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1. Introduction 

At the NATO International Summer School on 
Language Hierarchies and Interfaces, Marktoberdorf ,  
1975, Edsger W. Dijkstra presented an "on-the-fly" 
garbage collector. Dijkstra and his colleagues had 
tackled this problem "as one of the more challenging-- 
and hopefully ins t ruc t ive -prob lems"  in parallel pro- 
gramming. Indeed,  the high degree of interleaving of 
the processors' actions made his solution, and the 
arguments about its correctness, difficult to under- 
stand. The major difficulty was the lack of necessary 
tools and the lack of any systematic method for under- 
standing parallelism. Having recently worked with 
Susan Owicki on her thesis [3] on methods for proving 
properties of parallel programs, it struck me that with 
Owicki's techniques I could perhaps provide a better  
understanding of the program. With some help from 
Dijkstra and Tony Hoare ,  I was able to arrive at an 
outline of a proof of correctness of the garbage collec- 
tor and present it a few days later at the Summer 
School. 

A fully detailed, complete proof, however, took 
me much longer, partly because I was not adept enough 
yet at applying the techniques, but also because proving 
properties of parallel programs is so much harder than 
proving properties of sequential programs. 

Owicki's proof techniques deserve further study, 
and this paper attempts to describe them and their use 
in the context of Dijkstra's garbage collector. Section 
2 presents and discusses some of Owicki's proof tech- 
niques. Section 3 describes the garbage collection 
problem and gives the solution, along with an informal 
discussion of its correctness. Section 4 is devoted to 
more formally establishing its correctness. 

Parallel programming is much harder than sequen- 
tial programming. The reader might want to study 
Section 5, the conclusions, after looking at the solution 
but before reading its correctness proof, in order to 
fully understand the problems of parallelism. 

2. Definition and Use of the Language 

Let S be a statement and P and Q assertions about 
variables. In [2], Hoare introduces notation like {P} S 
{Q} to informally mean: if P is true before execution 
of S, then Q will be true when S terminates. This is a 
statement of partial correctness; termination of S must 
be established by other means. 

As another notational device, by 

a , b , c  
d 

we mean that if a, b, and c hold, then so does d. 
Hoare  introduces axioms and inference rules similar to 
the following for a fragment of A L G O L .  

null {P} skip {P} (2.1) 

assignment {Pff} x := e {P} (2.2) 
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where Pf  represents the result of substituting (e) for 
each free occurrence of x in P ;  e.g. if P is (a > 0 / ~  b 
= 1), then P'd+b is (a + b > 0 / ~  b = 1). It should be 
recognized that this axiom holds only when variable x 
has no other name used in e or P ;  otherwise the axiom 
may not be consistent. 

{P/~ B} S1 {a}, {P/~ -~B} $2 {a} 
alternation (2.3) 

{P} if B then $1 else $2 {Q} 

{P/~ B} S {P} 
iteration (2.4) 

{P} while B do S {P/~ -TB} 

{P0} S1 {P1}, {P1} $2 {P2}, 
composition - . .  , {P, - 1} Sn {Pn} (2.5) 

{P0} begin S1; . . .  ; Sn end {Pn} 

{P1} S {Q1}, P l- P1, Q1 l- Q 
(2.6) consequence {P} S {Q} 

Let us now briefly discuss proofs of properties of 
sequential programs. When we write {P} S {Q}, this 
implies the existence of a proof  {P} S {Q} using the 
axioms and inference rules (2 .1)-(2.6) .  For example 
suppose we have already proved {P1/~ e} S1 {Q1}, {P1 
/~ --a e} $2 {Q1}, P ~" P1 x", and Q1 b Q, and suppose we 
have 

S -= begin x := a; if e then $1 else $2 end 

Then a proof  of {P} S {q} might be 

(1) {Ply} x := a {P1} assignment 

{PI~ z} x := a {P1}, P k Pla  x 
(2) consequence 

{1°} x := a {P1} 

{P1 A e} S1 {Q1} {P1 A ~ e} $2 {Q1} 
(3) {P1} i fe  then S1 else $2 {Q1} alternation 

{P1} i fe  then S1 else $2 {Q1}, Q1 k Q 
(4) {P1} ife then S1 else $2 {Q} consequence 

{P} x := a {P1}, {P1} if e then S1 else $2 {Q} 
(5) 

{P} begin x := a; i fe  then S1 else $2 end{Q} 
composition 

This proof  can be outlined more compactly and under- 
standably by interleaving statements and assertions: 

{Y} 
begin {P} 

x : = a ;  

{P1} 
ire then{P1 Ae} SI{Q1} (2.7) 

else {el A e} $2 {Q1} 
{QI} 
{Q} 

end 
{Q} 

In a proof outline, two adjacent assertions {P1} {P2} 
denote the use of the rule of consequence,  where P1 t- 
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P2. Second, each statement S is preceded directly by 
an assertion called the precondition of S, written pre(S). 
The precondition of x :-- a above is Ply .  

Owicki [3] introduces two statements for parallel 
processing. The cobegin statement indicates that proc- 
esses are to be executed in parallel; the await statement 
provides synchronization and mutual exclusion. The 
await statement has the form 

await B then S 

where B is a Boolean expression and S a statement.  
Execution of the process is delayed at the await until 
B is true. At this time, S is executed as an indivisible 
o p e r a t i o n - n o  other process may execute while S is 
executing or during the time that B is found to be true 
and execution of S is begun since this might falsify B. 
If two delayed processes have their corresponding 
Booleans B come true at the same time, one of them 
is further delayed while the other executes. The sched- 
uling algorithm for determining which process is al- 
lowed to proceed does not concern us here. For 
simplicity, we assume that awaits cannot be nested. 

The formal definition of the await statement is: 

await { P / ~  B} S {Q} (2.8) 
{P} await B then S {Q} 

Before introducing the cobegin statement,  let us ex- 
plain what it means for two parallel processes to be 
interference-free. 

Definition. Given {P} S {Q}, let T be any assignment 
or await (not in S) with precondition pre(T). We say 
that T does not interfere with the proof of {P} S {Q} if 
(a) {Q/~  pre(T)} T {Q}, (b) for each statement S' of S 
which is not within an await, {pre(S') /~ pre(T)} T 
{pre(S')}. 

Thus execution of T cannot affect the truth of the 
preconditions and result conditions used in the proof  
of S, and hence the proof {P} S {Q} holds even if T is 
executed while S is executing. 

Definition. {P1} S1 {Q1} and {P2} $2 {Q2} are 
interference-free if each assignment statement of $2 
(which does not occur within an await) and each await 
of $2 does not interfere with the proof  of {P1} S1 {Q1}, 
and vice versa. 

