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Abstract
Dynamic sparsity, where the sparsity patterns are unknown
until runtime, poses a significant challenge to deep learning.
The state-of-the-art sparsity-aware deep learning solutions
are restricted to pre-defined, static sparsity patterns due to
significant overheads associated with preprocessing. Effi-
cient execution of dynamic sparse computation often faces
the misalignment between the GPU-friendly tile configura-
tion for efficient execution and the sparsity-aware tile shape
that minimizes coverage wastes (non-zero values in tensor).
In this paper, we propose PIT, a deep-learning compiler

for dynamic sparsity. PIT proposes a novel tiling mechanism
that leverages Permutation Invariant Transformation (PIT),
a mathematically proven property, to transform multiple
sparsely located micro-tiles into a GPU-efficient dense tile
without changing the computation results, thus achieving
both high GPU utilization and low coverage waste. Given a
model, PIT first finds feasible PIT rules for all its operators
and generates efficient GPU kernels accordingly. At runtime,
with the novel SRead and SWrite primitives, PIT rules can
be executed extremely fast to support dynamic sparsity in
an online manner. Extensive evaluation on diverse models
shows that PIT can accelerate dynamic sparsity computation
by up to 5.9x (average 2.43x) over state-of-the-art compilers.

CCS Concepts: • Software and its engineering → Dy-
namic compilers; • Computer systems organization →
Neural networks.

Keywords: Deep learning compilers, Dynamic sparsity, Dy-
namic compilers, Transformation
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1 Introduction
Tensor is the key data abstraction in deep learning. It pro-
vides a powerful and flexible way to represent contents in-
cluding images, audio, and language sentences. Deep learn-
ing computation mostly involves operations over tensors
(e.g., matrix multiplications). To efficiently execute deep
learning models, accelerators like GPUs have been designed
to perform these tensor operations in parallel. GPUs usu-
ally have multiple Stream Multiprocessors (SM), each with
hundreds of CUDA cores that can simultaneously perform
arithmetic operations on different portions of the tensor. To
efficiently utilize these parallel processing capabilities, deep
learning compilers use tiling to break up tensors into smaller,
regular tensor slices, a.k.a. tiles, that can be processed in par-
allel by multiple SMs. Tiling has been demonstrated to be
a key optimization technique for tensor computations by
effectively exploiting data locality and parallelism.

Recent developments suggest that deep learning computa-
tions are increasingly sparse, i.e., operations on tensors with
many zeros. In addition to sparse model weights, which are
often static and known a priori, more sparsity patterns are
found to depend on inputs and are only known at runtime,
i.e., dynamic sparsity. For example, large language models
(e.g., GPT [16, 50], OPT [66]) exhibit various types of dy-
namic sparsity. Firstly, transformer models (and other types
of models) show inherent dynamic sparsity in their inputs,
activation and gradients [46]. Only a very small number of
elements in the activation map are non-zero [44] (e.g., 3.0%
for T5-Base [55] and 6.3% for ViT-B/16 [23]). Secondly, dy-
namic sparsity is being leveraged to help further scale DNN
models to a large size. Most existing models with more than
one trillion parameters adopt the mixture of experts (MoE)
structure, which activates experts sparsely and dynamically
depending on the input [29]. Moreover, dynamic sparse train-
ing, which dynamically prunes less important connections
in the model during training, is attracting more attention for
its superior computational efficiency [26, 46].

It is a daunting challenge to efficiently compute deep learn-
ing models in the presence of dynamic sparsity. Modern
deep learning compilers [9, 20, 71], including the sparsity
aware compilers [10, 68], leverage the sparsity patterns in
deep learning models known at the compile time to find the
right kernel configuration. They are infeasible to be used for
dynamic sparsity due to high compilation time. Some fine-
grained sparsity solutions can be executed at runtime [3, 31],
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Figure 1. Tiling for dynamic sparsity (shaded blocks are non-
zero values). Misalignment between sparsity granularity and
the tile shape of efficient GPU kernels.

but they use special sparse formats (e.g., CSR: Compressed
Sparse Row) incurring high overheads for format conversion.

Efficient GPU computation requires loading tiled data into
shared memory for data reuse. However, the shape of hard-
ware efficient tiles is usually misaligned with diverse and
dynamic sparsity patterns. As shown in the left and mid
figures in Figure 1, although sparsity-aligned tiles incur low
coverage waste, they run slow on GPU due to low SM uti-
lization and data reuse. But, since sparse values are usually
non-continuously located, the tile shapes used in efficient
GPU kernels cannot avoid covering a lot of zeros, leading to
waste in sparse computation. Existing solutions for sparsity
try to find better trade-offs between efficient tiling and spar-
sity shape alignment. They either require knowledge at the
compile time, or incur significant overheads at runtime due
to format conversation.
In this paper, we present PIT, a compiler for the efficient

execution of deep learning models with dynamic sparsity.
PIT resolves the misalignment of tile shapes by constructing
GPU-efficient tiles with multiple sparsely located “micro-
tiles” (e.g., the right figure in Figure 1). The construction
is performed at runtime and its correctness is guaranteed
mathematically by “Permutation-Invariant Transformation”,
a property widely existed in DL operators but is not well-
exploited for dynamic sparsity. Most DL operators have one
or more dimensions (we call them PIT-axis), whose computa-
tion can be arbitrarily reordered, without affecting the result.
For example, in matrix multiplication (Matmul) whose tensor
expression is 𝐶 [𝑚,𝑛]+=𝐴[𝑚,𝑘] × 𝐵 [𝑘, 𝑛], the columns of 𝐴
along with the rows of 𝐵 (i.e., the 𝑘 dimension) can be per-
muted in any order without affecting the computation result.
The rows of𝐴 along with the rows of𝐶 (i.e., the𝑚 dimension)
can also be permuted without affecting the computation. By
merging micro-tiles into a dense tile along a certain PIT-axis,
PIT achieves the best of both worlds. It can leverage the
efficient execution of dense tile at GPU SMs while achieving
low wasted computation with the fine-grained micro-tile
coverage of non-zeros.

A key challenge to leverage permutation-invariant trans-
formation is the runtime transformation overhead. PIT solves
the challenge by introducing SRead and SWrite, two data
rearrangement primitives for loading and storing between
sparsely located data in GPU global memory and the shared
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Figure 2. Examples of dynamic sparsity in deep learning.

memory. By piggybacking the data rearrangement on the
data movement across the memory hierarchy during stan-
dard tensor computation, SRead and SWrite can achieve al-
most no extra overhead for permutation-invariant transfor-
mation. Even when the coordinates of sparse values in the
tensors are unknown, PIT can detect them quickly in an
online manner. Interestingly, by treating it as a special case
of dynamic sparsity, PIT can also work effectively on deep
learning models with static sparsity patterns where the mis-
alignment of tile shapes is also a source of inefficiency.

We extensively evaluate PIT on five representative models
(i.e., Switch Transformer [63], OPT [66], BERT [22], Long-
Former [14], Museformer [65]) and find that it significantly
speeds up both inference and training while using less mem-
ory. In terms of inference, PIT achieve up to 5.9x speedup
with less memory consumption compared to state-of-art so-
lutions (§5.1). Additionally, we also applied PIT to speed up
the large language model training and sparse training. PIT
achieves up to 1.8x speedup on the OPT training, and up to
2.4x speedup for the sparse training compared to the previ-
ous solutions. Dynamic sparsity is becoming increasingly
important in deep learning, and we plan to release PIT as
open-source software to encourage further research on the
optimization and algorithms on dynamic sparsity.

2 Background and Motivation
2.1 Dynamic Sparsity
As deep learning models become increasingly deep and large,
parameters, activations, and gradients tend to approach zeros
or become exactly zero, resulting in model sparsity. With the
rapid development of Large Language Models (LLMs), it is a
growing trend that many types of sparsity are shown to be
dynamic, which is only known at runtime.
Dynamic Sparsity in LLMs. Dynamic attention allows
models to compute only on the most informative parts of
the data [29, 33, 34, 37, 38, 45, 57, 60, 69, 70, 72]. As shown in
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Figure 3. Inefficient tiling of dynamic sparsity due to wasted
computation and high sparse format conversion overhead.

