
Computer
Systems

G. Bell, D. Siewiorek,
and S.H. Fuller, Editors

A Fast Division
Technique for
Constant Divisors
Ehud Artzy, James A. Hinds, and
Harry J. Saal
State University of New York at Buffalo

A fast algorithm for division by constant divisors is
presented. The method has proved very useful imple-
mented as microcode on a binary machine, and can be
adapted directly into hardware. The mathematical foun-
dations of the algorithm are presented as well as some
p erformance measures.

Key Words and Phrases: constant divisors, division
algorithms, bit addressable memory, microprogram

CR Categories: 4.13, 4.49, 6.32

2. Motivation

The Burroughs B1700 imposes no hardware con-
straints (or advantages) on the choice of container size
(byte, word, etc.) f rom 1 to 24 bits in width. (See [1] for
some consequences in memory utilization.) A natural
convenience of integral powers of 2 is the simplicity of
using shifts to convert f rom one set of units to another.
The interpreters we have written for the B1700 use a
variety of other widths (e.g. 18, 34, etc.), and we must
multiply or divide by small integers such as these.

Multiplication by a particular integer using shifts,
adds, and subtracts is fairly straightforward. For
example, multiplication by 17 is done by a four-bit shift
and add; multiplication by 15 is done by a four-bit
shift followed by a subtract. These algorithms are pre-
sumably optimal for the numbers in question if we re-
strict ourselves to shifts, adds, and subtracts.

We have frequently found it to be appropriate on the
B1700 to use bit addresses rather than unit addresses.
We give up maximal addressing capability in a fixed
width field, but this has not been a restriction on our
designs. There are several places where a unit address is
needed, and this requires a fast division method. We
now present our technique for rapidly dividing by a
given constant. This method easily detects any nonzero
remainder, but not its value. In our applications, since
we use exact multiples of the unit width, any nonzero
remainder would be an error analogous to the System
360 specification exception (see [2]).

1. Introduction

We are concerned with the generation of fast algo-
rithms for division by specified integers. The question
arose from system design considerations for addressing
a bit-addressable memory on the Burroughs B1700. The
first part of this paper provides the practical motivation
for the use of these algorithms. We next present the
algorithm itself, accompanied by its mathematical
foundation.

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' addresses: E. Artzy, Everyman's University, 35 Mish-
meret St., Afeka, Israel; J. A. Hinds, Computer Science Department,
University of Utah, Salt Lake City, UT 84112; H. J. Saal, IBM
Israel Scientific Center, Computer Science Building, Technion City,
Haifa, Israel.

98

3. The Algorithm

In this section we present our algorithm in detail,
but first we describe the general method and how it
works. Division of the dividend R by an arbitrary given
integer d is accomplished in two steps. The first simply
tests for a possible nonzero remainder by inspecting
the low-order bits of R , corresponding to any powers of
two in the factorization of d, and shifts out the zeros.
Consequently. the second step is restricted to the case
where the divisor is odd.

The inverse of every odd integer (greater than one) is
a fraction whose binary representation is of the form
. s l s 2 . . . s ,~ s l s . , . . . s o s ~ s 2 . . . e t c . The bits s ~ s 2 . . . s n

are the representation of the integer s Where d s = 2 "~ - 1 .

Temporar i ly restrict the possible values of R to the
integer multiples of d which are less than 2 n. Then, the
n lower-order bits of the product (2d)s = 2 ~+t -- 2 ------
2 ~ -- 2 (mod 2~), and in general, for the range we are

Communications February 1976
of Volume 19
the ACM Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359997.360013&domain=pdf&date_stamp=1976-02-01

Table I. Minimum Values for s, n, and w(s).

d s ds = 2" ::t= 1 w(s)