If S1 and $2 are interference-free as just defined, 
then execution of $2 leaves valid all the arguments 
used in the proof {P1} S1 {Q1}, and therefore the 
proof still holds in the face of parallel execution. This 
allows us to define the cobegin statement as follows: 

parallelism 

{P1} S1 {Q1}, {P2} $2 {Q2} interference-free 
(2.9) 

{P1 /~ P2} cobegin S1 l] $2 coend {Q1/~ Q2} 

Again, for simplicity, we assume a program has only 
one cobegin statement. 

In any operational model consistent with this and 
the other axioms, statements $1 and $2 can be executed 
concurrently, and execution of a cobegin terminates 
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only when both S1 and $2 have terminated. No as- 
sumptions about the relative speeds of processes $1 
and $2 are made. Evaluation of any expression or 
execution of any assignment, however, must be per- 
formed as an indivisible operation which cannot be 
interrupted, but we can lift even this restriction if we 
adhere to the following (which this paper does): 

Any expression e in process Si may contain at most one reference 
to at most one variable changed in the other process Sj. If variable x 
of x := e in Si is referenced by process S], then e can contain no 
references to x or to a variable changed in Sj. (2.10) 

For example, suppose process S1 changes variable a. 
Then process $2 may not contain the statements a := a 
+ 1 or b := a + a + 1. If process S1 references a, then 
in process $2 an assignment a := a + 1 must be written 
as t := a + 1, a := t where t is local to $2. The same 
restrictions hold for an array, where we consider an 
assignment a[i] := e to be a change of the whole array 
a (as in the Pascal axiomatic definition [5]). 

With this convention, the only indivisible action 
need be the memory reference. Suppose process Si 
changes variable (location) A while process Sj, j ~ i, is 
referencing A. The memory must have the property 
that the value received for A by process Sj is the value 
of A either before or after the assignment, but it may 
not be garbage caused by fluctuation of the state of 
memory during the assignment to A.  Thus the methods 
described here can be used to prove properties of 
programs executing on any reasonable machine, with 
as fine a grain of interleaving as one could imagine. 
Dijkstra's on-the-fly garbage collector takes advantage 
of such a fine grain of interleaving. 

One often must be able to delete variables from 
(or add variables to) a program in order to effect a 
proof. The following definitions allow this. 

Definition. Let A V  be a set of variables which 
appear only in assignments x := e in a program S, 
where x E A V. Then A V  is an auxiliary variable set for 
S. 

Definition. Let A V  be an auxiliary variable set for 
S'. S is a reduction o f  S' if it is obtained from S' by 
one of the operations: (a) Delete all assignments x := 
e where x E A V, or (b) replace await true then x := e 
by x := e, provided x := e satisfies (2.10). 

Auxiliary variable axiom. Let A V be an auxiliary 
variable set for S', S a reduction of S' with respect to 
A V, and P and Q assertions which do not contain 
variables from AV.  Then 

{P) S' (Q} 

{P} S {Q} 

That one can delete auxiliary variables in this 
manner should be obvious; their values do not affect 
the results of computation at all, but are used only in 
proving correctness. 

We now have a system for proving partial correct- 
ness of parallel programs. We shall see that we cannot 
use it completely and formally because the processes 
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we deal with may not even terminate. But we can use 
the insight gained to informally prove properties of 
parallel programs. 

The formalization teaches us to understand parallel 
processes in two steps. First, prove the properties of 
each parallel process $1 and $2 as sequential programs, 
disregarding parallel execution. Second, show that 
execution of $2 does not destroy the proof  of Sl ' s  
properties, and vice versa, for if parallel execution of 
$2 does not invalidate the proof, it cannot destroy the 
desired properties. 

This is an important step forward in understanding 
parallelism. Earlier work has often tried to show that 
execution of $2 does not interfere with the execution 
of $1. By concentrating more on the proof, we turn 
our attention to a more static object which is easier to 
handle. Of course, the sequential proofs may turn out 
to be harder because we must often weaken or change 
the arguments so that they will not be destroyed by 
parallel activity. This will become clear later. 

We shall subsequently apply this technique. We 
shall not prove that subparts of a sequential program 
work correctly if it is obvious; we use proof outlines as 
in (2.7), and we often leave out implications P F Q if 
they can be discerned by the reader. We also use other 
statement notations where clearer and make program 
transformations without a formal proof rule if the 
transformations are obviously correct. The assertions 
themselves will often be at a high, informal level in an 
attempt to be clear without having to resort to too 
much formalism. 

3. On-the-Fly Garbage Collection 

The data structure used in a conventional imple- 
mentation of LISP is a directed graph in which each 
node has at most two outgoing edges (either of which 
may be missing): an outgoing left edge and an outgoing 
right edge. At any moment all nodes of the graph 
must be reachable (via a directed path along directed 
edges) from a fixed root which has a fixed, known 
place in memory. The storage allocated for each node 
is constant in size and can accomodate two pointers, 
one for each outgoing edge. A special value nil denotes 
a missing edge. We allow the directed graph to have 
cycles. 

For any reachable node, an outgoing edge may be 
deleted, changed, or added. Deletion and change may 
turn formerly reachable nodes into unreachable nodes 
which can no longer be used by the program (hence- 
forth called the mutator). These unreachable nodes 
are therefore called garbage. Nodes not being used by 
the mutator are stored on a free list maintained as a 
singly linked list. The mutator may delete the first 
node from the free list and insert it into the directed 
graph by placing an edge to it from a reachable node. 

If the free list becomes empty, computation halts 
and a process called "garbage collection" is invoked. 
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Beginn ing  with the  roo t ,  all r eachab le  nodes  are  
m a r k e d ;  upon  comple t i on  o f  this mark ing  phase ,  all 
u n m a r k e d  nodes  are  known  to be ga rbage  and  are  
a p p e n d e d  to the  free list.  C o m p u t a t i o n  then  r e sumes .  

A m a j o r  d i s advan tage  of  this a r r a n g e m e n t  is the  
unpred ic tab i l i ty  of  the  g a r b a g e  col lec t ion  in te r ludes .  
D i j k s t r a  and  his co l leagues  t h e r e f o r e  inves t iga ted  the  
use of  a second  p roces so r ,  the  collector,  which would  
col lect  ga rbage  on a m o r e  con t inuous  basis  concur-  
ren t ly  with the  ac t ion  of  the  m u t a t o r .  The  cons t ra in t s  
i m p o s e d  on the i r  so lu t ion  were :  

the "interference between collector and mutator should be minimal 
. . . ,  the overhead on the activity of the mutator (as required for 
cooperation) should be kept as small as possible, and, finally, the 
ongoing activity of the mutator should not impair the collector's 
ability to identify garbage as such as soon as possible." 