Figure 2a, models can mask out irrelevant tokens, achieving
higher accuracy with less computation. The masks are gen-
erated on the fly. Our evaluation also shows the activation
outputs of three popular LLMs (OPT, Switch Transformer,
and T5) have a sparsity ratio of 95-99.9% (i.e., percentage of
zeros), which can be skipped without impacting the model
accuracy (refer to §5.1).
Sparse Training. Sparse training is critical and widely
used in many fields of deep learning, such as Dynamic Sparse
Training (DST) [26], MAE [35], pruning [40], and supernet
training[18, 19]. Figure 2d shows an example of dynamic
pruning in training. The algorithm will mask out a portion
of the weight according to the current model state. The mask
in each step is constantly changing during training.
Mixture-of-Experts (MoE). MoE is a neural architecture
that shows dynamic sparsity and is widely used in popular
large models. Most LLMs over one-trillion parameters adopt
MoE to scale up the model [24, 29, 42]. As shown in Figure 2b,
a sequence of tokens passes through a gating function that
assigns each token to expert(s) dynamically. Each expert
handles only a proportion of the tokens of its expertise, by
masking the other tokens not routed to it. Therefore, each
expert’s computation is sparse and depends on the input,
which is only known at the runtime.
Dynamic Sequence Length. In natural language process-
ing [22, 51, 55] and multi-modality models [53, 56], token
sequences naturally have varied input and output lengths.
Processing such sequences in batch requires padding them
to the same sequence length (typically the maximum length
in the batch), as shown in Figure 2c. Such padding leads to
waste in computation and can be treated as dynamic sparsity.

2.2 Inefficiency Due to Dynamic Sparsity
Tiling in deep learning compilers. Deep learning com-
pilers like TVM [20], Triton [9], Roller [71], often use tiling,
a technique that slices a tensor into smaller tiles. By reusing
cached tiles, tiling reduces the amount of data that needs

to be transferred from slower memory like DRAM. By tun-
ing tile shape (e.g., 32x32 or 16x64), compilers can optimize
data reuse for a particular model computation on a specified
hardware architecture, thus improving kernel performance.
Inefficient tiling in the presence of dynamic sparsity.
Despite its effectiveness for conventional densemodels, tiling
can be inefficient for dynamic sparsity. As shown in Figure 1,
tile shapes aligned with the sparse pattern minimize the cov-
erage of non-zero values but are inefficient when executed on
GPUs. On the contrary, GPU-efficient tiles introduce waste
(covering too many zeros). Using actual sparse activations
extracted from OPT [66] (a large language model), Figure 3a
shows the performance of GPU kernels tuned with various
tile shapes when executing a sparse matrix multiplication un-
der different sparsity ratios. When the sparsity ratio is lower
than 99.6%, 32x32 tiles are more efficient although it contains
the most wasted coverage on zeros. The 8x8 tiles are faster
only when sparsity is very high (>99.9% for this case) because
of more saved computation than other tile shapes. Different
tile shapes face the dilemma between sparsity-friendly tile
coverage and GPU-efficient execution.
Sparsity-aware compilers or libraries. Some sparsity-
aware compilers or libraries try to break the dilemma by com-
piling specialized GPU kernels (e.g., SparTA [68]), or trans-
forming the data into a special format (e.g., cuSPARSE [3],
Spunik [31]). They incur significant overheads that degrade
runtime performance. Figure 3b compares the conversion
overhead (compiling or format transformation) of SparTA,
cuSPARSE, and Spunik when handling dynamic sparsity.
SparTA takes 400-600 seconds to compile the specialized
kernel, impractical to handle sparsity patterns changed at
the runtime. Although cuSPARSE and Spunik can be used
for dynamic sparsity, they suffer from large transformation
overheads. As a result, the overall performance is even worse
than directly using dense computation when the sparsity ra-
tio is high and thus is inefficient to handle dynamic sparsity.

2.3 Opportunity
The right figure in Figure 1 shows that it is possible to load
data sparsely located at different positions in parallel, and
merge them into a dense tile with a shape efficient for com-
putation. This sparse-to-dense transformation will not affect
the correctness of the result. Figure 4 shows two examples of
matrix multiplication. The first example multiplies a sparse
tensor𝐴with a dense tensor 𝐵. The shaded area has non-zero
values and the rest are zeros. By rearranging the non-zero
rows of 𝐴 into a new tensor 𝐴′, the computation can be con-
ducted on dense matrix multiplication between 𝐴′ and 𝐵′
(the non-zero dense tile of 𝐵) producing the result tensor
𝐶′ = 𝐴′×𝐵′. After writing the rows of𝐶′ to the original rows
in C, we get the same result of 𝐶 = 𝐴 × 𝐵. Note that, the re-
arrangement of𝐴’s non-zero rows can be in any permutation
without affecting the correctness of each row in𝐶′. The rows
of 𝐶′ are written back to 𝐶 with the reverse permutation of
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Figure 4. Examples of sparse matrix multiplication. By re-
arranging sparse data along an axis, the sparse computation
can be equivalently done with dense matrix multiplication.

𝐴 −→ 𝐴′ to restore the correct row indexes. The second exam-
ple shows the matrix multiplication of two sparse matrixes
𝐴 and 𝐵. By rearranging the data on the dimension 𝑘 of 𝐴
and 𝐵 (i.e., columns of 𝐴 and rows of 𝐵), the calculation can
be done similarly using the matrix multiplication between
two dense matrixes (i.e., 𝐴′ and 𝐵′). As we have shown in
Figure 3a, dense tiles are more GPU-efficient. If the data re-
arrangement in Figure 4 has negligible overhead at runtime,
the dynamic sparse tensor computation can be conducted
using dense tiles with low waste and high GPU efficiency,
thus achieving superior performance. This motivates us to
design PIT to systematically exploit this permutation invari-
ant transformation of DL operators for efficient support to
dynamic sparsity.

3 PIT Design
PIT is a compiler framework designed to address challenges
introduced by dynamic sparsity. The core of PIT is its permu-
tation invariant transformation (abbr. PIT transformation),
which converts sparse tensors into a computation-efficient
dense format in an online manner. Figure 5 illustrates PIT’s
architecture. PIT introduces micro-tile, a data unit with a
minimum size used to compose a larger, hardware-friendly
tile for efficient computation. Given sparse tensors, the PIT
transformation policy identifies the most efficient micro-tile
from all feasible micro-tiles derived from PIT rules, which
are mathematically equivalent computation transformations
of deep learning operators. The sparse kernel generator then
creates the sparse kernel based on the selected micro-tile.
To handle dynamic sparsity, the kernel takes sparse data
and the index of micro-tiles with non-zero values for proper
computation. The sparsity detector constructs the index on-
line. The PIT property enables full parallelism in sparsity

and index construction, minimizing the online execution
overhead. In the sparse kernel, SRead and SWrite rearrange
the sparse data into a dense format based on the constructed
index, which is then processed by the highly efficient dense
tile-based computation.

3.1 PIT Transformation Mechanism
Micro-tile. Micro-tile is a small data unit with a shape
aligned with the read/write transaction granularity of the
lower level memory of an accelerator (e.g., GPU). Micro-tile
makes the access of sparse data as efficient as dense ones.
For example, the read/write transaction of global memory
in CUDA GPUs is 32 bytes, the smallest micro-tile size on
this type of accelerator is 1x8 float32 (or 1x4 of float64),
which is fine-grained enough for many sparse patterns. For
example, in Figure 5, the input tensor has non-zero values in
a granularity of 1x1, 1x2, 1x3, and 1x4. This can be covered
with 1x4 micro-tiles, assuming 1x4 is the size of read/write
transaction. This way, micro-tile achieves a good trade-off
between computation efficiency and coverage waste.

