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ABSTRACT
Personalization services offered by Point-of-Interest (POI) recom-

mender systems are becoming increasingly popular, especially in

the context of mobile devices. However, data privacy regulations

and user concerns regarding privacy often prevent the transfer and

storage of user data, which poses a challenge for these systems. To

address this issue, privacy-preserving recommender systems have

gained importance. This paper proposes a generic framework for

generating synthetic user data for POI recommendations based on

differential privacy, random response, and user grouping. The pro-

posed framework can accommodate various data feedback without

compromising privacy and is compatible with non-private recom-

mender systems, allowing for future improvements and flexibility.

Our experiments on real-world datasets demonstrate that the frame-

work strikes a balance between privacy protection and accurate

recommendations.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; • In-
formation systems → Clustering; Collaborative filtering; Loca-
tion based services.
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1 INTRODUCTION
The Recommender system (RS) predicts user interactions with prod-
ucts and is widely used to curate personalized content lists from
vast online options [25]. These systems [31] analyze attributes,
feedback, and contextual details. As these systems evolve, the in-
tegration of more information types is increasingly common for
improved prediction accuracy [8, 20].
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However, the rise of privacy concerns due to data breaches and

regulations creates a challenging environment for information col-

lection, especially for POI recommender systems. For example,

national security concerns are leading to competition for exclusive

data access rights, and regulations have also led to an unfriendly en-

vironment for recommender systems to collect useful information.

They all call for an increased emphasis on privacy preservation in

these systems.

As a result, privacy concerns are driving increased regulations in

the field of recommender systems [6, 15, 26]. These regulations aim

to prevent irresponsible or malicious data mining and analytics. POI

RS, which relies on large quantities of data and various data sources,

is particularly affected by these regulations. Besides, the growing

use of mobile devices has led to the proliferation of location-based

services (LBS).

Various privacy-preserving recommender systems have emerged

with approaches including decentralization, anonymization, obfus-

cation, and traditional cryptography. Decentralization allows for

local RS operation, eliminating the need to store sensitive data on

the cloud. Anonymization and obfuscation-based systems perturb

or remove identifiable user details to protect sensitive information.

Traditional cryptographic methodologies are routinely customized

to augment the capacity for privacy preservation as well. However,

these methods have limitations, such as increased communication

needs and limited compatibility with newer models.

This paper introduces a flexible framework using local differen-

tial privacy (LDP) and location-based clustering to generate syn-

thetic data for POI recommendations. Our proposed framework

enables local recommender systems to offer predictions without

directly sharing sensitive personal information. Our main contribu-

tions are:

• A model-independent user data collection mechanism for

privacy-preserving POI recommender systems.

• Secure data communication using estimated user location

and LDP to generate personalized recommendations while

preserving user privacy.

• Empirical validation of the framework’s effectiveness using

real-world datasets.

The paper is structured as follows: “Related Work" discusses

related topics and background information. “Framework Descrip-

tion" depicts the framework’s structure and the challenges we aim

to solve. “Preliminaries" introduces fundamentals, notation, proof,

and problem formulation. “Experiment and Discussion" presents

datasets, optimization, and results. “Conclusion and Future Work"

concludes the paper.
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2 RELATEDWORK
2.1 Existing Privacy-Preserving Recommender

System
Privacy concerns have led to various privacy-preserving recom-

mender system models, largely divided into decentralized and cen-

tralized methods. Decentralized strategies, such as distributed and

federated models, exchange gradients or model weights without

centralized data collection [7, 21]. Centralized frameworks employ

encryption protocols, k-anonymity, and perturbations, often facing

the challenge of balancing privacy, data transfer, and user volume

demands[11, 18].