T h e i r  so lu t ion  satisfies these  c r i te r ia ,  and  we m a k e  
no i m p r o v e m e n t  on it at  all ;  we  are  c o n c e r n e d  only  
with the  desc r ip t ion  and  p r o o f  of  the i r  so lu t ion .  Ove r -  
head  on the  m u t a t o r  a re  one  or  two s imple  a s s ignments  
p e r  changed  or  a d d e d  e d g e ,  the  only  indivis ib le  ac t ion  
need  be  the  m e m o r y  r e f e r e n c e ,  and  the only  synchro-  
n iza t ion  occurs  when  the  m u t a t o r  must  wai t  for  the  
free list to  have  m o r e  than  one  node  be fo re  t ak ing  a 
node  f rom it. 

W e  now turn  to the  a lgo r i thm itself .  T h e  co l l ec to r  
has two phases :  m a r k i n g  r e a c h a b l e  nodes  and  collect ing 
u n m a r k e d ,  u n r e a c h a b l e  nodes .  F o r  m a r k i n g ,  we mus t  
use t h ree  colors :  white  r ep r e sen t s  u n m a r k e d ,  black  
m a r k e d ,  and  gray an " i n - b e t w e e n "  co lo r  n e e d e d  for  
c o o p e r a t i o n  b e t w e e n  co l l ec to r  and  m u t a t o r .  To  see 

the  need  for  the  th i rd  co lor ,  suppose  we use only  b lack  
and  whi te ,  and  let  nodes  N and  M be  as d e p i c t e d  in 
s ta te  1 of  F igure  1. N o w  let  the  m u t a t o r  r e p e a t e d l y  
p e r f o r m  the  fo l lowing sequence  of  ac t ions:  inser t  a 
r igh t -ou tgo ing  edge  f rom node  N to node  M ;  de le t e  
the  l e f t -ou tgo ing  edge  of  n o d e  N ;  inser t  a l e f t -ou tgo ing  
edge  f rom node  N to node  M ; de le te  the  r igh t -ou tgo ing  
edge  of  node  N.  M is thus  a lways  r e a c h a b l e  f rom N.  If  
M is whi te ,  the  co l lec to r  mus t  no t ice  tha t  M is N ' s  
successor  and  b l acken  M.  But  the  co l l ec to r  might  
neve r  see  this ,  for  it might  a lways  check N ' s  left-  
ou tgo ing  edge  when  it is nil ( i .e .  in s ta te  3) ,  and  might  
a lways  check N ' s  r igh t -ou tgo ing  edge  when  it is nil 
( i .e .  in s ta te  1). Thus  the  m u t a t o r  mus t  c o o p e r a t e  in 
some  fashion  and  does  so by graying  a whi te  node  
when  it d raws  an edge  to it. 1 

W e  now come  to the  r e p r e s e n t a t i o n  of  the  g raph  of  
nodes .  W e  use an a r r ay  m[0 :N]  for  the  nodes ,  nil  is 
represen ted  by O, and  thus the  m u t a t o r  i tself  may  neve r  
r e f e rence  node  m[0].  This  is not  necessa ry ,  but  m a k e s  
p r e s e n t a t i o n  of  the  co l l ec to r  eas ie r .  W e  shall  of ten  
speak  of  " n o d e  i "  or  jus t  " i "  in s t ead  of  using the  
longe r  t e rm " n o d e  m[i] . "  

E a c h  node  has t h ree  subf ie lds  which are  of  in te res t :  

It is possible to write a mutator-collector system using only the 
colors black and white [6]. We use the current system as a more 
interesting problem in parallelism. 

9 2 4  

Fig. 1. Noncooperation when using only two colors. 

M M M M t4 

s t a t e  1 s t a t e  2 s t a t e  3 s t a t e  4 s t a t e  1 

m[i].color current color of node (white, gray, or black) 
m[i].left node i's left successor (0 if none) (3.1) 
m[i].right nodei's right successor (0 if none) 

The  fo l lowing indivis ible act ions  are  used  to co lo r  
nodes :  

whiten(i): m[i].color := white 
blacken(i): m[i].color := black (3.2) 
atleastgray(i): if m[i].color = white then m[i].color := gray 

Note  tha t  a b lack  n o d e  is not  m a d e  gray  by o p e r a t i o n  
atleastgray. These  o p e r a t i o n s  cou ld  be  i m p l e m e n t e d  
with two bi ts ,  with whi te  = 00,  gray  = 01,  and  b lack  
= 11. The  o p e r a t i o n  atleastgray(i)  would  consis t  of  
" o r i n g "  the  p a t t e r n  01 into  m[i] .color .  It  is i m p o r t a n t  
that  this be  p e r f o r m e d  with  a s ingle ,  indivis ib le ,  " o r  to 
m e m o r y "  ins t ruc t ion ,  which is found  on m a n y  ma-  
chines .  The  poss ib le  s equence  t := m[i] .color  or  01;  
m[i] .color  := t wou ld  v io la te  the  indivis ibi l i ty  r equ i re -  
men t .  

Two  nodes  m [ R O O T ]  and  m [ F R E E ]  are  in f ixed,  
cons tan t  p laces  in the  a r r a y  m[0  :N].  m [ R O O T ]  is the  
single roo t  of  the  m u t a t o r ' s  g r aph ,  while  m [ F R E E ]  is 
used  to  ind ica te  w h e r e  the  f ree  list beg ins .  Wi th in  the  
co l l ec to r ,  we cons ide r  m [ R O O T ] ,  m [ F R E E ] ,  and  m[0]  
all to be  roots ; thus  the  f ree  list and  node  m[0]  will be  
m a r k e d  and  u n m a r k e d  jus t  as the  m u t a t o r ' s  g r aph  is. 

T h e  f ree  list is m a i n t a i n e d  by using an ex t ra  in t ege r  
va r i ab le  E N D F R E E  to  m a r k  the  end  of  the  f ree  list.  
F igu re  2 i l lus t ra tes  the  f ree  list ,  while  the  fo l lowing  
def in i t ion  l f ree  descr ibes  it m o r e  exact ly ;  I free  is invar-  
iant ly  t rue  t h r o u g h o u t  execu t ion .  

