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Two analytic models of a store-and-forward 
communications network are constructed, one to find 
the optimal message routing and the other to illustrate 
the equilibrium (stationary state) maintained by an 
adaptive routing algorithm. These models show that 
adaptive routing does not satisfy the necessary 
conditions for an optimal routing. Adaptive routing 
tends to overuse the direct path and underuse alternate 
routes because it does not consider the impact of its 
current routing decision on the future state of the 
network. The form of the optimality conditions 
suggests that a modification of the adaptive algorithm 
will result in optimality. The modification requires the 
substitution of a quadratic bias term instead of a linear 
one in the routing table maintained at each network 
node. Simulation results are presented which c infirm 
the theoretical analysis for a simple network. 
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1. Introduction 

Communications networks which use a store-and- 
forward strategy for transmitting messages must choose 
the path along which to relay the message. Routing 
algorithms for such networks are decision rules which 
attempt to minimize the average time a message spends 
in the network given a fixed network topology and a 
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destination address. Central and local control methods 
and fixed and adapting routing schemes have all been 
tried in actual networks or studied by simulation 
methods [5, 11]. In addition, several studies have 
proposed solution algorithms for the "optimal  routing" 
problem where minimum transmission time routes are 
found simultaneously for all message traffic [3, 4, 11]. 

One can conclude from these studies that alternate 
routing, which .~ends some traffic over the shortest 
source-to-destination path and routes the rest by a 
more roundabout  path, is generally superior to the 
use of a ,'ingle route. Also, adaptive algorithms, which 
use information about the actual delays in the network 
to estimate the current shortest path, have been found 
to be superior to fixed routing schemes in which the 
same route (or routes) is used regardless of  the actual 
state of the network. 

Because of  this superiority and because they are 
relatively easy to implement, adaptive routing schemes 
using alternate routing are of considerable interest. 
However, this paper will show that such algorithms 
do not automatically yield an optimal routing. This 
will be seen by comparing the necessary conditions for 
an optimal routing with the equilibrium conditions 
which an adaptive routing scheme satisfies in a simple 
analytic model. The comparison will also suggest a 
simple modification to the routing algorithm which 
makes the adaptive scheme satisfy the optimality 
conditions and leads to reduced delays for simple 
networks. 

2. Optimal Alternate Routing 

Consider any particular source node and destination 
node, with the n routes l:etween them indexed by i = 
1, 2, . . . ,  n. The simplest optimal routing problem 
involves distributing the Iraffic at the input node over 
the available routes so as to minimize the average delay 
from the time the message enters the source until it 
arrives at the destination. 

In this model it is assumed that messages arrive in 
a Poisson manner at the source node with rate 3' per 
second and have exponentially distributed lengths of 
1/u bits. Messages are queued in one of n buffers 
corresponding to the outgoing routes. Each buffer is 
assumed to have an infinite capacity. On each route 
the first link has a channel capacity of Ci bps, i = 
1, 2, . . .  , n, so that the time spent in the source node 
by a message assigned to the ith route is Ti seconds, 
with expected value: 

T~ = 1 / 0 , C , -  ~ )  (1) 

where ~,~ is the rate at which traffic is assigned to the 
ith route in messages per second. 

In addition to T i ,  messages taking the ith route 
incur an additional delay T~' after they leave the source 
node. T f  includes propagation delays and processing 
and queuing delays at nodes encountered along route i 
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between the source and the sink, so the sum T~ + Ti' 
is the network transmission time over the /th route. 
The average transmission delay to all messages in the 
network is given by the well-known formula [6]: 

7" = (1/3") 2 Xi(T, + T / ) .  (2) 
i = l  

The optimal routing problem is that of minimizing 7", 
subject to the constraints 

y = ~ h i ,  0 <_ ~, <_ laCi, i = 1 , 2 , . . . , n .  (3) 
i = 1  

The problem can be solved in practice by numerical 
methods (see [4, 11], but since this paper is concerned 
with the theoretical implications of adaptive routing, 
the Kuhn-Tucker theorem [7] will be used to study the 
conditions which an optimal routing must satisfy. 

