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ABSTRACT
Forecasting electricity demand plays a critical role in ensuring reli-
able and cost-efficient operation of the electricity supply. With the
global transition to distributed renewable energy sources and the
electrification of heating and transportation, accurate load forecasts
become even more important. While numerous empirical studies
and a handful of review articles exist, there is surprisingly little
quantitative analysis of the literature, most notably none that iden-
tifies the impact of factors on forecasting performance across the
entirety of empirical studies. In this article, we therefore present a
Meta-Regression Analysis (MRA) that examines factors that influ-
ence the accuracy of short-term electricity load forecasts. We use
data from 421 forecast models published in 59 studies. While the
grid level (esp. individual vs. aggregated vs. system), the forecast
granularity, and the algorithms used seem to have a significant im-
pact on the MAPE, bibliometric data, dataset sizes, and prediction
horizon show no significant effect. We found the LSTM approach
and a combination of neural networks with other approaches to
be the best forecasting methods. The results help practitioners and
researchers to make meaningful model choices. Yet, this paper calls
for further MRA in the field of load forecasting to close the blind
spots in research and practice of load forecasting.
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1 INTRODUCTION
Accurate forecasting of electricity demand is an important success
factor for utilities, and there is reason to believe that such forecasts
will become even more important in the future: The electrifica-
tion of residential heating and the adoption of electric vehicles
will increase both, volatility of demand and utilization of the dis-
tribution grid [5]. As a result, the safety margins of existing assets
will decrease while energy costs at peak load times will rise. Load
control—both centralized, e.g., by grid operators, and decentralized
by local agents—will benefit from accurate demand forecasts, as
will utilities’ attempts to schedule production and hedge demand
through forward contracts.

As a consequence, there is an extensive literature on methods
and models for electric load forecasting [15], which has been sum-
marized in recent review papers [e.g., 12, 22, 26]. The academic
discourse is fueled by the continued global deployment of advanced
metering infrastructures that makes an increasing amount of con-
sumption data available at higher temporal resolution. Thus, such
data have attracted significant research interest to investigate the
use of smart meter data for load forecasting and to enable electricity
forecasting at different grid levels and for different time scales [31].

The existing literature reviews on short-term electricity load
forecasting provide good overviews of the large number of empiri-
cal studies. They show which computational methods are used to
forecast future electricity demand for different forecast horizons
and grid levels. The reviews also identify blind spots in existing
research and outline research agendas. Yet, the existing review
studies are primarily qualitative.

Quantitative meta-reviews, by contrast, aim to build a mean ef-
fect size from comparable, independent individual studies. Thus,
quantitative meta-reviews allow for more reliable results than sin-
gle empirical studies [21]. They also enable the identification of
parameters that explain variances and heterogeneity of effect sizes
in study results when sufficient data are available [6, 24]. Such
quantitative meta-reviews are particularly helpful for practitioners
who strive to operationalize forecasts for specific situations and
want to draw on evidence from a complete research field [6]. They
also help research to judge the robustness of existing approaches,
recognize patterns within working solutions, and identify outliers
that might be especially promising or questionable.

Our study seeks to extend the previous reviews with an inductive
statistical analysis, as we carry out a Meta Regression Analysis
(MRA) for short-term electricity load forecasts. By short-term time
horizon, we mean load forecasts with up to one week ahead [3, 12,
22]. We thereby aim to explain factors—across a large sample of
individual studies examining electric load forecasting—that lead to
high or low quality short-term electric load forecasts.

Our article starts with an overview of recent electric load fore-
casting review studies, describes the method, and our analytical
results. We conclude with an interpretation and outline future di-
rections for research and practice.

2 BACKGROUND
The field of electricity load forecasting is comprehensive and stays
in connection to other fields of energy forecasting [15]. We found
several review articles that were published in the last five years (see
Table 1) and provide a summarized overview of the field. Similar to
trends that Hong et al. [15] identify for the broader field of energy
forecasting, the literature on electricity load forecasting heavily
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uses developments in the field of Machine Learning (ML). Another
observation that holds for the fields of energy and electricity load
forecasting alike is that studies primarily focus on forecasts at the
system level or the transmission grid and (through the proliferation
of smart meter data in recent years) also on the household level
[12, 15]. Other grid levels have not been in the focus yet.

Table 1: Literature reviews on electricity forecasting in the
last five years

Ref. Year Journal Dep. variable Focus

[12]* 2021 Appl. En. load low voltage grid
[1] 2021 Ren. and Sust. En. Rev. load + prod. no restriction
[30] 2021 Energies load manufacturing
[22]* 2020 J. El. Sys. and IT load no restriction
[26]* 2020 En. and Buildings load buildings
[29] 2020 Entropy load + prod. no restriction
[8] 2020 Intl. J. of En. Res. load + prod. no restriction
[3] 2019 Sust. Cities and Society load + prod. buildings
[31]* 2018 IEEE Tran. on Smart Grid load no restriction

The review articles describe the landscape of electricity load
forecasting, list algorithmic approaches, datasets, various forecast-
ing horizons, and grid levels. They also problematize implicit field
assumptions, point out limitations in the field, and identify future
research directions. Nevertheless, the review articles we found are
primarily qualitative summaries. If the reviews include quantitative
analyses, the evaluations of forecasting models focus on bibliomet-
rics (e.g., publication date, journal) or analyze the prediction models
in a descriptive way (e.g., frequency of algorithm categories). Only
Vivas et al. [29] investigate the relationship of broad algorithm
classes (statistical vs. machine learning vs. hybrid) and data gran-
ularity on model performance, but are not examining influence
factors on prediction performance with inductive statistics.