No te  that  m [ F R E E ]  is not  a node  of  the  f ree  list ,  
while  m [ E N D F R E E ]  is. T e r m  (c) of  I f ree  covers  the  
case tha t  a node  has  been  a d d e d  to the  f ree  list but  
E N D F R E E  has not  ye t  been  r e a d j u s t e d .  Such cons id-  
e ra t ions ,  which may  be  i nconsequen t i a l  for  s equen t i a l  
p r o g r a m s ,  a re  e x t r e m e l y  i m p o r t a n t  for  pa ra l l e l i sm.  
l free =- 

(a) the free list containsj _> 1 nodes with distinct indices 
m[ FREE ].left = m[ FREE ].left I ~ 0 (0 = nil), 
m[m[ FREE ].left].left = m[ FREE ].left 2 * O, 
• " (3.3) 
m[ FREE ].left ~ * O; 

(b) m[ FREE ].lefd +1 = O; 
(c) ENDFREE = m[FREE].lefd -~ V ENDFREE = 

m[ FREE ]. 
left j; 

(d) all nodes on the free list have no right successors. 

z Steele [7] mentions that one need only atleastgray(j) in these 
procedures if the Collector is currently marking, but not when it is 
collecting. However, testing the state of the Collector and then 
perhaps atleastgraying would only increase the complexity and de- 
crease the speed of the system. 
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Fig. 2. The free list. 

color left right color left right 

miFREE] m[ENDFREE] 

root of list firs~ free node second free node last free node 

The mutator  has at its disposal two procedures to add 
edges from one node to another2: 

A d d  a left-outgoing edge from node k to node j : 
proc addleft(k,  j ) ;  begin m[k].left := j;  atleastgray(j) end; (3.4) 
A d d  a right-outgoing edge from node k to n o d e / :  
proe addright( k ,  j ) ; begin m[ k ].right := j;  atleastgray(j ) end 

The mutator  appears  in (3.5) as a never-ending, non- 
deterministic guarded command  loop [4]. Whether  a 
guard on one of the guarded commands  of the loop is 
really true on a given cycle of the outer  loop is a 
function of the particular muta tor  being used; we 
assume for proof  purposes that the guard could be 
true any time, and thus write true. 

The two inner loops in the muta tor  are used to 
make it wait until the free list has two or more nodes 
before taking one off it. Variables k, j ,  and f a r e  local 
to the mutator.  

mutator: do true 
Let k , j  be indices of nodes  reachable  f rom R O O T  (k q: O,j -~ 0); 
if t rue ~ m[k].left := 0 
fl true ~m[k] . r i g h t  := 0 
fl t rue ~ addleft(k, j )  
fl t rue ~ addright(k, j )  

true ~ Take first free node as k's left successor: 
f := m[ fgEE ].left; (3.5) 
addleft(k, f ) ;  
do f = E N D F R E E  ~ skip od; 
addleft( FREE,  m [ f  ].left ); 
re[f ].left := 0 

true ~ Take first free node as k's right successor: 
f := m[ Fnee  ].left; 
addright(k, f ) ;  
d o f  = E N D F R E E  ~ skip od; 
addleft( FREE,  mil l . le f t ) ;  
re[f  ].left := 0 

fi 
od 

The collector is given below in (3.6). When first 
studying it, r emember  the insight gained from the 
formalism and treat it as an independent ,  sequential 
program under no parallel influence. 

At the beginning of each execution of the body of 
the collector's main loop, there are no black nodes. 
Execution of the first section of the body grays the 
roots; so any reachable white node is reachable from a 
gray node (without going through a black node).  After  
execution of the second section labeled Blacken (we 
look at this in detail subsequently),  all reachable nodes 
are black; so all white nodes are garbage. The third 
section labeled Collect then searches through the 
nodes, appending white ones to the free list and 
whitening black nodes, in preparat ion for the next 
iteration. 

925  

Collector: do true 
Make roots at least gray: 

atleastgray ( RO 0 T ); atleastgray ( FREE ); atleastgray (0); 
Blacken: Blacken gray nodes and nodes reachable f rom gray 
nodes: 

i : = 0 ;  
do i -< N and m[i].color 4: gray ~ i  := i + 1 

i -< N and m[i].color = gray ~ atleastgray(m[i].left); 3 
atleastgray(m [ i ].right); 
blacken ( i ) ; 
i : = O  

od; 
Collect: Put white nodes on free list and whiten black nodes: (3.6) 

for i := 0 step 1 until N do 
i f  m[i].color = white ~ Append  i to free list: 

m[i].left := 0; 
m[i].right := 0; 
m[ E N D F R E E  ].left := i; 
E N D F R E E  := i 

m[i ].color = black ~ whiten(i) 
U m[i].color = gray ~ skip 
fi 

od 

The second section labeled Blacken searches through 
all nodes,  both reachable and unreachable ones. Upon  
encountering a gray node,  it grays its successors (if 
white) and then blackens it. Thus every reachable 
white node is always reachable from a gray node,  
which we express as 

i white and reachable  ~ B path  (kl . . . .  , kp, i)  where  kl 
is gray and k2 . . . . .  kp are white (3.7) 

The effect is that,  beginning with the gray nodes,  
all reachable nodes are first grayed and then blackened 
in waves spreading out from the roots.  If a gray node 
becomes unreachable (because of muta tor  interaction),  
it nevertheless is blackened,  along with its successors. 

Each time a gray node is found and blackened,  the 
collector begins checking the nodes again from the 
beginning. If  no gray node is found during a complete 
traversal, then all nodes are black or white. From 
(3.7) and the absence of gray nodes,  we conclude that 
all reachable nodes are black and that all white nodes 
are garbage and can be collected. 

The node traversal algorithm in Blacken has been 
made simple and inefficient in order to simplify the 
correctness proof.  Any traversal algorithm can be used 
which makes a final pass through all nodes without 
finding a gray node; this last pass is necessary because 
of interaction with the mutator .  

The collector, as an independent  algorithm, doesn ' t  
do much. It alternately blackens all white nodes- -  
including the free l i s t - a n d  then makes them white 
again. The free list and the directed graph are repeat-  
edly marked  and unmarked,  and there is never any 
garbage to collect. 

Let us now consider interaction with the mutator .  
Suppose the mutator  takes a node M from the free list 
and grays it (by using M as the second argument  in a 
call to procedure addlefi  or addright)  and then deletes 
an edge so as to make M unreachable.  Thereaf ter  the 
muta tor  may not reference M until it has been put on 
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the free list. During the subsequent marking phase the 
collector blackens M, and during the following collect- 
ing phase it whitens M. During the next marking phase 
M remains white and unreachable;  so the following 
collection finally appends M to the free list. Thus any 
reachable node is appended to the free list within two 
collecting phases after it becomes unreachable.  

