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A fast algorithm for division by constant divisors is 
presented. The method has proved very useful imple- 
mented as microcode on a binary machine, and can be 
adapted directly into hardware. The mathematical foun- 
dations of the algorithm are presented as well as some 
p erformance measures. 
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2. Motivation 

The Burroughs B1700 imposes no hardware con- 
straints (or advantages) on the choice of container size 
(byte, word, etc.) f rom 1 to 24 bits in width. (See [1] for 
some consequences in memory  utilization.) A natural 
convenience of integral powers of 2 is the simplicity of 
using shifts to convert f rom one set of units to another. 
The interpreters we have written for the B1700 use a 
variety of other widths (e.g. 18, 34, etc.), and we must  
multiply or divide by small integers such as these. 

Multiplication by a particular integer using shifts, 
adds, and subtracts is fairly straightforward. For  
example, multiplication by 17 is done by a four-bit  shift 
and add; multiplication by 15 is done by a four-bit  
shift followed by a subtract. These algorithms are pre- 
sumably optimal for the numbers in question if we re- 
strict ourselves to shifts, adds, and subtracts. 

We have frequently found it to be appropriate  on the 
B1700 to use bit addresses rather than unit addresses. 
We give up maximal addressing capability in a fixed 
width field, but this has not been a restriction on our 
designs. There are several places where a unit address is 
needed, and this requires a fast division method. We 
now present our technique for rapidly dividing by a 
given constant. This method easily detects any nonzero 
remainder, but not its value. In our applications, since 
we use exact multiples of the unit width, any nonzero 
remainder would be an error analogous to the System 
360 specification exception (see [2]). 

1. Introduction 

We are concerned with the generation of fast algo- 
rithms for division by specified integers. The question 
arose from system design considerations for addressing 
a bit-addressable memory  on the Burroughs B1700. The 
first part  of this paper provides the practical motivation 
for the use of these algorithms. We next present the 
algorithm itself, accompanied by its mathematical  
foundation. 
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3. The Algorithm 

In this section we present our algorithm in detail, 
but  first we describe the general method and how it 
works. Division of the dividend R by an arbitrary given 
integer d is accomplished in two steps. The first simply 
tests for a possible nonzero remainder by inspecting 
the low-order bits of R ,  corresponding to any powers of 
two in the factorization of d, and shifts out the zeros. 
Consequently. the second step is restricted to the case 
where the divisor is odd. 

The inverse of  every odd integer (greater than one) is 
a fraction whose binary representation is of  the form 
. s l s 2  . . . s ,~  s l s . ,  . . . s o  s ~ s 2  . . . e t c .  The bits s ~ s 2  . . . s n  

are the representation of the integer s Where d s  = 2 "~ - 1 .  

Temporar i ly  restrict the possible values of R to the 
integer multiples of d which are less than 2 n. Then, the 
n lower-order bits of the product  (2d)s = 2 ~+t -- 2 ------ 
2 ~ -- 2 (mod 2~), and in general, for the range we are 
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Table I. Minimum Values for s, n, and w(s). 

d s ds = 2" ::t= 1 w(s) 

3 1 2 ~ +1 1 
5 1 22 + 1  1 
7 1 23 --1 1 
9 1 23 + 1  1 

11 3 25 +1 2 
13 5 26 + I  2 
15 1 2 ~ --1 1 
17 1 24 + i  l 
19 27 29 +1 3 
21 3 26 --1 2 
23 89 2tt--1 4 
25 41 2t°+l 3 
27 19 29 +1 3 
29 565 214 + 1 5 
31 1 25 -- 1 I 
33 1 25 +1 1 
35 117 2'~--i 4 
37 7085 21s + 1 6 
39 105 2 z2 -- 1 4 
41 25 2z°+1 3 
43 3 27 + 1 2 
45 91 212 -- 1 4 
47 178481 223 - -  1 8 
49 42799 221 -- 1 7 

t e m p o r a r i l y  consider ing,  when R = k d ,  then R s  

2 n --  k (mod 2"). Consequent ly ,  in o rder  to de te rmine  
k ,  the quo t ien t  we desire, we mul t ip ly  the d iv idend R 
by s, a cons tan t  de te rmined  f rom d (see Table  I), and  
then take  the (n-bit) two ' s  complement .  

