
have allowed a new design for compilers to emerge.
Such a compiler translates the parsed source code into
lower level code by a sequence of steps. Each step
expands higher level statements into blocks of lower
level code and then performs optimizations on the
result. Each statement has only one possible
expansion-the task of tailoring this code to take
advantage of any special cases is done by the
optimizations. This paper provides evidence that this
strategy can indeed result in good object code. The
traditionally difficult PL/I concatenate statement was
investigated as a detailed example. A set of fairly
simple optimizations was identified which allow the
compiler to produce good code. More elaborate
optimizations can further improve the object code.
For most contexts of the concatenate statement, the
code produced by a compiler using the expansion-
optimization strategy described above compares
favorably with the code produced by a conventional
PL/I optimizing compiler.

Key Words and Phrases: compiler structure,
optimizing compiler, code generation, PL/I compiler,
concatenation, program optimization, optimization
techniques, data flow analysis

CR Categories: 4.12, 4.13, 4.22

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Author 's address: IBM Thomas J. Watson Research Center , P.
O. Box 218, Yorktown Heights, N. Y. 10598

9 1 4

Introduction

Figure 1 sketches a new design for compilers.
Standard parsing techniques are used to translate the
source code into an intermediate language (IL). Each
IL statement consists of an operation name followed
by a list of operands. The meaning of the IL statements
produced by the parser is intended to be exactly that
of the corresponding source language statements.
These "high !evel" IL statements are defined in terms
of " lower level" IL s t a t emen t s - ones closer to machine
l a n g u a g e - b y IL defining procedures in the IL proce-
dure library.

The procedures in this library have been written in
IL. An IL defining procedure can be viewed as an
interpretive routine for the corresponding operation.
However , as will be explained in the next paragraph,
the compiler can use the defining procedures in a
different way. The IL statements used in a defining
procedure may themselves be defined in the IL proce-
dure library; however, recursive calls among the IL
defining procedures are not allowed. The IL procedure
library may also contain the IL versions of some user
written procedures. For each procedure in the library,
there must be some summary information which de-
scribes the procedure 's effect on the program (e.g.
which parameters are defined, what error routines
may be invoked, etc.) This information is needed by
the optimization routines to determine when the opti-
mizations are legal. IL operations which do not have a
procedure in the library are called IL primitives. The
primitives are either operations that are close in mean-
ing to machine instructions or invocations of proce-
dures that are external to the compiler (such as system
routines).

The IL text is subjected to a series of optimizations.
Procedure integration replaces an IL operation (or a
call to a user-supplied procedure) with the sequence of
statements which it represents [2, 7]. Other optimiza-
tions can eliminate unnecessary temporaries, remove
code which is not executed, and so on. The optimiza-
tions can be repeated until the IL program contains

Fig. 1.

SOURCE I
PROGRAM

I
PARSING

H " , I ° T PROCEDURES TEXT

MACHINE
TAILORING

OBJECT
CODE

Communications December 1977
of Volume 20
the ACM . Number 12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359897.359902&domain=pdf&date_stamp=1977-12-01

only primitive statements, though this is not necessary.
Leaving nonprimitive IL statements unintegrated
makes the compilation faster but reduces the quality
of the object code.

The optimized IL text is then sent to the machine
tailoring phase, which assigns storage and registers,
chooses machine instructions for the primitive IL state-
ments, translates the remaining IL statements into
calls to the corresponding IL defining procedures, and
attends to the details needed to produce object code.

The philosophy behind the compiler is that the IL
procedures are written to handle the most general
case, and the optimizations will tailor the code to take
advantage of special cases. The purpose of this paper
is first to explore whether such a philosophy can
actually work, and second to identify some of the
requirements on the various parts of the compiler
necessary to produce good object code. We do not
describe the compiler design in detail, but it is hoped
that the reader will gain an understanding of it through
the examples. More information on the design can be
found in [5].