Differential Privacy (DP), a privacy standard garnering increased

attention, has been adapted to protect sensitive user data in rec-

ommender systems. For instance, the application of DP to matrix

factorization-based recommender systems has been explored, pro-

viding optimal privacy-preserving techniques [5]. Local DP (LDP),

a more localized DP variant, has been used to protect user feedback

from central servers [28]. Other research, such as [4], has improved

upon existing challenges by providing deniability not just to rating

values but also to rating behaviors.

2.2 Data Clustering
Clustering is widely used for two purposes in POI RS. First, it is

used to improve performance and address data scarcity problems,

such as predicting how groups of people choose online streaming

services or nearby restaurants [2, 9, 22]. Second, clustering has been

used to protect user identities and mask sensitive user information

in privacy-preserving schemes for RS and general data mining,

helping to protect user feedback and certain contextual information

[14, 27, 30].

3 FRAMEWORK DESCRIPTION

Figure 1: STTP’s User Data Collecting Scheme from Mobile
Devices

The Generic User Synthesizer (GUS) framework is designed to

maintain privacy while generating personalized recommendations

using aggregated user data. The framework employs a Semi-Trusted

Third Party (STTP) for data collection. As Figure 1 shows, this STTP

applies LDP-based clustering algorithms to protect user privacy

and groups users based on implicit location. The centroids of these

clusters represent synthetic users.

The central server calculates POI similarities and prepares user

and item embeddings and a similarity matrix. This data is made

available for download by local RS on user devices, which then

generate recommendations by integrating the user’s personal rating

record.

Due to computational constraints, an adaptive training strat-

egy is used for the simulation of numerous mobile devices. The

local RS uses similar synthetic users to derive a weighted average

for the final prediction. Further sections will provide an in-depth

explanation of this approach.

4 PRELIMINARIES
4.1 Local Differential Privacy
4.1.1 Definitions and Theorems. Definition 1 (𝜖-Local Differen-
tial Privacy). Suppose there is a randomized Algorithm 𝐴 and a

single dataset 𝐷 , for any pair of different user feedback 𝑟, 𝑟 ′ ∈ 𝐷
and for any outcome 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (𝐴), we have

𝑃𝑟 [𝐴(𝑟 ) ∈ 𝑆] ≤ 𝑒𝑥𝑝 (𝜖) · 𝑃𝑟 [𝐴(𝑟 ′) ∈ 𝑆] (1)

where the randomization is applied to each user’s feedback inde-

pendently. The value of 𝜖 is aligned with data integrity but the

opposite of privacy protection. Our LDP mechanism is based on

Generalized Randomized Response (GRR) [16, 29], whose definition

is given below:

Definition 2 (Generalized Randomized Response (GRR)).
Given 𝑖 being the true visited POI, let 𝑖 be the random response

instead. If 𝐾 is the option space from which the random response

is selected, i.e., 𝑖 ∈ 𝐾 , then we have the following formulation:

𝑃𝑟 (𝑖 = 𝑖) =
{

𝑒𝜖

𝑒𝜖+|�̄� |−1

, if (𝑖 = 𝑖)
1

𝑒𝜖+|�̄� |−1

, if (𝑖 ≠ 𝑖)
(2)

As the above formula shows, when |𝐾 | = 2, which means the

user can only choose one of two items/POIs, then it becomes the

conventional true or false scenario where the traditional Random-

ized Response (RR) is implemented. Next, the feedback value is also

guarded by the perturbation technique using Duchi’s solution [10].

Duchi’s Solution. Given a tuple 𝑟 ∈ [-1, 1], a perturbed tuple

𝑟 ′ that equals either 𝑒𝜖+1

𝑒𝜖−1
or − 𝑒𝜖+1

𝑒𝜖−1
is returned according to the

following probability 𝑡 :

𝑃𝑟 (𝑟 ′𝑢𝑖 = 𝑡 |𝑟𝑢𝑖 ) =
{
𝑒𝜖−1

2𝑒𝜖+2
· 𝑟𝑢𝑖 + 1

2
, if (𝑡 = 𝑒𝜖+1

𝑒𝜖−1
)

1−𝑒𝜖
2𝑒𝜖+2

· 𝑟𝑢𝑖 + 1

2
, if (𝑡 = −𝑒𝜖+1

𝑒𝜖 )
(3)

where 𝑢 is the user given ratings, and 𝑖 is the target POI. The

perturbed ratings 𝑟 ′
𝑢𝑖

are unbiased estimators of the original ratings,

according to Duechi et al.

