
Programming J . J . Horning*
Languages Editor

An Exercise in
Proving Parallel
Programs Correct
David Gries
Cornell University

A parallel program, Dijkstra's on-the-fly garbage
collector, is proved correct using a proof method
developed by Owicki. The fine degree of interleaving
in this program makes it especially difficult to
understand, and complicates the proof greatly.
Difficulties with proving such parallel programs
correct are discussed.

Key Words and Phrases: garbage collection,
multiprocessing, program correctness for
multiprocessing tasks

CR Categories: 4.32, 4.34, 4.35, 4.39, 5.24

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

* Note. This paper was submitted prior to the time that Horning
became editor of the department, and editorial consideration was
completed under the former editor, Ben Wegbreit.

This research was partially supported by the National Science
Foundation under grant GJ-42512. Author's present address: De-
partment of Computer Science, Cornell University, Ithaca, NY
14850.

921

1. Introduction

At the NATO International Summer School on
Language Hierarchies and Interfaces, Marktoberdorf ,
1975, Edsger W. Dijkstra presented an "on-the-fly"
garbage collector. Dijkstra and his colleagues had
tackled this problem "as one of the more challenging--
and hopefully ins t ruc t ive -prob lems" in parallel pro-
gramming. Indeed, the high degree of interleaving of
the processors' actions made his solution, and the
arguments about its correctness, difficult to under-
stand. The major difficulty was the lack of necessary
tools and the lack of any systematic method for under-
standing parallelism. Having recently worked with
Susan Owicki on her thesis [3] on methods for proving
properties of parallel programs, it struck me that with
Owicki's techniques I could perhaps provide a better
understanding of the program. With some help from
Dijkstra and Tony Hoare , I was able to arrive at an
outline of a proof of correctness of the garbage collec-
tor and present it a few days later at the Summer
School.

A fully detailed, complete proof, however, took
me much longer, partly because I was not adept enough
yet at applying the techniques, but also because proving
properties of parallel programs is so much harder than
proving properties of sequential programs.

Owicki's proof techniques deserve further study,
and this paper attempts to describe them and their use
in the context of Dijkstra's garbage collector. Section
2 presents and discusses some of Owicki's proof tech-
niques. Section 3 describes the garbage collection
problem and gives the solution, along with an informal
discussion of its correctness. Section 4 is devoted to
more formally establishing its correctness.

Parallel programming is much harder than sequen-
tial programming. The reader might want to study
Section 5, the conclusions, after looking at the solution
but before reading its correctness proof, in order to
fully understand the problems of parallelism.

2. Definition and Use of the Language

Let S be a statement and P and Q assertions about
variables. In [2], Hoare introduces notation like {P} S
{Q} to informally mean: if P is true before execution
of S, then Q will be true when S terminates. This is a
statement of partial correctness; termination of S must
be established by other means.

As another notational device, by

a , b , c
d

we mean that if a, b, and c hold, then so does d.
Hoare introduces axioms and inference rules similar to
the following for a fragment of A L G O L .

null {P} skip {P} (2.1)

assignment {Pff} x := e {P} (2.2)

Communications December 1977
of Volume 20
the ACM Number 12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359897.359903&domain=pdf&date_stamp=1977-12-01

where Pf represents the result of substituting (e) for
each free occurrence of x in P ; e.g. if P is (a > 0 / ~ b
= 1), then P'd+b is (a + b > 0 / ~ b = 1). It should be
recognized that this axiom holds only when variable x
has no other name used in e or P ; otherwise the axiom
may not be consistent.

{P/~ B} S1 {a}, {P/~ -~B} $2 {a}
alternation (2.3)

{P} if B then $1 else $2 {Q}

{P/~ B} S {P}
iteration (2.4)

{P} while B do S {P/~ -TB}

{P0} S1 {P1}, {P1} $2 {P2},
composition - . . , {P, - 1} Sn {Pn} (2.5)

{P0} begin S1; . . . ; Sn end {Pn}

{P1} S {Q1}, P l- P1, Q1 l- Q
(2.6) consequence {P} S {Q}

Let us now briefly discuss proofs of properties of
sequential programs. When we write {P} S {Q}, this
implies the existence of a proof {P} S {Q} using the
axioms and inference rules (2 .1)-(2.6) . For example
suppose we have already proved {P1/~ e} S1 {Q1}, {P1
/~ --a e} $2 {Q1}, P ~" P1 x", and Q1 b Q, and suppose we
have

S -= begin x := a; if e then $1 else $2 end

Then a proof of {P} S {q} might be

(1) {Ply} x := a {P1} assignment

{PI~ z} x := a {P1}, P k Pla x
(2) consequence

{1°} x := a {P1}

{P1 A e} S1 {Q1} {P1 A ~ e} $2 {Q1}
(3) {P1} i fe then S1 else $2 {Q1} alternation

{P1} i fe then S1 else $2 {Q1}, Q1 k Q
(4) {P1} ife then S1 else $2 {Q} consequence

{P} x := a {P1}, {P1} if e then S1 else $2 {Q}
(5)

{P} begin x := a; i fe then S1 else $2 end{Q}
composition

This proof can be outlined more compactly and under-
standably by interleaving statements and assertions:

{Y}
begin {P}

x : = a ;

{P1}
ire then{P1 Ae} SI{Q1} (2.7)

else {el A e} $2 {Q1}
{QI}
{Q}

end
{Q}

In a proof outline, two adjacent assertions {P1} {P2}
denote the use of the rule of consequence, where P1 t-

922

P2. Second, each statement S is preceded directly by
an assertion called the precondition of S, written pre(S).
The precondition of x :-- a above is Ply .

Owicki [3] introduces two statements for parallel
processing. The cobegin statement indicates that proc-
esses are to be executed in parallel; the await statement
provides synchronization and mutual exclusion. The
await statement has the form

await B then S

where B is a Boolean expression and S a statement.
Execution of the process is delayed at the await until
B is true. At this time, S is executed as an indivisible
o p e r a t i o n - n o other process may execute while S is
executing or during the time that B is found to be true
and execution of S is begun since this might falsify B.
If two delayed processes have their corresponding
Booleans B come true at the same time, one of them
is further delayed while the other executes. The sched-
uling algorithm for determining which process is al-
lowed to proceed does not concern us here. For
simplicity, we assume that awaits cannot be nested.