Concatenation

In order to study the worth of the above compiler
scheme, we decided to write the IL procedures needed
to handle the PL/I statement A = Bile; for character
strings. These procedures were then used to generate
object code for various examples, and this code was
evaluated.

We chose concatenation since it typically is a diffi-
cult operation for compilers. In A =BIIc;, a or C may
overlap A in storage. If so, it may not be possible to
directly move S or e to A since during the move the
unmoved portion may be destroyed. Yet substantial
time can be saved by making a direct move in cases
where it is safe to do so. Another useful special case
arises when A is the same as B, for then a need not be
moved at all. Yet another consideration is that (on the
IBM 360), only 256 bytes can be moved at a time;
thus the primitive move operation must be in a loop.
Still, we want to remove the loop in cases where it is
known that no more than 256 characters are to be
moved. Finally, there is the classical problem [4] of
compiling LENGTH(BIIC) SO that only the code needed
to do LENCTH(B) + LENGTH(C) is executed.

Traditional compilers handle these problems by
examining the context of the concatenate statement to
decide which code sequence to generate. Our approach
is to have only one IL procedure which performs the
operation, but also to have optimizations which can
modify the procedure to take advantage of the special
cases. A result of this study is that fairly simple
optimizations are indeed powerful enough to do as
well or better than a traditional compiler and more
sophisticated optimizations can improve the code fur-

915

ther. Before the IL procedures to handle concatenation
are presented, a few optimizations will be outlined.

Optimizations

Procedure integration is an optimization which re-
places a procedure call with the set of statements it
represents and makes the appropriate substitutions for
the parameters and labels. One of the advantages of
integrating a procedure is that the compiler will then
have more information about the procedure's varia-
bles. For instance, if a parameter of a particular
invocation of a procedure were a constant, and the
procedure contained a test of that parameter, then the
test could be eliminated. The next two optimizations
are particularly useful when procedures are being inte-
grated.

Constant propagation recognizes when all the oper-
ands of an IL primitive are known at compile time,
and it can replace the primitive with a simpler primi-
tive. For instance, if A is known to have the value 3,
then constant propagation will replace B = A with B =
3, B = A -4- A with B = 6, and I F A = 3 G O T O L A B E L

with GO XO LABEL. Dead code elimination removes
statements which cannot be reached from the pro-
gram's entry points or which define variables which
are not used before being redefined.

Another optimization which is needed to produce
reasonable code for concatenation is variable propaga-
tion. If there is a statement which sets T equal to A,
then, as long as A and v are not redefined, variable
propagation can replace a subsequent use of v with a
use of A and eliminate any subsequent statements
which set X to A or which set A to T. One must be
careful in applying variable propagation to ensure that
the semantics of the program are not changed. In
particular, if Sl is a statement which sets the first N
bytes of v equal to A and s2 another statement, then
we can replace a use of X with A in sz if all of the
following criteria are met:
(a) A and v are not aliases; that is, the memory cells

assigned to A and T cannot overlap. This insures
that when v is set to A, A is not changed.

(b) sl backdominates s2; i.e. any possible path through
the control graph which reaches sz must go through

S1-

(c) No intermediate statement in any path which goes
from s~ to s2 without repeating s~ can modify A, T,
or any variable aliased with A or T.

(d) If s2 is a use of T which we wish to change to a use
of A, then s2 may not modify A or T (or any of
their aliases) and may not use more than N bytes
of T.

(e) If s2 is an assignment of X bytes of A to T (or vice
versa) which we wish to eliminate, then K must be
no greater than N.

These conditions are not all neces sa ry - fo r instance,

Communications December 1977
of Volume 20
the ACM Number 12

criterion (d) could be weakened to allow s2 to modify
A or T provided that the modification occurred after
the use of T. Also, the conditions could be rewritten to
allow several statements which set T to A. However ,
the conditions given here are sufficient for our purposes
in this paper.

