Check for
Updates

Computer G. Bell, D. Siewiorek,
Systems and S.H. Fuller, Editors

A Fast Division
Technique for
Constant Divisors

Ehud Artzy, James A. Hinds, and
Harry J. Saal
State University of New York at Buffalo

A fast algorithm for division by constant divisors is
presented. The method has proved very useful imple-
mented as microcode on a binary machine, and can be
adapted directly into hardware. The mathematical foun-
dations of the algorithm are presented as well as some
p erformance measures.

Key Words and Phrases: constant divisors, division
algorithms, bit addressable memory, microprogram

CR Categories: 4.13, 4.49, 6.32

1. Introduction

We are concerned with the generation of fast algo-
rithms for division by specified integers. The question
arose from system design considerations for addressing
a bit-addressable memory on the Burroughs B1700. The
first part of this paper provides the practical motivation
for the use of these algorithms. We next present the
algorithm itself, accompanied by its mathematical
foundation.

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors’ addresses: E. Artzy, Everyman’s University, 35 Mish-
meret St., Afeka, Israel; J. A. Hinds, Computer Science Department,
University of Utah, Salt Lake City, UT 84112; H. J. Saal, IBM
Israel Scientific Center, Computer Science Building, Technion City,
Haifa, Israel.

98

2. Motivation

The Burroughs B1700 imposes no hardware con-
straints (or advantages) on the choice of container size
(byte, word, etc.) from 1 to 24 bits in width. (See [1] for
some consequences in memory utilization.) A natural
convenience of integral powers of 2 is the simplicity of
using shifts to convert from one set of units to another.
The interpreters we have written for the B1700 use a
variety of other widths (e.g. 18, 34, etc.), and we must
multiply or divide by small integers such as these.

Multiplication by a particular integer using shifts,
adds, and subtracts is fairly straightforward. For
example, multiplication by 17 is done by a four-bit shift
and add; multiplication by 15 is done by a four-bit
shift followed by a subtract. These algorithms are pre-
sumably optimal for the numbers in question if we re-
strict ourselves to shifts, adds, and subtracts.

We have frequently found it to be appropriate on the
B1700 to use bit addresses rather than unit addresses.
We give up maximal addressing capability in a fixed
width field, but this has not been a restriction on our
designs. There are several places where a unit address is
needed, and this requires a fast division method. We
now present our technique for rapidly dividing by a
given constant. This method easily detects any nonzero
remainder, but not its value. In our applications, since
we use exact multiples of the unit width, any nonzero
remainder would be an error analogous to the System
360 specification exception (see [2]).

3. The Algorithm

In this section we present our algorithm in detail,
but first we describe the general method and how it
works. Division of the dividend R by an arbitrary given
integer d is accomplished in two steps. The first simply
tests for a possible nonzero remainder by inspecting
the low-order bits of R, corresponding to any powers of
two in the factorization of d, and shifts out the zeros.
Consequently. the second step is restricted to the case
where the divisor is odd.

The inverse of every odd integer (greater than one) is
a fraction whose binary representation is of the form
5152 < .. Sy SiS2...5, 5i152...¢tc. The bits si52. .. 5,
are the representation of the integer s where ds = 2" — 1.
Temporarily restrict the possible values of R to the
integer multiples of d which are less than 2". Then, the
n lower-order bits of the product 2d)s = 2™ — 2 =
2" — 2 (mod 2™), and in general, for the range we are

Communications February 1976
of Volume 19
the ACM Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359997.360013&domain=pdf&date_stamp=1976-02-01

Table I. Minimum Values for s, n, and w(s).

d s ds =2+ 1 w(s)
3 1 2t 41 1
5 1 22 +1 1
7 1 23 —1 1
9 1 28 +1 1
11 3 25 +1 2
13 5 28 1 2
15 1 24 —~1 1
17 1 24 41 1
19 27 20 41 3
21 3 26 —1 2
23 89 2t —1 4
25 41 21041 3
27 19 29 41 3
29 565 21441 S
31 1 25 —| 1
33 1 25 41 1
35 117 211 4
37 7085 21841 6
39 105 2121 4
41 25 21041 3
43 3 27 1 2
45 91 2121 4
47 178481 281 8
49 42799 22 —1 7
temporarily considering, when R = kd, then Rs =

2" — k (mod 2"). Consequently, in order to determine
k, the quotient we desire, we multiply the dividend R
by s, a constant determined from d (see Table 1), and
then take the (n-bit) two’s complement.