The formal definition of the await statement is:

await { P / ~ B} S {Q} (2.8)
{P} await B then S {Q}

Before introducing the cobegin statement, let us ex-
plain what it means for two parallel processes to be
interference-free.

Definition. Given {P} S {Q}, let T be any assignment
or await (not in S) with precondition pre(T). We say
that T does not interfere with the proof of {P} S {Q} if
(a) {Q/~ pre(T)} T {Q}, (b) for each statement S' of S
which is not within an await, {pre(S') /~ pre(T)} T
{pre(S')}.

Thus execution of T cannot affect the truth of the
preconditions and result conditions used in the proof
of S, and hence the proof {P} S {Q} holds even if T is
executed while S is executing.

Definition. {P1} S1 {Q1} and {P2} $2 {Q2} are
interference-free if each assignment statement of $2
(which does not occur within an await) and each await
of $2 does not interfere with the proof of {P1} S1 {Q1},
and vice versa.

If S1 and $2 are interference-free as just defined,
then execution of $2 leaves valid all the arguments
used in the proof {P1} S1 {Q1}, and therefore the
proof still holds in the face of parallel execution. This
allows us to define the cobegin statement as follows:

parallelism

{P1} S1 {Q1}, {P2} $2 {Q2} interference-free
(2.9)

{P1 /~ P2} cobegin S1 l] $2 coend {Q1/~ Q2}

Again, for simplicity, we assume a program has only
one cobegin statement.

In any operational model consistent with this and
the other axioms, statements $1 and $2 can be executed
concurrently, and execution of a cobegin terminates

Communications December 1977
of Volume 20
the ACM Number 12

only when both S1 and $2 have terminated. No as-
sumptions about the relative speeds of processes $1
and $2 are made. Evaluation of any expression or
execution of any assignment, however, must be per-
formed as an indivisible operation which cannot be
interrupted, but we can lift even this restriction if we
adhere to the following (which this paper does):

Any expression e in process Si may contain at most one reference
to at most one variable changed in the other process Sj. If variable x
of x := e in Si is referenced by process S], then e can contain no
references to x or to a variable changed in Sj. (2.10)

For example, suppose process S1 changes variable a.
Then process $2 may not contain the statements a := a
+ 1 or b := a + a + 1. If process S1 references a, then
in process $2 an assignment a := a + 1 must be written
as t := a + 1, a := t where t is local to $2. The same
restrictions hold for an array, where we consider an
assignment a[i] := e to be a change of the whole array
a (as in the Pascal axiomatic definition [5]).

With this convention, the only indivisible action
need be the memory reference. Suppose process Si
changes variable (location) A while process Sj, j ~ i, is
referencing A. The memory must have the property
that the value received for A by process Sj is the value
of A either before or after the assignment, but it may
not be garbage caused by fluctuation of the state of
memory during the assignment to A. Thus the methods
described here can be used to prove properties of
programs executing on any reasonable machine, with
as fine a grain of interleaving as one could imagine.
Dijkstra's on-the-fly garbage collector takes advantage
of such a fine grain of interleaving.

One often must be able to delete variables from
(or add variables to) a program in order to effect a
proof. The following definitions allow this.

Definition. Let A V be a set of variables which
appear only in assignments x := e in a program S,
where x E A V. Then A V is an auxiliary variable set for
S.

Definition. Let A V be an auxiliary variable set for
S'. S is a reduction o f S' if it is obtained from S' by
one of the operations: (a) Delete all assignments x :=
e where x E A V, or (b) replace await true then x := e
by x := e, provided x := e satisfies (2.10).

Auxiliary variable axiom. Let A V be an auxiliary
variable set for S', S a reduction of S' with respect to
A V, and P and Q assertions which do not contain
variables from AV. Then

{P) S' (Q}

{P} S {Q}

That one can delete auxiliary variables in this
manner should be obvious; their values do not affect
the results of computation at all, but are used only in
proving correctness.

We now have a system for proving partial correct-
ness of parallel programs. We shall see that we cannot
use it completely and formally because the processes

923

we deal with may not even terminate. But we can use
the insight gained to informally prove properties of
parallel programs.

The formalization teaches us to understand parallel
processes in two steps. First, prove the properties of
each parallel process $1 and $2 as sequential programs,
disregarding parallel execution. Second, show that
execution of $2 does not destroy the proof of Sl ' s
properties, and vice versa, for if parallel execution of
$2 does not invalidate the proof, it cannot destroy the
desired properties.

This is an important step forward in understanding
parallelism. Earlier work has often tried to show that
execution of $2 does not interfere with the execution
of $1. By concentrating more on the proof, we turn
our attention to a more static object which is easier to
handle. Of course, the sequential proofs may turn out
to be harder because we must often weaken or change
the arguments so that they will not be destroyed by
parallel activity. This will become clear later.

We shall subsequently apply this technique. We
shall not prove that subparts of a sequential program
work correctly if it is obvious; we use proof outlines as
in (2.7), and we often leave out implications P F Q if
they can be discerned by the reader. We also use other
statement notations where clearer and make program
transformations without a formal proof rule if the
transformations are obviously correct. The assertions
themselves will often be at a high, informal level in an
attempt to be clear without having to resort to too
much formalism.

3. On-the-Fly Garbage Collection

The data structure used in a conventional imple-
mentation of LISP is a directed graph in which each
node has at most two outgoing edges (either of which
may be missing): an outgoing left edge and an outgoing
right edge. At any moment all nodes of the graph
must be reachable (via a directed path along directed
edges) from a fixed root which has a fixed, known
place in memory. The storage allocated for each node
is constant in size and can accomodate two pointers,
one for each outgoing edge. A special value nil denotes
a missing edge. We allow the directed graph to have
cycles.

For any reachable node, an outgoing edge may be
deleted, changed, or added. Deletion and change may
turn formerly reachable nodes into unreachable nodes
which can no longer be used by the program (hence-
forth called the mutator). These unreachable nodes
are therefore called garbage. Nodes not being used by
the mutator are stored on a free list maintained as a
singly linked list. The mutator may delete the first
node from the free list and insert it into the directed
graph by placing an edge to it from a reachable node.