We wish that as much as possible, the writer of the
IL procedures need not be aware of how the optimiza-
tions work. For example, consider the two sequences
of code given in Figure 2 (which for clarity are depicted
as flow graphs.) If constant propagat ion were to be
applied to the first sequence, it would recognize that
the first test could be replaced by a GOTO. However ,
since there are two different definitions of T.TYPE
reaching the second test, it could not proceed any
further until the dead code eliminator got rid of the
unreachable T.rVPE = Brr s tatement . In fact, to deter-
mine that Y = x could be replaced by Y = 2, one
would have to perform constant propagat ion three
times, with dead code elimination in between. On the
other hand, the second code sequence requires only
two applications of constant propagation. We could
therefore insist that the IL p rogrammer always use the
latter construction. However , we feel that this would
be putting an unnatural constraint on the programmer .
It is bet ter to assume that constant propagat ion, dead
code elimination, and variable propagat ion are all
done together or repeated enough times that no further
application of any of them would change the code.
Incidentally code such as this could easily arise in the
course of expanding the IL procedures.

ECS Compiler

This section briefly describes a compiler (called the
Exper imental Compiler System compiler) which is cur-
rently under development at the IBM T. J. Watson
Research Center. This compiler will use the procedure
integration-optimization scheme described earlier. The
following sections describe the results of hand-simulat-
ing the ECS compiler on the PL/I concatenation state-
ment.

Figure 3 lists the IL statements which are needed
to handle the concatenation of character strings. The
concatenation statement does not need to worry about
data conversions since the parser puts out separate
instructions to do the conversions when they are
needed. We have taken the liberty of writing our IL
statements in a flexible format for the sake of clarity.
Of course the actual compiler has a more restricted
format. The IL defining procedures for some of the
nonprimitive IL statements are given in Figure 4.

The target machine of the ECS compiler is the
IBM 360 or 370; hence the IL primitives reflect their
machine language. For instance, the primitive assign-
ment s tatement A = B (N + I BYTES) corresponds to
the MVC irrstruction. Thus it moves one more byte
than specified by the pa ramete r N, and N must be less

916

than 256. On the other hand, the higher-level IL
statement ASSIGN A FROM B (N BYTES) moves N bytes
and N can be any nonnegative integer.

Each variable x of the source program has several
attribute variables, such as X.LEN (which is the current
length of a string), x. UAXLEN (the maximum length
of a varying string), and X.VARY (whether the string is
varying or not.) At the IL level, these attribute varia-
bles are treated just like other variables. If A is a
variable, then :A: means the location that A is stored
in and (A) means indirect on A, that is, the contents of

Fig. 2.
A T Y P E = C H A R

IS A . T Y P E C H A R ~

"x
T T Y P E = 8 I T T T Y P E - C H A R

",,, /
IS T , T Y P E - B I T ? / /

A . T Y P E = C H A R

IS A . T Y P E = C H A R ?

T , T Y P E - B I T T T Y P E " C H A R

X = I X = 2 ",, , /
Y X

Fig. 3. Some IL statements.

a=bl lc

BUY t AND SET t = b

IIc
ASSIGN a FROM b (n

BYTES)

PAD a (n BYTES)
BUY CHAR STRING

t (n BYTES)

a = b (n + 1 BYTES)
o r a = b

a = b + c o r a = b - c

IF exp GOTO label

EXTEND a (n + 1
BYTES)

N O O P
GOTO label
RETURN

Communications
of
the ACM

Nonprimitives
Performs the concatenation of the char-

acter strings b and c and puts the result
into a.

Allocates a temporary t into which b and
c are then concatenated.

Moves the first n bytes of b to a. n may
be any non-negative integer. Results
are undefined if the storage allocated
to a overlaps with that allocated to b.

Fills the first n bytes of a with blanks.
Allocates storage and makes the neces-

sary declarations for t to be a new
fixed-length character string of length
n bytes.

Primitives
Assigns the first n + 1 bytes of b to a. n

must be between 0 and 255 inclusive,
since this may be translated into an
MVC instruction. The default when n
is not specified is 4 bytes.