This discussion does not prove correctness,  for it 
does not take into full account the muta tor  interaction. 
The main problem is with muta tor  interference when 
the collector is about to blacken node i. The collector 
seems to assume that i 's successors are nonwhite.  
However ,  just before the operat ion blacken(i) the 
muta tor  might interrupt and change i 's successor to be 
an already existing white node.  Blackening i could 
then lead to a black-to-white edge and destruction of 
the important  invariant (3.7). Invariant  (3.7) is needed 
in order to be able to prove that all reachable nodes 
have been blackened,  or marked.  We must show that 
(3.7) always holds during marking even in the face of 
muta tor  interaction. 

The reader  might wish to think about  the following 
problem in light of this discussion: should procedure  
addleft(k, }) be written as m[i].left := j ;  atleastgray(j) 
or as atleastgray(j); m[i].left := j?  

4. Proof of Correctness of the Mutator-Collector 
System 

The muta tor  and collector, as given in (3.5) and 
(3.6), do not terminate;  hence there are no propert ies  
that must hold upon termination.  By "proving the 
correctness" of  the system, we mean establishing cer- 
tain propert ies or assertions that hold whenever  the 
collector reaches certain states. For example ,  after 
section Blacken, all reachable nodes must be black, 
while after execution of Collect all nodes which were 
previously white (and unreachable)  must have been 
put on the free list. We establish these propert ies  by 
giving proof  outlines of the main program,  the collec- 
tor 's  marking phase,  the collector 's collection phase,  
and the mutator ,  in that order.  We follow this with a 
discussion of the interference-free property .  We use 
the following notation: 

,~n =-- m[n].left  (n ' s  cu r ren t  left  successor) ,  

=-- m,[n].right (n 's  cur rent  r ight  successor) ,  

reach(n) =- 3 p a t h ( R O O T ,  . . . , n) or  p a t h ( F R E E ,  (4.1) 
• . .  ~ n ) ,  

r e a c h R ( n )  =- 3 p a t h ( R O O T ,  . . . , n ) ,  
gray-reachable (n)  =- 3 path(k1  . . . . .  kp, n )  where  k l  is g ray  

and  k2, • . .  , kp are  whi te•  

By a path (k~ . . . . .  k~) we mean a succession of 
distinct nodes k~ such that there is an edge from node 
k~ to node k i + l .  We use two auxiliary variables. Varia- 
ble mark indicates whether  or not the collector is 
currently marking; it is referred to in the muta tor ' s  
assertions but not in the muta tor  itself. Variable add 
indicates whether  the muta tor  is currently executing in 
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procedure addlefi or addright. These variables are 
needed only for the proof;  by virtue of the auxiliary 
variable axiom, they may be deleted without disturbing 
the correctness of the system. 

The muta tor  has its set of reasonable states under 
which it can cooperate;  we describe these in the 
following assertions: 
Mfree  =- l free A no  free list node  is reachable f r o m  R O 0  T 
Mgraph  -~ add  = 0 A ( m a r k  ~ the re  is no b l ack - to -whi t e  ( 4 . 2 )  

edge)  

The muta tor  actions are simple enough to understand 
without a formal proof  outline, but we must use these 
assertions and a proof  outline in order  to show nonin- 
terference.  The collector also has its set of reasonable 
states which concern the free list and the colors of 
nodes at various stages of execution. We group them 
here to facilitate referencing them later. 

A brief explanation of assertion C.LP will illustrate 
the nature of such assertions in parallel programming.  
On the basis of just the collector, we would like to 
have C ~  - "i 's  left successor is nonwhite ."  However ,  
as ment ioned earlier, execution of the muta tor  may 
falsify this by changing m[i].left to point to a white 
node. Hence C~Ce is weakened to indicate that if i 's left 
successor is white, then the muta tor  is at a specific 
point of execution (defined by variable add), and that 
i 's left successor is gray-reachable from some other 
node besides i. 

Cfree =- l f ree  A ~ E N D F R E E  = 0 A ~ 0  = 2 0  = 0 
Cmark  ==- m a r k  A R O O T ,  F R E E  and  0 are  n o n w h i t e  A 

(n whi te  and  r e a c h a b l e  ~ g r a y - r e a c h a b l e ( n ) )  

Cm( i )  -= 0 - < i - - - N  + 1 A ( m [ 0 : i  - 1] con ta ins  a g ray  
n o d e  impl ies  rn[ i :N]  con-  

ta ins  a g ray  node)  

C~L~ --- ~,~i wh i t e  ~ i = add  4 : 0  A 3 p a t h ( k  . . . . . .  kp, ~ i )  (4.3) 
with  k l  g ray ,  k2, • • • , kp wh i t e ,  and  
k l  = i imp l i e s  k2 = ~q~t 

C ~  --- ~ ' w h i t e ~ i  = - a d d  4 : 0  A 3pa th (k l  . . . . .  
k p , ~ / )  wi th  k l  g ray ,  k2 . . . . .  kp 
whi te ,  and  k l  = i impl ies  k2 = 0o97i 

Ccoll( i)  -~ ~ m a r k  A (0 <- n <- i ~ n nonblack)  
A ( ( i  < n -< N A n white)  ~ n is no t  

r eachab le )  

We are finally ready to give the proof  outlines of 
the various sections. Look  upon each as a sequential 
program and the proof  outlines should not be hard to 
understand• Difficulties arise only because assertions 
have been weakened in order  to show noninterference 
later on. 

4.1 Proof Outline for the Main Program 
Note that there is no terminating condition; 

whether  the system halts depends on the particular 
muta tor  being executed. We are interested only in 
proving propert ies  which hold as long as the muta tor  is 
executing. 

{Mfree A Cfree A -7 mark  A add  = 0 A no  b lack  nodes} 

¢obegin  {Cfree A -7 m a r k  A no b lack  nodes} 

Collector: do t rue  
{Cfree A -7 m a r k  A no b lack  nodes} 
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/ /  

coend 

Make roots at least gray; 
Blacken : Blacken gray nodes and nodes reach- 
able from grays; ( 4 . 1 . 1 )  
{Cfree A ~ mark A all white nodes are unreach- 
able} 
Collect: Put white nodes on free list and whiten 
black nodes 
{Cfree A ~ mark A no black nodes} 
od 

{Mfree A Mgraph} 
mutator 

4.2 Proof Outline for the Marking Phase 
This phase consists of sections Make roots at least 

gray and Blacken; a proof outline is given in (4 .2 .2) .  
One difficulty is showing that execution of blacken(i) 
does not destroy assertion Cmark. From assertion (C9~ 
A C.~) one can conclude (because of the relations 
between i and add) that at most one of i's successors is 
white. Moreover, if, say, ~ i  is white, then it is gray- 
reachable from a node other than i, and hence black- 
ening i will not destroy the assertion Cmark. 