Thus, for practitioners that want to operationalize forecasts, it
is difficult to decide which algorithmic approach is suitable for a
given application when such aggregated knowledge does not exist.

3 METHOD
The approach of MRA goes back to Glass [10] who proposed the
method in 1976 as "the statistical analysis of a large collection of
analysis results from individual studies for the purpose of integrat-
ing the findings" [10, p. 3]. MRAs find wide application in many
fields such as medicine, psychology, and economics [21, 24]. In
research related to the energy domain MRAs exist, for example, on
water demand [23] and energy prices [11].

MRAs typically follow the following three steps [25]: First, define
the research question and the effect size (as the core criterion of
interest), second, literature search and coding, and third, meta-
regression modeling. Our description below follows these three
steps.

3.1 Review focus and effect size
Our focus lies on the predictive quality of short-term electricity
forecasts (up to week-ahead) using point-estimates. To evaluate
such forecasts, several performance metrics exist [17]. Absolute
error metrics, likeMean Absolute Error (MAE) or RootMean Square

Figure 1: Literature selection and coding process

Error (RMSE) are not helpful as they are scaled in the dimension of
the input data, thus, do not allow comparison across studies.

An error measure that is scale-independent and allows compar-
isons across studies is the Mean Absolute Percentage Error (MAPE)
metric. As an alternative, the Normalized Root Mean Square Er-
ror (NRMSE) could also be used, but we found that MAPE is more
frequently reported (77.2% of studies in our sample reported MAPE
and only 12.7% NRMSE). Thus, we selected MAPE as the effect size.

3.2 Literature selection
As MRAs aim to provide a comprehensive overview to a field, the
selection of the sample of empirical studies included into the anal-
ysis is crucial and should be consciously made [24]. We decided
to use empirical studies that were mentioned in four review arti-
cles on electricity load forecasting that appeared in the last five
years. All review articles report a systematic review process with
clear selection criteria [4, 14]. Each review article covers a slightly
different review focus, which increases the breath of our sample.

In detail, we use the review study by Nti et al. [22], which focuses
on electricity load forecasting in general, the review by Haben et
al. [12], which focuses on short-term electricity forecasting in the
low-voltage grid, the review of Sun et al. [26], which focuses on
forecasts electricity use of buildings, and the review by Wang et al.
[31], which focuses on the use of smart meter data. We mark the
used studies with an asterisk in Table 1.

Our selection of empirical studies from these review papers
followed three steps, as we illustrate in Figure 1. We first screened
each review paper for empirical papers that investigated a short-
term prediction horizon (up to week-ahead), used electric load as
a dependent variable and obtained point estimates (we excluded
studies on probabilistic forecasting). We made this initial selection
of articles based on the information presented in the review article.
This initial screening led us to 79 references.

Second, we had to exclude studies after our in-depth reading
with the following reasons: As we useMAPE as an effect size metric,
we must exclude articles that do not report MAPE values or do not
clearly document the actual numbers (e.g., that just show bars in
graphs without actual numbers). In addition, we excluded review
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studies or secondary studies that just compared results of other pri-
mary studies. Furthermore, we excluded studies that did not allow
any conclusions about the sample size of the data used for training
and evaluation. In total, 45 articles remained after completing this
second article screening step.

As a third step, we conduced a limited structured search of ar-
ticles via Google Scholar, in order to complete the sample for our
MRA. We used the search terms "short-term", "forecast*", "MAPE",
"energy", "load", and "demand" and reviewed the hits on the first
pages according to the first and second step described above. This
search yielded to additional 16 articles, of which we included 14 in
our analysis, leading us to a sample of 59 articles.

3.3 Coding
During our in-depth reading of the articles, we extracted all models
that the studies report together with all relevant information for our
MRA. For this, we use a systematic coding procedure [18], following
the coding guide that we describe in the remaining section. We list
the resulting variables in Table 2 and in Table 3.

Effect size and sample sizes: We coded the MAPE values in
percent, the number of observation points as integer, and trans-
formed the timespans of the data reported in the papers as the
number of days.

Forecast horizon: We coded the forecast horizon ℎ in a categor-
ical and in a numeric variable. For the categorical, we differentiate
between four ordered classes ℎ ≤ 1ℎ𝑜𝑢𝑟𝑎ℎ𝑒𝑎𝑑 , 1ℎ𝑜𝑢𝑟𝑎ℎ𝑒𝑎𝑑 < ℎ <

1𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 , ℎ = 𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 , ℎ > 𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 . For the numeric coding,
we gathered the number of half-hour steps.