If the free list becomes empty, computation halts
and a process called "garbage collection" is invoked.

Communications December 1977
of Volume 20
the ACM Number 12

Beginn ing with the roo t , all r eachab le nodes are
m a r k e d ; upon comple t i on o f this mark ing phase , all
u n m a r k e d nodes are known to be ga rbage and are
a p p e n d e d to the free list. C o m p u t a t i o n then r e sumes .

A m a j o r d i s advan tage of this a r r a n g e m e n t is the
unpred ic tab i l i ty of the g a r b a g e col lec t ion in te r ludes .
D i j k s t r a and his co l leagues t h e r e f o r e inves t iga ted the
use of a second p roces so r , the collector, which would
col lect ga rbage on a m o r e con t inuous basis concur-
ren t ly with the ac t ion of the m u t a t o r . The cons t ra in t s
i m p o s e d on the i r so lu t ion were :

the "interference between collector and mutator should be minimal
. . . , the overhead on the activity of the mutator (as required for
cooperation) should be kept as small as possible, and, finally, the
ongoing activity of the mutator should not impair the collector's
ability to identify garbage as such as soon as possible."

T h e i r so lu t ion satisfies these c r i te r ia , and we m a k e
no i m p r o v e m e n t on it at all ; we are c o n c e r n e d only
with the desc r ip t ion and p r o o f of the i r so lu t ion . Ove r -
head on the m u t a t o r a re one or two s imple a s s ignments
p e r changed or a d d e d e d g e , the only indivis ib le ac t ion
need be the m e m o r y r e f e r e n c e , and the only synchro-
n iza t ion occurs when the m u t a t o r must wai t for the
free list to have m o r e than one node be fo re t ak ing a
node f rom it.

W e now turn to the a lgo r i thm itself . T h e co l l ec to r
has two phases : m a r k i n g r e a c h a b l e nodes and collect ing
u n m a r k e d , u n r e a c h a b l e nodes . F o r m a r k i n g , we mus t
use t h ree colors : white r ep r e sen t s u n m a r k e d , black
m a r k e d , and gray an " i n - b e t w e e n " co lo r n e e d e d for
c o o p e r a t i o n b e t w e e n co l l ec to r and m u t a t o r . To see

the need for the th i rd co lor , suppose we use only b lack
and whi te , and let nodes N and M be as d e p i c t e d in
s ta te 1 of F igure 1. N o w let the m u t a t o r r e p e a t e d l y
p e r f o r m the fo l lowing sequence of ac t ions: inser t a
r igh t -ou tgo ing edge f rom node N to node M ; de le t e
the l e f t -ou tgo ing edge of n o d e N ; inser t a l e f t -ou tgo ing
edge f rom node N to node M ; de le te the r igh t -ou tgo ing
edge of node N. M is thus a lways r e a c h a b l e f rom N. If
M is whi te , the co l lec to r mus t no t ice tha t M is N ' s
successor and b l acken M. But the co l l ec to r might
neve r see this , for it might a lways check N ' s left-
ou tgo ing edge when it is nil (i .e . in s ta te 3) , and might
a lways check N ' s r igh t -ou tgo ing edge when it is nil
(i .e . in s ta te 1). Thus the m u t a t o r mus t c o o p e r a t e in
some fashion and does so by graying a whi te node
when it d raws an edge to it. 1

W e now come to the r e p r e s e n t a t i o n of the g raph of
nodes . W e use an a r r ay m[0 :N] for the nodes , nil is
represen ted by O, and thus the m u t a t o r i tself may neve r
r e f e rence node m[0]. This is not necessa ry , but m a k e s
p r e s e n t a t i o n of the co l l ec to r eas ie r . W e shall of ten
speak of " n o d e i " or jus t " i " in s t ead of using the
longe r t e rm " n o d e m[i] . "

E a c h node has t h ree subf ie lds which are of in te res t :

It is possible to write a mutator-collector system using only the
colors black and white [6]. We use the current system as a more
interesting problem in parallelism.

9 2 4

Fig. 1. Noncooperation when using only two colors.

M M M M t4

s t a t e 1 s t a t e 2 s t a t e 3 s t a t e 4 s t a t e 1

m[i].color current color of node (white, gray, or black)
m[i].left node i's left successor (0 if none) (3.1)
m[i].right nodei's right successor (0 if none)

The fo l lowing indivis ible act ions are used to co lo r
nodes :

whiten(i): m[i].color := white
blacken(i): m[i].color := black (3.2)
atleastgray(i): if m[i].color = white then m[i].color := gray

Note tha t a b lack n o d e is not m a d e gray by o p e r a t i o n
atleastgray. These o p e r a t i o n s cou ld be i m p l e m e n t e d
with two bi ts , with whi te = 00, gray = 01, and b lack
= 11. The o p e r a t i o n atleastgray(i) would consis t of
" o r i n g " the p a t t e r n 01 into m[i] .color . It is i m p o r t a n t
that this be p e r f o r m e d with a s ingle , indivis ib le , " o r to
m e m o r y " ins t ruc t ion , which is found on m a n y ma-
chines . The poss ib le s equence t := m[i] .color or 01;
m[i] .color := t wou ld v io la te the indivis ibi l i ty r equ i re -
men t .

Two nodes m [R O O T] and m [F R E E] are in f ixed,
cons tan t p laces in the a r r a y m[0 :N]. m [R O O T] is the
single roo t of the m u t a t o r ' s g r aph , while m [F R E E] is
used to ind ica te w h e r e the f ree list beg ins . Wi th in the
co l l ec to r , we cons ide r m [R O O T] , m [F R E E] , and m[0]
all to be roots ; thus the f ree list and node m[0] will be
m a r k e d and u n m a r k e d jus t as the m u t a t o r ' s g r aph is.

T h e f ree list is m a i n t a i n e d by using an ex t ra in t ege r
va r i ab le E N D F R E E to m a r k the end of the f ree list.
F igu re 2 i l lus t ra tes the f ree list , while the fo l lowing
def in i t ion l f ree descr ibes it m o r e exact ly ; I free is invar-
iant ly t rue t h r o u g h o u t execu t ion .