W h a t  happens  if  the number  R is no t  an exact  
mul t ip le  o f  d? It  is p roved  in the A p p e n d i x :  (a) that  only 
the number s  which are exact  mul t ip les  o f  d are m a p p e d  
on to  2 '~ --  1, 2" --  2 , . . . ,  2 '~ - -  k, and  (b) tha t  numbers  
in the same r ema inde r  class are m a p p e d  next  to each 
o ther  by the mul t ip l i ca t ion  process.  

This  resul t  a l lows us to check for a nonze ro  re- 
ma inde r  with one compar i son .  One can find bo th  quo-  
t ient  and  r ema inde r  o f  any  d iv idend  by inc luding  at  
mos t  d compar i sons  and  sub t rac t ions  after  mul t ip l ica-  
t ion.  (Note  tha t  as d grows large, the number  of  com-  
par i sons  will become prohibi t ive) .  

H a n d l i n g  d iv idends  larger  than  2" is also s t ra ight-  
fo rward .  We need to mul t ip ly  the d iv idend by several  
pe r iods  of  s, which is easily accompl i shed  by first mul t i -  
p ly ing  by  s, then by 2 n + 1, 22~ + 1, 2 ~" + 1, etc. We  
doub le  the m a x i m u m  div idend  width in each step, at  the 
cost  of  only  a mul t ib i t  shift and  add.  

Wi th  this general  descr ip t ion  as background ,  we 
p resen t  our  a lgor i thm in detail .  Le t  us in t roduce  some 
add i t iona l  nota t ion .  

F o r  a n / - b i t  register  R and a posi t ive cons tan t  d, let  
m, n, and  s be any posi t ive integers such tha t  d s  = 

2m(2" 4- 1) and  let  q ..... = t(:2' - 1)/d] and  kt = 
max  {[(log2 ( l / n ) )  - -  ll ,  0}. (The existence of  such 
integers is gua ran teed  by  L e m m a  2 of  the Append ix . )  
F o r  this a lgo r i thm one auxi l ia ry  register ,  say T, is used. 
In  add i t ion ,  one counter ,  say J, is needed.  ~ We use R and  

T to denote  the contents  of  registers R and T respec- 
tively. To s impl i fy  the so lu t ion  we assume tha t  all bits 
shifted over  word  bounda r i e s  are lost and  the overflow 
bit  af ter  a r i thmet ic  ope ra t ions  is ignored.  

THE ALGORITHM 

We choose  to represent  the a lgo r i thm as a macro-  
p r o g r a m  in order  to emphas ize  the me thod  of  cons t ruc t -  
ing a special ized "d iv is ion  by d"  a lgor i thm once the 
values o f  d and the register  width l have been selected. 
The  var iable  S I G N h a s  the value ' + '  when accord ing  to 
Table  I d s  is of  the form 2"(2" + 1) and  ' - '  otherwise.  

BEGINMACRO 
IF m # 0 THEN 

OUTPUT('if the n7 least significant bits of R are not zero 
then return("R is not divisible by d") 
else R ~-- R shifted right by m bits;'); 

OUTPUT( 'R  ~-- R times S;'); 
IF n _< l THEN 

DO OUTPUT( 'T* -R  shifted left by n bits;'); 
IF S I G N  = ' + '  

THEN O U T P U T ( ' R e - T - -  R;') 
ELSE OUTPUT('  R~--T+ R;') ; 

OUTPUT( ' for  J = 1 to ks 
do 
T~-  R shifted left byJl.2 J bits; 
R ~ - - R + T  
end; 

R~--2t--R; ') 
END 
ELSE IF S I G N  = ' - - '  THEN O U T P U T  ('R*--2t--R;');  