Since LDP mechanisms in our framework include GRR and

Duchi’s Solution to protect user rating behavior, i.e., whether a

user visited a POI, and POI preference, i.e., whether the user likes

their visited place, respectfully, we introduce the following proper-

ties.

Theorem 1 (Sequential Composition). If a mechanism 𝐺

contains a series of 𝑛 independent randomized functions 𝐺 =

{𝑔1, 𝑔2, ..., 𝑔𝑛}, and each function offer 𝜖𝑖 -𝐿𝐷𝑃 guarantee where

𝑖 ∈ 𝑛, then the mechanism 𝐺 provides (∑𝑛𝑖=1
𝑒𝜖 )-𝐿𝐷𝑃 .

Meanwhile, the LDP mechanisms are introduced at the very

beginning, so the post-processing property is involved to guarantee
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the safety of the data manipulation and training process following

the initial step.

Theorem 2 (Post-processing). Given a dataset 𝐷 , and a func-

tion 𝑓 that guarantees 𝜖-𝐿𝐷𝑃 where 𝑓 : 𝐷 → R, for any randomized

function 𝑓 ′ : R→ R′ we have 𝑓 ◦ 𝑓 ′ also being 𝜖-𝐿𝐷𝑃 .

These theorems guarantee the privacy-preserving qualities for

all the following computing and data processing procedures.

4.1.2 Rating Value Protection. Considering that LDP-dependent

algorithm is to calculate centroids’ ratings, which comes from aver-

aging all user ratings in each group, we choose Duchi’s solution.

The algorithm is shown in Algorithm 1.

It is worth noting that the input of the following algorithms is a

list of tuples that are in the format of {𝑢𝑠𝑒𝑟𝐼𝐷 , 𝑖𝑡𝑒𝑚𝐼𝐷 , 𝑟𝑎𝑡𝑖𝑛𝑔}. Each

tuple can be denoted as 𝑟𝑢𝑖 representing that user 𝑢 possesses a

rating 𝑟 toward item 𝑖 . Specifically, the collection of ratings thereby

forms the rating list 𝑅𝑙𝑖𝑠𝑡 . In Algorithm 1, each rating after normal-

ization is perturbed according to the Equation (3).

Algorithm 1: Rating Perturbation Using Duchi et al.’s So-

lution

Input: list of rating tuples 𝑅𝑙𝑖𝑠𝑡 , privacy parameter 𝜖1

Output: list of perturbed rating tuples 𝑅′
𝑙𝑖𝑠𝑡

1 for each 𝑟𝑢𝑖 in 𝑅𝑙𝑖𝑠𝑡 do
2 Normalize 𝑟𝑢𝑖 such that 𝑟𝑢𝑖 ∈ [−1, 1]
3 𝑟𝑢𝑖 =

1

2
· (𝑟𝑢𝑖 − 1) − 1

4 end
5

6 for each 𝑟𝑢𝑖 in 𝑅𝑙𝑖𝑠𝑡 do
7 Sample a Bernoulli variable 𝑡 where:

8 𝑃𝑟 (𝑡 = 1) = 𝑒𝜖1 −1

2𝑒𝜖1+2
· 𝑟𝑢𝑖 + 1

2

9 if 𝑡 = 1 then
10 𝑟 ′

𝑢𝑖
= 𝑒𝜖1+1

𝑒𝜖1 −1

11 else
12 𝑟 ′

𝑢𝑖
= 𝑒𝜖1+1

1−𝑒𝜖1

13 end
14 end
15 for each 𝑟 ′

𝑢𝑖
in 𝑅′

𝑙𝑖𝑠𝑡
do

16 De-normalize 𝑟 ′
𝑢𝑖

such that 𝑟 ′
𝑢𝑖

∈ [1, 5]
17 end
18

19 return 𝑅′
𝑙𝑖𝑠𝑡

4.1.3 Rating Behavior Protection. Previous research [13] has shown
that safeguarding rating behaviors in recommender systems is

challenging due to the large column space of potential POIs and

the sparsity of the rating matrix. We introduce a dynamically pre-

calculated similarity matrix on the central server, which allows

each 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷 in the rating tuple {𝑢𝑠𝑒𝑟𝐼𝐷, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷, 𝑟𝑎𝑡𝑖𝑛𝑔} to
be perturbed.

Algorithm 2 shows how the POIs are randomized. The input,

the list of rating tuples 𝑅′
𝑙𝑖𝑠𝑡

, is the exact output from Algorithm 1.

Variable 𝑘 is the number of options. For example, when 𝑘 = 2, the

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷 in {𝑢𝑠𝑒𝑟𝐼𝐷, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷, 𝑟𝑎𝑡𝑖𝑛𝑔} can only be replaced by

the most similar POI’s 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷 . When 𝑘 = 3, the 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷 in

{𝑢𝑠𝑒𝑟𝐼𝐷, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷, 𝑟𝑎𝑡𝑖𝑛𝑔} is replaced by either one of the top

two most similar POIs’ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷𝑠 . The larger 𝑘 is, the higher the

privacy budget. Eventually, the output 𝑅′′
𝑙𝑖𝑠𝑡

is sent to the aggregat-

ing and clustering server.

Algorithm 2: Protecting Rating Presence
Input: list of rating tuples 𝑅′

𝑙𝑖𝑠𝑡
from Algorithm 1, privacy

parameter 𝜖2, similarity matrix 𝑆𝐼 , number of

options 𝑘 ≥ 2

Output: list of perturbed rating tuples 𝑅′′
𝑙𝑖𝑠𝑡

1 for each 𝑟 ′
𝑢𝑖

in 𝑅′
𝑙𝑖𝑠𝑡

do
2 Sample a Bernoulli variable 𝑡 where:

3 𝑃𝑟 (𝑡 = 1) = 𝑒𝜖2

𝑒𝜖2+𝑘−1

4 if 𝑡 = 1 then
5 𝑟 ′′

𝑢𝑖
= 𝑟 ′

𝑢𝑖

6 else
7 𝑟 ′′

𝑢𝑖
= 𝑟 ′

𝑢𝑆𝐼 [𝑖 ]
8 end
9 end

10 return 𝑅′′
𝑙𝑖𝑠𝑡

4.2 Privacy Analysis
Theorem 1. Algorithm 1 satisfies 𝜖1-LDP with respect to users’

rating values.

Proof. According to the definition of 𝜖-LDP, we want to prove

that it is equally likely to generate the same output 𝑟
′

𝑙𝑖𝑠𝑡
= [𝑟 ′

𝑢𝑖
]𝑛
𝑖=1

for any two input 𝑟1

𝑙𝑖𝑠𝑡
= [𝑟𝑢𝑖 ]𝑛𝑖=1

and 𝑟2

𝑙𝑖𝑠𝑡
= [𝑟𝑢𝑖 ]𝑛𝑖=1

in Algorithm

1. Let 𝑥, 𝑋 1
, and 𝑋 2

be any values in [−1, 1], we have

𝑃𝑟 [𝑟 ′
𝑢𝑖

= 𝑥 |𝑟𝑢𝑖 = 𝑋 1]
𝑃𝑟 [𝑟 ′

𝑢𝑖
= 𝑥 |𝑟𝑢𝑖 = 𝑋 2]