No te that m [F R E E] is not a node of the f ree list ,
while m [E N D F R E E] is. T e r m (c) of I f ree covers the
case tha t a node has been a d d e d to the f ree list but
E N D F R E E has not ye t been r e a d j u s t e d . Such cons id-
e ra t ions , which may be i nconsequen t i a l for s equen t i a l
p r o g r a m s , a re e x t r e m e l y i m p o r t a n t for pa ra l l e l i sm.
l free =-

(a) the free list containsj _> 1 nodes with distinct indices
m[FREE].left = m[FREE].left I ~ 0 (0 = nil),
m[m[FREE].left].left = m[FREE].left 2 * O,
• " (3.3)
m[FREE].left ~ * O;

(b) m[FREE].lefd +1 = O;
(c) ENDFREE = m[FREE].lefd -~ V ENDFREE =

m[FREE].
left j;

(d) all nodes on the free list have no right successors.

z Steele [7] mentions that one need only atleastgray(j) in these
procedures if the Collector is currently marking, but not when it is
collecting. However, testing the state of the Collector and then
perhaps atleastgraying would only increase the complexity and de-
crease the speed of the system.

Communications. December 1977
of Volume 20
the ACM Number 12

Fig. 2. The free list.

color left right color left right

miFREE] m[ENDFREE]

root of list firs~ free node second free node last free node

The mutator has at its disposal two procedures to add
edges from one node to another2:

A d d a left-outgoing edge from node k to node j :
proc addleft(k, j) ; begin m[k].left := j; atleastgray(j) end; (3.4)
A d d a right-outgoing edge from node k to n o d e / :
proe addright(k , j) ; begin m[k].right := j; atleastgray(j) end

The mutator appears in (3.5) as a never-ending, non-
deterministic guarded command loop [4]. Whether a
guard on one of the guarded commands of the loop is
really true on a given cycle of the outer loop is a
function of the particular muta tor being used; we
assume for proof purposes that the guard could be
true any time, and thus write true.

The two inner loops in the muta tor are used to
make it wait until the free list has two or more nodes
before taking one off it. Variables k, j , and f a r e local
to the mutator.

mutator: do true
Let k , j be indices of nodes reachable f rom R O O T (k q: O,j -~ 0);
if t rue ~ m[k].left := 0
fl true ~m[k] . r i g h t := 0
fl t rue ~ addleft(k, j)
fl t rue ~ addright(k, j)

true ~ Take first free node as k's left successor:
f := m[fgEE].left; (3.5)
addleft(k, f) ;
do f = E N D F R E E ~ skip od;
addleft(FREE, m [f].left);
re[f].left := 0

true ~ Take first free node as k's right successor:
f := m[Fnee].left;
addright(k, f) ;
d o f = E N D F R E E ~ skip od;
addleft(FREE, mil l . le f t) ;
re[f].left := 0

fi
od

The collector is given below in (3.6). When first
studying it, r emember the insight gained from the
formalism and treat it as an independent , sequential
program under no parallel influence.

At the beginning of each execution of the body of
the collector's main loop, there are no black nodes.
Execution of the first section of the body grays the
roots; so any reachable white node is reachable from a
gray node (without going through a black node). After
execution of the second section labeled Blacken (we
look at this in detail subsequently), all reachable nodes
are black; so all white nodes are garbage. The third
section labeled Collect then searches through the
nodes, appending white ones to the free list and
whitening black nodes, in preparat ion for the next
iteration.

925

Collector: do true
Make roots at least gray:

atleastgray (RO 0 T); atleastgray (FREE); atleastgray (0);
Blacken: Blacken gray nodes and nodes reachable f rom gray
nodes:

i : = 0 ;
do i -< N and m[i].color 4: gray ~ i := i + 1

i -< N and m[i].color = gray ~ atleastgray(m[i].left); 3
atleastgray(m [i].right);
blacken (i) ;
i : = O

od;
Collect: Put white nodes on free list and whiten black nodes: (3.6)

for i := 0 step 1 until N do
i f m[i].color = white ~ Append i to free list:

m[i].left := 0;
m[i].right := 0;
m[E N D F R E E].left := i;
E N D F R E E := i

m[i].color = black ~ whiten(i)
U m[i].color = gray ~ skip
fi

od

The second section labeled Blacken searches through
all nodes, both reachable and unreachable ones. Upon
encountering a gray node, it grays its successors (if
white) and then blackens it. Thus every reachable
white node is always reachable from a gray node,
which we express as

i white and reachable ~ B path (kl , kp, i) where kl
is gray and k2 kp are white (3.7)

The effect is that, beginning with the gray nodes,
all reachable nodes are first grayed and then blackened
in waves spreading out from the roots. If a gray node
becomes unreachable (because of muta tor interaction),
it nevertheless is blackened, along with its successors.

Each time a gray node is found and blackened, the
collector begins checking the nodes again from the
beginning. If no gray node is found during a complete
traversal, then all nodes are black or white. From
(3.7) and the absence of gray nodes, we conclude that
all reachable nodes are black and that all white nodes
are garbage and can be collected.

The node traversal algorithm in Blacken has been
made simple and inefficient in order to simplify the
correctness proof. Any traversal algorithm can be used
which makes a final pass through all nodes without
finding a gray node; this last pass is necessary because
of interaction with the mutator .

The collector, as an independent algorithm, doesn ' t
do much. It alternately blackens all white nodes- -
including the free l i s t - a n d then makes them white
again. The free list and the directed graph are repeat-
edly marked and unmarked, and there is never any
garbage to collect.

Let us now consider interaction with the mutator .
Suppose the mutator takes a node M from the free list
and grays it (by using M as the second argument in a
call to procedure addlefi or addright) and then deletes
an edge so as to make M unreachable. Thereaf ter the
muta tor may not reference M until it has been put on

Communica t ions D e c e m b e r 1977
of Volume 20
the A C M N u m b e r 12

the free list. During the subsequent marking phase the
collector blackens M, and during the following collect-
ing phase it whitens M. During the next marking phase
M remains white and unreachable; so the following
collection finally appends M to the free list. Thus any
reachable node is appended to the free list within two
collecting phases after it becomes unreachable.