3 1 2 ~ +1 1
5 1 22 + 1 1
7 1 23 --1 1
9 1 23 + 1 1

11 3 25 +1 2
13 5 26 + I 2
15 1 2 ~ --1 1
17 1 24 + i l
19 27 29 +1 3
21 3 26 --1 2
23 89 2tt--1 4
25 41 2t°+l 3
27 19 29 +1 3
29 565 214 + 1 5
31 1 25 -- 1 I
33 1 25 +1 1
35 117 2'~--i 4
37 7085 21s + 1 6
39 105 2 z2 -- 1 4
41 25 2z°+1 3
43 3 27 + 1 2
45 91 212 -- 1 4
47 178481 223 - - 1 8
49 42799 221 -- 1 7

t e m p o r a r i l y consider ing, when R = k d , then R s

2 n -- k (mod 2"). Consequent ly , in o rder to de te rmine
k , the quo t ien t we desire, we mul t ip ly the d iv idend R
by s, a cons tan t de te rmined f rom d (see Table I), and
then take the (n-bit) two ' s complement .

W h a t happens if the number R is no t an exact
mul t ip le o f d? It is p roved in the A p p e n d i x : (a) that only
the number s which are exact mul t ip les o f d are m a p p e d
on to 2 '~ -- 1, 2" -- 2 , . . . , 2 '~ - - k, and (b) tha t numbers
in the same r ema inde r class are m a p p e d next to each
o ther by the mul t ip l i ca t ion process.

This resul t a l lows us to check for a nonze ro re-
ma inde r with one compar i son . One can find bo th quo-
t ient and r ema inde r o f any d iv idend by inc luding at
mos t d compar i sons and sub t rac t ions after mul t ip l ica-
t ion. (Note tha t as d grows large, the number of com-
par i sons will become prohibi t ive) .

H a n d l i n g d iv idends larger than 2" is also s t ra ight-
fo rward . We need to mul t ip ly the d iv idend by several
pe r iods of s, which is easily accompl i shed by first mul t i -
p ly ing by s, then by 2 n + 1, 22~ + 1, 2 ~" + 1, etc. We
doub le the m a x i m u m div idend width in each step, at the
cost of only a mul t ib i t shift and add.

Wi th this general descr ip t ion as background , we
p resen t our a lgor i thm in detail . Le t us in t roduce some
add i t iona l nota t ion .

F o r a n / - b i t register R and a posi t ive cons tan t d, let
m, n, and s be any posi t ive integers such tha t d s =

2m(2" 4- 1) and let q = t(:2' - 1)/d] and kt =
max {[(log2 (l / n)) - - ll , 0}. (The existence of such
integers is gua ran teed by L e m m a 2 of the Append ix .)
F o r this a lgo r i thm one auxi l ia ry register , say T, is used.
In add i t ion , one counter , say J, is needed. ~ We use R and

T to denote the contents of registers R and T respec-
tively. To s impl i fy the so lu t ion we assume tha t all bits
shifted over word bounda r i e s are lost and the overflow
bit af ter a r i thmet ic ope ra t ions is ignored.

THE ALGORITHM

We choose to represent the a lgo r i thm as a macro-
p r o g r a m in order to emphas ize the me thod of cons t ruc t -
ing a special ized "d iv is ion by d" a lgor i thm once the
values o f d and the register width l have been selected.
The var iable S I G N h a s the value ' + ' when accord ing to
Table I d s is of the form 2"(2" + 1) and ' - ' otherwise.

BEGINMACRO
IF m # 0 THEN

OUTPUT('if the n7 least significant bits of R are not zero
then return("R is not divisible by d")
else R ~-- R shifted right by m bits;');

OUTPUT('R ~-- R times S;');
IF n _< l THEN

DO OUTPUT('T* -R shifted left by n bits;');
IF S I G N = ' + '

THEN O U T P U T (' R e - T - - R;')
ELSE OUTPUT(' R~--T+ R;') ;

OUTPUT(' for J = 1 to ks
do
T~- R shifted left byJl.2 J bits;
R ~ - - R + T
end;