Addition or subtraction of 4-byte integer
variables.

An abbreviation for a variety of IL prim-
itives doing conditional branching.

Duplicates the leftmost byte of a into the
next n + 1 bytes, n must be between 0
and 255.

Does nothing.
Unconditional branch to label.
Return statement for IL procedures.

December 1977
Volume 20
Number 12

memory location A. Thus the sequence of P = :A:, (P)

= B would have the same effect as an A = B statement.
The compiler will change any occurrence of CA:) to
simply A.

The optimizations used by the ECS compiler on
the IL text are procedure integration, constant propa-
gation, dead code elimination, and variable propaga-
tion. The variable propagation optimization is able to
recognize that (A) is a use of the variable A, as well as
possibly being a use of (g). Thus, given the sequence P
= :A:, (P) = a, variable propagation would replace the
second statement by CA:) = B, which would then be
changed to A = B. In the examples, some additional
optimizations (such as range analysis) are mentioned
to show how they could further improve the compiler.

An interesting question arises as to what is the best
order in which to apply the optimizations, but we
largely avoid that question in this paper. Our strategy
is to integrate one procedure at a time and after each
integration to apply the other optimizations until no

Fig. 4. Defining procedures for some IL statements.

Expansion of A-a1 IC

M.A.MAXLEN- B.LEN

IF M>0 GOTOLI

MOVE I •A.MAXLEN

MOVE2=0

EXTRA=O

GOTO L2

LI: MOVEI =B.LEN

EXTRA=M-C,LEN

IF EXTRA>O GOTOLS

MOVE2=M

EXTRAffi0

GOTO L2

L3: MOVE2.U.LEN

L2: TOTAL MOVE= MOVEI + MOVE2

BUYCHARSTBINGTI (MOVEI BYTES)

BUYCHARSTR[NGT2 (MOVE2 BYTES)

P2=:A:+ MOVEI

ASSIGN TI FROM B (MOVEI BYTES)

ASSIGN T2 FROM C (MOVE2 BYTES)

ASSIGN A FROM TI (MOVEI BYTES)

ASSIGN (P2) FROMT2 (MOVE2 BYTES)

IF A.VARY.true GOTO L4

P3ffi:A:+TOTAL MOVE

PAD(P3) (EXTRA BYTES)

RETURN

L4: A,LEN=TOTAL MOVE

RETURN

E x p a n s i o n o f

ASSIGN A FROM B (N BYTES)

TffiN

IF T~<O GOTO LI

XT=:A:

YTffi:B:

T f T - 2 5 6

IF T<_O GOTO L2

L3: (XT).(YT) (255+1 BYTES)

XT-XT+256

WI'.YT+2S6

T.T--256

IF T>0 GOTO L3

L2:Tf f iT+255

(XT).(YT) (T+I BYTES)

LI: RETURN

further applications can be made. Then another proce-
dure will be integrated, and so on. In all the examples
presented, it makes no difference on the final code
which optimization is applied when there is a choice.
However, there are programs where the order of
optimization does make a difference; so some research
is needed to find heuristics to guide this choice.

The ECS compiler also applies constant propaga-
tion and dead code elimination after the storage map-
ping phase. This allows expressions like :A: + 1 which
really are constants at compile time to be recognized
as such. We assume that the register allocator of the
ECS compiler is good enough to avoid instructions
which are obviously unnecessary, but we do not require
it to find any sophisticated simplifications (such as
combining two IL primitives into a single machine
instruction.)

In general, writing the IL procedures was straight-
forward. Little thought was given to details of the
machine or optimizations. There were two exceptions
to this claim. The loops of the ASSIGN and PAD proce-
dures were partially unrolled so that the first iteration
was done before entering the loop. This lets the
optimizations remove the loop if the length is a con-
stant less than 256. A side advantage of this construc-
tion is that the loops have only one branch instruction.
It does not seem unreasonable to request the IL
programmer to use this form for loops.