An efficient dense tile has already been aligned with data
access of GPU shared memory (e.g., minimizing bank con-
flict [71]) and saturated computation cores through well-
optimized warp schedule [48]. By transforming the sparsely
located micro-tiles to the required data format of the dense
computation tile, the computation of a sparse operator is
well aligned with every component of a GPU, including the
global memory, the shared memory, and computation cores,
thus achieving high efficiency. The transformation between
sparse and dense computation tiles leverages permutation
invariant transformation, a property that enables the dense
tile to work on the rearranged micro-tiles correctly. Such a
property commonly exists in deep learning operators, which
will be elaborated in §3.2.

Figure 6 shows the definition of micro-tile on a sparse
operator. It includes the micro-tile sizes for the operator’s
inputs/output and the dense computation tile, to which the
micro-tiles are mapped. The attributes TileInputFormats
and TileOutputFormat represent the data format (i.e., dense
tile shapes) of the inputs and output respectively required by
DenseTileImpl. A transformation policy (§3.2) determines
such information, used for sparse kernel generation later.
SRead and SWrite. In contrast to dense tensor compu-
tations, whose tiles are loaded, processed, and stored con-
tinuously, PIT generates sparse kernels that employ SRead
and SWrite to handle sparse data at the micro-tile level. As
illustrated on the right of Figure 5, two primitives SRead
and SWrite do online rearrangement of micro-tiles in in-
put tensors to prepare data in TileInputFormats and write
the data in TileOutputFormat to output micro-tiles respec-
tively. The data rearrangement is piggybacked on the data
movement across different memory levels, resulting in little
additional overheads and eliminating the need for traditional
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1 class MicroTiledOp:
2 # data format in global memory , A is sparse
3 InputMicrotileSizes # 1x4 for A, None for B
4 OutputMicrotileSize # None for C
5 # data format in shared memory
6 TileInputFormats # 4x4 dense for A and B
7 TileOutputFormat # 4x4 dense for C
8 DenseTileImpl # C[4x4]=A[4x4]*B[4x4]
9 def GenerateKernel ()

Figure 6. The definition of micro-tiles for a sparse operator.
The comments are the values of those attributes for the
example micro-tile on the right of Figure 5.

1 /* Generated Sparse Kernel */
2 __global__ void SparseKernelTemplate(
3 struct Tensor Inputs , struct SparseIdx InIdx ,
4 struct Tensor Output , struct SparseIdx OutIdx ,
5 ){
6 /* First allocate shared memory */
7 InTiBlocks = AllocSharedM(TileInputFormats);
8 OutTiBlock = AllocSharedM(TileOutputFormat);
9 SRead(Inputs , InTiBlocks , InIdx);
10 DenseTileImpl(InTiBlocks ,OutTiBlock);
11 SWrite(OutTiBlock , Output , OutIdx);
12 }

Figure 7. The sparse kernel template with SRead and SWrite.

data rearrangement outside the sparse kernel (e.g., construct-
ing CSR format [17] for a sparse kernel).
Figure 7 illustrates the template of the PIT’s sparse ker-

nel. The kernel consists of two phases: data arrangement
using SRead and SWrite, and the computation on dense tiles.
Both the data rearrangement of SRead and SWrite require
fast online construction of micro-tiles’ indexes (i.e., InIdx,
OutIdx) (§3.3). The indexes are constructed following the
specified micro-tile shape defined in Figure 6. This design

Operator Tensor Expression PIT-axis
ReduceSum 𝐶 [𝑝 ] += 𝐴[𝑝, 𝑙 ] 𝑝, 𝑙

Vector Addition 𝐶 [𝑝 ] = 𝐴[𝑝 ]+𝐵 [𝑝 ] 𝑝

MatMul 𝐶 [𝑚,𝑛] += 𝐴[𝑚,𝑘 ]*𝐵 [𝑘,𝑛] 𝑚,𝑛,𝑘

BatchMatMul 𝐶 [𝑏,𝑚,𝑛] += 𝐴[𝑏,𝑚,𝑘 ]*𝐵 [𝑏, 𝑘,𝑛] 𝑏,𝑚,𝑛, 𝑘

Convolution 𝐶 [𝑛, 𝑓 , 𝑥, 𝑦 ] +=
𝐴[𝑛,𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 ]*𝐵 [ 𝑓 ,𝑚, 𝑖, 𝑗 ] 𝑛,𝑚, 𝑓

Table 1. Tensor expressions of widely-used operators and
their PIT-axes that support shuffling their indexes without
affecting correctness.

effectively separates data encoding/decoding from computa-
tion in the sparse kernel, introducing a novel sparse compu-
tation paradigm that combines data rearrangement with a
(dense) computation tile.

3.2 PIT Policy
PIT defines a series of rules working on a certain tile axis
that can correctly transform micro-tiles along this axis into
GPU-efficient dense tiles. Specifically, a PIT rule contains
the combination of a PIT-axis, a micro-tile shape, and a
dense computation tile. Following a PIT rule, the system
applies SRead/SWrite on the PIT-axis, loading/writing mul-
tiple sparsely located micro-tiles on this axis into/from the
dense computation tile. A PIT rule ensures the computa-
tion on the PIX-axis must satisfy the permutation invariant
property [41].
For ease of exposition, we use Einstein summation (ein-

sum) notation [25] to express operations along tensor axes.
Table 1 lists some common operators in deep learning and
their corresponding einsum notations. An axis of an einsum
notation is PIT-axis if and only if any shuffling of indexes
on this axis does not affect the correctness of the operator.
The following theorem finds all PIT-axes of an operator.
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Theorem 1. An axis is called PIT-axis, if and only if all com-
putations on the axis are commutative and associative.

The theorem is mostly self-evident, and we omit the proof
due to space constraints. The commutative and associative
property guarantees the correctness of random shuffling of
micro-tiles on the PIT-axis and allows the parallel processing
of micro-tiles in any order. First of all, the axes that derive
new axes are not PIT-axes. For example, axes of 𝑥 , 𝑖 , 𝑦, and
𝑗 in the convolution operator (Table 1) are not PIT-axes
because they are not commutative due to the new axes (“𝑥+𝑖”
and “𝑦 + 𝑗”) derived by them. In the rest axes, there are two
types of axes that are PIT-axes. An axis in the output tensor
is called a spatial axis. All spatial axes are PIT-axes since they
only change the data layout. An axis not in the output tensor
is called a reduction axis, whose computations are mostly
commutative and associative (e.g., sum, multiply, max, min),
and thus PIT-axes. Table 1 also summarizes the PIT-axes of
the listed operators. For every operator used by a model, PIT
uses its tensor expression to find all PIT-axes based on the
type of an axis, and whether it involves non-commutative
or non-associative computations. We find only using one
PIT-axis is general enough to cover most dynamic sparsity
in deep learning. Although we do identify more complex PIT
rules, e.g., permutation over multiple axes in (𝑏,𝑚)-axes or
(𝑏, 𝑛)-axes in BatchMatMul, we leave them to future works
due to the limited space.
Micro-tile and Kernel Selection. PIT creates a database
of sparse kernels, each of which applies PIT transformations
on one PIT-axis of an operator. Each sparse kernel defines a
micro-tile shape, which is determined by the PIT-axis and the
tile shape of the dense kernel it uses for computation. When
the memory layout of the sparse tensor is not contiguous on
the PIT-axis, we set the shape of micro-tiles to 1 on the PIT-
axis while keeping the shape of other axes the same as the tile
shape of the dense kernel. This allows GPUs to load/write the
values along the PIT-axis in parallel which can saturate the
memory transaction. For example, consider a dense matrix-
multiplication kernel with a tile size of [𝑀,𝐾] × [𝐾, 𝑁 ],
suppose the first input tensor is sparse and stored in the row-
major memory layout (i.e., contiguous on𝐾-axis in memory).
If𝑀 is the PIT-axis, the micro-tile size will be [1, 𝐾]. If the
memory layout of the sparse tensor is contiguous on the
PIT-axis, we need to first change its format to make the
data non-contiguous on the PIT-axis, e.g., from row-major
to column-major, to saturate the memory transaction. This
can be done in a piggyback manner at the output of previous
operators generating this sparse tensor, thus its overhead is
negligible.
Algorithm 1 shows how PIT selects the appropriate PIT-

axis, micro-tile shape, and dense computation tile to gener-
ate the sparse kernels in a JIT manner. PIT iterates through

Algorithm 1: Kernel selection for a dynamic sparsity
operator.
Data:𝑂𝑝 : A dynamically sparse operator,

𝐷𝑠𝑝𝑎𝑟𝑠𝑒 : A list of 𝑛 sparsity samples of𝑂𝑝 .
Result: 𝐵𝑒𝑠𝑡 : The best computation tile for𝑂𝑝 .