OUTPUT( ' i f  R <q  ...... 
then return("R is the quotient desired") 
else return("R is not divisible by d");') 

ENDMACRO 

We note  tha t  to pe r fo rm the ind ica ted  mul t ip l ica-  
t ion of  R t imes S a var ie ty  of  techniques can be used. In  
par t icu lar ,  if we restr ict  ourselves to b ina ry  shifts, adds ,  
and  subtrac ts ,  the a r i thmet ic  weight  w(s )  is an upper  
b o u n d  on the number  of  shift  and  add  or  shift  and  sub- 
t rac t  s teps required,  w ( s )  is defined as 

minF~}ail] - t_ ,=0 1, w h e r e a i  = { 0 , 4 - 1 }  

such t h a t s  = ~ a i 2  i. 
i ~ 0  

(Values of  w(s )  are l isted in Table  1.) W i t h o u t  these re- 
s t r ic t ions  even faster  means  of  mul t ip l i ca t ion  may  be 
found ,  for  example ,  by using table  lookup  me thods  on 
g roups  of  bi ts ;  however ,  we shall  not  e l abora te  fur ther .  

4.  D i s c u s s i o n  

Afte r  this work  was comple ted ,  a Cor re spondence  by 
J acobsohn  [3] appeared ,  in which he also cons idered  

a l g o r i t h m s  for  division by  fixed integers.  J acobsohn  

1 In practice, the iterative loop is unrolled and no counting is 
employed. 
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F i g .  1. B 1 7 0 0  m i c r o c o d e  f o r  d i v i s i o n  b y  18. 

MOVE D I V I D E N D  TO Y 
IF LSBY T R U E  THEN GO TO 
S H I F T  Y R I G H T  BY 1 BIT- 
MOVE Y TO X 
S H I F T  X LEFT BY 3 BITS 
MOVE D I F F  TO Y 
MOVE Y TO X 
S H I F T  X L E F T  BY 6 BITS 
MOVE S U M  TO Y 
MOVE Y TO X 
S H I F T  X LEFT BY 12 BITS 
MOVE S U M  TO Y 
LIT  0 TO X 
MOVE D I F F  TO X 
LIT  932068 TO Y 
IF  X > Y  T H E N  G O  TO N O N - Z E R O - R E M A I N D E R  
MOVE X TO Q U O T I E N T  * with no remainder 

* uses X and Y registers 
TO N O N - Z E R O - R E M A I N D E R  

* division by 2 

* times 7 ( D I F F  is X- -Y)  

* times 2" ' 6q - I  (SUM is X-t-Y) 

* times 2"*12+I  

* complement to  get  result 

F i g .  2. B I 7 0 0  m i c r o c o d e  f o r  c o n v e n t i o n a l  i n t e g e r  d i v i s i o n  a l g o r i t h m  

p r o d u c i n g  q u o t i e n t ' a n d  r e m a i n d e r .  

MOVE D I V I D E N D  TO X 
MOVE DIVISOR TO FA 
MOVE 24 TO FL 
N O R M A L I Z E  
MOVE X TO Y 
C L E A R  X 

.LOOP S H I F T  XY LEFT BY I BIT 
MOVE Y TO T 
MOVE FA TO Y 
IF  X>_Y T H E N  B E G I N  

MOVE D I F F  
TO X 

SET T(23) 
END 

MOVE T TO Y 
C O U N T  F L  D O W N  BY 1 
IF  FL ~ 0  T H E N  G O  TO 

- -LOOP 
I F  X # 0  T H E N  G O  TO NON-  

Z E R O - R E M A I N D E R  
MOVE Y TO Q U O T I E N T  

* us es  registers X,Y,FA,FL and T 

* remove leading z e r o e s  

* save low-order dividend and 
* quotient bits 
* trial subtraction 
* subtract divisor 

* set quotient bit on 

* restore d iv idend/quot ien t  
* for shifting, reduce loop count 
* test for completion 