The other time that an IL procedure had to be
written carefully to be sure that the optimizations
would be able to work effectively was in the expansion
of g = B IIC. As mentioned earlier, one cannot boldly
move B and c to A because B or c may overlap A in
memory. The most obvious way to avoid the overlap
problem is to create a new, separate temporary T, then
concatenate B and c into T, and finally move T tO A.
One may hope that the optimizations will eliminate
the extra motion in cases when it is not needed, but
this would take an extremely sophisticated optimization
since the distinction between a and c becomes lost
once they are combined into T. However, a much
better method was discovered: First move B and c into
separate temporaries T1 and T2, and then concatenate
these variables into A. As the examples show, the
variable propagation optimization described earlier is
then able to eliminate the use of the temporaries when
the variables are not aliased and to avoid moving A in
the statement A = AIIc.

Expansion of PAD A (N BYTES)

T .N - - I

IF T<0 GOTO LI

A.b lank (O+ I BYTES)

If-" T=0 GOTO LI

P=:A:

TfT-256

IF T_<0 GOTO L2

L3: EXTEND(P) (255+1 BYTES)

P .P+256

TffiT-256

iF T>0 GOTO L3

L2 :T f f iT+255

EXTEND(P) (T+I BYTES)

LI: RETURN

A Detai led Example

We shall walk through an example to show how
the ECS compiler can tailor the IL to a special case.
Suppose a PL/I programmer wrote the program

P: PROC OPTIONS (MAIN);
DCL (B, C) CHAR(10), A CHAR(50);
m = Bile;
END;

917 Communications December 1977
of Volume 20
the ACM Number 12

This would be parsed into a set of assignments (B.TYPE
= CHAR, B.LEN = 10 , B.MAXLEN = 10 , etc.) followed
by the IL statement k = BIIC. The procedure integrator
would replace the concatenate statement with the code
of Figure 4. Then the variable propagation optimiza-
tion would notice that T1 in ASSIGN A FROM T1 could be
replaced by B. Similarly the T2 in the next s tatement
would be replaced with c. The constant propagator
and dead code eliminator would make a number of
simplifications, including determining the values of
MOVE1, MOVE2, and EXTRA, eliminating all the condi-
tional branch instructions, and determining that the
statements defining T1 and T2 can be eliminated. The
resulting code would be

A = B (9 + 1 BYTES)

The optimizations would act in a similar way on
the other ASSIGN statement and on the PAD statement.
Thus the original concatenate statement would become

P2 = :A: + 10
A = B (9 + 1 BYTES)
(P2) = C (9 + 1 BYTES)
P3 = :A: + 20
(P3) = blank (0 + 1 BYTES)
EXTEND (P3) (28 + 1 BYTES)

The constant propagat ion which occurs after stor-
age locations have been assigned would recognize that
P2 and P3 are constants. The final code would be

P2 = :A: + I0
ASSIGN A FROM B (10 BYTES)
ASSIGN (P2) FROM C (10 BYTES)
P3 = :A: + 20
PAD(P3) (30 BYTES)

At this point, procedure integration would replace
the ASSIGN and PAD statements with the procedures
they represent . Let us look at what happens to the
expansion of the ASSIGN A FROM B (10 BYTES) s tatement
as the optimizations work on it. First, the result of
applying constant propagat ion is to produce the code

T = 10
IF 10 -< 0 GOTO L1
XT = :A:
YT = :B:
T = - 2 4 6
IF - 2 4 6 - GOTO L2

L3: (XT) = (YT) (255 + 1 BYTES)
XT = XT + 256
YT = YT + 256
T = T - 256
I F T > O G O T O L 3

L 2 : T = T + 255
(XT) = (YT) (T + 1 BYTES)

LI : NO OP

Dead code elimination would reduce this to

XT = :A:
YT = :B:
T = - 2 4 6
T = T + 255
(XT) = (YT) (T + 1 BYTES)