≤
max𝑋 1 (𝑃𝑟 [𝑟 ′𝑢𝑖 = 𝑥 |𝑟𝑢𝑖 = 𝑋

1])
min𝑋 2 (𝑃𝑟 [𝑟 ′𝑢𝑖 = 𝑥 |𝑟𝑢𝑖 = 𝑋 2])

=
max𝑋 1 ( 𝑒

𝜖
1 −1

2𝑒𝜖1+2
𝑋 1 + 1

2
)

min𝑋 2 ( 𝑒𝜖1 −1

2𝑒𝜖1+2
𝑋 2 + 1

2
)
=

𝑒𝜖1 −1

2𝑒𝜖1+2
(1) + 1

2

𝑒𝜖1 −1

2𝑒𝜖1+2
(−1) + 1

2

= 𝑒𝜖1 .

Thus, the perturbation of 𝑅𝑙𝑖𝑠𝑡 in Algorithm 1 satisfies 𝜖1-LDP and

Algorithm 1 satisfies 𝜖1-LDP with respect to users’ rating values.

□

Theorem 2. Algorithm 2 satisfies (𝜖1 + 𝜖2)-LDP for both users’
rating values and rating behaviors.

Proof. We start by proving that it is equally likely to generate

the same output 𝑟
′′

𝑙𝑖𝑠𝑡
= [𝑟 ′′

𝑢𝑖
]𝑛
𝑖=1

for any two inputs 𝑟1

𝑙𝑖𝑠𝑡
= [𝑟 ′

𝑢𝑖
]𝑛
𝑖=1

and 𝑟2

𝑙𝑖𝑠𝑡
= [𝑟 ′

𝑢𝑖
]𝑛
𝑖=1

in Algorithm 2. Let 𝑦,𝑌 1
, and 𝑌 2

be any values

in [−1, 1]. According to Algorithm 2, we have

𝑃𝑟 [𝑟 ′′
𝑢𝑖

= 𝑦 |𝑟 ′
𝑢𝑖

= 𝑌 1]
𝑃𝑟 [𝑟 ′′

𝑢𝑖
= 𝑦 |𝑟 ′

𝑢𝑖
= 𝑌 2]

≤
max𝑌 1 (𝑃𝑟 [𝑟 ′′𝑢𝑖 = 𝑦 |𝑟

′
𝑢𝑖

= 𝑌 1])
min𝑌 2 (𝑃𝑟 [𝑟 ′′𝑢𝑖 = 𝑦 |𝑟

′
𝑢𝑖

= 𝑌 2])

=

𝑒𝜖2

𝑒𝜖2+𝑘−1

𝑘−1

𝑒𝜖2+𝑘−1

=
𝑒𝜖2

𝑘 − 1

≤ 𝑒𝜖2 .
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Thus, the perturbation of 𝑅
′

𝑙𝑖𝑠𝑡
in Algorithm 2 satisfies 𝜖2-LDP and

Algorithm 2 satisfies 𝜖2-LDP with respect to users’ rating behavior.

Since Algorithm 2 protects user’s rating value by using Algorithm

1 and Algorithm 1 satisfies 𝜖1-LDP, according to the sequential

composition property, we can conclude that Algorithm 2 satisfies

(𝜖1 + 𝜖2)-LDP.

□

4.3 Notations and Methods for Clustering and
POI Similarity Calculation

It is common to use user-item interaction records to perform cluster-

ing. However, this approach is not effective for POI recommender

systems, as users in datasets often visit only an extremely small

portion of a city and do not have a significant number of interac-

tions. In comparison, we choose to use estimated user locations

(center of visited locations)

Various clustering methods have been investigated in our exper-

iment. Initially, our approach started with DBSCAN [12]. However,

as Figure 2 shows (Upper-left), this method leads to grouping users

who are far from each other into one cluster. The red dots represent

the users that are grouped into the first cluster. On the other hand,

when testing OPTICS clustering [3], we shrank the maximum dis-

tance to avoid overly large groups. As a result, a large portion of

the users are considered noise (black dots).