1 Function KernelSelection(𝐷𝑠𝑝𝑎𝑟𝑠𝑒 ,𝑂𝑝):
2 𝐵𝑒𝑠𝑡 = null;𝐶𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = inf;
3 foreach𝑇 ∈ GetTilesFromTileDB(𝑂𝑝) do
4 foreach 𝐴 ∈ GetPITAxis(𝑂𝑝) do
5 𝐶𝑜𝑠𝑡 = 0;
6 𝑚𝑖𝑐𝑟𝑜_𝑡𝑖𝑙𝑒 =𝐺𝑒𝑡𝑀𝑖𝑐𝑟𝑜𝑇𝑖𝑙𝑒 (𝑇 .𝑆𝑝𝑎𝑟𝑠𝑒𝑇𝑒𝑛𝑠𝑜𝑟,𝐴) ;
7 foreach 𝐷 ∈ 𝐷𝑠𝑝𝑎𝑟𝑠𝑒 do
8 𝑁𝑢𝑚𝑡𝑖𝑙𝑒𝑠 = CoverAlgo(𝐷 ,𝑚𝑖𝑐𝑟𝑜_𝑡𝑖𝑙𝑒 , 𝐴);
9 𝐶𝑜𝑠𝑡 += 𝑁𝑢𝑚𝑡𝑖𝑙𝑒𝑠 ∗𝑇 .𝑡𝑖𝑙𝑒_𝑐𝑜𝑠𝑡 ;

10 if 𝐶𝑜𝑠𝑡 <𝐶𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 then
11 𝐵𝑒𝑠𝑡 = 𝑆 ;
12 𝐶𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =𝐶𝑜𝑠𝑡 ;
13 return 𝐵𝑒𝑠𝑡 ;

all dense computation tiles and the PIT-axes of the opera-
tor (line 3-line 4). GetTilesFromTileDB returns all possi-
ble dense computation tile shapes with efficient GPU ker-
nels, which are usually provided by existing DL compilers
or implementation, e.g., TVM [20], OpenAI Block Sparse [6].
GetPITAxis returns all feasible PIT-axes of the operator
we defined in Theorem 1. For each dense computation tile
and PIX-axis, GetMicroTile finds the valid micro-tile shape
as we elaborated above (line 6). CoverAlgo (line 8) calcu-
lates the number of micro-tiles required to cover all non-
zero values in the sparse tensor (denoted as 𝑁𝑢𝑚𝑡𝑖𝑙𝑒𝑠 ). The
time cost of the generated sparse kernel is estimated as
𝑁𝑢𝑚𝑡𝑖𝑙𝑒𝑠 ×𝑇 .𝑡𝑖𝑙𝑒_𝑐𝑜𝑠𝑡 , where𝑇 .𝑡𝑖𝑙𝑒_𝑐𝑜𝑠𝑡 is the running time
of the corresponding sparse kernel via offline profiling. PIT
selects the sparse kernel with the lowest time cost and its
corresponding micro-tile to perform sparse computation. As
for the input whose sparsity ratio is relatively low, this ker-
nel selection algorithm makes PIT seamlessly fall back to
the dense computation.

The offline profiling for the tile cost is lightweight. As PIT
chooses to merge micro-tiles into a dense tile along a certain
PIT-axis on-the-fly, it allows the offline profiling to be done
in a model, tensor shape, and sparsity pattern agnostic way.
PIT just records the execution time of different tile shapes
(e.g., 32x32 and 64x64) for dense computation. Therefore, the
offline profiling is conducted once per operator and per GPU
type, which is very lightweight compared to long-running
inference services.

3.3 Online Sparsity Detection
Efficient sparse computation requires the online detection
of the changing sparsity pattern and computes only the non-
zero values in sparse tensors. This implies that the index for
the non-zero values should be constructed on-the-fly. How-
ever, creating sparse indexes on-the-fly can be challenging.
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As illustrated in Figure 3b, cuSPARSE’s conversion overhead
can be significantly higher than computation time, particu-
larly when sparsity is high.

We propose an effective mechanism for online index con-
struction, i.e., constructing a sparse index at the granularity
of micro-tile in an unordered manner. First, with the selected
micro-tile, PIT detects non-zero values at the granularity of
that micro-tile, which greatly reduces the size of the sparse
index. Second, the PIT transformation enables sparsity de-
tection and index construction to be highly concurrent in
an out-of-order manner: the PIT-axis allows PIT to perform
computations when an axis is permuted (§3.2). With this
transformation, PIT no longer needs an ordered index along
a specific axis. This substantially reduces constraints during
the micro-tile based index construction, minimizing synchro-
nization overheads across accelerator threads.

Specifically, the index construction task runs on the accel-
erator (e.g., GPU)with the construction task divided into tiles.
For each tile, the task traverses a region of the sparse tensor
and checks for the micro-tiles containing non-zero values.
When a non-zero micro-tile is detected, its index (i.e., the
offset within the tensor) is written to a pre-allocated index
array. As multiple tiles concurrently update the index array
with indexes of non-zero micro-tiles, they use atomicadd to
determine unique positions in the array for recording these
indexes, ensuring the safety of the update. Consequently, the
resulting index arrangement for micro-tiles is unordered due
to the unpredictable scheduling order of thread blocks.

Moreover, unlike existing sparse solutions (e.g., cuSPARSE,
MegaBlocks), PIT constructs sparse indexes without chang-
ing the storage format of sparse tensors. At runtime, SRead
and SWrite in sparse kernels use the index to load and rear-
range the non-zero values directly from and to the original
sparse tensors, at the micro-tile granularity. This signifi-
cantly reduces memory access overheads introduced by data
format conversion (e.g., from sparse data in a dense tensor
to CSR format) and achieves zero-copy data rearrangement.

4 Implementation
We implement PIT and integrate it with PyTorch [52]. It con-
sists of approximately 13,000 lines of C++ and CUDA code,
and 5,600 lines of Python. PyTorch is a popular open-source
DNN framework that supports various dynamic sparsity
algorithms. PIT has generated approximately 1,500 sparse
kernels by applying these PIT transformation rules to over
500 dense computation kernels, which include manually op-
timized kernels (such as OpenAI Block Sparse [6]), hardware
instruction accelerated kernels (i.e., wmma [4]), and dense
kernels generated by compilers like TVM [20]. These sparse
kernels are stored in a database, and a performance look-up
table is created in advance. This profiled performance is then
used to guide online micro-tile selection. Although offline

Models Datasets Model
Structure Precision Devices

Switch
Transformers[29] MNLI [59]

Encoder
Decoder
MoE

fp16,fp32 A100

Swin-MoE [37] ImageNet Encoder
MoE fp16 A100

OPT [66] Alpaca [58] Decoder fp32 V100

BERT [22] GLUE [59],
News [27] etc. Encoder fp32 V100

Longformer [14] Arxiv [21] Encoder fp32 V100
MuseFormer [65] LMD [54] Decoder fp32 V100

Table 2. Models and datasets in the evaluation.

profiling takes several hours, it is done only once and can be
accelerated by parallel profiling on multiple devices.