This discussion does not prove correctness, for it
does not take into full account the muta tor interaction.
The main problem is with muta tor interference when
the collector is about to blacken node i. The collector
seems to assume that i 's successors are nonwhite.
However , just before the operat ion blacken(i) the
muta tor might interrupt and change i 's successor to be
an already existing white node. Blackening i could
then lead to a black-to-white edge and destruction of
the important invariant (3.7). Invariant (3.7) is needed
in order to be able to prove that all reachable nodes
have been blackened, or marked. We must show that
(3.7) always holds during marking even in the face of
muta tor interaction.

The reader might wish to think about the following
problem in light of this discussion: should procedure
addleft(k, }) be written as m[i].left := j ; atleastgray(j)
or as atleastgray(j); m[i].left := j?

4. Proof of Correctness of the Mutator-Collector
System

The muta tor and collector, as given in (3.5) and
(3.6), do not terminate; hence there are no propert ies
that must hold upon termination. By "proving the
correctness" of the system, we mean establishing cer-
tain propert ies or assertions that hold whenever the
collector reaches certain states. For example , after
section Blacken, all reachable nodes must be black,
while after execution of Collect all nodes which were
previously white (and unreachable) must have been
put on the free list. We establish these propert ies by
giving proof outlines of the main program, the collec-
tor 's marking phase, the collector 's collection phase,
and the mutator , in that order. We follow this with a
discussion of the interference-free property . We use
the following notation:

,~n =-- m[n].left (n ' s cu r ren t left successor) ,

=-- m,[n].right (n 's cur rent r ight successor) ,

reach(n) =- 3 p a t h (R O O T , . . . , n) or p a t h (F R E E , (4.1)
• . . ~ n) ,

r e a c h R (n) =- 3 p a t h (R O O T , . . . , n) ,
gray-reachable (n) =- 3 path(k1 kp, n) where k l is g ray

and k2, • . . , kp are whi te•

By a path (k~ k~) we mean a succession of
distinct nodes k~ such that there is an edge from node
k~ to node k i + l . We use two auxiliary variables. Varia-
ble mark indicates whether or not the collector is
currently marking; it is referred to in the muta tor ' s
assertions but not in the muta tor itself. Variable add
indicates whether the muta tor is currently executing in

9 2 6

procedure addlefi or addright. These variables are
needed only for the proof; by virtue of the auxiliary
variable axiom, they may be deleted without disturbing
the correctness of the system.

The muta tor has its set of reasonable states under
which it can cooperate; we describe these in the
following assertions:
Mfree =- l free A no free list node is reachable f r o m R O 0 T
Mgraph -~ add = 0 A (m a r k ~ the re is no b l ack - to -whi t e (4 . 2)

edge)

The muta tor actions are simple enough to understand
without a formal proof outline, but we must use these
assertions and a proof outline in order to show nonin-
terference. The collector also has its set of reasonable
states which concern the free list and the colors of
nodes at various stages of execution. We group them
here to facilitate referencing them later.

A brief explanation of assertion C.LP will illustrate
the nature of such assertions in parallel programming.
On the basis of just the collector, we would like to
have C ~ - "i 's left successor is nonwhite ." However ,
as ment ioned earlier, execution of the muta tor may
falsify this by changing m[i].left to point to a white
node. Hence C~Ce is weakened to indicate that if i 's left
successor is white, then the muta tor is at a specific
point of execution (defined by variable add), and that
i 's left successor is gray-reachable from some other
node besides i.

Cfree =- l f ree A ~ E N D F R E E = 0 A ~ 0 = 2 0 = 0
Cmark ==- m a r k A R O O T , F R E E and 0 are n o n w h i t e A

(n whi te and r e a c h a b l e ~ g r a y - r e a c h a b l e (n))

Cm(i) -= 0 - < i - - - N + 1 A (m [0 : i - 1] con ta ins a g ray
n o d e impl ies rn[i :N] con-

ta ins a g ray node)

C~L~ --- ~,~i wh i t e ~ i = add 4 : 0 A 3 p a t h (k kp, ~ i) (4.3)
with k l g ray , k2, • • • , kp wh i t e , and
k l = i imp l i e s k2 = ~q~t

C ~ --- ~ ' w h i t e ~ i = - a d d 4 : 0 A 3pa th (k l
k p , ~ /) wi th k l g ray , k2 kp
whi te , and k l = i impl ies k2 = 0o97i

Ccoll(i) -~ ~ m a r k A (0 <- n <- i ~ n nonblack)
A ((i < n -< N A n white) ~ n is no t

r eachab le)

We are finally ready to give the proof outlines of
the various sections. Look upon each as a sequential
program and the proof outlines should not be hard to
understand• Difficulties arise only because assertions
have been weakened in order to show noninterference
later on.

4.1 Proof Outline for the Main Program
Note that there is no terminating condition;

whether the system halts depends on the particular
muta tor being executed. We are interested only in
proving propert ies which hold as long as the muta tor is
executing.

{Mfree A Cfree A -7 mark A add = 0 A no b lack nodes}

¢obegin {Cfree A -7 m a r k A no b lack nodes}

Collector: do t rue
{Cfree A -7 m a r k A no b lack nodes}

C o m m u n i c a t i o n s D e c e m b e r 1977
of V o l u m e 20
the A C M N u m b e r 12

/ /

coend

Make roots at least gray;
Blacken : Blacken gray nodes and nodes reach-
able from grays; (4 . 1 . 1)
{Cfree A ~ mark A all white nodes are unreach-
able}
Collect: Put white nodes on free list and whiten
black nodes
{Cfree A ~ mark A no black nodes}
od

{Mfree A Mgraph}
mutator

4.2 Proof Outline for the Marking Phase
This phase consists of sections Make roots at least

gray and Blacken; a proof outline is given in (4 .2 .2) .
One difficulty is showing that execution of blacken(i)
does not destroy assertion Cmark. From assertion (C9~
A C.~) one can conclude (because of the relations
between i and add) that at most one of i's successors is
white. Moreover, if, say, ~ i is white, then it is gray-
reachable from a node other than i, and hence black-
ening i will not destroy the assertion Cmark.