Moreover, we also considered hierarchical clustering methods

such as the Partition Around Medoids (PAM) [17] clustering algo-

rithm (upper-right). Unfortunately, it creates many empty clusters

despite our active tuning, and the result is stretched easily by out-

liers. As a result, the k-mean yields comparatively better results.

Spectral clustering [23] has also been tested as well by constructing

the affinity matrix first. However, it is too computationally costly.

4.4 Personalization
The central RS in our approach performs initial training to reduce

the computational burden on mobile devices and imputes missing

data in sparse POI datasets. Synthetic data is used to generate pre-

trained models for download, but adaptive training on local RS

is still required to impute missing probabilities. Simulating this

scenario during the experiment is time-consuming, so we take an

alternative approach where real users rank artificial users based on

rating similarities to get personalized recommendations through

the weighted average of the top 𝑡 similar centroids.

4.5 Evaluation and Metrics
Because of the non-linear feature of our system, it is challenging

to optimize it as a whole. Therefore, we have decided to optimize

each of the three parts (perturbation, clustering, and final results)

separately, as this approach allows us to tackle the heavy workload

in a more efficient and effective way.

4.5.1 Perturbation. To evaluate the performance of the pertur-

bation part, we use Mean Absolute Error (MAE) to measure the

relationship between the LDP budget ( 𝜖1, 𝜖2 ) and the resulting

errors between real users and virtual users. By comparing the MAE

values at different levels of the LDP budget, we can assess the impact

of the budget on the accuracy of following the clustering procedure.

The formula is shown below:

𝑀𝐴𝐸 =
1

|𝑅 |
∑︁
𝑖∈𝑅

|𝑟𝑖 − 𝑟𝑖 | (4)

where 𝑅 is the set of all ratings. The variables 𝑟𝑖 and 𝑟𝑖 are the cor-

responding ratings from real users and virtual users, respectively.

4.5.2 Clustering. Here we state the metric for finding the optimal

group number 𝑘 : the within-cluster sum of squares (WSS). The

formula is listed below:

WSS =

𝑘∑︁
𝑖=1

∑︁
𝑥 𝑗 ∈𝐶𝑖

∥𝑥 𝑗 − 𝑐𝑖 ∥2
(5)

where 𝑘 is the number of clusters,𝐶𝑖 is the 𝑖-th cluster, 𝑥 𝑗 is the 𝑗-th

data point in the 𝑖-th cluster, 𝑐𝑖 is the centroid of the 𝑖-th cluster, and

| |𝑥 𝑗 − 𝑐𝑖 | |2 represents the squared Euclidean distance in between.

4.5.3 Final Result. Regarding the assessment of the final result,

we use precision at 𝑘 and recall at 𝑘 to study the trade-off from

the framework output. If we let 𝐼𝑟 and 𝐼𝑣 denote the recommended

POI set and visited POI set, then the following equations show the

details of the definition:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
|𝐼𝑟 ∩ 𝐼𝑣 |
|𝐼𝑣 |

(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
|𝐼𝑟 ∩ 𝐼𝑣 |
𝑘

(7)

where 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 measures the portion of visited POIs in all visited

POIs, and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 measures the portion of recommended POIs

that are actually visited in the top-𝑘 POIs.

5 EXPERIMENTS AND DISCUSSION
5.1 The Datasets
We experimented with user feedback from two areas: the Cham-

paign–Urbana (CU) metropolitan area and the Phoenix (PH) city

area. Data were filtered from Yelp [1] and Google Local [19] datasets,

respectively. As shown in Figure 2, the locations of the users outline

the shape of the city.

The user feedback in our datasets has the following characteris-

tics:

• The feedback is explicitly rated in {1, 2, 3, 4, 5}.
• User ratings are unique, which means that each user can

only give a rating to the same place once.