Lagrangian from (1)-(3) gives: Forming the 

a3 --- (1/3") ( ~ i / ( ~ C i -  ,k~) + ~,T~') 
i=1 (4) 
n a n 

-- P X  Xi + X r i ( X i -  #Ci) -- X q i X i  

where p, r~, and q~ are undetermined multipliers. The 
conditions satisfied by our optimal choice of the Xi are: 

((laCi/y)/(uC, X,) 2) + Ti ' /7  -- - - p + r i - - q i =  0, (5) 
i =  1 , 2 , . . . , n  

ri(Xi - -  # C i )  = 0, ri _> 0, i = 1, 2 , . . . ,  n (6) 

qiXi = O, qi >_ O, i = 1, 2, . . . , n (7) 

as well as the constraints (3). Unless the source is 
completely saturated (i.e. 3' >__ ~-'~i uCi), it is easy to 
see that Xi < uCi holds for all i because an optimal 
routing must keep any link from saturating before any 
other link. This implies r~ = 0 for all i = 1, 2, . . . ,  n. 

The condition on q~ implies that ql = 0 if any traffic 
is assigned to the ith route (},i > 0) and, conversely, 
that if no traffic has been assigned to the ith route then 
ql >__ 0. Assuming non-saturation of the source we may 
restate the necessary conditions without p or q; as 

( u C , / ( u C i -  X,) 2) + T /  
= ( u C j ( u C j  -- ~s) 2) + Ts' if 

( taCj(uC,  -- ~,,)2) + T,' }'~ > 0, Xs > 0 (8) 

<_ ( u C / ( u C s  -- Xs) 2) + Ts' if 
X, > 0, ks = 0 

3. Equilibrium Traffic Assignments  

Now let us consider a model of an adaptive routing 
algorithm in order to contrast its performance with 
that of an optimal routing scheme. This model is 
typical of routing schemes used in actual computer 
networks (as discussed in [5]) in which no global 
routing procedure is used. Instead, each node in the 
network maintains a table with an entry for each pos- 

sible destination and each neighboring node. The 
entry in the table for location (i, j )  is the estimated 
time required for a message sent via the ith neighbor 
to reach the j th  destination, including the time spent 
in the sending node awaiting transmission. The table 
is kept current by having neighbors periodically ex- 
change their estimates of the minimum time to reach 
each destination and using this information to update 
each node's routing table. When there is only one 
destination, as in Section 2, the routing table at the 
sending node is a vector whose ith element is Ti' plus 
a linear function giving an estimate of the waiting time 
in the buffer Ti = (1 + Li ) /uCi  where there are L, 
messages in the buffer (including the one in service). 

The table is used to route messages in the following 
manner. Upon arrival at the sending node receipt of 
the message is acknowledged and the node consults 
the message's destination address. If it is addressed to 
the j th destination, the node then consults column j 
of its routing table, chooses the minimum entry in the 
column and places the message in the queue for the 
associated transmission line. Finally, the node up- 
dates the routing table to reflect the new state of the 
queue. (Updating will also occur after each transmitted 
message is acknowledged.) In our simple model, we 
may think of the node as assigning the message to the 
route i for which the current value of Ti + T /  is a 
minimum. 

Invoking now all of the assumptions made in find- 
ing the optimal routing, namely Poisson arrivals and 
exponential message lengths, we find that it is almost 
intuitively obvious that the transmission times along 
the various routes must satisfy the average conditions 

l/(uC~ - X~) + T /  = 1 / ( v C i - -  Xj) + T /  
i f X ~ >  0 a n d X  i >  0 

(9) 
I / ( ~ C ~ -  Xi) + T /  < I / ( t ~ C s -  ks) + T /  

i f X i >  0 a n d X j  = 0. 

That is, the expected time for a message to travel 
from the source to the destination node is the same over 
any route to which traffic is assigned and is less than 
the travel time over any route which has no traffic as- 
signed to it. 

To see why these conditions must hold, suppose 
there were two routes (say I and 2) with nonzero traffic 
Xl and X2 but with inequality holding among the ex- 
pected message delays. But this inequality cannot be 
true of the expected values of the message delays. For  
we know that if it were true that adaptive routing 
algorithm would assign all arriving messages to the 
one route with least delay, either bringing the expected 
delay on the two routes into equality or making Xl or 
~,2 zero. 

The most interesting implication of this equilibrium 
property of adaptive routing is that it does not corre- 
spond to the necessary conditions satisfied by an op- 
timal routing (8). Thus the traffic routing provided by 
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an adaptive routing algorithm with a linear bias can- 
not be optimal, t This is a rather surprising result, 
since it would seem that an algorithm which routes 
each message so as to minimize its transmission delay 
ought also to minimize the overall average delay per 
message. The reason why adaptive routing does not 
attain the overall opt imum is that each individual 
minimization based on the routing table neglects the 
effect which the current decision has on future choices. 
Placing a message in the queue for any particular output 
channel imposes an additional delay on subsequent 
messages which arrive before the queue dissipates. As a 
result, subsequent messages must either join the queue 
and wait an additional length of time in this node for 
transmission or select an alternate route which entails 
extra delay somewhere else in the network. This im- 
plicit cost is not taken into account by an adaptive 
routing algorithm because the estimated single-message 
delay which is entered in the routing table does not 
include any penalty which reflects the effect of the 
current routing choice on the delays incurred by subse- 
quent messages. 