Forecast granularity: We also coded the forecast granularity,
which is the resolution in which the forecast is computed. To har-
monize this across the different studies, we express the granularity
relative to a half-hour step, i.e., hourly granularity would be 2 and
quarterly would be 0.5.

Model category: Finally, we classified the models in the stud-
ies into one of 17 categories of algorithmic approaches. For this,
we created a classification scheme based on schemata used in the
considered review papers [12, 22, 26, 29] but also others [7, 13].
A common division of forecasting models makes a distinction be-
tween statistical, ML, and hybrid models. We further differentiate
these three groups into different algorithmic approaches.

Among statistical methods, we differentiate between time series
(including AR(X), NARX, MA, ARMA(X), ARIMA(X), SARIMA(X),
state space, and spatio-temporal models), regression (including lin-
ear and multilinear regressions) and exponential smoothingmethods
(e.g., Holt-Winters models).

Table 2: Numeric variables

Variable Description Mean Std. Dev.

MAPE Percent 16.07 23.92
Horizon_Num In half-hour steps 49.7 60.1
Granularity_Num In half-hourly values 7.83 15.76
Year Year of publication 2017.39 2.64
N_days Days for model training and

test
460.2 486.7

N_obs No. of observation points 334 3,948

In the category of ML models, Neuronal Networks (NNs) are the
most frequent algorithm category. We split this category into Shal-
low_NN and Deep_NN, where Shallow_NN are those having only
one hidden layer and Deep_NN are those having more than one
hidden layer. To keep the number of categories manageable, we just
differentiate between network architectures, in particular, architec-
tures for time-series data, i.e., Recurrent Neural Networks (RNNs)
and Long Short Term Memorys (LSTMs) (which is an advancement
of the RNN approach).We combined Support VectorMachine (SVM)
and Support Vector Regression (SVR) into one category. Other ma-
chine learning models include Boltzmannmachine models, 𝑘 nearest
Neighbor (kNN), fuzzy logic, and ensemble and other models (e.g.,
autoencoders, genetic algorithms, gradient boosting, random forest,
and decision tree algorithms).

Several studies propose hybrid models by combining an algo-
rithm from one of the considered classes with another (e.g., a linear
regression model). We consider two classes of hybrid models, those
with NNs (Hybrid_NN ) and those with others (Hybrid_various).

Finally, multiple studies use benchmark estimators, which do not
transform the data in a sophisticated way. These simple models are
grouped in their own class.

To get a better understanding of the use of the different model
categories in the studies, Figure 2 shows in the number of stud-
ies that use the different algorithm classes over time. Looking at
the NN-based approaches, we notice that before 2018 mainly Shal-
low_NN were used. After 2018, the models with multiple hidden
layers dominated. This indicates an evolution in research on NNs.
LSTMs are gaining momentum over time and are the most common

Table 3: Categorical variables

Variable Categories No. Models

Level Individual (household, building, ...) 146 (34.7%)
Aggregated (sum of multiple entities) 105 (24.9%)
Substation (transformer, grid zone, ...) 23 (5.4%)
System 147 (34.9%)

Horizon_Cat ℎ ≤ 1ℎ𝑜𝑢𝑟𝑎ℎ𝑒𝑎𝑑 64 (15.2%)
1ℎ𝑜𝑢𝑟𝑎ℎ𝑒𝑎𝑑 < ℎ < 1𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 29 (6.9%)
ℎ = 𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 308 (73.2%)
ℎ > 𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 20 (4.7%)

Model_Cat Stat: Time Series 52 (12.3%)
Stat: Regression 42 (10.0%)
Stat: Exponential Smoothing 16 (3.8%)
ML: Shallow_NN 82 (19.5%)
ML: Deep_NN 50 (11.9%)
ML: RNN 13 (3.1%)
ML: LSTM 29 (6.9%)
ML: Boltzmann 3 (0.7%)
ML: SVM_SVR 50 (11.9%)
ML: kNN 7 (1.7%)
ML: Fuzzy_Logic 14 (3.3%)
ML: Ensemble and other 15 (3.6%)
Hybrid_NN 22 (5.2%)
Hybrid_various 2 (0.47%)
Benchmark 24 (5.7%)

Study_ID Unique per study 421 (100%)



ACM e-Energy ’23, June 16 – 23, 2023, Orlando, Florida Konstantin Hopf, Hannah Hartstang, and Thorsten Staake

approach used in the studies published in 2021. Time series and
benchmark models are used fairly regularly over the years and
most often serve as reference models in the studies to compare. We
also find that some approaches are used only very rarely, for ex-
ample, fuzzy logic, ensemble methods, kNNs, Boltzmann Machine,
Genetic Algorithms, and Autoencoders. We therefore group these
infrequent model categories together for the following analyses.

Figure 2: Illustration of the use of algorithmic categories in
the studies over time

3.4 Statistical analysis
For the statistical analysis of our MRA, we rely on Ordinary Least
Squares (OLS) andWeighted Least Squares (WLS) regression. Guide-
lines for conducting MRAs point to the problems of heteroscedas-
ticity, reliability and interdependence between examined factors
[21, 23], which we address through the following approaches.