We must show that the loop of (4 .2 .2)  terminates. 
Consider the following integer function f: 

f =3 .N .  (no. of white nodes) + 2 .N 
(no. gray nodes) + N + 1 - i. (4 .2 .1)  

Each execution of the loop body reduces f by at least 
1. Furthermore f _ 0. Hence after a finite number of 
iterations the loop terminates. 
{Cfree A m mark A no black nodes} 
Make roots Root, Free and nil at least gray; 
{Cfree A m mark A no black nodes / \  roots (including nil) are 

nonwhite} mark := true; 
{Cfree i Cmark} 
i := 0; 
{Cfree A Cmark i Cm(i)}. 
do i <- N A m[i] .color q: gray ~ {Cfree A Cmark A (4.2.2) 

Cm(i) A i nongray} 
{Cfree A Cmark A 

Cm(i + 1)} 
i ' = i + l  
{Cfree A Cmark A Cm(i)} 

I] i <-- N A m[i].color = gray ~ {Cfree i Cmark A i gray} 
atleastgray (m [i].left); 
{Cfree A Cmark A i gray 

A Afi nonwhite} 
{Cfree A Cmark A i gray 

A c~e} 
atleastgray (m [i]. right); 
{Cfree A Cmark A i gray 

A C ~  A ~ nonwhite} 
{Cfree A Cmark A i gray 

A C ~  A C~}  
blacken (i); 
{Cfree A Cmark A 

i black} 
i : = O  
{Cfree A Cmark A Cm(i)} 

{Cfree A Cmark A Cm(i)} 
od; 
{Cfree A Cmark A Cm(N + 1)} 
{Cfree A Cmark A no gray nodes} 
{Cfree A Cmark A all white nodes are unreachable} 
mark := false 
{Cfree A 7 mark A all white nodes are unreachable} 
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4.3 Proof Outline for the Collecting Phase 

Collect: 
{Cfree A -~ mark A all white nodes are unreachable} 
{Cfree A CcoU(-1)}  
for i := 0 step 1 until N do 

{Cfree A Ccoll( i - 1)} 
i fm[i].color = white ~ (4.3.1) 

{Cfree A Ccoll(i) A ~ reach(i)} 
m[i].left := 0; m[i].right := 0; 
{Cfree A Ccoll(i) A "~ reach(i) A &£i = ~ /  = 0} 
m[ENDFREE]. le f t  := i; 
{Ifree A Ccoll(i) A . ~ E N D F R E E  = i :~ 0 f .LP0 = ~ 0  = 0} 
E N D F R E E  := i 
{Cfree A Ccoll(i) i E N D F R E E  = i} 

fl m[i].color = black ~ {Cfree A Ccoll(i - 1) A i black} 
whiten(i) 
{Cfree A Ccoll(i)} 

fl m[i].color = gray ~ skip (Cfree A Ccoll(i)} 
fi 
{Cfree A Ccoll(i)}; 

{Cfree A Ccoll(N)} 
{Cfree A -7 mark A no black nodes} 

4.4 Proof of Properties of the Mutator 
We begin with two lemmas about procedures add- 

left and addright. The extra auxiliary variable add is 
needed later to show noninterference; by the auxiliary 
variable axiom, assignments to add, as well as the 
awaits, can be deleted. Implied in these lemmas is that 
these procedures have no effect except as stated. 

Lemma 4.4.1. 

{Mgraph A reach(k) A reach(j)} 
addleft(k, j) 
{Mgraph f reach(k) A ~ k  = j} 

and 

{Mgraph A reach(k) i reach(j)} 
addright(k, ]) 
{Mgraph A reach(k) i 9~k = j} 

Proof outlines. 

proc addleft(k, j); 
begin {Mgraph A reach(k) A reach(j)} 

await true then begin m[k].left := j ;  add :=  k end; 

l 
k = add -~ 0 A reach(k) A .5~k = ] ] 
A (mark ~ the only possible black-to-white edge is 

(k, .~k)) 
await true then begin atleastgray(j); add := 0 end 
{Mgraph i reach(k) i .~k = j} 

end 
proe addright(k, j) ; 

begin (Mgraph A reach(k) i reach(j)} 
await true then begin m[k].right := j ;  add :=  - k  end; 

I 
k = - a d d  --b 0 i reach(k) A ~tk = j 
i (mark ~ the only possible black-to-white edge is 

(k, ~?.k)) 
await true then begin atleastgray(j); add := 0 end 
{Mgraph A reach(k) A ~ k  = j} 

end 

We are now ready to give the proof outline of the 
mutator. We show only three opera t ions - those  deal- 
ing with the left successor of a node; the other three 
operations dealing with the right successor are similar. 
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When showing noninterference,  we shall also deal only 
with these three operations.  

{Mfree /X Mgraph} 
mutator : do true 

{Mfree A Mgraph} 
Let k, j be indices of  nodes reachable from R O O T ;  
{Mfree A Mgraph A reachR(k) A reachR(])} 
i f  true ~ {Mfree A Mgraph /~ reachR(k)} 

m[k].lefl := 0 
{Mfree /X Mgraph /X reachR(k) /X ~k = 0} 

[1 true ff  {Mfree A Mgraph A reachR(k) A reachR(j)} 
addleft(k, i) 
{Mfree /X Mgraph /% reachR(k) /X ~ k  = j} 

[1 true ~ Take first free node as k's left successor: 
{Mfree A Mgraph A reachR(k)} 
f :=  M[FREEI. le f t ;  
{Mfree /X Mgraph /X reachR(k ) /~ ~gFREE = f ~ O} 
addleft(k, f);  

l 
lfree A.Mgraph /X reachR(k) /X 

.~Free = ~ k  = f -~ 0 /X  
every path from R O O T  to free list uses~  

edge (k, ~ k) ] 
d o f  = E N D F R E E  ~ skip od; 
{ e l f r e e / X M g r a p h A r e a e h R ( k ) / X  } 

.~FREE = .~k = f -~ 0 / X  
very path from R O O T  to free list uses  

edge (k, .L~ k) 
addle f t  ( FR E E , m [f] . left ) ; 

lfree /X Mgraph /~ reachR(k) /X 
.~FREE = ~f A ~ k  = f. /~ ~f = 0 

very path from R O O T  to free list u s e s ~  
edge (f, ~ f) ! 

mill.left := 0 
fi 
{Mfree /X Mgraph} 

od 

4.5 Showing Noninterference 
We must show that the precondition of each state- 

ment  S of the collector cannot be falsified by execution 
of the mutator ,  and vice versa. We must also show 
that function f (see (4.2.1)) remains a decreasing 
function under parallel execution, in order  to show 
that the marking phase of the collector still terminates.  
It will help to handle the assertions in separate classes: 
first, those assertions which deal only with the structure 
of the graph - like Ifree and reachR(k) - and secondly, 
those that also deal with the coloring of nodes. 