R~--2t--R; ')
END
ELSE IF S I G N = ' - - ' THEN O U T P U T ('R*--2t--R;');

OUTPUT(' i f R <q
then return("R is the quotient desired")
else return("R is not divisible by d");')

ENDMACRO

We note tha t to pe r fo rm the ind ica ted mul t ip l ica-
t ion of R t imes S a var ie ty of techniques can be used. In
par t icu lar , if we restr ict ourselves to b ina ry shifts, adds ,
and subtrac ts , the a r i thmet ic weight w(s) is an upper
b o u n d on the number of shift and add or shift and sub-
t rac t s teps required, w (s) is defined as

minF~}ail] - t_ ,=0 1, w h e r e a i = { 0 , 4 - 1 }

such t h a t s = ~ a i 2 i.
i ~ 0

(Values of w(s) are l isted in Table 1.) W i t h o u t these re-
s t r ic t ions even faster means of mul t ip l i ca t ion may be
found , for example , by using table lookup me thods on
g roups of bi ts ; however , we shall not e l abora te fur ther .

4. D i s c u s s i o n

Afte r this work was comple ted , a Cor re spondence by
J acobsohn [3] appeared , in which he also cons idered

a l g o r i t h m s for division by fixed integers. J acobsohn

1 In practice, the iterative loop is unrolled and no counting is
employed.

99 Communications February 1976
of Volume 19
the ACM Number 2

F i g . 1. B 1 7 0 0 m i c r o c o d e f o r d i v i s i o n b y 18.

MOVE D I V I D E N D TO Y
IF LSBY T R U E THEN GO TO
S H I F T Y R I G H T BY 1 BIT-
MOVE Y TO X
S H I F T X LEFT BY 3 BITS
MOVE D I F F TO Y
MOVE Y TO X
S H I F T X L E F T BY 6 BITS
MOVE S U M TO Y
MOVE Y TO X
S H I F T X LEFT BY 12 BITS
MOVE S U M TO Y
LIT 0 TO X
MOVE D I F F TO X
LIT 932068 TO Y
IF X > Y T H E N G O TO N O N - Z E R O - R E M A I N D E R
MOVE X TO Q U O T I E N T * with no remainder

* uses X and Y registers
TO N O N - Z E R O - R E M A I N D E R

* division by 2

* times 7 (D I F F is X- -Y)

* times 2" ' 6q - I (SUM is X-t-Y)

* times 2"*12+I

* complement to get result

F i g . 2. B I 7 0 0 m i c r o c o d e f o r c o n v e n t i o n a l i n t e g e r d i v i s i o n a l g o r i t h m

p r o d u c i n g q u o t i e n t ' a n d r e m a i n d e r .

MOVE D I V I D E N D TO X
MOVE DIVISOR TO FA
MOVE 24 TO FL
N O R M A L I Z E
MOVE X TO Y
C L E A R X

.LOOP S H I F T XY LEFT BY I BIT
MOVE Y TO T
MOVE FA TO Y
IF X>_Y T H E N B E G I N

MOVE D I F F
TO X

SET T(23)
END

MOVE T TO Y
C O U N T F L D O W N BY 1
IF FL ~ 0 T H E N G O TO

- -LOOP
I F X # 0 T H E N G O TO NON-

Z E R O - R E M A I N D E R
MOVE Y TO Q U O T I E N T

* us es registers X,Y,FA,FL and T

* remove leading z e r o e s

* save low-order dividend and
* quotient bits
* trial subtraction
* subtract divisor

* set quotient bit on

* restore d iv idend/quot ien t
* for shifting, reduce loop count
* test for completion

* r e m a i n d e r is in X

* quotient in Y

presents a combinational algorithm for division using
multiplication by a fractional inverse, followed by
"suitable rounding" so that the integer part of the result
is the true quotient. The remainder itself is found by
remultiplying the fractional result by the divisor,
whereas we require at most d compare and subtracts.
Thus we have demonstrated an algorithm and proof that
both quotient and remainder can be completely deter-
mined from the low-order ("fractional") bits, without
requiring a double width product. Jacobsohn's ap-
proach is superior when the quotient is required and
there is no expectation that the remainder will be zero.