Another iteration of constant propagat ion and dead
code elimination would yield

XT = :A:
YT = :B:
(XT) = (YT) (9 + 1 BYTES)

Now variable propagat ion would change the code to

XT = :A:
YT = :B:
(:A:) = (:B:) (9 + 1 BYTES)

Finally, dead code elimination and (: :)-removal would
reduce this to the single IL statement

A = B (9 + 1BYTES)
(:A: + 10) = C (9 + 1 BYTES)
(:A: + 20) = blank (0 + 1 BYTES)
EXTEND (:A: + 20) (28 + 1 BYTES)

Presumably, the machine tailoring stage would trans-
late this into three MVC's and an MVI instruction in
360 machine code.

This example shows that the ECS compiler gives
quite good code on a simple concatenation. In this
case, traditional compilers also do well. In fact, the
IBM OS PL/I optimizing compiler (hereafter called
PLIOPT) produces sl!ghtly bet ter code. Since B and c
happen to be stored contiguously, a peephole optimi-
zation is able to recognize that the first two move
statements can be combined into one s ta tement . Of
course, if it is felt that combining adjacent moves is
useful, then this peephole optimization can be applied
in the ECS compiler as well.

Performance on Other Sample Programs

In this section we present a number of other situa-
tions involving concatenation and comment on how
well the ECS compiler performs.

Example 2.

A = B II C; where the declarations are DCL (A, B, C) CHAR(100)
VARYING;

Since it is known that A is not aliased with B or c,
the moves to the temporar ies can be eliminated as in
the first example. However , B.LEN and C.LEN are not
known; so the constant propagator cannot eliminate
the loops in the assign statements. The machine level
code produced by a hand-simulation of the ECS com-
piler had 46 instructions. On the same example,
P L I O P T produced code having 29 instructions, includ-
ing a call to the compiler-generated subroutine
I E L C G M V which contains 33 instructions. Thus the
ECS compiler produces code which is 17 s tatements
longer or 16 shorter, depending on whether you count
the length of I E L C G M V . If B.LEN and C.LEN are both

918 Communications December 1977
of Volume 20
the ACM Number 12

nonzero and B.LEN q- C.LEN < 1 0 0 , then 32 statements
would be executed using the ECS-produced code,
while PLIOPT's code would have 35 instructions exe-
cuted. PLIOPT avoided the usual overhead in calling
I E L C G M V by using a nonstandard linkage. The calling
program put the parameters in the exact registers that
IELCGMV expected to find them. Further, I E L C G M V
does all its work in those registers and therefore
doesn't need to save registers or allocate itself memory.

PLIOPT recognized that the move of B to A could
be performed without using a loop since B.LEN ----- 256.
However, it failed to see that the move of c to A
doesn't require a loop either. This is mentioned to
suggest the difficulty of "special casing." A traditional
compiler which is to be able to handle a large number
of different cases must contain code to recognize and
deal with each of those cases. In the ECS compiler the
task of tailoring the code is done by just a few
optimizations.

Suppose the ECS compiler also included a range
analysis optimization (see Harrison [6]) which knew
that if A is a string, then A.LEN "< A.MAXLEN. This
optimization could determine that MOVE1 and MOVE2
can be no greater than 100; so the loops in the ASSIGN
procedures would never be executed. Thus more dead
code could be eliminated, and the use of xT and YT
would be avoided. The resulting code would have 30
instructions, 26 of which would be executed when
B.LEN and C.LEN are positive and sum to no more than
100. If we throw in another opt imiza t ion-symbol ic
in terpre ta t ion-which recognizes that the successive
statements T = T -- 256 and T = T + 255 could be
changed to T = T -- 1, then two more instructions
would be eliminated. Figure 5 summaries the data of
this example. The "best possible" code that we could
find had 15 instructions, including a BXLE, a BCT,
and an LA instruction, each of which does the work of
two or three others.

Example 3.