First, to mitigate the problem of heteroscedasticity, we use robust
standard errors [32, 33]. Second, to include an estimate of the study
reliability, we weight the effect sizes of the single empirical studies.
Meta-analyses frequently use the variance of the effect sizes as a
weighting factor, given that effect sizes with smaller variances are
considered as more reliable and should be weighted more heavily in
a MRA. In the field of electricity forecasting, the variance of error
metrics are, however, usually not reported. Therefore, we estimate
the reliability of a study using the sample size [21]. As we have
time-series data available, and ideally time series data frommultiple
observation points, we compute

𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 = 𝑁_𝑑𝑎𝑦𝑠 ∗ 𝑁_𝑜𝑏𝑠 (1)

As some studies have very large samples, we use the logarithm
to lower the influence of very large sample sizes and scale the
weighting factors using max-normalization.

Third, we evaluate interdependence between examined influence
factors and the effect size. One reason can be that multiple primary
studies use the same data set, which is party the case for electricity
forecasting [12]. Another reason is that multiple effect sizes may
be reported from a single study. Observable common effects, such
as the common data set, can be accounted for using regressors. To
account for study-specific influences, we use fixed effects models
in that we estimate a regression intercept per study [2, 21].

4 RESULTS
4.1 Study-specific parameters
For the models that examine study-specific characteristics, we com-
puted simple linear models using OLS to test the correlation be-
tween MAPE and one variable as regressor each. First, we could
not find an influence of the year of publication on the error values
(𝑅2 = 0.01, 𝐹 (421) = 2.36, 𝑝 = .1612). Second, we tested the influ-
ence of the size of the data set, that is, the observation period in
days and the number of observation points (e.g., meters or house-
holds). While the regression models found statistically significant
effects of the size of the data, the effect sizes are very small and
the variances explained by the study parameters are low for the
observation period (𝑅2 = .000, 𝐹 (421) = 0.39, 𝑝 < .001) and the
number of observation points (𝑅2 = .008, 𝐹 (421) = 3.48, 𝑝 < .05).

4.2 Grid levels
As a second analysis, we examined the influence of the grid level
on the forecasting error. We encoded the grid level as dummy vari-
ables, 𝑑𝑖𝑛𝑑 = 1 if the forecast was made on an individual level
(e.g., households, buildings), 𝑑𝑠𝑢𝑏 = 1 if the forecast was obtained
for the substation-level, and 𝑑𝑎𝑔𝑔𝑟 = 1 if the forecast was made
by aggregating time-series from lower grid levels. The case that
the forecast targeted the system level is represented as response
state (i.e., all dummy variables are zero) because this is the most
frequent grid level across all studies. We use a fixed-effects model
considering an intercept for each study (represented by the study
𝐼𝐷𝑖 , 𝑖 ∈ 1, ..., 59) with the coefficient 𝛽0𝑖 . We estimated the model
using a WLS estimation using 𝑙𝑜𝑔(𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒) as a weighting fac-
tor (see Equation 1) and used robust standard errors to address
heterogeneity [32, 33] with the following model specification:

𝑦𝑖 = 𝛽0𝑖 ∗ 𝐼𝐷𝑖 + 𝛽1 ∗ 𝑑𝑖𝑛𝑑 + 𝛽2 ∗ 𝑑𝑠𝑢𝑏 + 𝛽3 ∗ 𝑑𝑎𝑔𝑔𝑟 + 𝜖𝑖 (2)

Table 4 shows the WLS model estimates. Due to the study-
specific intercept, the proportion of explained variance is quite
high (this holds also true for the following models). Accordingly,
we focus our interpretation on the main effects and their significant
difference from zero.

As the descriptive plot in Figure 3 shows, the studies with individ-
ual-level prediction have a large variance and report significantly
higher error values than the models with other grid levels. Com-
pared to prediction for a single time-series of a complete power

Table 4: MAPE estimates for different grid levels, using the
individual household as a baseline (model 1)

Model 1

Individual 25.16 (4.16)∗∗∗
Aggregated −0.62 (3.15)
Substation 0.18 (2.12)
R2 0.72
Adj. R2 0.67
Num. obs. 421
F statistic 14.79
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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system (reference category), our model estimates that the forecast
errors on individual level are 25.16 percentage points higher. If
predictions are made with aggregated data, this seems to lead to
better predictions (in 0.62 percentage points lower error), yet the
difference is not statistically significant. The lacking significant
level for forecasts at the aggregated and the secondary grid level
(i.e., substation) might be due to the small number of studies that
consider this level of forecast.

Figure 3: Combined scatter- and boxplot for MAPE values
across different grid levels

Reasons for the high relative errors in individual-level studies
may be that individual load curves might be harder to predict than
aggregated ones. Another explanation is that individual load curves
often have times with small load, which increases the MAPE. To
investigate this issue further, other error metrics that give less
weight to small consumption values may need to be included in the
analysis.