With the extensibility of dynamic sparsity optimizations,
PIT have supported 31 Natural Language Processing (NLP)
models. Thirteen (13) of them are large language models
including OPT, T5, and Switch Transformer. Additionally,
PIT supports 8 dynamic sparse attention models, 8 MoE
models, and 13 sparse training algorithms. Integration of
PIT is facilitated by its ability to accommodate minimal code
modifications - with less than 10 lines of code changed in all
evaluated scenarios. This feature enables swift adaptation of
existing models for dynamic sparsity optimization, providing
users with enhanced efficiency.

5 Evaluation
In this section we present comprehensive experiments to
demonstrate the effectiveness of PIT from various perspec-
tives. Specifically, we first evaluate the end-to-end inference
performance of PIT with six representative models on both
A100 and V100 (shown in §5.1). We also show the end-to-end
performance of PIT across two distinct training scenarios
(detailed in §5.2). Furthermore, micro-benchmarks are per-
formed to highlight the effectiveness of PIT transformation
(§5.3) and the conversion overheads (§5.4). Finally, we show
the effectiveness of micro-tile online searching (§5.5) and
detection of changing sparsity patterns (§5.6). In summary,
our results show that:
• PIT achieves significant inference latency reduction and
smaller memory footprints on five representative mod-
els, outperforming PyTorch, PyTorch sparse1, Tutel, Deep-
Speed, MegaBlocks, and TurboTransformer by up to 18.1x,
17.8x, 59.1x, 5.9x, 1.6x, and 1.9x respectively (§5.1).

• PIT also boosts the training efficiency significantly. Com-
pared to the state-of-art solutions, PIT achieves up to 1.8x
speedup for the OPT training, and up to 2.4x speedup for
the sparse training (§5.2).

1The state-of-the-art sparse kernels wrapped in PyTorch.
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Figure 8. End-to-end latency per batch and memory footprints of Switch Transformer.

• With PIT transformation, PIT outperforms the state-of-
art sparsity optimizations. Specifically, PIT achieves up
to 88.7x, 5.8x, 17.5x, and 5.7x speedup over cuSPRARSE,
Sputnik, OpenAI Block Sparse, SparTA respectively (§5.3).

• PIT can detect dynamic sparsity online with negligible
overheads and achieves up to 4.7x speedup over previous
state-of-art works when constructing the sparse index
online (§5.4).

5.1 End-to-End inference
We compare PIT with state-of-the-art dense and sparse base-
lines on inference latency and memory usage for six repre-
sentative models as shown in Table 2. The baselines include
the most popular deep learning framework (PyTorch v1.11.0),
two inference frameworks optimized for large-scale models
(DeepSpeed [11] and TurboTransformers [28]), and model-
specific optimization techniques (Tutel and MegaBlocks [30]
forMoEmodels and Longformer-S for the Longformermodel).
We also create PyTorch-S, a variant of PyTorch that uses the
best-performing sparse kernels from cuSPARSE (v11.6) [3],
Sputnik [31], and Triton [9]. We select the best result among
these sparse kernels for each model as the final performance
of PyTorch-S. TurboTransformers only supports the BERT
model and fails to run other models due to missing operators.
Switch Transformer. We evaluated the performance of
PIT on Switch Transformer, a large language model that
consists of Encoder, Decoder, and MoE structure at the same
time. We measured the latency and memory usage of PIT
on 1x A100-80GB GPU with different precisions, namely
float32 and float16. The MoE layer of Switch Transformer

assigns each token to one of the experts, which may produce
an uneven token distribution among the experts. We com-
pare PIT with several baselines: including PyTorch, which
executes experts sequentially; Tutel and DeepSpeed, which
use BatchMatmul to fuse all experts for parallel execution;
MegaBlocks, which leverages sparse kernels to execute all
experts simultaneously after reorganizing tokens in a sparse
format. MegaBlocks only provides GPU kernels of float16
precision and thus is not evaluated in float32.
In the non-MoE layers, PIT optimizes dynamic sparsity

caused by varying sequence lengths within the same batch.
In the MoE layers, PIT employs SRead to load the relevant
tokens for each expert, sparsely computes their assigned
tokens, and writes the results directly to the corresponding
positions using SWrite. We evaluated PIT using the MNLI
dataset in GLUE [59]. Figure 8 shows end-to-end inference
latency and memory cost of Switch Transformer with vary-
ing batch sizes and numbers of experts. As shown in Fig-
ure 8a, PIT outperformed other methods by allowing sparse
calculation for all experts without computation waste. Com-
pared to PyTorch, PyTorch-S, Tutel, DeepSpeed, PIT achieved
3.6x∼18.1x, 3.7x∼17.8x, 16.6x∼59.1x, 2.3x∼5.9x speedup re-
spectively when the precision is float32. For the precision of
float16, the speedup was 5.5x∼17.8x, 6.4x∼17.5x, 3.3x∼24.3x,
1.8x∼4.2x, and 1.4x∼1.7x compared to PyTorch, PyTorch-S,
Tutel, DeepSpeed, and MegaBlocks, respectively. Compared
to Tutel and DeepSpeed, PIT avoids computational waste
brought by the BatchMatmul, which requires padding the
input of all experts to the same length. Moreover, compared
to MegaBlocks, PIT uses SRead and SWrite to eliminate the
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Figure 9. End-to-end latency and memory footprints of SwinMoE on A100.

expensive data reorganization cost during input preparation.
“PyTorch-S Convert” highlights the sparse index construc-
tion overhead of PyTorch-S. Even though the computation
in PyTorch-S has become faster, the cost of constructing
sparse indices has neutralized the speed gains. To dissect the
benefit under sparse MoE and varying sequence length, we
also evaluated PIT without applying dynamic sparse MoE
optimization (i.e., “PIT w/o Sparse MoE” in Figure 8. We
find PIT’s performance gain on Switch Transformer mainly
comes from optimizing the dynamic sparsity in the MoE
structure. We also evaluated the GPU memory usage shown
in Figure 8b. PIT has the lowest memory usage compared to
the baselines. Due to excessive padding when increasing the
batch size and number of experts, Tutel and DeepSpeed run
into Out-of-Memory (OOM).
Swin-MoE We assessed the performance of PIT on Swin-
MoE, a large vision model with both Encoder and MoE
structures. We measure the latency and memory usage of
PIT on A100 under the float16 precision. For vision trans-
formers, the input images within the same batch will be
rescaled to the same resolution to achieve a consistent se-
quence length. In our experiments, shown in Figure 9, we
compared Swin-MoE’s end-to-end inference latency and
memory footprints across different batch sizes and num-
bers of experts. MegaBlocks outperforms other baselines due
to its simultaneous execution of all experts, efficiently utiliz-
ing sparse kernels to avoid computational waste. Compared
to MegaBlocks, PIT further improves the performance by
piggy-backing data reorganizations in the data movement
across memory hierarchies. Compared to PyTorch, PyTorch-
S, Tutel, DeepSpeed, MegaBlocks, PIT achieves 1.5x∼6.3x,
1.5x∼2.9x, 1.1x∼1.8x, 1.2x∼1.6x, 1.1x∼1.4x speedup, respec-
tively. PIT’s performance improvement for Swin-MoE is less
than that for Switch Transformer because the number of ex-
perts in Swin-MoE is significantly fewer than that in Switch-
Transformer. As a result, the MoE layers only contribute
23.6% to 61.2% of the end-to-end latency when the number
of experts varies from 8 to 32.When comparing the latency of
the MoE layers alone, PIT is approximately 1.2x∼1.7x faster
than Megablocks. For a similar reason, PIT has a similar GPU
memory usage compared to the baselines as shown on the
right side of Figure 9.
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Figure 10. End-to-end latency per batch and memory foot-
prints of OPT.