What happens if the number R is not an exact
multiple of d? It is proved in the Appendix: (a) that only
the numbers which are exact multiples of d are mapped
onto2" — 1,2" — 2,...,2" — k, and (b) that numbers
in the same remainder class are mapped next to each
other by the multiplication process.

This result allows us to check for a nonzero re-
mainder with one comparison. One can find both quo-
tient and remainder of any dividend by including at
most d comparisons and subtractions after multiplica-
tion. (Note that as d grows large, the number of com-
parisons will become prohibitive).

Handling dividends larger than 2" is also straight-
forward. We need to multiply the dividend by several
periods of s, which is easily accomplished by first multi-
plying by s, then by 2" + 1, 2" 4+ 1, 2" + 1, etc. We
double the maximum dividend width in each step, at the
cost of only a multibit shift and add.

With this general description as background, we
present our algorithm in detail. Let us introduce some
additional notation.

For an /-bit register R and a positive constant d, let
m, n, and s be any positive integers such that ds =
272" 4+ 1) and let guax = (2" — 1)/d) and k; =
max {[(log. (//n)) — 11, 0}. (The existence of such
integers is guaranteed by Lemma 2 of the Appendix.)
For this algorithm one auxiliary register, say 7, is used.
In addition, one counter, say J, is needed.! We use R and

99

T to denote the contents of registers R and T respec-
tively. To simplify the solution we assume that all bits
shifted over word boundaries are lost and the overflow
bit after arithmetic operations is ignored.

THE ALGORITHM

We choose to represent the algorithm as a macro-
program in order to emphasize the method of construct-
ing a specialized “division by &” algorithm once the
values of d and the register width / have been selected.
The variable SIGN has the value ‘+’ when according to
Table I ds is of the form 2"(2" + 1) and ‘—’ otherwise.

BEGINMACRO
IF m % 0 THEN
OUTPUT(‘if the m least significant bits of R are not zero
then return(““ R is not divisible by ¢”’)
else R — R shifted right by m bits;’);
OUTPUT(‘R — R times S;");
IF n <!/ THEN
DO OUTPUT(‘T—R shifted left by n bits;’);
IF SIGN = ‘4’
THEN OUTPUT(‘R—T—R}’)
ELSE QUTPUT(‘ R—T+R;);
OUTPUT(‘for J = 1to k;

do
T « R shifted left by n-27 bits;
R—R4+T
end;
R21—RY)
END
ELSE IF SIGN = ‘—> THEN OUTPUT (‘R«2!—R;’);

OUTPUT(if R<qmax
then return(““ R is the quotient desired”)
else return(“‘ R is not divisible by d”);")
ENDMACRO

We note that to perform the indicated multiplica-
tion of R times S a variety of techniques can be used. In
particular, if we restrict ourselves to binary shifts, adds,
and subtracts, the arithmetic weight w(s) is an upper
bound on the number of shift and add or shift and sub-
tract steps required. w(s) is defined as

min [Z)a,-):l ~ 1, where a; = {0, &= 1}
=0
such that s =) a;2".
=0

(Values of w(s) are listed in Table 1.) Without these re-
strictions even faster means of multiplication may be
found, for example, by using table lookup methods on
groups of bits; however, we shall not elaborate further.

4. Discussion

After this work was completed, a Correspondence by
Jacobsohn [3] appeared, in which he also considered

-algorithms for division by fixed integers. Jacobsohn

! In practice, the iterative loop is unrolled and no counting is
employed.

Communications February 1976
of Volume 19
the ACM Number 2

Fig. 1. B1700 microcode for division by 18.

MOVE DIVIDEND TO Y

IF LSBY TRUE THEN GO TO
SHIFT Y RIGHT BY 1 BIT-
MOVE Y TO X

SHIFT X LEFT BY 3 BITS
MOVEDIFFTO Y

MOVEY TO X

SHIFT X LEFT BY 6 BITS
MOVESUM TO Y

MOVEY TO X

SHIFT X LEFT BY 12 BITS
MOVESUMTOY

LITOTOX

MOVE DIFF TO X

LIT 932068 TO Y

IF X>Y THEN GO TO NON-ZERO-REMAINDER
MOVE X TO QUOTIENT * with no remainder

* uses X and Y registers
TO NON-ZERO-REMAINDER
* division by 2

*times 7 (DIFF is X ~Y)
* times 2**6 41 (SUM is X+Y)

* times 2**12 41

* complement to get result

Fig. 2. B1700 microcode for conventional integer division algorithm
producing quotient and remainder.