Jacobsohn did not observe that multiple periods of
the inverse can be handled using the shift-and-add
technique shown here. Thus his method takes time
linear in the ratio of the register width to the period o f
the inverse, while we take time proport ional to the
logarithm of this ratio. (This aspect of the method can
be incorporated in Jacobsohn 's scheme if' desired). We
also incorporate recognition of those cases where there
is a factor of the inverse in the form 2 n -4- 1. This simpli-
fies the initial multiplication step and may, in specific
cases, provide sufficient result bits directly, without re-
quiring complementation.

The algorithm presented here has proved quite useful

in the practical implementation of interpreters with a
variety of unit widths. The method presented can
readily be adapted to a hardware implementation along
the lines of Jacobsohn's . Its speed results f rom the fact
that, once past step (ii), we double the resulting pre-
cision each iteration, at the cost of a single shift and
add.

Figure 1 illustrates microcode written for a B I700
[4] to implement division by 18 of a 24-bit dividend.
Each line represents one microinstruction, and the se-
quence takes approximately 2.8 microseconds on a
B1726 (independent of quotient). By way of contrast,
the fastest general purpose division routine of which we
are aware (see Figure 2), takes about 42 microseconds
with 18 used as the divisor for " r a n d o m " quotients.
(The actual time varies for quotients with differing
numbers of leading zeroes, and the number of divisor
subtractions performed.)

Appendix

Let N denote the set of natural numbers and N +
denote the set N -- {0}. I f x is a positive rational num-
ber, then [xl denotes the greatest natural number
smaller than or equal to x and Ix] denotes the smallest
natural number greater than or equal to x. If a, b, m are
in N then a (mod m) denotes the smallest integer b
such that a -- b is divisible by m. (We also write b =
a (mod m).)

F o r l i n N l e t X z = 1 0 , 1 , . . . , 2 ' - 1}.
For d in N + let cre be a function from X, into N X N

defined by aa(x) = (q, r) if, and only if, x = qd + r with
r < d .

L e t f b e a function from Xt onto Xz and let Y, be the
array < yo, y l , • • •, y ~ - i > defined byy i = ~ (f - l (i)) .

LEMMA 1. l f f is a function such that f (x) = q when-
ever x = dq, then for j ~ {O, 1 , . . . , [(2 t -- 1)/dl},
yj = (j , 0).

PROOF. By definition Yi = ad(f-l(J)) and (since
0 < j <_ (2' -- 1) / d) j = f (d j) ; h e n c e Yi = cre(dj) =
(j, 0). []

The following lemma gives us an alternative way for
representing d.

LEMMA 2. For every x in N there exist three positive
integers m, n, and s such that xs = 2m(2 n :t= 1).

PROOF. This lemma is easily proved by the Euler-
Fermat Theorem (see, for example, [5], Theorem
22). []

Let dbe in N. Let m, n, and s be any positive integers
such that ds = 2m(2 ~ 4- 1). Note that the existence of
such integers is guaranteed by Lemma 2. (In Table I
we list minimum values of s and n for odd values of d
smaller than 50.)

To avoid a cumbersome notation, we assume, for
the rest of this section, that d, m, n, and s are fixed (but
arbitrary) integers satisfying the above conditions.

1 0 0 C o m m u n i c a t i o n s F e b r u a r y 1976
o f V o l u m e 19

t h e A C M N u m b e r 2

F o r I in N, let kz = max {[(log..,(//n)) -- I1, 0} and

let
kl

Tz = (s(2" :t= 1) /2")]~I (f"~ q- 1).
i=1

LEMMA 3. For 1 in N, let f~ be a function from X~
into Xz defined by f t (x) = - - T z x (m o d 2 I) (where
- - a (m o d 2 l) is" interpreted as 2 l -- a (mod 2t)). (i) fz
satisfies the conditions o f Lemma 1. (ii) I f d is an odd
number, then fz is a permutation on X~ .