OPT is a decoder-only large language model [66]. We eval-
uated two versions with 13B and 30B parameters with the
Alpaca [58] dataset on eight V100-32GB GPUs. PIT applies
two dynamic sparsity optimizations on OPT: (1) eliminating
the padding overhead from sentences with varying lengths
in the same batch and (2) exploiting the fine-grained spar-
sity (up to 99%) created by the ReLU activation in the FFN
layer. The batch size is set to 32. PyTorch-S uses Triton as
the backend.
Figure 10 compares the end-to-end latency and memory

footprints of the OPT. PIT outperforms PyTorch, PyTorch-
S, and DeepSpeed by 2.1x∼2.3x, 2.5x∼3.0x and 2.0x∼2.2x,
respectively. The benefit of avoiding padding in dynamic
sequences helps PIT to achieve 1.6x∼1.7x speedup against
the baselines (i.e., PIT w/o activation in Figure 10). By further
exploiting the dynamic sparsity in the ReLU activation of
FFN layers, PIT further boosts the performance by 1.3x∼1.4x.
In contrast to PyTorch-S, which uses Triton block sparse
kernel of block size 32x32, PIT performs efficient compu-
tations using smaller micro-tile (i.e., 1x32) with SRead and
SWrite, thus avoiding computation waste. Also, PyTorch-S
suffers from the sparse format conversion overhead and thus
has the highest latency. In terms of memory consumption,
DeepSpeed has the lowest memory usage as it fuses the en-
tire encoder layer into one operator and saves activation
memory. PIT has a memory footprint similar to the other
baselines.
BERT. We also tested PIT on BERT-base [22], an encoder-
only languagemodel, using Float32 on a single NVIDIAV100-
32GB. In BERT, PIT only optimizes the dynamic sparsity
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Figure 11. End-to-end latency and memory footprints of BERT on V100.
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Figure 12. End-to-end inference latency and memory foot-
print of Longformer on V100.

caused by the different sequence lengths in the same batch.
To evaluate its performance more comprehensively, we ex-
perimented with various datasets, including GLUE [59] (with
mnli, mrpc, cola, rtc, qqp, sst2, wnli, qnli, stsb), IMDB [49],
Multi-XScience [47], and Multi-News [27]. We add Turbo-
Transformer [28] as a baseline, an inference framework that
is specifically optimized for variable input sequence lengths
by using smart dynamic batching. We used a batch size of 32.
PyTorch-S employed Triton as the sparse backend library.

As Figure 11 illustrates, PIT outperforms PyTorch, PyTorch-
S, DeepSpeed, and TurboTransformer by a factor of 1.3x
to 4.9x, 1.8x∼3.5x, 1.2x∼4.5x, and 1.1x∼1.9x, respectively.
PyTorch-S performs poorly when the sequence lengths are
short (e.g., no more than 128 tokens in GLUE). Because its
backend (Triton) requires a coarse-grained sparsity (i.e., 32
tokens in Triton’s kernel), PyTorch-S needs to pad the input
sequence to multiple of 32. This incurs a high waste when
the sequence lengths are short (e.g., a sequence of 16 tokens
has to be padded to 32 causing a waste of 50%). TurboTrans-
former outperforms the other baselines by dividing the input
into multiple small batches based on sentence lengths and
processing them sequentially to avoid waste. PIT further out-
performs TurboTransformer by processing the whole batch
in parallel without waste. On memory usage, PIT consumes
less memory than PyTorch and PyTorch-S, and similar mem-
ory to DeepSpeed and TurboTransformer. DeepSpeed and
TurboTransformer optimize memory usage by fusing the
entire layer into a single operator to reduce activation mem-
ory, which is compatible with PIT’s sparsity optimizations.
TurboTransformer crashes when the input sequence length
increases due to kernel implementation issues.
Longformer is an encoder-only language model with dy-
namic sparse attention [14]. Longformer adaptively pays

attention to several important words (e.g., class token) of the
input. The position of dynamic attention varies for different
inputs, which is the source of dynamic sparsity. Figure 12
illustrates Longformer’s inference latency and memory cost
for input sequence lengths of 2048 and 4096. PIT optimizes
the dynamic sparsity in the dynamic sparse attention. To
evaluate comprehensively, we also add the sparse implemen-
tation specifically optimized for the Longformer (represented
by Longformer-S [1]). PyTorch-S selects Triton as the back-
end. Figure 12 shows the latency and GPU memory usage
on a single V100. PIT is faster than PyTorch, Longformer-S,
PyTorch-S, and DeepSpeed by up to 1.9x, 1.8x, 2.4x, and 2.4x,
respectively. Longformer-S outperforms PyTorch-S because
of its specifically optimized GPU kernels for its designed spar-
sity pattern through sparse pattern decomposition. However,
its design is hard to be used by other models. DeepSpeed
uses Triton to implement their sparse attention, so it has a
similar performance to PyTorch-S. The index construction
overhead of PyTorch-S is shown in “PyTorch-S Convert”,
which accounts for 6.3% ∼13.9% of the end-to-end latency.
Moreover, PyTorch-S performs even worse when it selects
the fine-grained sparse library as the backend because the
sparsity ratio is not high enough. When PyTorch-S selects
Triton (Block Sparse) as the backend, it is slower than PIT
due to the wasted computation caused by the dynamic global
attention[14]. Longformer-S is more efficient since it has no
computation waste by rearranging the input tensor, but it
introduces large data rearrangement overheads. In contrast,
PIT organizes the small micro-tiles on the fly with negligible
overheads and computes them in an efficient dense compu-
tation tile directly without computation waste using SRead
and SWrite. As for memory usage, PIT uses the least memory.
PyTorch-S and DeepSpeed crashed due to out-of-memory
when the input sequence length reached 4096. Both PyTorch-
S and DeepSpeed have to use block sparse (32× 32 in Triton)
to cover all remaining values, leading to computation waste
and a higher sparsity ratio. Longformer-S introduces extra
memory cost due to its data re-arrangement, which creates
many temporary intermediate tensors.
Museformer is a decoder-only language model that also
generates the dynamic sparsity pattern according to the in-
put data to improvemodel performance [65]. Figure 13 shows
the inference latency and memory footprint under different
input sequence lengths. PIT is 2.5x, 2.0x, and 2.0x faster
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Figure 13. End-to-end inference latency and memory foot-
print of Museformer on V100.
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Figure 14. End-to-end latency per batch and memory foot-
prints of OPT training.

than PyTorch, PyTorch-S, and DeepSpeed respectively be-
fore they crash due to out-of-memory. The time of sparse
index construction accounts for up to 23.2% of the end-to-
end latency in PyTorch-S for short sequences. As the input
length increases, the amount of calculation becomes larger,
and the time proportion of index construction can be grad-
ually diluted. As for memory usage, PIT shows the lowest
memory footprint. PyTorch consumes much more memory
because it cannot understand and optimize the dynamic spar-
sity. Compared to PyTorch-S and DeepSpeed, PIT reduces
computation waste by PIT transformation, resulting in lower
memory consumption.