4. An Instructive Example 

Before suggesting a way to make adaptive routing 
algorithms achieve the minimum average delay, a 
simple two-route example will be considered. In it the 
arriving traffic may be assigned either to the "direct"  
route f rom source to destination (numbered l) or the 
"indirect" or "al ternate"  route (numbered 2). Both 
routes have equal capacity: uC1 = ~C2 = I. On the 
direct route 1"1' = 0 (there is no additional delay) 
while on the indirect a message requires T2' = 1.0 
seconds extra. As before, the total input traffic is as- 
sumed to be Poisson, arriving at rate "t, with exponen- 
tial message lengths, and the buffers for routes l and 2 
have infinite capacity. 

Table I shows both the traffic assignment which is 
found by adaptive routing and the optimal assignment 
for various values of  3'. F rom this table we can draw 
two important  conclusions which help us understand 
the difference between optimal and adaptive routing. 

First, we can see that the optimal assignment routes 
more traffic over the alternate route and initiates alter- 
nate routing at lower "r than does the adaptive algo- 
rithm. In general adaptive routing tends to overuse 
the direct route. This is precisely what the myopic 
nature of adaptive routing should lead one to expect. 
For  if each assignment of  a message neglects the possi- 
bility that subsequent messages will be delayed, more 
traffic than is optimal will be assigned to the direct 
route, which appears to give the shorter delay. 

Second, Table I indicates that the difference be- 

It is interesting to note that the conditions (9) are optimal for 
an extreme case of an objective like that proposed by Meister, 
Mueller and Rudin [9]. This objective seeks to minimize T~k) = 
[~_,~-1 (Xl/q,)(Ti q- T/)k] "~. When k --, ~ the optimal assignment 
makes the expected transmission time the same on all routes. 

Table I. Comparison of Optimal and Adaptive Routing. 

Assignment 
adaptive routing Optimal assignment 

Source 
traffic Alter- Alter- 
rate Direct nate Direct nate 

"r route route T route route 7" 

0.20 0.200 0.000 1 .250  0.200 0.000 1.250 
0.50 0.500 0.000 2.000 0.352 0.148 1.730 
1.00 0.618 0.382 2.618 0 .531  0.469 2.484 
1.50 0 . 7 8 1  0.719 4.562 0.754 0.746 4.499 
1.80 0.905 0.895 10 .52  0.900 0.900 10.50 

tween the optimal T and the 2" given by adaptive rout- 
ing is small when the traffic is either very light or very 
heavy, and is greatest when the system is moderately 
loaded. The reason for this is also intuitive. Under light 
traffic conditions alternate routing in any form is 
unattractive because the average queuing delay on the 
direct route is much lower than on the indirect route. 
Therefore neither optimal nor adaptive routing will 
assign any traffic to the indirect route. Similarly, when 
the network is almost saturated the queuing delays are 
so long over each route that neither optimal nor 
adaptive routing can do anything but avoid saturating 
any one link before any other. Hence traffic must be 
assigned almost equally to each route. The superiority 
of optimal routing at moderate loads is important  
because most networks are designed to operate at just 
these traffic levels. The use of an adaptive scheme like 
the one discussed here can thus result in inefficient 
operation of an otherwise well-designed network. 

5. Improving Adaptive Routing Algorithms 

Because adaptive algorithms are flexible, easy to 
implement, and have other features which are useful 
in a distributed network, it would be convenient if a 
way could be found to make them route messages so as 
to actually minimize the average transmission delay. 
Fortunately,  an easy modification can be made which 
makes the adaptive algorithm also an optimal one. 