* r e m a i n d e r  is in X 

* quotient in Y 

presents a combinational  algorithm for division using 
multiplication by a fractional inverse, followed by 
"suitable rounding" so that the integer part  of the result 
is the true quotient. The remainder itself is found by 
remultiplying the fractional result by the divisor, 
whereas we require at most  d compare and subtracts. 
Thus we have demonstrated an algorithm and proof  that 
both quotient and remainder can be completely deter- 
mined from the low-order ("fractional") bits, without 
requiring a double width product. Jacobsohn's  ap- 
proach is superior when the quotient is required and 
there is no expectation that the remainder will be zero. 

Jacobsohn did not observe that multiple periods of 
the inverse can be handled using the shift-and-add 
technique shown here. Thus his method takes time 
linear in the ratio of the register width to the period o f  
the inverse, while we take time proport ional  to the 
logarithm of this ratio. (This aspect of the method can 
be incorporated in Jacobsohn 's  scheme if' desired). We 
also incorporate recognition of those cases where there 
is a factor of the inverse in the form 2 n -4- 1. This simpli- 
fies the initial multiplication step and may, in specific 
cases, provide sufficient result bits directly, without re- 
quiring complementation.  

The algorithm presented here has proved quite useful 

in the practical implementation of interpreters with a 
variety of unit widths. The method presented can 
readily be adapted to a hardware implementation along 
the lines of Jacobsohn's .  Its speed results f rom the fact 
that, once past step (ii), we double the resulting pre- 
cision each iteration, at the cost of a single shift and 
add. 

Figure 1 illustrates microcode written for a B I700 
[4] to implement division by 18 of a 24-bit dividend. 
Each line represents one microinstruction, and the se- 
quence takes approximately 2.8 microseconds on a 
B1726 (independent of quotient). By way of contrast, 
the fastest general purpose division routine of which we 
are aware (see Figure 2), takes about  42 microseconds 
with 18 used as the divisor for " r a n d o m "  quotients. 
(The actual time varies for quotients with differing 
numbers of leading zeroes, and the number  of divisor 
subtractions performed.) 

Appendix 

Let N denote the set of natural numbers and N + 
denote the set N -- {0}. I f  x is a positive rational num- 
ber, then [xl denotes the greatest natural number  
smaller than or equal to x and Ix] denotes the smallest 
natural number greater than or equal to x. If  a, b, m are 
in N then a (mod m) denotes the smallest integer b 
such that a -- b is divisible by m. (We also write b = 
a (mod m).) 

F o r l i n N l e t X z =  1 0 , 1 , . . . , 2 ' -  1}. 
For  d in N + let cre be a function from X, into N X N 

defined by aa(x) = (q, r) if, and only if, x = qd + r with 
r < d .  

L e t f b e  a function from Xt onto Xz and let Y, be the 
array < yo, y l ,  • • •, y ~ - i  > defined byy i  = ~ ( f - l ( i ) ) .  

LEMMA 1. l f  f is a function such that f ( x )  = q when- 
ever x = dq, then for  j ~ {O, 1 , . . . ,  [(2 t --  1)/dl}, 
yj  = (j ,  0). 

PROOF. By definition Yi = ad(f-l(J)) and (since 
0 < j <_ (2' -- 1 ) / d ) j  = f ( d j ) ; h e n c e  Yi = cre(dj) = 
(j, 0). [ ]  

The following lemma gives us an alternative way for 
representing d. 

LEMMA 2. For every x in N there exist three positive 
integers m, n, and s such that xs = 2m(2 n :t= 1). 

PROOF. This lemma is easily proved by the Euler- 
Fermat  Theorem (see, for example, [5], Theorem 
22). [ ]  

Let dbe  in N. Let m, n, and s be any positive integers 
such that ds = 2m(2 ~ 4- 1). Note  that the existence of 
such integers is guaranteed by Lemma 2. (In Table I 
we list minimum values of s and n for odd values of d 
smaller than 50.) 