4.3 Time horizon
Similar to the previous analysis, we tested if the forecasting horizon
has an impact on the errors. Only fewmodels had a horizon between
hour- and day-ahead (29 models), and even fewer have a forecasting
horizon of more than day-ahead (20 models). Thus, we excluded
these models for this analysis. For the remaining data (372 models),
we encoded the day-ahead as 𝑑𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 = 1 and the hour-ahead
forecasts as 𝑑𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑 = 0 and estimate the following regression
model:

𝑦𝑖 = 𝛽0𝑖 ∗ 𝐼𝐷𝑖 + 𝛽1 ∗ 𝑑𝑑𝑎𝑦𝑎ℎ𝑒𝑎𝑑𝜖𝑖 (3)
Given that the dummy encoding omits ranking information and
we left out several models, we used an alternative model formula-
tion with a metric variable. We defined a variable that expresses
the forecasting horizon in the number of 30-minute time steps
(i.e., an hourly forecast has ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 = 2 and a 24h fore-
cast ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 = 48). This approach follows earlier meta-
reviews in the field of electricity [23] and traffic forecasting [27].

𝑦𝑖 = 𝛽0𝑖 ∗ 𝐼𝐷𝑖 + 𝛽1 ∗ ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 + 𝜖𝑖 (4)

Table 5 shows the WLS model estimates. From both models, it
appears that there is no significant influence of the forecast horizon
on model quality. This may be because the effect is confounded by
algorithm choice or practical relevance over time. The relatively
high 𝑅2 values result from the study-specific intercept in our fixed-
effects model.

Table 5: MAPE estimates for different time horizons, using
dummy (model 2) and using numeric encoding (model 3)

Model 2 Model 3

Dayahead 0.63 (5.36)
Horizon_Num 0.01 (0.05)
R2 0.67 0.68
Adj. R2 0.61 0.63
Num. obs. 372 421
F statistic 10.91 12.73
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

4.4 Forecast granularity
As a fourth analysis, we examine the influence of the forecast gran-
ularity on the size of the error, using the model:

𝑦𝑖 = 𝛽0𝑖 ∗ 𝐼𝐷𝑖 + 𝛽1 ∗ 𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 + 𝜖𝑖 (5)

The regression results in Table 6 show that granularity has a nega-
tive and significant effect on the magnitude of the prediction error
(𝑅2 = .68, 𝐹 (60, 361) = 12.9, 𝑝 < .001). This means that larger time
steps of the forecasts lead to lower relative prediction errors. For
every half hour that the forecast granularity increases, the error
decreases by 0.39 percentage points.

Table 6: MAPE estimates for different data granularities

Model 4

Granularity_Num −0.39 (0.14)∗∗

R2 0.68
Adj. R2 0.63
Num. obs. 421
F statistic 12.90
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

4.5 Algorithm category
Finally, we investigate the influence of the model category on the
forecasting error. As algorithmic innovations aim to improve fore-
casts, we expect a strong influence of the model category on the
forecast errors [19, 29].

We consider the algorithm class as a dummy-encoded variable
𝑀𝑜𝑑𝑒𝑙_𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑗 for each model category, being 1 if the class is
used, 0 otherwise.We use regressionmodels as the response category
(because they have the worst forecasting performance in the studied
models), meaning that all𝑀𝑜𝑑𝑒𝑙_𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑗 = 0. Given that several
model categories are very infrequent, we used ten model categories
as shown in Table 7, thus 1 ≤ 𝑗 ≤ 10.

𝑦𝑖 = 𝛽0𝑖 ∗ 𝐼𝐷𝑖 + 𝛽 𝑗 ∗𝑀𝑜𝑑𝑒𝑙_𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖 𝑗 + 𝜖𝑖 (6)

The results of the regression analysis in Table 7 (Overall) show
that all model categories except the Shallow_NNs seem to produce
better results than the regression (which is the response category),
even the benchmark models. Yet, only the coefficients of the model
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Table 7: MAPE results for algorithm category (overall and across different grid levels)

Overall Individual Aggregated System

Shallow_NN 1.51 (4.28) 3.27 (11.41) −0.76 (2.53) −3.57 (1.27)∗∗
Deep_NN −8.74 (4.48) · −15.38 (13.29) −8.26 (2.55)∗∗ 4.80 (1.24)∗∗∗
Time_Series −0.56 (4.25) −2.69 (12.66) −2.96 (2.54) −2.78 (1.20)∗
RNN −7.16 (6.24) −16.83 (15.89) −7.46 (3.20)∗ −1.16 (2.17)
LSTM −15.85 (5.26)∗∗ −27.54 (11.61)∗ −8.66 (2.96)∗∗
SVM_SVR −3.69 (4.98) −1.78 (13.26) −3.60 (2.97) −4.86 (1.30)∗∗∗
Benchmark −3.81 (5.37) −19.94 (14.21) 1.52 (2.82) 1.40 (2.22)
Exponential_Smoothing −1.34 (5.54) −6.61 (15.86) −3.68 (2.83) 5.18 (2.05)∗
Hybrid_NN −15.65 (5.89)∗∗ −34.89 (15.77)∗ −8.37 (2.94)∗∗ −1.26 (5.00)
Others −0.57 (4.81) −0.37 (11.74) −7.53 (2.82)∗∗ −4.27 (1.49)∗∗

R2 0.69 0.77 0.87 0.88
Adj. R2 0.63 0.69 0.82 0.85
Num. obs. 421 146 105 147
F statistic 11.56 9.81 18.64 29.10
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05; ·𝑝 < 0.1

categoriesDeep_NN, LSTM, andHybrid_NN have a significant effect
on the magnitude of the forecast error overall.