• The sparsity of the datasets is comparatively much lower

than that of conventional recommendation datasets, even

with filtering. A clear comparison of the statistics of the four

areas can be found in Table 1.

5.2 Parameters and Tuning
The optimization is performed on each of the three parts:

• Users’ mobile devices perform two tasks: selecting privacy

budget (𝜖1 and 𝜖2) and determining the number of synthetic

users (𝑛𝑣 ) for optimal performance.

• k-means clustering is used on the STTP, with the number of

clusters chosen beforehand using the elbow method.
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Figure 2: The visualization of user location clustering (Phoenix). The x and y axes represent latitude and longitude, respectively.
The clustering algorithms shown in the picture include DBSCAN (upper left), PAM (upper right), k-mean (lower left), and
OPTICS (lower right).

Table 1: Datasets Statistics

Area #Users #POIs #Feedback Density

CU (Yelp) 11953 1579 33990 0.1802%

PH (Yelp) 204887 17213 576700 0.0163%

CU (Google) 1910 876 3310 0.1978%

PH (Google) 24899 7801 37245 0.0192%

• On the central server, the hyperparameters of the recom-

mendation algorithm, the neural collaborative filtering (NCF)

model, are tuned.

To streamline the hyperparameter tuning process for GUS, we

have developed a strategy that decomposes the tuning process into

smaller, manageable sub-tasks that focus on optimizing specific

sub-components.

In the optimization process, we calculate the MAE between feed-

back generated from centroids with and without LDP to identify

the optimal trade-off point. Based on the analysis in Figure 3, we

set 𝜖1 and 𝜖2 to 0.6 to achieve high accuracy and robust privacy

protection within the tolerable increase in MAE.

In the second stage, by considering the elbow method and com-

putation cost, the number of clusters is set to 45.

In the last part, we employed an automatic approach to tuning

our model due to a large number of parameters, a wide range of

possible values, and a lack of consensus on optimal settings. The

approach [24] utilizes a Bayesian optimization framework that

treats the overall performance of the model as a sample from a

Gaussian process. Our findings suggest that a low number of latent

factors (𝑘 = 2) yields the best results. We set the NCF’s multi-layer

perceptron structure to be [128, 64, 32] and used 20 initial centroids

to calculate the final prediction. The number of centroids could be

reduced to 9 without affecting the final result.

Figure 3: Comparison of Perturbation Results for Varying
Epsilon Values: Scatter plot of MAE values for different com-
binations of Epsilon 1 (𝜖1) and Epsilon 2 (𝜖2) values.

5.3 Results and Comparison
We compared four models in our study: the Neural Collaborative Fil-

tering (NCF) baseline model, our proposed framework (NCF+GUS),

the Decentralized Matrix Factorization (DMF) model [7], and the

federated recommender system (MetaMF) [21]. We selected these

models for the following reasons:

• Given its prominence as a widely studied neural network-

based collaborative filtering model, the NCF provides an

ideal baseline for comparison in our research.

• As a decentralized approach that places a strong emphasis on

user privacy, DMF provides a valuable reference point for our

research. By relying on gradient exchange and other security
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Figure 4: The Precision comparisons among the four models for each training-testing dataset pair in the City of Phoenix. The
dataset is partitioned chronologically.

measures, this model is able to protect against malicious

attacks and untrusted users.

• MetaMF is a privacy-preserving RS model with a federated

structure that strikes an excellent balance between privacy

and prediction accuracy. Its semi-distributed structure sepa-

rates central and local training processes.

The overall average performance of each model is shown in

Tables 2 and 3. Each of the entries in Tables 2 and 3 is the average

performance of its correspondingmodel on all training-testing folds.

If we expand each entry, we get Figure 4. For example, Figure 4

displays precision comparisons for each training-testing dataset

pair in the City of Phoenix, comparing the performance of the four

models. The datasets are partitioned chronologically, with each

point on the graph representing a distinct training-testing pair.