5.2 End-to-End training
In this section, we evaluate PIT on both NVIDIA A100 and
V100 GPUs to demonstrate its superior performance when
using dynamic sparsity to accelerate training.
OPT Training. We fine-tuned the 125M, 350M, and 1.3B
OPT models using the Alpaca dataset on an NVIDIA A100-
80GB GPU. We utilized PIT to optimize the dynamic sparsity
due to varying sentence lengths within the same batch. Due
to memory limitations, we set the training batch size to 8.
In our experiment, we compared the performance of PIT
with PyTorch, PyTorch-S, and DeepSpeed. The results, as
shown in Figure 14, demonstrate the time-cost and mem-
ory footprint of a forward and backward pass. PIT achieved
1.9x∼2.4x, 1.6x∼1.8x, and 1.8x∼2.2x faster speed than Py-
Torch, PyTorch-S, and DeepSpeed, respectively. Similar to
the inference optimization of varying sentence lengths, PIT
saves the computation of padding in PyTorch and DeepSpeed.
Compared to PyTorch-S, PIT supports more fine-grained
sparsity granularity (1 token) than Triton’s block sparse

granularity (32 tokens) leading to more efficient computa-
tion. Also, PIT saves memory access overheads caused by
reformatting data from dense to sparse formats in PyTorch-S.
In terms of memory footprint, PIT and PyTorch-S have the
smallest memory footprints during training with dynamic
sparsity. Compared to inference, DeepSpeed cannot save the
activation memory by fusing the entire layer into one opera-
tor in training, thus leading to more memory consumption.
Sparse Training. We use iterative pruning [43], a common
approach of model compression, to demonstrate how PIT
can leverage dynamic sparsity to speed up sparse training.
At each step, the pruning algorithm generates a mask based
on the weight’s magnitude, which varies for different inputs.
We evaluated our approach on the GLUE dataset [59] using
the BERT model, which we pruned using block-wise sparsity
at two granularities: 32 × 64 and 32 × 1. Figure 15a shows
the time to process a batch of data (including both forward
and backward passes) for each sparsity granularity setting,
with a batch size of 32. PyTorch-S used Triton as the backend.
When the sparsity granularity was 32 × 64, PIT achieved a
1.5x∼3.0x and 1.7x∼2.2x speedup over PyTorch and PyTorch-
S, respectively. Although the sparsity granularity of 32 ×
64 is larger than the computation tile of PyTorch-S’s block
sparse kernel (i.e., 32× 32), the sparsity pattern of each layer
constantly changed during pruning. It requires every layer
of PyTorch-S to rebuild the sparse indices once per batch.
This makes PyTorch-S suffer from heavy index construction
overhead. PIT outperforms PyTorch-S on the granularity of
32 × 64 mainly due to its fast index construction.
Existing research has already shown a smaller sparsity

granularity could bring higher accuracy but challenges ex-
ecution performance optimization [40]. In our evaluation,
using the granularity is 32 × 1, the pruned model achieved
0.26%∼ 0.72% accuracy gain on the MNLI dataset and 0.11%
∼ 1.26% accuracy gain on the SST-2 dataset. For latency, PIT
outperformed PyTorch and PyTorch-S by 2.4x and 4.8x, re-
spectively. The computation time of PyTorch-S increased
significantly due to the misaligned data sparsity granularity
(32×1) and the block-sparse GPU kernels (32×32 or 16×16).
It is worth noting that PIT achieved almost the same speed
as 32× 64 when the sparsity granularity was set to 32× 1, be-
cause PIT can use the fine-grained 32 × 1 micro-tile to cover
the sparse data while using the 32 × 64 kernel for the most
efficient computation, achieving the best of both worlds.
Figure 15b shows the memory usage during the pruning

process. PIT used the least memory compared to PyTorch
and PyTorch-S. The memory footprint only dropped slightly
as the sparsity ratio increased, as the iterative pruning algo-
rithm only prunes the model weights during the pruning,
and weight tensors take up only a small fraction of memory.
In contrast, PyTorch and PyTorch-S store the dense weights
and gradients, so their memory footprint almost does not
change with the sparsity ratio.
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Figure 15. End-to-end latency per batch and memory footprints of magnitude iterative pruning under 32× 64 and 32× 1 block.
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Figure 16.Comparison of cuSPARSE, Sputnik, OpenAI Block
Sparse, SparTA and PIT on matrix multiplication (4096 ×
4096 × 4096) under different sparsity ratios.

5.3 Effectiveness of PIT transformation
PIT transformation on dense kernels. In this study, we
evaluate the performance of PIT’s sparse matrix multiplica-
tion kernel with different sparsity granularities and shapes.
To demonstrate the effectiveness of PIT transformation, we
compare PIT with several other sparse libraries, including
cuSPARSE, Sputnik, and OpenAI Block Sparse (Triton). We
also introduce SparTA [68], a state-of-the-art sparse deep-
learning compiler designed for static sparsity optimization.
For this experiment, we use a static sparsity pattern to evalu-
ate the computation efficiency, therefore the latency results
shown in Figure 16 do not include conversion or compil-
ing overhead. When the sparsity granularity is 32 × 64, PIT,
SparTA, and OpenAI Block Sparse have similar latency be-
cause they use the same dense computation tile. cuSPARSE
and Sputnik perform poorly due to their inefficient fine-
grained computation granularity. When the sparsity granu-
larity is 32 × 1 and 1 × 64, Sputnik and SparTA outperform
cuSPARSE and OpenAI Block Sparse due to better granu-
larity alignment. For the sparsity granularity of 32 × 1, PIT
is 4.3x∼5.8x faster than Sputnik and 1.5x∼5.7x faster than
SparTA. For the sparsity granularity of 64×1, PIT is 1.1x∼2.3x
faster than Sputnik and 1.1x∼2.2x faster than SparTA. The
PIT transformation contributes to the performance gain of
PIT over Sputnik and SparTA by allowing PIT to perform the
efficient computation even under a small sparsity granularity
(i.e., 32 × 1) . In addition, PIT has a negligible overhead on
SRead and SWrite running at a speed close to the original
dense computation tile for different sparsity granularities.
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Figure 17. Latency of PIT with Tensor Core.

PIT transformation on hardware instructions. In this
experiment, we illustrate how PIT transformation can loosen
the constraints on hardware instructions, like wmma [4]. We
conduct sparse matrix multiplication on two different spar-
sity granularities (32 × 1 and 32 × 64) for a [4096, 4096] ×
[4096, 4096] matrix multiplication. The first input tensor
is sparse and stored in column-major format. The wmma
instruction only supports three shapes ([16, 16] × [16, 16],
[32, 8] × [8, 16], [8, 32] × [32, 16]) in half-precision, making
it unsuitable for a 32 × 1 sparsity granularity. We use PIT
transformation to derive two sparse kernels with micro-tiles
of 32×1 and 32×64, respectively. We apply the sparse kernel
with a micro-tile of 32 × 1 to perform sparse matrix multipli-
cation with 32× 1 sparsity granularity, while the kernel with
a micro-tile of 32× 64 is used for 32× 64 sparsity granularity.
Figure 16 shows the two sparse kernels generated by PIT
have similar latency at different sparsity ratios. It proves PIT
transformation introduces little overhead.

5.4 Conversion Overhead
In this experiment, we highlight the conversion overhead of
PIT in more detail. Specifically, we evaluate the conversion
overhead under different sparsity granularities and sparsity
ratios on a V100-32GB GPU2. Figure 18 shows the sparse
index construction time of PIT and PyTorch-S. PyTorch-S se-
lects the index construction function provided by cuSPARSE
when the granularity is 1 × 1 and the function provided
by Triton when the granularity is 16 × 16 and 32 × 32. PIT
is 3.6x∼4.7x faster than cuSPARSE when the granularity is
1 × 1, 11.2x∼14.2x faster than Triton when the granularity is

2Different from V100-32GB, PIT has a latency similar to PyTorch-S on V100-
16GB for tile size 1x1. The performance advantage of PIT over other tile
size on V100-16GB remains the same as in Figure 18.
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Figure 19. End-to-end conversion overhead of PIT.

16 × 16, and 13.3x∼26.5x faster than Triton’s index construc-
tion when the granularity is 32 × 32. As far as we know, PIT
is the first to support the fast online index construction for
all kinds of sparsity granularities.

To further evaluate the conversion overhead, we also mea-
sure the proportion of the conversion overhead in the end-to-
end latency of PIT. Specifically, PIT optimizes the dynamic
sparsity caused by different sequence lengths in the BERT
model. In addition to PyTorch, we also introduce TVM, a pop-
ular dense tensor compiler. Each task in TVM is finetuned
2000 steps by Auto-Scheduler (Ansor [67]). Figure 19 shows
the end-to-end latency of PIT and the baselines, including
the index construction overhead of PIT (“PIT Convert”) and
PyTorch-S (“PyTorch-S Convert”). The conversion overhead
of PIT accounts for 0.7% to 1.1% of the end-to-end latency,
which is almost invisible in the figure.