The rationale for the modification can be seen by 
comparing the necessary conditions for an optimal 
route (8) to the equilibrium conditions (9). Notice 
that if a quantity whose expected value is #C~/(uC~ -- 
X02 were added to T /  each time the routing table is 
updated these two conditions would be identical and 
the steady state achieved by an adaptive routing algo- 
ri thm would satisfy the necessary conditions for op- 
timality. In fact, it is possible to find this quantity: 

S, & (1/uC,) (1 + L,)(1 + L,/2) (10) 

which is a quadratic function of the queue length L~. 
The equilibrium conditions are now 

~ +  T /  = ~ j +  T /  if ; % >  O a n d X j  > 0 
(11) 

~ --b T /  < ~j q- T /  ifX~ ~> O a n d ~ j  = 0 
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and correspond to the necessary conditions for our 
optimal assignment. Thus the equilibrium routing is 
also optimal. 

This scheme for updating the routing table, which 
we call "quadratic routing" because of the functional 
form of (10), corresponds to the use of an estimate of 
the incremental delay (a measure of the gradient of the 
objective function) instead of the average delay in 
making individual routing decisions [4]. The procedure 
works because using S~ instead of the linear function Ti 
will correct the differences between the optimal and 
adaptive routing assignments by penalizing assignments 
to routes with long queues. The quadratic term will 
be larger on the average where the buffer is fuller, i.e. 
on the direct route. As a result the direct route will be 
used less and the alternate route more. 

From a practical standpoint the quadratic routing 
algorithm requires only one multiplication, one addi- 
tion, and one division by two more per table entry 
than the old adaptive routing algorithm; hence the 
increase in computational overhead is slight. No more 
information is required before each node can compute 
the value of S~, so there need be no increase at all in 
overhead messages exchanged between nodes. When 
the source node sends out information for routing at 
other nodes, it now transmits the current T /  + S~ 
instead of T / +  T~, so no programming changes should 
be required in this portion of the adaptive algorithm. 
Finally, since the same procedure is used for routing 
individual messages as before, all this code could be 
kept intact too. 

There are several objections which might neverthe- 
less make it impractical to implement quadratic rout- 
ing in an actual network. First, it is based on a very 
simple and abstract model. In Section 6, however, 
evidence is presented which shows the algorithm to 
be more robust than the simple theory might lead one 
to believe. Second, since the model is not dynamic, the 
optimality conditions which are enforced by quadratic 
routing may not be optimal except when the equi- 
librium is attained. Reference [1] shows, however, that 
a good suboptimal dynamic control guides the system 
toward the optimal equilibrium point (8) and keeps 
it in that neighborhood. Hence quadratic routing 
should be nearly optimal. 

A third objection is that the models presented here 
assume that the additional delay to a message after it 
leaves the source node, T / ,  is known when in real 
networks the nodes know only estimates of T /  which 
are updated relatively infrequently. Thus the appar- 
ently optimal solution given by the model may not be 
optimal in a real system. Whether this is so is an 
important empirical question which cannot be an- 
swered here. However, it seems reasonable that the 
relative superiority of quadratic routing should be in- 
sensitive to changes in the quality of the information 
possessed by the nodes because both routing schemes 
use the same information. The basis of ordinary adap- 

Table II. Message Waiting Times Under Each Routing 
Scheme. 

Estimated expected 
waiting time 

% Savings 
Source using 
traffic Adaptive Quadratic quadratic 

routing routing routing 

A. When message lengths are exponentially distributed 
0.2 1.2435 1.2239 1.58 

(0.0410) (0.0348) 
0.5 1.4972 1.4123 5.67 

(0.0484) (0.0390) 
1.0 1.9991 1.8370 8.11 

(0.0535) (0.0529) 
1.5 3.3176 3.1136 6.15 

(0.1528) (0.1631) 
1.8 5.4996 4.9503 9.99 

(0.3326) (0.3889) 

B. When message lengths are constant 
0.2 1.1162 1.1616 -4.07 

(0.00925) (0.00958) 
0.5 1. 3092 1. 3280 -- 1.44 

(0.0138) (0.0107) 
1.0 1.6830 1.5899 5.59 

(0.0206) (0.0210) 
I. 5 2.3919 2.1445 10.34 

(0.0297) (0.0431) 
1.8 3.8991 3.4886 10.53 

(0.1171) (0.1120) 

tive routing, namely the use of average instead of 
marginal delays, is incorrect regardless of the quality 
of the available information. 

6. A Simulation Comparison of Quadratic Routing 

Simulations comparing quadratic routing with 
ordinary adaptive routing have been conducted in 
order to confirm the model used here and to explore 
the robustness of the quadratic routing algorithm. 
Messages were assumed to arrive in a Poisson manner, 
and message lengths were either exponential (Table 
IIA) or constant (Table liB). The simulator used the 
same network and parameters as the example of See. 4, 
namely uC1 = tzC2 = 1 and an indirect routing delay 
of 1. 