Noninterference o f  assertions dealing only with 
structure. Note first that Ifree is true throughout exe- 
cution of both processes. Now consider the collector 
(3.6). The only statements that change the graph 
structure occur in Append i to free list. Here ,  the 
successors of an unreachable node i are deleted and i 
is appended to the free list. Hence the collector changes 
successors only of unreachable nodes and the last free 
list node m [ENDFREE]. 

On the other hand, the muta tor  changes successors 
only of reachable nodes and never  of node E N D F R E E  
or of the last free list node. The muta tor  and collector 
work with disjoint subsets of the nodes in this respect.  

With this insight, we now scan the collector's proof  
outline and make a list of those assertions which are 
obviously not falsified by the mutator:  

928  

lfree, Cfree, ~ 0  = ~ 0  = 0, 
reach(i), "-7 reach(i)/X .L~i = ~ /  = 0, (4.5.1) 

E N D F R E E  = i, £~ENDFREE = i, mark,  -7 mark 

In the same manner ,  we list the muta tor  assertions 
about structure which are not falsified by the collector: 

Ifree, Mfree, assert ions dealing with the reachability of  
nodes and who their successors are,  such as reach(k), ( 4 . 5 . 2 )  
reachR(k) /X £gk = f / ~  .5~f = ~ f  = 0 

We are able to handle the noninterference of these 
assertions informally because the sets of nodes which 
each process can work with (with respect to graph 
structure) are disjoint. 

Noninterference o f  the other mutator preconditions. 
Three other muta tor  assertions must not be falsified 
by the collector, all dealing with the existence of black- 
to-white edges: 

Mgraph =- add = 0 /X (mark ~ there is no black-to- 
white edge),  

k = add -~ 0 /X  (mark ~ only possible black-to-white (4.5.3) 
edge is (k, ~ k ) ,  

k = - a d d  -~ 0 / X  (mark ~ only possible black-to-white 
edge is (k, ~k) .  

We shall deal only with the first two. A scan of the 
collector yields the following three assignments, with 
relevant preconditions,  which might falsify one of these 
assertions: 

{no black nodes} mark := true 
{-~ mark} white(i) (4.5.4) 
{Cmark /X C.~ /~ C ~ }  blacken(i) 

The only assignment where noninterference is not 
obvious is the third: blacken(i). Consider assertion 
Mgraph. We have {Mgraph /~ Cmark /~ C.~ /~ C~}  
{ZPi and ~ /  are nonwhite}. Hence blackening node i 
under these conditions leaves Mgraph true. Next,  
consider the second assertion of (4.5.3).  From this 
assertion and the precondition of blacken(i), we can 
prove that ~ / i s  nonwhite.  Fur thermore ,  if ~ i  is white, 
then i = k and the edge (i, ~ i )  is the same edge as (k, 
~?k). Thus blackening i leaves this assertion true. 

Noninterference o f  the other collector preconditions. 
We note that the only coloring action of the muta tor  is 
to gray a reachable white node.  Hence  the muta tor  
cannot falsify the assertions: n nonblack, n black, n 
nonwhite, n gray, ~ reach(n) /~ n white for any arbi- 
trary node n. We now scan the collector and make a 
list of the remaining assertions which must not be 
interfered with (see (4.3) for definitions): 

Cmark 
Cmark /X C.SE (and similarly Cmark /X C ~ )  
Cm(i) (for 0 < i --< N + 1) 
Ccoll(i) (for - 1  - i --< N;  this includes the asser- (4.5.5) 

tion "all white nodes are unreachable")  
f does not increase (see (4.2.1) for the definition o f f )  

We show the noninterference only of the two 
interesting ones: Cmark and Cmark /X C.~. We note 
that (Mgraph /~ roots nonwhite /~ mark) ~ Cmark. 
Since the muta tor  does not whiten nodes, it can falsify 
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Cmark only by falsifying Mgraph also. Mgraph is false 
only in two places, in procedures addleft and addright. 
We consider only one case. Suppose then that execu- 
tion of the first await of addleft leaves a black-to-white 
edge (k, ~ k ) ,  under conditions 

{Mgraph /% reach(k) /k reach(j) /~ k black/k/" white/% Cmark} 
await true then begin m[k].left := j;  add := k end 

Consider a white, reachable node i before execution of 
the await. Since Cmark is true,  there exists a path 
(kl . . . . .  kp, i) where kx is gray and kz, • • • , k ,  are 
white. Since node k is black, execution of m[k].left := 
j cannot destroy this path.  Hence i remains gray- 
reachable after execution of the await. Thus Cmark is 
also true after execution of the await. 

Now consider assertion Cmark /~ C~ .  If  node ~ i  
mentioned in C ~  is white, then the muta tor  is currently 
between the two awaits of procedure addleft because 
the mutator ' s  variable add > 0. Execution of the 
second await grays node j ,  which in this case is node 
~ i ,  and hence C.T remains true after execution of the 
second await. 

On the other hand,  suppose Cmark /~ C ~  is true 
and that node ~ i  is nonwhite.  The mutator  can falsify 
Cmark /~ C&e only by making i 's left successor white, 
and it can do this only by changing i 's left successor 
through execution of the first await statement  in pro- 
cedure addleft. For this to happen,  the following must 
be true before execution of the await: 

{Cmark A C ~  /~ ~ i  nonwhite /~ reach(k) /k reach(j) 
/ ~ j w h i t e A i  = k }  

From this we can conclude that there is a path 
(kl, • • • , k~, j) where kl is gray and kz . . . .  , kv are 
white. Further,  if node i lies on this path,  its successor 
on the path cannot be ~ i ,  which is nonwhite,  and 
must therefore be ~ / .  This path is not disturbed by 
execution of the await and is exactly the path described 
in C ~  as the necessary condition if ~ i  is white. Hence 
Cmark /k Cdg is not falsified by execution of this 
s tatement either. 

roughly the same mistake.  Informal  reasoning is just 
not adequate  to handle the problem.  

The main difficulty with the proof  method used 
here is that assertions f o r  one process have to be 
designed in the light of knowledge of the other  proc- 
esses. In the worst case, if one process has n s tatements  
and the other m statements ,  the proof  method requires 
work proport ional  to m . n .  I suspect that no general 
proof  method for parallel programs can improve on 
this worst-case bound.  