PROOF:
(i) For / in N, we have

-- TlX(mod 2 I) = - Tz dq(mod 2 I)

= - - (~ (221" -q -1))

• (s(2" ~ 1) /2") dq(mod 2 t)

by taking

d = 2"(2" =t= 1)/s
kl

= - -1-I (22~" -k- l) (f " -- 1)q(mod 2 ~)
i = l

= --(22k~+~" -- l) q (mod 2~),

but 2kL+~n > / and hence

- - T l x (m o d 2 I) = q.

(ii) I f d i s an odd number then m = 0 and Tz is an odd
number . Tz is relatively pr ime to 2 ~ and the result
follows.

We will show now that for d odd our function f t in-
t roduces a certain order on y~. Note that we have al-
ready shown in L e m m a 1 that, for j smaller than or
equal to (21 -- 1)/d, y j = (j, 0).

First we need to describe the function f [x.
LEMMA 4. For I in N, thc function f F ~ is given by

f ? l (z) = zd(mod 2 ~) = x.
PROOF. Let / be in N. We want to show that i f f t (x) =

z then dz (mod 2 ~) = x. But z = f (x) = - T ~ x (m o d 2z);
hence

~-~(z) = f ~ - a (- T tx (mod 2~))
= - -dTzx (mod 2 z)
= ((- - d T l) (m o d f) x (m o d f)) (m o d 2 z)
= 1 . x (m o d 21)
= X. []

hence (by L e m m a 4)

y k + l = ~d((k + 1) d (mod 21)),

and so

yk+l = ~re((kd(mod 2 t) q- d) (mod 2l)).

N o w y~ = (q, r) = c~,t(J71(k)), and by L e m m a 4 yk =
(q, r) = ~d(kd(mod 21)), and by definition of y~,
kd(mod 2 z) = qd + r; thus

yk+~ = ~re((qd + r + d) (mod 21))
j '(q q- 1) d q - r if (q - t - 1) d q - r < 2 z,

= ~(0, r ') otherwise. []

COROLLARY. 1./" the elements o f Yt are ordered in the
following way:

Yt = ((0, 0), (1, 0) . . . (0, rl), (1,r l) . . . (0, r,,), (1, re) . . .

(0, rd-1), (1, ra-l) . . .),
then rl = ir~ (mod d)~

Received August 1973; revised May 1975

References
1. Wilner, W.T. Burroughs B1700 memory utilization. Proc.
AFIPS 1972 FJCC, Vol. 41, pp. 579-586, AF1PS Press, Montvale,
N.J., 1972.
2. System 360 Principles of Operation. GA22-6821, IBM Corp.,
1970.
3. Jacobsohn, D.H. A combinatoric division algorithm for fixed
integer divisors. IEEE Trans. Comput. C-22, 6 (June 1973),
608-610.
4. B1700 Systems Re.lerence Manual. 1057155, Burroughs Corp.,
1972.
5. Hunter, J. Number Theory. Oliver and Boyd, London, 1964.

The next result describes the ordering on Yt imposed
by T t .

LEMMA5. Let l be in N. For k in {O,. . . , 2 1 - - l l , iJ
yk = (q, r), then

Yk'4- 1 ~(q q- 1, r) / f (q n t- 1) d q - r < 2 ~,
= ~(0, r') otherwise,

where r' is given by ((q q- 1) d q-- r) (mod 21).
PROOF. L e t l b e i n N a n d l e t k b e i n { 0 , . . . , 2 t - 11.

By definition

--1 yk+l = Ca(6 (k + 1));

101 Communications February 1976
of Volume 19
the ACM Number 2