The estimated waiting times shown in these tables 
were computed according to the methodology proposed 
by Fishman [2], which takes advantage of the regenera- 
tive property of stable queues to generate sequences of 
independent, identically distributed observations. The 
routing simulation took the arrival of a message when 
both direct and indirect queues were empty as a re- 
generation point. Estimates and standard errors for 
the mean waiting time were computed over 1000 re- 
generations. 

The simulation results serve to confirm the su- 
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periority of quadratic routing. 2 When message lengths 
are exponential (as was assumed when developing the 
model) the savings due to quadratic routing are roughly 
5 to l0 percent in magnitude and are greatest when the 
system is moderately loaded. This is about  the same 
improvement  predicted by the theory and it occurs at 
about the same loads. 

Similar savings at moderate to heavy loads are also 
observed for the polar case of constant message lengths. 
When "r was small, quadratic routing did not perform 
as well as ordinary adaptive routing, because it did not 
correct for the effect of the constant message length. 
But although the quadratic algorithm was developed 
using a different assumption about  message lengths, 
it is still useful here. ~ 

Note that the comparisons show savings similar to 
those predicted by the theory despite the fact that the 
waiting times estimated during the simulations are 
significantly less than those computed in Table I. This 
difference is due to the dependence of the arrival rates 
in each queue on its length relative to the length of the 
other queue. Either ordinary adaptive routing or 
quadratic routing will avoid a queue whose length is 
excessive, thereby reducing the arrival rate when any 
one queue is long. Just as in Morse 's  analysis of "cus- 
tomer impatience" [10] this dependence of arrival rate 
on current load gives a smaller expected value and a 
more concentrated distribution for the waiting time 
than the simple model predicts. 

7. Summary and Conclusions 

This paper has built two simple models of  routing 
in a store-and-forward communicat ions network in 
order to contrast  the opt imum routing with the per- 
formance of an adaptive routing scheme. The models 
have shown that adaptive routing, which assigns mes- 
sages to output channels so as to minimize the ap- 
parent message delay, induces equilibrium (stationary) 
behavior in the network which does not minimize the 
average message delay. Situations such as this, in which 
the aggregate of  many local optimizations does not 
yield the global optimum, arise because adaptive routing 
does not take into account the effect of  its current 
decision on the future state of  the network. 

It has been impossible to test statistically the significance of 
the differences because the simulation program has not allowed 
estimation of the degree of correlation between the sample waiting 
times of different runs. These times are almost certainly positively 
correlated, not least because the same seed was used for the random 
numbers generated in each run. The existence of a positive cor- 
relation between the waiting times means that the standard error 
of the difference is substantially less than either of the observed 
standard errors. Hence the magnitude of the observed differences 
is more significant than a comparison with these tabulated standard 
errors would indicate. 

a Of course a still better algorithm could doubtless be developed 
from a model which assumed constant message lengths in the 
first place. Marchand [8] has given the necessary conditions which 
apply to this case and showed that optimality requires a quadratic 
bias term, but did not solve for the coefficients. 

The way in which adaptive routing misbehaves 
has been illuminated by an example which shows that 
adaptive routing tends to overuse the direct route 
relative to its alternate. Adaptive routing also initiates 
use of  the alternate route when the traffic was heavier 
than optimal. The difference in average message delay 
is greatest at moderate  traffic levels, while at light or 
heavy loads the difference is not so marked. 

The form of the optimality condition (8) suggests 
a modification to the adaptive routing algorithm which 
would cause it to attain an equilibrium which also 
satisfied the necessary optimality conditions. The 
modification computes a quadratic function which 
estimates the marginal delay per message instead of  the 
average delay, and maintains this estimate in the routing 
table. This modification requires only a small increase 
in computat ional  overhead and should cause no in- 
crease in line overhead and require no other program 
changes. 

The improvement  in performance of  the quadratic 
routing algorithm has been confirmed by simulation. 
These simulations indicate that the simple model 
presented here nevertheless was adequate for our 
analysis of  adaptive alternate routing algorithms. 
Further work, however, remains to be done in relating 
the predictions of  the models and the simulations to 
the performance of actual systems. Theoretical analysis 
of  more complicated cases involving several destina- 
tions, priority messages, and dynamic behavior also 
needs to be done, and should lead to a better under- 
standing of network routing. From this interaction of 
theory and practice, routing strategies still better than 
the one proposed here will doubtless emerge. 
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