In our first analysis, we have found that the grid level has a
significant influence on the model results. Therefore, we also an-
alyzed the model categories with data subsets of studies focusing
on an individual, aggregated, and system level (the substation cat-
egory was too infrequent that we could compute the model). For
the system level, there is only one study in our sample using the
LSTMs approach, thus, our model cannot estimate a coefficient due
to perfect collinearity in this case.

We see that LSTMs and Hybrid_NNs show the lowest prediction
errors and also have significant effects in the Individual and Ag-
gregated subsample. Thus, we conclude that these two approaches
lead to the best forecasting results in the sample of analyzed studies
for the two grid levels.

For the grid level, the performance figures are quite different,
suggesting that SVM_SVR, Shallow_NN and Other approaches lead
to lower results. Yet, the otherwise strong category of LSTM has
been left out of the calculation because of just a single study. Future
research should, thus, investigate the performance of algorithm
categories on a system level including further and, in particular,
more recent studies.

5 DISCUSSION
The in-depth analysis of error metrics using aMRA helps to identify
parameters that explain variances and heterogeneity of effect sizes
in a large number of empirical studies [6, 21, 24]. For the field of
short-term electricity load forecasting, MRAs can help to identify
parameters, algorithms, and situations that foster smaller forecast
errors.

Our analysis showed, for example, that the grid level (esp. in-
dividual vs. aggregated vs. system), the forecast granularity, and
the algorithms used have a significant impact on the MAPE. We
also found that the LSTM approach and a combination of NNs with
other methods were the best forecasting methods for the individual
and aggregated forecasts. For system level forecasts, SVM, SVR,

Shallow NNs, and other approaches seem to perform best in our
sample. In contrast, the year of publication, dataset size, and pre-
diction horizon had no significant effect on prediction performance
in our sample of studies.

The results help practitioners to operationalize forecasting mod-
els for specific applications, drawing on the aggregated findings of
59 empirical studies. For researchers, the results help to assess the
robustness of approaches they suggest, identify patterns and blind
spots in the variety of existing solutions, and identify outliers that
may be particularly promising or questionable.

5.1 Future work
The analysis we presented in this paper is promising and should be
a call to the load forecasting research field to look more closely at
MRAs. Many aspects could not be addressed in this study and thus
require follow-up investigations.

First, the sample of studies would need to be expanded to include
older studies to better reflect trends over time in this area. Beyond
that, a broader sample would strengthen the analysis. Extending the
sample would also allow more detailed insights in subgroup anal-
yses, for example, if some algorithms are better-suited for certain
grid levels or data sources than others.

Second, the field of load forecasting is constantly evolving and
new approaches, such as the Transformers architecture [9, 20, 28],
could not be included in our evaluation so far.

Third, we also did not control for the datasets used. Even though
many studies use datasets that are not public, there are some
datasets that are used very often [12]. This may bias the analy-
sis. An in-depth analysis in terms of datasets (also the statistical
properties of the datasets used in the empirical studies) could pro-
vide further insight into, for example, how larger training datasets
and high-resolution data have an impact on predictive performance.

Fourth, an investigation of the influence of different data sources
and features used (e.g., weather, geospatial information), also with
a focus on open data [16], on forecast performance would also be
an exciting extension.
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Finally, future research should also apply MRAs to probabilistic
load forecasts. We could not include such studies because proba-
bilistic load forecasts are evaluated with other error metrics and
thus a different dependent variable would be necessary.

5.2 Limitations
A limitation of our analysis is the use of the MAPE metric, which
is highly dependent on actual consumption in the evaluation. We
would have liked to use a more reliable quality metric, such as
NRMSE but other metrics that allow comparison between studies
are rarely reported. Future research in the prediction literature
should therefore report more quality metrics that allow quantitative
comparative analysis.

6 CONCLUSION
The research literature on short-term electricity load forecasting
is extensive, and previous survey articles summarize the field de-
scriptively. To our knowledge, our analysis is the first MRA to
quantitatively examine factors influencing forecast quality.

To close this gap, we have analyzed the prediction errors of
421 models published in 59 studies that were mentioned in recent
review articles in the field of short-term electricity load forecasting.
Our statistical MRA could find statistically significant influences
of (i) the grid level (individual, aggregated, and system), (ii) the
forecast granularity, and (iii) the algorithms used (particularly good
approaches are LSTM and Hybrid_NN on the individual and the
aggregated level, while SVM, shallowNN, and otherML approaches
perform best for grid-level forecasts) on theMAPE reported in these
studies. We did not find an influence of the study characteristics
(year of publication, dataset size) or the time horizon of the forecast
on the MAPE.