To avoid a cumbersome notation, we assume, for 
the rest of this section, that d, m, n, and s are fixed (but 
arbitrary) integers satisfying the above conditions. 
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F o r  I in N, let kz = max {[(log..,(//n)) -- I1, 0} and 

let 
kl 

Tz = (s(2" :t= 1) /2")  ]~I ( f"~ q- 1). 
i=1 

LEMMA 3. For 1 in N, let f~ be a function from X~ 
into Xz defined by f t (x )  = - - T z x ( m o d  2 I) (where 
- - a ( m o d  2 l) is" interpreted as 2 l -- a (mod  2t)). (i) fz 
satisfies the conditions o f  Lemma 1. (ii) I f  d is an odd 
number, then fz is a permutation on X~ . 

PROOF: 
(i) For  / in N, we have 

-- TlX(mod 2 I) = - Tz dq(mod 2 I) 

= - - ( ~  (221" -q -1 ) )  

• (s(2" ~ 1) /2")  dq(mod 2 t) 

by taking 

d = 2"(2" =t= 1)/s 
kl 

= - -1-I  ( 22~" -k- l ) ( f "  -- 1)q(mod 2 ~) 
i = l  

= --(22k~+~" -- l ) q (mod  2~), 

but  2kL+~n > / and hence 

- - T l x ( m o d  2 I) = q. 

(ii) I f  d i s  an odd number  then m = 0 and Tz is an odd 
number .  Tz is relatively pr ime to 2 ~ and the result 
follows. 

We will show now that  for  d odd our function f t  in- 
t roduces  a certain order  on y~. Note  that  we have al- 
ready shown in L e m m a  1 that,  for j smaller  than or 
equal  to (21 -- 1)/d, y j  = (j, 0). 

First  we need to describe the function f [  x. 
LEMMA 4. For I in N, thc function f F  ~ is given by 

f ? l ( z )  = zd(mod 2 ~) = x. 
PROOF. Let / be in N. We want  to show that  i f f t (x)  = 

z then dz (mod  2 ~) = x. But z = f ( x )  = - T ~ x ( m o d  2z); 
hence 

~-~(z) = f ~ - a ( -  T tx (mod  2~)) 
= - -dTzx (mod  2 z) 
= ( ( - - d T l ) ( m o d  f ) x ( m o d  f ) ) ( m o d  2 z) 
= 1 . x ( m o d  21) 
= X. [ ]  

hence (by L e m m a  4) 

y k + l  = ~d((k + 1) d (mod  21)), 

and so 

yk+l = ~re((kd(mod 2 t) q- d ) (mod  2l)). 

N o w  y~ = (q, r) = c~,t(J71(k)), and by L e m m a  4 yk = 
(q, r) = ~d(kd(mod 21)), and by definition of y~, 
kd(mod  2 z) = qd + r; thus 

yk+~ = ~re((qd + r + d ) (mod  21)) 
j '(q q- 1 ) d q -  r if (q - t -  1 ) d q -  r < 2 z, 

= ~(0, r ' )  otherwise. [ ]  

COROLLARY. 1./" the elements o f  Yt are ordered in the 
following way: 

Yt = ((0, 0), (1, 0) . . .  (0, rl), (1,r l)  . . .  (0, r,,), (1, re) . . .  

(0, rd-1), (1, ra-l) . . . ), 
then rl = ir~ (mod d)~ 
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The  next  result describes the ordering on Yt imposed 
by T t .  

LEMMA5. Let l be in N. For k in {O,. . . , 2 1 - -  l l ,  iJ 
yk = (q, r), then 

Yk'4- 1 ~(q q- 1, r) / f  (q n t- 1 ) d q -  r < 2 ~, 
= ~(0, r') otherwise, 

where r' is given by ((q q- 1) d q-- r ) (mod  21). 
PROOF. L e t l b e i n N a n d l e t k b e i n { 0 , . . . , 2  t -  11. 

By definition 

--1 yk+l = Ca(6 ( k +  1)); 
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