N = LENGTH(BIIC); where B and C are varying length strings

One hopes the compiled code will simply perform
N = LENGTH(B) + LENGTI~(C), but many compilers
(including PLIOPT) actually concatenate B with c. In
the ECS compiler, the parser will produce the IL
statements Buy s AND SET S = B I I c , N = S.LEN. What
happens now depends on the expansion of the first of
these statements. If it is expanded as

K = B .LEN + C.LEN
B U Y C H A R STRING S(K BYTES)

S -- Bile

then after these procedures are expanded, variable
propagation would substitute i~ for S.LEN in the BoY
CHAR STRING procedure. Then the dead code elimina-
tor would eliminate the entire concatenation procedure
since neither s nor any of its attributes would have any
uses. In fact, the entire code is simplified to the IL

Fig. 5. Summary of example 2.

Num b er of in-
structions exe-

Number of in- cuted when
structions in ob- B .LEN > 0,

ject code C .LEN > 0 and
B .LEN +

C .LEN __- 100

PLIOPTcompi ler 29
+ 35

33 in I E L C G M V
ECS compiler with basic optimi- 46 32

zations
plus range analysis 30 26
plus symbolic interpretation 28 24

Best possible code 15 14

s t a t e m e n t s K : B.LEN q- C.LEN, N = K. On another
hand, i f t h e BUY S AND SET S : B HC procedure u s e s a

varying length temporary, then things are not handled
quite as well. As before, variable propagation would
eliminate the use of S.LEN, this time replacing it by
TOTAL_MOVE, and all the ASSIGN procedures building
up s would be eliminated. However, the remaining
code would be too tangled up for the optimizations to
completely straighten out, and the resulting IL program
would have 13 primitive statements, eight of which
would actually be executed.

Example 4.

A = AIIC;

Both ECS and PLIOPT recognize that the move of
A is unnecessary. In the ECS system, this is accom-
plished because the expansion of A = AIIC includes the
IL statements

ASSIGN T1 F R O M A (MOVE1 BYTES)

ASSIGN A F R O M T1 (MOVE1 BYTES)

Variable propagation eliminates the latter statement;
then the dead code eliminator recognizes that since T1
is not used, the former statement can also be elimi-
nated.

Example 5.

P: P R O C E D U R E (A, B, C);
DCL (A, B, C) CHAR(*);
A = BIIC,

Both the ECS and PLIOPT compilers put B and c
into temporaries to prevent their possible overlap with
A from producing erroneous results. The code pro-
duced by the ECS compiler would have about 115
machine instructions. PLIOPT code is shorter (43
instructions plus 33 more in IELCGMV) since it has
three calls to IELCGMV. It should be mentioned that
if the 370's MVCL instruction were used, the ECS
produced code sequence could be reduced by 40 to 50
statements since the ASSIGN procedure would be sim-
plified. The code from PLIOPT would remain the

919 Communica t ions December 1977
of Volume 20
the A C M N u m b e r 12

same, however, except that the MVCL instruction
would replace the call of I E L C G M V .

In terms of running time, the code produced by the
ECS compiler is superior. P L I O P T allocates one tem-
porary r of length A.LEN and performs x = Bile, then
a = x. Thus, whenever A.LEN ~ B.LEN + C.LEN, it
pads the end of x with blanks and then moves the
blanks to A. As a result, if A is a long string while a
and c are short, it will move nearly twice the number
of characters needed. The ECS produced code allo-
cates two separate temporar ies to hold B and e. Thus
the allocation costs a little extra time, but only the
exact required amount of storage is allocated, and the
temporaries are not padded.

In this example, the ECS compiler has a large
advantage over other compilers. Interprocedural data
flow analysis [1, 8] might determine that in all calls of
P, A could not be an alias for a or c. If so, the code for
P could be substantially simplified. Also, if a particular
call of v were to be integrated, then the code would
reflect any favorable special cases which might be
present in that call, such as a parameter ' s being shorter
than 256 bytes.

Example 6.

A = BIICIID;.