Table 2: Average Result Comparison @5

CU

Metrics P@5 R@5

Dataset Yelp Google Yelp Google

NCF 0.0147 0.0812 0.0512 0.0045
NCF+GUS 0.0152 0.0670 0.0447 0.0033

DMF 0.0067 0.0042 0.0081 0.0038

MetaMF 0.0130 0.0708 0.0438 0.0041

PH

Metrics P@5 R@5

Dataset Yelp Google Yelp Google

NCF 0.0152 0.0907 0.0667 0.0066
NCF+GUS 0.0155 0.0771 0.0538 0.0043

DMF 0.0122 0.0485 0.0423 0.0022

MetaMF 0.0149 0.0767 0.0609 0.0062

Table 3: Average Result Comparison @10

CU

Metrics P@10 R@10

Dataset Yelp Google Yelp Google

NCF 0.0143 0.0086 0.0708 0.0046

NCF+GUS 0.0135 0.0102 0.0446 0.0051

DMF 0.0086 0.0041 0.0068 0.0017

MetaMF 0.0137 0.0114 0.0714 0.0062
PH

Metrics P@10 R@10

Dataset Yelp Google Yelp Google

NCF 0.0176 0.0104 0.0708 0.0074
NCF+GUS 0.0150 0.0082 0.0446 0.0041

DMF 0.0776 0.0043 0.0077 0.0023

MetaMF 0.0147 0.0071 0.0428 0.0033

The selected datasets yielded lower precision and recall values

compared to other popular datasets due to the sparsity of location-

based services. While we could modify all comparable models to

better combat the sparsity problem in POI recommendations, do-

ing so would harm the integrity of the challenged models. Also,

universal modification is not employable in this situation. Neverthe-

less, while NCF had the highest precision, our proposed framework

with the GUS had the best performance among privacy models,

balancing accuracy and privacy concerns.

Our testing procedure simulates real-world scenarios where the

recommendation system receives data sequentially and over time.

During each round of cross-validation, the testing set becomes

the training set, and the next fold is used as the testing set. The

inflection points of the curves in Figure 4 represent the results of

the validation process. To ensure that each fold has sufficient users,

we adjust the temporal window size of each fold so that each user
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has at least two ratings in the training set. This process is applied

to all models being tested.

The lightweight and efficient integration of the Generic User

Synthesizer (GUS) in our proposed framework strikes a balance

between precision and recall on both datasets in a real-world set-

ting. Unlike DMF, which underperforms due to low data density,

GUS generates local recommendations without burdening users

with additional computational tasks. The model’s training process

is made efficient and fast by using LDP standards and clustering,

which preserves user privacy. Additionally, the modularized and

detachable GUS framework enables easy integration into existing

recommendation systems, unlike other privacy-preserving mod-

els, such as DMF and MetaMF, which require a complete switch

and have limitations on future data usage. Furthermore, the data-

mineable synthetic data, which cannot be traced back to real users,

can be safely transferred without compromising privacy.

Lastly, an important benefit of our framework is generating

synthetic user-item interaction data that can be used in future

research and shared without concern for privacy liability.

6 CONCLUSIONS AND FUTUREWORK
This privacy-preserving point-of-interest framework estimates users’

location while protecting privacy. The framework uses a general

user data collection approach based on LDP and data clustering

to achieve scalability and geolocation awareness. The third-party

server collects direct user feedback through LDP and obfuscates

private data through clustering before uploading data to the central

server, ensuring privacy. We optimize the trade-off between predic-

tion accuracy and privacy protection by employing judicious pro-

cessing techniques, robust testing conditions, and the application

of real-world datasets. The optimization process uses a Bayesian

framework to reduce the number of steps required to find optimal

parameters.

Future work includes upgrading the data collecting mechanism

with advanced contextual information processing tools and inte-

grating more user data synthesis techniques, such as generative

adversarial networks and variational autoencoders.
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