We must show that the loop of (4 .2 .2) terminates.
Consider the following integer function f:

f =3 .N . (no. of white nodes) + 2 .N
(no. gray nodes) + N + 1 - i. (4 .2 .1)

Each execution of the loop body reduces f by at least
1. Furthermore f _ 0. Hence after a finite number of
iterations the loop terminates.
{Cfree A m mark A no black nodes}
Make roots Root, Free and nil at least gray;
{Cfree A m mark A no black nodes / \ roots (including nil) are

nonwhite} mark := true;
{Cfree i Cmark}
i := 0;
{Cfree A Cmark i Cm(i)}.
do i <- N A m[i] .color q: gray ~ {Cfree A Cmark A (4.2.2)

Cm(i) A i nongray}
{Cfree A Cmark A

Cm(i + 1)}
i ' = i + l
{Cfree A Cmark A Cm(i)}

I] i <-- N A m[i].color = gray ~ {Cfree i Cmark A i gray}
atleastgray (m [i].left);
{Cfree A Cmark A i gray

A Afi nonwhite}
{Cfree A Cmark A i gray

A c~e}
atleastgray (m [i]. right);
{Cfree A Cmark A i gray

A C ~ A ~ nonwhite}
{Cfree A Cmark A i gray

A C ~ A C~}
blacken (i);
{Cfree A Cmark A

i black}
i : = O
{Cfree A Cmark A Cm(i)}

{Cfree A Cmark A Cm(i)}
od;
{Cfree A Cmark A Cm(N + 1)}
{Cfree A Cmark A no gray nodes}
{Cfree A Cmark A all white nodes are unreachable}
mark := false
{Cfree A 7 mark A all white nodes are unreachable}

9 2 7

4.3 Proof Outline for the Collecting Phase

Collect:
{Cfree A -~ mark A all white nodes are unreachable}
{Cfree A CcoU(-1)}
for i := 0 step 1 until N do

{Cfree A Ccoll(i - 1)}
i fm[i].color = white ~ (4.3.1)

{Cfree A Ccoll(i) A ~ reach(i)}
m[i].left := 0; m[i].right := 0;
{Cfree A Ccoll(i) A "~ reach(i) A &£i = ~ / = 0}
m[ENDFREE]. le f t := i;
{Ifree A Ccoll(i) A . ~ E N D F R E E = i :~ 0 f .LP0 = ~ 0 = 0}
E N D F R E E := i
{Cfree A Ccoll(i) i E N D F R E E = i}

fl m[i].color = black ~ {Cfree A Ccoll(i - 1) A i black}
whiten(i)
{Cfree A Ccoll(i)}

fl m[i].color = gray ~ skip (Cfree A Ccoll(i)}
fi
{Cfree A Ccoll(i)};

{Cfree A Ccoll(N)}
{Cfree A -7 mark A no black nodes}

4.4 Proof of Properties of the Mutator
We begin with two lemmas about procedures add-

left and addright. The extra auxiliary variable add is
needed later to show noninterference; by the auxiliary
variable axiom, assignments to add, as well as the
awaits, can be deleted. Implied in these lemmas is that
these procedures have no effect except as stated.

Lemma 4.4.1.

{Mgraph A reach(k) A reach(j)}
addleft(k, j)
{Mgraph f reach(k) A ~ k = j}

and

{Mgraph A reach(k) i reach(j)}
addright(k,])
{Mgraph A reach(k) i 9~k = j}

Proof outlines.

proc addleft(k, j);
begin {Mgraph A reach(k) A reach(j)}

await true then begin m[k].left := j ; add := k end;

l
k = add -~ 0 A reach(k) A .5~k =]]
A (mark ~ the only possible black-to-white edge is

(k, .~k))
await true then begin atleastgray(j); add := 0 end
{Mgraph i reach(k) i .~k = j}

end
proe addright(k, j) ;

begin (Mgraph A reach(k) i reach(j)}
await true then begin m[k].right := j ; add := - k end;

I
k = - a d d --b 0 i reach(k) A ~tk = j
i (mark ~ the only possible black-to-white edge is

(k, ~?.k))
await true then begin atleastgray(j); add := 0 end
{Mgraph A reach(k) A ~ k = j}

end

We are now ready to give the proof outline of the
mutator. We show only three opera t ions - those deal-
ing with the left successor of a node; the other three
operations dealing with the right successor are similar.

Communica t ions December 1977
of Volume 20
the A C M Number 12

When showing noninterference, we shall also deal only
with these three operations.

{Mfree /X Mgraph}
mutator : do true

{Mfree A Mgraph}
Let k, j be indices of nodes reachable from R O O T ;
{Mfree A Mgraph A reachR(k) A reachR(])}
i f true ~ {Mfree A Mgraph /~ reachR(k)}

m[k].lefl := 0
{Mfree /X Mgraph /X reachR(k) /X ~k = 0}

[1 true ff {Mfree A Mgraph A reachR(k) A reachR(j)}
addleft(k, i)
{Mfree /X Mgraph /% reachR(k) /X ~ k = j}

[1 true ~ Take first free node as k's left successor:
{Mfree A Mgraph A reachR(k)}
f := M[FREEI. le f t ;
{Mfree /X Mgraph /X reachR(k) /~ ~gFREE = f ~ O}
addleft(k, f);

l
lfree A.Mgraph /X reachR(k) /X

.~Free = ~ k = f -~ 0 /X
every path from R O O T to free list uses~

edge (k, ~ k)]
d o f = E N D F R E E ~ skip od;
{ e l f r e e / X M g r a p h A r e a e h R (k) / X }

.~FREE = .~k = f -~ 0 / X
very path from R O O T to free list uses

edge (k, .L~ k)
addle f t (FR E E , m [f] . left) ;

lfree /X Mgraph /~ reachR(k) /X
.~FREE = ~f A ~ k = f. /~ ~f = 0

very path from R O O T to free list u s e s ~
edge (f, ~ f) !

mill.left := 0
fi
{Mfree /X Mgraph}

od

4.5 Showing Noninterference
We must show that the precondition of each state-

ment S of the collector cannot be falsified by execution
of the mutator , and vice versa. We must also show
that function f (see (4.2.1)) remains a decreasing
function under parallel execution, in order to show
that the marking phase of the collector still terminates.
It will help to handle the assertions in separate classes:
first, those assertions which deal only with the structure
of the graph - like Ifree and reachR(k) - and secondly,
those that also deal with the coloring of nodes.