Although short-term load forecasting offers powerful tools with
acceptable forecast error metrics, the development of new forecast-
ing methods remains a major challenge. In the future, the influences
of the energy transition will have a greater impact on all energy
consumption sectors. For example, heat pumps and electric vehi-
cles will proliferate, causing additional loads. Weather influences
on electricity consumption will change, caused by environmental
change and increase power-to-heat appliances. Moreover, as some
energy providers experiment with variable tariffs and customers
invest in home energy management systems that can optimize for
market prices in addition to self-consumption, demand profiles will
incorporate market feedback that will alter electricity demand pro-
files further. Future research, thus, has to include novel predictors,
like short term price elasticity or technical aspects like the common
ripple control in some countries, which, because of the control,
could improve the prediction quality.

ACKNOWLEDGMENTS
We thank the Bavarian Ministry of Economic Affairs, Regional
Development and Energy for their financial support of the project
"DigiSWM" (DIK-2103-0014), as part of which the study was carried
out.

REFERENCES
[1] Sheraz Aslam, Herodotos Herodotou, Syed Muhammad Mohsin, Nadeem Javaid,

Nouman Ashraf, and Shahzad Aslam. 2021. A survey on deep learning methods
for power load and renewable energy forecasting in smart microgrids. Renewable
and Sustainable Energy Reviews 144 (2021), 1–55.

[2] Michael Borenstein, Larry V. Hedges, Julian P. T. Higgins, and Hannah R. Roth-
stein. 2010. A basic introduction to fixed–effect and random–effects models for
meta–analysis. Research synthesis methods 1, 2 (2010), 97–111.

[3] Mathieu Bourdeau, Xiao qiang Zhai, Elyes Nefzaoui, Xiaofeng Guo, and Patrice
Chatellier. 2019. Modeling and forecasting building energy consumption: A
review of data-driven techniques. Sustainable Cities and Society 48 (2019), 1–27.

[4] Iain Chalmers, Larry V. Hedges, and Harris Cooper. 2002. A brief history of
research synthesis. Evaluation & the health professions 25, 1 (2002), 12–37.

[5] Spyridon Chapaloglou, Athanasios Nesiadis, Petros Iliadis, Konstantinos Atso-
nios, Nikos Nikolopoulos, Panagiotis Grammelis, Christos Yiakopoulos, Ioannis
Antoniadis, and Emmanuel Kakaras. 2019. Smart energy management algorithm
for load smoothing and peak shaving based on load forecasting of an island’s
power system. Applied Energy 238 (2019), 627–642.

[6] Harris Cooper, Larry V. Hedges, and Jeffrey C. Valentine. 2009. The Handbook of
Research Synthesis and Meta-Analysis. Russell Sage Foundation. https://www.
jstor.org/stable/10.7758/9781610441384

[7] Kumar Biswajit Debnath and Monjur Mourshed. 2018. Forecasting methods in
energy planning models. Renewable and Sustainable Energy Reviews 88 (2018),
297–325.

[8] Jayanthi Devaraj, Rajvikram Madurai Elavarasan, G. M. Shafiullah, Taskin Jamal,
and Irfan Khan. 2021. A holistic review on energy forecasting using big data
and deep learning models. International journal of energy research 45, 9 (2021),
13489–13530.

[9] Elena Giacomazzi, Felix Haag, and Konstantin Hopf. 2023. Short-term Electricity
Load Forecasting using the Temporal Fusion Transformer: Effect of Grid Hier-
archies and Data Sources. In The 14th ACM International Conference on Future
Energy Systems. ACM, Orlando. FL, USA. https://doi.org/10.1145/3575813.3597345

[10] Gene V. Glass. 1976. Primary, secondary, and meta-analysis of research. Educa-
tional researcher 5, 10 (1976), 3–8.

[11] Marc Gürtler and Thomas Paulsen. 2018. Forecasting performance of time series
models on electricity spot markets: a quasi-meta-analysis. International journal
of energy sector management 12, 1 (2018), 103–129.

[12] Stephen Haben, Siddharth Arora, Georgios Giasemidis, Marcus Voss, and Dan-
ica Vukadinović Greetham. 2021. Review of low voltage load forecasting:Methods,
applications, and recommendations. Applied Energy 304 (2021), 1–37.

[13] Mahmoud A. Hammad, Borut Jereb, Bojan Rosi, and Dejan Dragan. 2020. Methods
andmodels for electric load forecasting: a comprehensive review. Logistics, Supply
Chain, Sustainability and Global Challenges 11, 1 (2020), 51–76.

[14] Julian Higgins, James Thomas, Jacqueline Chandler, Miranda Cumpston, Tianjing
Li, MatthewJ Page, and Vivian Welch. 2022. Cochrane Handbook for Systematic
Reviews of Interventions: Version 6.3. www.training.cochrane.org/handbook

[15] Tao Hong, Pierre Pinson, Yi Wang, Rafał Weron, Dazhi Yang, and Hamidreza
Zareipour. 2020. Energy forecasting: A review and outlook. IEEE Open Access
Journal of Power and Energy 7 (2020), 376–388.