When we write a procedure to be used in a sequen- 
tial setting, once it is written and proved correct we 
can view it as a black-box operat ion and use it over 
and over  again without having to look in the black 
box. We worry only about  what it does. In a parallel 
setting, however,  we must analyze the procedure each 
time we wish to use it to make sure that the parallelism 
does not disturb its proof  of correctness. And  each 
change in the other process forces us to reanalyze the 
procedure again. One can avoid this complexity by 
making the procedure an indivisible operat ion through 
the use of synchronization and mutual exclusion primi- 
tives and by limiting the use of shared variables. Or  
one can summarize in an invariant for the procedure 
what a parallel process must leave true in order  not to 
interfere. 

The on-the-fly garbage collector is very fragile and 
susceptible to such changes. Slight changes which 
would seem innocent in a sequential setting are disas- 
trous in a parallel context.  Two examples of this would 
prove enlightening. 

First of all, consider a free list where E N D F R E E  is 
handled as a fixed node not on the free list, as in 
(5.1). Diagram (5.2) shows a free list consisting of a 
single node. 

rnIFREE] 

rn [ENDFREE] 
(5.1) 

5. Concluding Remarks 

It has taken five and one half pages to introduce 
the topic, describe the proof  techniques, give the 
solution, and describe it informally and another  three 
to present a more detailed, formal proof  of correctness. 
The complexity of parallel programs with such a fine 
degree of interleaving seems to be an order of magni- 
tude greater  than the complexity of corresponding 
sequential programs.  While one might be able to 
improve on the style and presentation to make it 
appear  simpler, such systematic methods must be used 
to master  and control the complexity. In support  of 
this view, I have thus far seen five purpor ted  solutions 
to this problem,  either in print or ready to be submitted 
for publication. All used informal reasoning and had 

m [FREE] m [ENDFREE] 

~ ~_5_] (5.2) 

Suppose the free list always contains at least one 
element.  The muta tor  could use either of the following 
two waiting tests before taking a node from the free 
list: 

m[ FREE ].left 4= m[ENDFREE]. le f t  or 
m[m [ FREE ].left].left 4: O. 

In sequential programming these might be equivalent,  
but in parallel programming the use of one or the 
other could lead to an error.  The process which adds a 
node to the free list cannot change ~ E N D F R E E  and 
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5f(~ENDFREE) at the same time, so that only one of" 
the following holds: 

m[.FREE ].left 4: m[ ENDFREE ].Ieft 
m[m [ FREE ].left].left 4: O. 

or  

m[m[ FREE ].left].left 4:0 
m[ FREE ].left 4: m[ENDFREE ].left. 

Which one holds can only be determined by looking at 
the process which actually appends a node to the free 
list. 

The second point illustrates the advantages of for- 
mal and systematic reasoning over informal reasoning. 
The last "bug"  found in Dijkstra's program, which has 
appeared in four "solutions" that I have seen, was in 
the mutator 's procedure addleft(k, j). This was first 
written as 

atleastgray(j); m[k].left := j 

Informal reasoning had led to the conclusion that j 
should be grayed first; so no black-to-white edge would 
exist. Only much later did informal reasoning by Mike 
Woodger  find the error.  Suppose the mutator  is 
stopped after graying j .  The collector begins marking 
and blackens k and ],  begins collecting and whitens k 
and j ,  and then begins marking and blackens k. The 
collector pauses for a breath. The mutator executes 
m[k].left := j and then deletes all other edges ending 
in ]. The only way to reach ] is through the black-to- 
white edge (k, j). At this point, the collector finishes 
marking, leaving j white, and then collects the white 
reachable node ] ,  appending it to the free list. 

Informal reasoning alone can never hope to think 
of all such torturous execution sequences; only a sys- 
tematic method based on formal techniques can expect 
to cope with the complexity. With Owicki's techniques, 
the error  would have been easy to find. In making up 
the list of mutator 's assertions that may not be falsified 
we would have listed [mark ~ j nonwhite]. Clearly 
execution of the collector's statement mark := true 
can falsify this assertion. 

Having been warned of this error  by Dijkstra, I 
cannot argue that I found and corrected it myself. But 
I venture to say that if I had used Owicki's methods 
carefully enough (one makes errors in proofs too),  I 
would have found it easily. Of course, executing half 
of the sequence m[k].left := ]; atleastgrayq) leaves a 
black-to-white edge momentarily,  and it was Dijkstra 
who led me to use instead the invariant 

In either case, it is not sufficient. The goal of every 
programmer should be to make the detection of an 
error  during testing the exception rather than the rule, 
as it is now. This means that the more complicated the 
problem and resulting program, the more systemati- 
cally and formally the problem must be investigated in 
order to control the complexity. 

I should add that the existence of a proof such as 
this does not imply absolutely that the program is 
correct; but it drastically raise, s our level of confidence 
in the program. 

Acknowledgments. This exercise could not have 
been possible without a good knowledge of Owicki's 
thesis, and I am grateful for the privilege of supervising 
her thesis work. Thanks go to Dijkstra for showing us 
the garbage collection problem, to Dijkstra and Hoare  
for help in developing the proof  in its various stages, 
to the members of IFIP working group 2.3 (program- 
ming methodology) for the opportunity to present and 
discuss this material at several meetings, and to the 
referees for their careful and constructive comments.  

Originally submitted October 1975. Final revision submitted Febru- 
ary 1977. 

References 
1. Dijkstra, E.W., et al. On-the-fly garbage collection: an exercise 
in cooperation. Notes for the 1975 NATO Summer School on 
Language Hierarchies and Interfaces, Lecture Notes in Computer 
Science 46, Springer-Verlag, New York, 1976. 
2. Hoare, C.A.R. An axiomatic basis for computer programming. 
Comm. ACM 12, 10 (Oct. 1969), 576-583. 
3. Owicki, S. Axiomatic proof techniques for parallel programs. 
Ph.D. Th., TR 75-251, Dept. Comptr. Sci., Cornell U., Ithaca, 
N.Y., July 1975. 
4. Dijkstra, E.W. Guarded commands, nondeterminancy and 
formal derivation of programs. Comm. ACM 18, 8 (Aug. 1975), 
453-457. 
5. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the 
programming language PASCAL. Acta Informatica 2 (1973), 335- 
355. 
6. Stenning, V. On-the-fly garbage collection. Unpublished notes, 
1976. 
7. Steele, G.L. Jr. Multiprocessing compactifying garbage 
collection. Comm. ACM 18, 9 (Sept. 1975), 495-508. 

{every reachable white node is reachable from a gray 
node} 

in the collector. The assertion " there  are no black-to- 
white edges" had to be replaced because of the muta- 
tor's actions. 

Building a program with little regard to correctness 
and then debugging it to find errors is even more folly 
for parallel programs than it is for sequential programs. 
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