MOVE DIVIDEND TO X
MOVE DIVISOR TO FA
MOVE 24 TO FL

* uses registers X,Y,FAFLand T

NORMALIZE * remove leading zeroes
MOVEXTOY
CLEAR X
.LOOP SHIFT XY LEFT BY 1 BIT
MOVEYTOT * save low-order dividend and

MOVEFATOY * quotient bits
IF X>Y THEN BEGIN * trial subtraction
MOVE DIFF * subtract divisor
TO X
SET T(23)
END
MOVETTOY
COUNT FL DOWN BY |
IF FL #0 THEN GO TO
—LOOP
IF X #0 THEN GO TO NON- * remainder is in X
ZERO-REMAINDER
MOVE Y TO QUOTIENT

* set quotient bit on

* restore dividend /quotient
* for shifting, reduce loop count
* test for completion

* quotient in Y

presents a combinational algorithm for division using
multiplication by a fractional inverse, followed by
“suitable rounding” so that the integer part of the result
is the true quotient. The remainder itseif is found by
remultiplying the fractional result by the divisor,
whereas we require at most d compare and subtracts.
Thus we have demonstrated an algorithm and proof that
both quotient and remainder can be completely deter-
mined from the low-order (“fractional’’) bits, without
requiring a double width product. Jacobsohn’s ap-
proach is superior when the quotient is required and
there is no expectation that the remainder will be zero.

Jacobsohn did not observe that multiple periods of
the inverse can be handled using the shift-and-add
technique shown here. Thus his method takes time
linear in the ratio of the register width to the period of
the inverse, while we take time proportional to the
logarithm of this ratio. (This aspect of the method can
be incorporated in Jacobsohn’s scheme if desired). We
also incorporate recognition of those cases where there
is a factor of the inverse in the form 2" + 1. This simpli-
fies the initial multiplication step and may, in specific
cases, provide sufficient result bits directly, without re-
quiring complementation.

The algorithm presented here has proved quite useful

100

in the practical implementation of interpreters with a
variety of unit widths. The method presented can
readily be adapted to a hardware implementation along
the lines of Jacobsohn’s. Its speed results from the fact
that, once past step (ii), we double the resulting pre-
cision each iteration, at the cost of a single shift and
add.

Figure 1 illustrates microcode written for a B1700
[4] to implement division by 18 of a 24-bit dividend.
Each line represents one microinstruction, and the se-
quence takes approximately 2.8 microseconds on a
B1726 (independent of quotient). By way of contrast,
the fastest general purpose division routine of which we
are aware (see Figure 2), takes about 42 microseconds
with 18 used as the divisor for “random’’ quotients.
(The actual time varies for quotients with differing
numbers of leading zeroes, and the number of divisor
subtractions performed.)

Appendix

Let N denote the set of natural numbers and N*
denote the set N — {0}. If x is a positive rational num-
ber, then [x| denotes the greatest natural number
smaller than or equal to x and [x] denotes the smallest
natural number greater than or equal to x. If a, b, m are
in N then a (mod m) denotes the smallest integer b
such that @ — b is divisible by m. (We also write b =
a (mod m).)

For/in Nlet X; = {0,1,...,2° — 1}.

For din N* let o, be a function from X,into N X N
defined by o4(x) = (g, r) if, and only if, x = gd + r with
r <d.

Let f be a function from X; onto X; and let Y, be the
array < yo, yi, ...,y > defined by y; = o.(f (D).

LeEMMA 1. If f is a function such that f(x) = q when-
ever x = dg, then for je{0, 1,..., (2" — 1)/d}},
Vi = (.]7 0)

PROOF. By definition y; = o4(f(j)) and (since
0<j< @ = 1/d)j = f(d); hence y; = ould)) =
(U, 0). O

The following lemma gives us an alternative way for
representing d.

LEMMA 2. For every x in N there exist three positive
integers m, n, and s such that xs = 2" (2" £ 1).