Noninterference o f assertions dealing only with
structure. Note first that Ifree is true throughout exe-
cution of both processes. Now consider the collector
(3.6). The only statements that change the graph
structure occur in Append i to free list. Here , the
successors of an unreachable node i are deleted and i
is appended to the free list. Hence the collector changes
successors only of unreachable nodes and the last free
list node m [ENDFREE].

On the other hand, the muta tor changes successors
only of reachable nodes and never of node E N D F R E E
or of the last free list node. The muta tor and collector
work with disjoint subsets of the nodes in this respect.

With this insight, we now scan the collector's proof
outline and make a list of those assertions which are
obviously not falsified by the mutator:

928

lfree, Cfree, ~ 0 = ~ 0 = 0,
reach(i), "-7 reach(i)/X .L~i = ~ / = 0, (4.5.1)

E N D F R E E = i, £~ENDFREE = i, mark, -7 mark

In the same manner , we list the muta tor assertions
about structure which are not falsified by the collector:

Ifree, Mfree, assert ions dealing with the reachability of
nodes and who their successors are, such as reach(k), (4 . 5 . 2)
reachR(k) /X £gk = f / ~ .5~f = ~ f = 0

We are able to handle the noninterference of these
assertions informally because the sets of nodes which
each process can work with (with respect to graph
structure) are disjoint.

Noninterference o f the other mutator preconditions.
Three other muta tor assertions must not be falsified
by the collector, all dealing with the existence of black-
to-white edges:

Mgraph =- add = 0 /X (mark ~ there is no black-to-
white edge),

k = add -~ 0 /X (mark ~ only possible black-to-white (4.5.3)
edge is (k, ~ k) ,

k = - a d d -~ 0 / X (mark ~ only possible black-to-white
edge is (k, ~k) .

We shall deal only with the first two. A scan of the
collector yields the following three assignments, with
relevant preconditions, which might falsify one of these
assertions:

{no black nodes} mark := true
{-~ mark} white(i) (4.5.4)
{Cmark /X C.~ /~ C ~ } blacken(i)

The only assignment where noninterference is not
obvious is the third: blacken(i). Consider assertion
Mgraph. We have {Mgraph /~ Cmark /~ C.~ /~ C~}
{ZPi and ~ / are nonwhite}. Hence blackening node i
under these conditions leaves Mgraph true. Next,
consider the second assertion of (4.5.3). From this
assertion and the precondition of blacken(i), we can
prove that ~ / i s nonwhite. Fur thermore , if ~ i is white,
then i = k and the edge (i, ~ i) is the same edge as (k,
~?k). Thus blackening i leaves this assertion true.

Noninterference o f the other collector preconditions.
We note that the only coloring action of the muta tor is
to gray a reachable white node. Hence the muta tor
cannot falsify the assertions: n nonblack, n black, n
nonwhite, n gray, ~ reach(n) /~ n white for any arbi-
trary node n. We now scan the collector and make a
list of the remaining assertions which must not be
interfered with (see (4.3) for definitions):

Cmark
Cmark /X C.SE (and similarly Cmark /X C ~)
Cm(i) (for 0 < i --< N + 1)
Ccoll(i) (for - 1 - i --< N; this includes the asser- (4.5.5)

tion "all white nodes are unreachable")
f does not increase (see (4.2.1) for the definition o f f)

We show the noninterference only of the two
interesting ones: Cmark and Cmark /X C.~. We note
that (Mgraph /~ roots nonwhite /~ mark) ~ Cmark.
Since the muta tor does not whiten nodes, it can falsify

Communica t ions December 1977
of Volume 20
the A C M Number 12

Cmark only by falsifying Mgraph also. Mgraph is false
only in two places, in procedures addleft and addright.
We consider only one case. Suppose then that execu-
tion of the first await of addleft leaves a black-to-white
edge (k, ~ k) , under conditions

{Mgraph /% reach(k) /k reach(j) /~ k black/k/" white/% Cmark}
await true then begin m[k].left := j; add := k end

Consider a white, reachable node i before execution of
the await. Since Cmark is true, there exists a path
(kl kp, i) where kx is gray and kz, • • • , k , are
white. Since node k is black, execution of m[k].left :=
j cannot destroy this path. Hence i remains gray-
reachable after execution of the await. Thus Cmark is
also true after execution of the await.

Now consider assertion Cmark /~ C~ . If node ~ i
mentioned in C ~ is white, then the muta tor is currently
between the two awaits of procedure addleft because
the mutator ' s variable add > 0. Execution of the
second await grays node j , which in this case is node
~ i , and hence C.T remains true after execution of the
second await.

On the other hand, suppose Cmark /~ C ~ is true
and that node ~ i is nonwhite. The mutator can falsify
Cmark /~ C&e only by making i 's left successor white,
and it can do this only by changing i 's left successor
through execution of the first await statement in pro-
cedure addleft. For this to happen, the following must
be true before execution of the await:

{Cmark A C ~ /~ ~ i nonwhite /~ reach(k) /k reach(j)
/ ~ j w h i t e A i = k }

From this we can conclude that there is a path
(kl, • • • , k~, j) where kl is gray and kz , kv are
white. Further, if node i lies on this path, its successor
on the path cannot be ~ i , which is nonwhite, and
must therefore be ~ / . This path is not disturbed by
execution of the await and is exactly the path described
in C ~ as the necessary condition if ~ i is white. Hence
Cmark /k Cdg is not falsified by execution of this
s tatement either.

roughly the same mistake. Informal reasoning is just
not adequate to handle the problem.

The main difficulty with the proof method used
here is that assertions f o r one process have to be
designed in the light of knowledge of the other proc-
esses. In the worst case, if one process has n s tatements
and the other m statements , the proof method requires
work proport ional to m . n . I suspect that no general
proof method for parallel programs can improve on
this worst-case bound.