This is a case where the ECS compiler does not do
very well. Assuming the parser translates this into
code which creates a t emporary x and then performs T
= Bile , A = T H D , the optimizations described so far are
not sufficient to remove the use of the temporary x.
Things are even worse if more arguments are to be
concatenated, since each concatenation creates a new
temporary into which the entire partial string must be
moved. PLIOPT, however , does this example without
extra moves.

To overcome this difficulty in the ECS compiler,
an additional optimization could be introduced which
changes the sequence T -- Bile, A = TIID to A = Bile, A
= AIID. AS in example 4, the second statement requires
only a movement of D. This optimization is investigated
in [3].

Conclusions

The experimental compiler methodology described
here is characterized by having a built-in expansion of
each high level s ta tement into a lower level code
sequence and also having a set of optimizations which
can tailor the code to take advantage of any special
cases which may occur. This methodology has several
advantages described in more detail in [5]. They in-
clude ease of compiler construction and maintenance,
complete compatibility between interpretive and com-
piling versions, and support for run-time error check-
ing.

We believe that the examples of this paper provide
evidence that the code produced by such a compiler
will be quite good. In comparisons with a PL/I optim-
izing compiler, hand simulation of the ECS compiler
with only very basic optimizations produced code for A
= B IIC which was typically a little longer but somewhat
faster than the P L I O P T produced code. With addi-
tional optimizations, both the speed and length of the
ECS code was reduced. Also, interprocedural data
flow analysis enables the ECS compiler to substantially
improve its object code in places where traditional
compilers have to make the most pessimistic assump-
tions about the aliasing and attributes of the operands.

P L I O P T benefit ted f rom using a nonstandard link-
age to the compiler-supplied subroutine I E L C G M V .
This enabled it to reduce the length of its object code
without the usual t ime cost involved in the calling
sequence. Such a scheme should probably be employed
in the ECS compiler as well.

To obtain good code for concatenation, the optimi-
zations of procedure integration, constant propagat ion,
dead code elimination, and variable propagat ion were
required. Range analysis also considerably improved
the code in some cases, and there may be a need for
some other optimization to improve the code resulting
from A = BIIclID. For source statements other than
concatenation, additional optimizations such as redun-
dant expression elimination, code motion, and strength
reduction (see [2]) may be useful.

Acknowledgments. I would like to thank Fran Al-
len, Bill Harr ison, and David Lomet for many patient,
helpful discussions. I also wish to thank Hania Ga-
jewska and the referees for suggesting improvements
to the paper.

Received December 1975; revised September 1976.

References
1. Allen, F.E. Interprocedural data flow analysis. Information
Processing 74, North Holland Pub. Co., Amsterdam, pp. 398-402.
2. Allen, F.E., and Cocke, J. A. A catalogue of optimizing
transformations. In Design and Optimization of Compilers, R.
Rustin, Ed., Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 1-30.
3. Carter, J.L. Some useful renaming transformations for
optimizing compilers. To appear.
4. Elson, M., and Rake, S.T. Code-generation technique for
large-language compilers. IBM Syst. J. 9, 3 (1970), 166-188.
5. Harrison, W. A new strategy for code genera t ion- the general
purpose optimizing compiler. Conf. Rec. Fourth ACM Symp. on
Principles of Programming Languages. Los Angeles, Jan. 1977, pp.
29-37.
6. Harrison, W. Compiler analysis of the value ranges for
variables. Res. Rep. RC 5544, IBM T. J. Watson Res. Ctr.,
Yorktown Heights, N.Y., 1975.
7. Loveman, D.B. Program improvement by source to source
transformation. Conf. Rec. Third ACM Symp. on Principles of
Programming Languages, Atlanta, Jan. 1976, pp. 140-152.
8. Rosen, B.K. Data flow analysis for recursive PL/I programs.
IBM Res. Rep. RC 5211, T.J. Watson Res. Ctr., Yorktown
Heights, N.Y., 1975.

920 Communications December 1077
of Volume 20
the ACM Number 12