5.5 Micro-Tile Online Searching
Different sparsity patterns and different sparsity ratios may
lead to different optimal micro-tiles. PIT considers the effi-
ciency of the computation kernel and the computation waste
at the same time to find the best micro-tile configuration.
Table 3 shows the searched micro-tiles of 4096× 4096× 4096
matrix multiplication under different sparsity granularities
and ratios. Take the first line of Table 3 as an example. The
algorithm finds it most efficient to use a micro-tile of 16 × 1
to cover the granularity of 2 × 1 when the sparsity ratio is
95%. The micro-tile of 16× 1 for 2× 1 data leads to a sparsity
ratio of 66.39% in PIT’s computation. The micro-tile 16 × 1
is derived from the dense computation tile 16 × 32×128 by
applying PIT transformation on the second axis of the first in-
put tensor. PIT balances the trade-off between the efficiency
of the kernel and the computation waste on the fly. It takes

Sparsity
Granularity

Origin
Sparsity
Ratio(%)

Micro Tile
Sparsity

Ratio After
Cover (%)

Origin
Dense Kernel

Latency
(ms)

(2,1) 95 (16, 1) 66.39 [16, 32] × [32, 128] 8.04
(2,1) 99 (8, 1) 96.06 [8, 32] × [32, 128] 2.34
(4,1) 95 (16, 1) 81.45 [16, 32] × [32, 128] 4.29
(4,1) 99 (16, 1) 96.05 [16, 32] × [32, 128] 1.37
(8,1) 95 (8, 1) 95 [8, 32] × [32, 128] 2.34
(8,1) 99 (32, 1) 96.02 [32, 64] × [64, 32] 0.90
(32, 1) 95 (32, 1) 95 [32, 64] × [64, 32] 0.94
(32, 1) 99 (32, 1) 99 [32, 64] × [64, 32] 0.39

Table 3. The micro tile online search results for different
sparsity granularity and sparsity ratios.
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Figure 20. Investigation of the dynamics of sparsity patterns
in varying sequence lengths and ReLU.

30us∼100us for PIT to search for the best micro-tile and the
corresponding dense computation tile, which is fast enough
for online searching.

5.6 Dynamic Sparsity Pattern Study
A potential alternative solution for dynamic sparsity is to
memorize frequent sparsity patterns, compile optimized ker-
nels for them, and reuse these kernels when the pattern ap-
pears again. In this micro-benchmark, we invalidate this solu-
tion by investigating how frequently the dynamic sparse pat-
tern will appear multiple times. We use two widely-existing
dynamic sparsity patterns, i.e., the varying input sequence
lengths and the dynamic sparsity caused by the ReLU opera-
tor. Specifically, we traverse the MNLI dataset with different
batch sizes (8 and 32) and checkwhether the sparse pattern of
the current input batch has appeared in the previous batches.
Figure 20 shows the cumulative hit ratio of dynamic sparsity
that has appeared in previous batches. We find the repetition
ratios of the two sparsity patterns are both notably low. The
varying sequence lengths only have 0.4% requests hitting a
sparsity pattern that appeared in the previous batches. The
ratio is even lower to 0.1% for ReLU. Given the dynamic
nature of such sparsity, many previous research works for
static sparsity optimization are no longer applicable to dy-
namic sparsity. The sparse kernel optimized for a specific
sparsity pattern is almost non-reusable.

6 Related Works
Dynamic sparsity has emerged as a critical area for improv-
ing the efficiency of deep learning models. We discuss the
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different categories of existing solutions, including the soft-
ware solutions for both static sparsity patterns and dynamic
sparsity patterns, as well as the hardware solutions. The
comparison between PIT and these solutions can help to
better understand the technical contribution of PIT.
Optimizations for Static Sparsity Patterns. Ahead-of-
time compiler-based techniques like SparTA [68], TACO [7],
SparseTIR [64], Tiramisu [12], and SparseRT [61] involve
searching for an appropriate kernel configuration for a spe-
cific sparsity pattern. These techniques can achieve high
performance for a given sparsity pattern but fail to handle
dynamic sparsity patterns, which are only known at runtime.
The key contribution of PIT is to support dynamic sparsity
patterns on the fly through its low-overhead online sparsity
detection and sparse-dense data transformation (i.e., SRead
and SWrite). Moreover, for most static sparsity patterns, PIT
can achieve performance similar to the ahead-of-time com-
pilers, even though PIT can only detect the sparsity patterns
at runtime, greatly saving the compiling overhead.
Optimizations for General Sparsity Patterns. Although
general sparse libraries do not require ahead-of-time compi-
lation, e.g., OpenAI’s block sparse kernel [9], cuSPARSE [3],
cuSPARSELT [5], HipSparse [8], Sputnik [31], nmSparse [15],
these libraries only support or work effectively on specific
data granularity and computation granularity, making them
difficult to support more complex sparsity patterns. For ex-
ample, OpenAI’s block sparse kernel [9] only supports sparse
data blocks of 32 × 32, leading to wasted computation when
the sparsity pattern is more fine-grained (e.g., 1 × 32). PIT
solves the problem by micro-tile. PIT supports the online
construction of larger tiles by sparsely reading/writing mul-
tiple micro-tiles, which achieves both high GPU efficiency
and low sparsity coverage cost. Although ASpT [36] pro-
poses an adaptive tiling mechanism for fine-grained sparse
matrix multiplication, it introduces significant offline data
rearrangement overheads. But PIT can construct the tile with
negligible overheads as long as a micro-tile can saturate the
GPU memory transaction.
Hardware Optimizations for Sparsity Computation. In
addition to the above software solutions, many hardware op-
timizations have been proposed for the sparse computation
of deep learning models [2, 13, 17, 32, 62]. These hardware
optimization techniques often target specific sparsity pat-
terns. For example, NVIDIA’s Sparse Tensor Core [2] in A100
GPUs only supports a strict 2-in-4 pattern, i.e., every 1×4 tile
should have exactly 2 zeros, which greatly limits the appli-
cability to more diverse sparsity patterns. PIT not only does
not assume the sparsity pattern but also has the ability to
augment the limited sparsity patterns of existing hardware
solutions. For instance, when a matrix has mixed multiple
1x4 tiles with two sparsity patterns: two zeros and all ze-
ros, PIT can construct micro-tiles to only feed the two-zero
cases to the Sparse Tensor Core, avoiding the unnecessary

computation of all-zero tiles. Such a GPU kernel can be imple-
mented by combining PIT’s SRead/SWrite with the “mma.sp”
PTX instruction of Sparse Tensor Core, which we leave as
future work.
Optimization for LLMs. Among recent advances to opti-
mize the inference of large language models, vLLM [39] is
the most relevant to PIT. vLLM proposed Paged Attention
to “sparsely” load/save tokens from/to different physical ad-
dresses of GPU memory, breaking the continuous storage
limitation of tokens. It saves excessive padding of varying
sequence lengths and redundant copies during beam search.
Paged Attention can be treated as a domain-specific solu-
tion for the special dynamic sparsity pattern in generative
language models. PIT can be used to implement vLLM with
a customized PIT transformation policy. By design, PIT is
a general solution for dynamic sparsity that facilitates the
support of varying sequence lengths and more challenging
sparsity patterns (e.g., MoE, sparse attention, sparse train-
ing).

7 Conclusion
PIT takes a principled approach to support efficient execution
of dynamically sparse models on commodity accelerators,
based on permutation invariant transformation, a property
commonly existing in deep learning computations. With this
property, PIT constructs computation-efficient dense tiles
from hardware-friendly micro-tiles in an online manner. PIT
demonstrates a novel and effective way of handling dynamic
sparsity, a growing trend in deep learning. The extensive
evaluation shows PIT can accelerate dynamic sparsity com-
putation in both inference and training by up to 5.9x over
state-of-the-art solutions.
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