When we write a procedure to be used in a sequen-
tial setting, once it is written and proved correct we
can view it as a black-box operat ion and use it over
and over again without having to look in the black
box. We worry only about what it does. In a parallel
setting, however, we must analyze the procedure each
time we wish to use it to make sure that the parallelism
does not disturb its proof of correctness. And each
change in the other process forces us to reanalyze the
procedure again. One can avoid this complexity by
making the procedure an indivisible operat ion through
the use of synchronization and mutual exclusion primi-
tives and by limiting the use of shared variables. Or
one can summarize in an invariant for the procedure
what a parallel process must leave true in order not to
interfere.

The on-the-fly garbage collector is very fragile and
susceptible to such changes. Slight changes which
would seem innocent in a sequential setting are disas-
trous in a parallel context. Two examples of this would
prove enlightening.

First of all, consider a free list where E N D F R E E is
handled as a fixed node not on the free list, as in
(5.1). Diagram (5.2) shows a free list consisting of a
single node.

rnIFREE]

rn [ENDFREE]
(5.1)

5. Concluding Remarks

It has taken five and one half pages to introduce
the topic, describe the proof techniques, give the
solution, and describe it informally and another three
to present a more detailed, formal proof of correctness.
The complexity of parallel programs with such a fine
degree of interleaving seems to be an order of magni-
tude greater than the complexity of corresponding
sequential programs. While one might be able to
improve on the style and presentation to make it
appear simpler, such systematic methods must be used
to master and control the complexity. In support of
this view, I have thus far seen five purpor ted solutions
to this problem, either in print or ready to be submitted
for publication. All used informal reasoning and had

m [FREE] m [ENDFREE]

~ ~_5_] (5.2)

Suppose the free list always contains at least one
element. The muta tor could use either of the following
two waiting tests before taking a node from the free
list:

m[FREE].left 4= m[ENDFREE]. le f t or
m[m [FREE].left].left 4: O.

In sequential programming these might be equivalent,
but in parallel programming the use of one or the
other could lead to an error. The process which adds a
node to the free list cannot change ~ E N D F R E E and

929 Communications December 1977
of Volume 20
the ACM Number 12

5f(~ENDFREE) at the same time, so that only one of"
the following holds:

m[.FREE].left 4: m[ENDFREE].Ieft
m[m [FREE].left].left 4: O.

or

m[m[FREE].left].left 4:0
m[FREE].left 4: m[ENDFREE].left.

Which one holds can only be determined by looking at
the process which actually appends a node to the free
list.

The second point illustrates the advantages of for-
mal and systematic reasoning over informal reasoning.
The last "bug" found in Dijkstra's program, which has
appeared in four "solutions" that I have seen, was in
the mutator 's procedure addleft(k, j). This was first
written as

atleastgray(j); m[k].left := j

Informal reasoning had led to the conclusion that j
should be grayed first; so no black-to-white edge would
exist. Only much later did informal reasoning by Mike
Woodger find the error. Suppose the mutator is
stopped after graying j . The collector begins marking
and blackens k and], begins collecting and whitens k
and j , and then begins marking and blackens k. The
collector pauses for a breath. The mutator executes
m[k].left := j and then deletes all other edges ending
in]. The only way to reach] is through the black-to-
white edge (k, j). At this point, the collector finishes
marking, leaving j white, and then collects the white
reachable node] , appending it to the free list.

Informal reasoning alone can never hope to think
of all such torturous execution sequences; only a sys-
tematic method based on formal techniques can expect
to cope with the complexity. With Owicki's techniques,
the error would have been easy to find. In making up
the list of mutator 's assertions that may not be falsified
we would have listed [mark ~ j nonwhite]. Clearly
execution of the collector's statement mark := true
can falsify this assertion.

Having been warned of this error by Dijkstra, I
cannot argue that I found and corrected it myself. But
I venture to say that if I had used Owicki's methods
carefully enough (one makes errors in proofs too), I
would have found it easily. Of course, executing half
of the sequence m[k].left :=]; atleastgrayq) leaves a
black-to-white edge momentarily, and it was Dijkstra
who led me to use instead the invariant

In either case, it is not sufficient. The goal of every
programmer should be to make the detection of an
error during testing the exception rather than the rule,
as it is now. This means that the more complicated the
problem and resulting program, the more systemati-
cally and formally the problem must be investigated in
order to control the complexity.

I should add that the existence of a proof such as
this does not imply absolutely that the program is
correct; but it drastically raise, s our level of confidence
in the program.

Acknowledgments. This exercise could not have
been possible without a good knowledge of Owicki's
thesis, and I am grateful for the privilege of supervising
her thesis work. Thanks go to Dijkstra for showing us
the garbage collection problem, to Dijkstra and Hoare
for help in developing the proof in its various stages,
to the members of IFIP working group 2.3 (program-
ming methodology) for the opportunity to present and
discuss this material at several meetings, and to the
referees for their careful and constructive comments.

Originally submitted October 1975. Final revision submitted Febru-
ary 1977.

References
1. Dijkstra, E.W., et al. On-the-fly garbage collection: an exercise
in cooperation. Notes for the 1975 NATO Summer School on
Language Hierarchies and Interfaces, Lecture Notes in Computer
Science 46, Springer-Verlag, New York, 1976.
2. Hoare, C.A.R. An axiomatic basis for computer programming.
Comm. ACM 12, 10 (Oct. 1969), 576-583.
3. Owicki, S. Axiomatic proof techniques for parallel programs.
Ph.D. Th., TR 75-251, Dept. Comptr. Sci., Cornell U., Ithaca,
N.Y., July 1975.
4. Dijkstra, E.W. Guarded commands, nondeterminancy and
formal derivation of programs. Comm. ACM 18, 8 (Aug. 1975),
453-457.
5. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the
programming language PASCAL. Acta Informatica 2 (1973), 335-
355.
6. Stenning, V. On-the-fly garbage collection. Unpublished notes,
1976.
7. Steele, G.L. Jr. Multiprocessing compactifying garbage
collection. Comm. ACM 18, 9 (Sept. 1975), 495-508.

{every reachable white node is reachable from a gray
node}

in the collector. The assertion " there are no black-to-
white edges" had to be replaced because of the muta-
tor's actions.

Building a program with little regard to correctness
and then debugging it to find errors is even more folly
for parallel programs than it is for sequential programs.

930 Communications December 1977
of Volume 20
the ACM Number 12