Proor. This lemma is easily proved by the Euler-
Fermat Theorem (see, for example, [5], Theorem
22). U

Let dbe in N. Let m, n, and s be any positive integers
such that ds = 2™(2" + 1). Note that the existence of
such integers is guaranteed by Lemma 2. (In Table 1
we list minimum values of s and n for odd values of d
smaller than 50.)

To avoid a cumbersome notation, we assume, for
the rest of this section, that d, m, n, and s are fixed (but
arbitrary) integers satisfying the above conditions.

Communications February 1976
of Volume 19
the ACM Number 2

For /in N, let k; = max {[(log:(//n)) — 11,0} and
let

ky .
T = (s2" + /2" 1] "+ 1).

LeMMA 3. For [in N, let fi be a function from X,
into X, defined by fi(x) = —Twx(mod 2") (where
—a(mod 2" is interpreted as 2! — a(mod 2%). () fi
satisfies the conditions of Lemma 1. (ii) If d is an odd
number, then f, is a permutation on X, .

PROOF:

(i) For/in N, we have
—Tix(mod 2) = —T,dg(mod 2')

ky .

- (1L +n)
i=1
(s(2" F 1)/2") dq(mod 2°)

by taking

LW
|

=2"(2" & 1)/s

—H @' + @™ — 1)g(mod 2%
_ @M~ g(mod 29,
but 2°*'n > [and hence

—Twx(mod 2') = q.

"

(ii) If d is an odd number then m = 0 and 7 is an odd
number. 7 is relatively prime to 2’ and the result
follows. O

We will show now that for d odd our function f; in-
troduces a certain order on y,. Note that we have al-
ready shown in Lemma 1 that, for j smaller than or
equal to (2! — 1)/d, y; = (j, 0).

First we need to describe the function f; .

LemMa 4. For | in N, the function fi' is given by
fi'(z) = zd(mod 2') = x.

ProOF. Let/bein N. We want to show that if fi(x) =
z then dz(mod 2') = x. But z = f(x) = —Twx(mod 2°);
hence

7(2) = fi'(—Tix(mod 2%)
= —dTwx(mod 2%
((—dT))(mod 2" x(mod 2%))(mod 2°)
1-x(mod 2%
= X,]

The next result describes the ordering on Y, imposed
by Tl .

LEMMA 5. Let I be in N. For k in {0,...,2" — 1}, i
Ve = (g, 1), then

_Jg+1n
y‘f““{(o,r’)

il

if (g+Dd+r <2

otherwise,

where r’ is given by ((g + 1) d + r)(mod 2Y).
PROOF. Let/bein N and let k bein {0,...,2" — 1}.
By definition

YVeq1 = O'd(fl‘l(k ~+ 1));

101

hence (by Lemma 4)

yis1 = oa((k + 1) d(mod 2),

and so

Yip = oa((kd(mod 2') 4+ d)(mod 2Y).

Now y, = (g, /) = ou(f7'(k)), and by Lemma 4 y, =
(g,) = oa(kd(mod 2')), and by definition of y,
kd(mod 2') = qd + r; thus

Yir = oa((gd + r + d)(mod 2%)
_Jg+Dd+r if (g+ Dd+r <2,
10,) otherwise. O
COROLLARY. If the elements of Y, are ordered in the
Sollowing way:

Y, =<(Oy O)y (1)0) e (01 rl)y(lyrl) (07,'2)y (lvr‘_’) e

(0) rd—l); (l; rd—-l) PN >’
then r; = ir (mod d).

Received August 1973; revised May 1975

References

1. Wilner, W.T. Burroughs B1700 memory utilization. Proc.
AFIPS 1972 FICC, Vol. 41, pp. 579586, AF1PS Press, Montvale,
N.J, 1972,

2. System 360 Principles of Operation. GA22-6821, 1IBM Corp.,
1970.

3. Jacobsohn, D.H. A combinatoric division algorithm for fixed
integer divisors. IEEE Trans, Comput. C-22, 6 (June 1973),
608-610.

4. BI1700 Systems Reference Manual. 1057155, Burroughs Corp.,
1972.

5. Hunter, J. Number Theory. Oliver and Boyd, London, 1964.

Communications February 1976
of Volume 19
the ACM Number 2