[16] Konstantin Hopf. 2018. Mining Volunteered Geographic Information for Predic-
tive Energy Data Analytics. Energy Informatics 1:4 (2018). https://doi.org/10.
1186/s42162-018-0009-3

[17] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
Introduction to Statistical Learning. Springer Texts in Statistics, Vol. 103. Springer,
New York, NY. http://link.springer.com/10.1007/978-1-4614-7138-7

[18] Klaus Krippendorff. 2018. Content analysis: an introduction to its methodology
(fourth edition ed.). SAGE, Los Angeles.

[19] Corentin Kuster, Yacine Rezgui, and Monjur Mourshed. 2017. Electrical load
forecasting models: A critical systematic review. Sustainable Cities and Society
35 (2017), 257–270.

[20] Bryan Lim, Sercan Ö. Arık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal
Fusion Transformers for interpretable multi-horizon time series forecasting.
International Journal of Forecasting 37, 4 (Oct. 2021), 1748–1764. https://doi.org/
10.1016/j.ijforecast.2021.03.012

[21] Jon P. Nelson and Peter E. Kennedy. 2009. The use (and abuse) of meta-analysis
in environmental and natural resource economics: an assessment. Environmental
and resource economics 42, 3 (2009), 345–377.

[22] Isaac Kofi Nti, Moses Teimeh, Owusu Nyarko-Boateng, and Adebayo Felix
Adekoya. 2020. Electricity load forecasting: A systematic review. Journal of
Electrical Systems and Information Technology 7, 1 (2020), 1–19.

[23] Maamar Sebri. 2016. Forecasting urbanwater demand: Ameta-regression analysis.
Journal of environmental management 183 (2016), 777–785.

[24] T. D. Stanley andHristos Doucouliagos. 2012.Meta-Regression Analysis in Econom-
ics and Business. Taylor & Francis Group, Florence, UNITED KINGDOM. http:
//ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=1016122

[25] Tom D. Stanley, Hristos Doucouliagos, Margaret Giles, Jost H. Heckemeyer,
Robert J. Johnston, Patrice Laroche, Jon P. Nelson, Martin Paldam, Jacques Poot,

https://www.jstor.org/stable/10.7758/9781610441384
https://www.jstor.org/stable/10.7758/9781610441384
https://doi.org/10. 1145/3575813.3597345
www.training.cochrane.org/handbook
https://doi.org/10.1186/s42162-018-0009-3
https://doi.org/10.1186/s42162-018-0009-3
http://link.springer.com/10.1007/978-1-4614-7138-7
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1016/j.ijforecast.2021.03.012
http://ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=1016122
http://ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=1016122


ACM e-Energy ’23, June 16 – 23, 2023, Orlando, Florida Konstantin Hopf, Hannah Hartstang, and Thorsten Staake

and Geoff Pugh. 2013. Meta–analysis of economics research reporting guidelines.
Journal of economic surveys 27, 2 (2013), 390–394.

[26] Ying Sun, Fariborz Haghighat, and Benjamin C. M. Fung. 2020. A review of
the-state-of-the-art in data-driven approaches for building energy prediction.
Energy and Buildings 221 (2020), 1–50.

[27] Varun Varghese, Makoto Chikaraishi, and Junji Urata. 2020. Deep learning in
transport studies: A meta-analysis on the prediction accuracy. Journal of Big
Data Analytics in Transportation 2, 3 (2020), 199–220.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc., 5998–6008. https://proceedings.neurips.
cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[29] Eliana Vivas, Héctor Allende-Cid, and Rodrigo Salas. 2020. A systematic review
of statistical and machine learning methods for electrical power forecasting with
reported mape score. Entropy 22, 12 (2020), 1–24.

[30] Jessica Walther and Matthias Weigold. 2021. A systematic review on predicting
and forecasting the electrical energy consumption in the manufacturing industry.
Energies 14, 4 (2021), 1–24.

[31] Yi Wang, Qixin Chen, Tao Hong, and Chongqing Kang. 2018. Review of smart me-
ter data analytics: Applications, methodologies, and challenges. IEEE Transactions
on Smart Grid 10, 3 (2018), 3125–3148.

[32] H. White. 1980. A Heteroskedasticity-Consistent Covariance Matrix and a Direct
Test forHeteroskedasticity. Econometrica 48 (1980), 817–383.

[33] Achim Zeileis. 2004. Econometric Computing with HC and HAC Covariance
Matrix Estimators. Journal of Statistical Software 11, 1 (Nov. 2004), 1–17. https:
//doi.org/10.18637/jss.v011.i10 Number: 1.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18637/jss.v011.i10
https://doi.org/10.18637/jss.v011.i10

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Review focus and effect size
	3.2 Literature selection
	3.3 Coding
	3.4 Statistical analysis

	4 Results
	4.1 Study-specific parameters
	4.2 Grid levels
	4.3 Time horizon
	4.4 Forecast granularity
	4.5 Algorithm category

	5 Discussion
	5.1 Future work
	5.2 Limitations

	6 Conclusion
	Acknowledgments
	References

