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Appendix
A Proof of Nodes Specification Covering

All Nodes
We prove the following theorem which shows a finite set
of 𝑝 number of pipeline templates, where the number of
nodes is (𝑛0, 𝑛1, . . . , 𝑛𝑝−1) (𝑛𝑖 < 𝑛𝑖+1), can fully cover the
node cluster with feasible number of nodes 𝑁 ′ any time
irrespective of how many failures happen on the cluster as
long as its feasibility holds.

TheoremA.1. 𝑁 ′ nodes ((𝑓 +1)𝑛0 ≤ 𝑁 ′ ≤ 𝑁 ) can always be
represented as a linear combination of the 𝑝 pipeline templates
with (𝑛0, 𝑛1, . . . , 𝑛𝑝−1) number of nodes, respectively, if the
following two conditions are satisfied:
1. 𝑝 > 𝑛0 − 1.
2. 𝑛𝑖 are consecutive integers (𝑛𝑖 + 1 = 𝑛𝑖+1) .

Proof. We first formulate an integer linear combination to
represent 𝑁 ′:

𝑁 ′ = 𝑥0𝑛0 + 𝑥1𝑛1 + . . . , 𝑥𝑝−1𝑛𝑝−1 (7)
where 𝑥𝑖 is the number of pipelines to be instantiated from
the pipeline template with 𝑛𝑖 number of nodes.

The Frobenius number𝑔(𝑛0, 𝑛1, . . . , 𝑛𝑝−1), the largest num-
ber that cannot be represented as a linear combination of
Equation 7, has proven to be:

𝑔 =

(⌊
𝑛0 − 2
𝑝 − 1

⌋)
+ 𝑑 (𝑛0 − 1) (8)

if the integer set (𝑛0, 𝑛1, . . . , 𝑛𝑝−1) is an arithmetic sequence,
i.e., 𝑛𝑖 = 𝑛0 + 𝑑 (𝑖 − 1) [39].
When we apply both Requirements 1 and 2, 𝑔 = 𝑛0 − 1.

Fault tolerance threshold 𝑓 is a non-negative integer; the
minimum feasible number of nodes 𝑁 ′ = (𝑓 + 1)𝑛0 is 𝑛0.
Therefore, any feasible 𝑁 ′ that is larger than 𝑔 and can be
represented as a linear combination of Equation 7. □

B Proof of Guarantee for Pipeline Template
Availability When Merging Pipelines

We first show this when failures happen in a single pipeline.
When we lose 𝑘 nodes (𝑘 > 0) from a pipeline, where all
pipelines have 𝑛0 nodes and are not able to yield any node,
Oobleck instantiates a new pipeline with 2𝑛0 − 𝑘 nodes by
merging it with another 𝑛0-node pipeline. We prove that a
pipeline template with 2𝑛0 − 𝑘 nodes is always available.

Theorem B.1. A set of pipeline templates always includes a
pipeline template with 2𝑛0 − 𝑘 nodes (2𝑛0 − 𝑘 ≥ 𝑛0).

Proof. A set of pipeline templates has pipeline templates with
up to 𝑁 − 𝑓 𝑛0 nodes (§4.1.1). Assume that we do not have a
pipeline template with 2𝑛0−𝑘 number of nodes specification,
then 𝑁 − 𝑓 𝑛0 < 2𝑛0 − 𝑘 and 𝑁 < (𝑓 + 2)𝑛0 − 𝑘 are assumed
to be true. To not break the fault tolerance threshold that
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(a) GPT-2 in P3.
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(b) GPT-3 Medium in P3.
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(c) GPT-2 in a2-highgpu-1g.

0 2 4 6 8 10 11
Time (hours)

0

10

20

30

40

Th
ro

ug
hp

ut
 (s

am
pl

e 
/ s

ec
on

d)

(d) GPT-3 Medium in a2-highgpu-1g.

Figure 12. GPT-2 and GPT-3 medium throughput changes in Amazon
EC2 P3 (top) and Google a2-highgpu-1g (bottom) instances.

we maintain at least 𝑓 + 1 model replicas after merging two
pipelines, we must have at least 𝑓 + 2 replicas, i.e., we should
have had at least (𝑓 + 2)𝑛0 nodes before failures. Since the
initial number of nodes 𝑁 is always larger than the number
of currently remaining nodes, 𝑁 > (𝑓 +2)𝑛0 inequality holds
and it contradicts our initial assumption. Therefore, we have
a pipeline template with 2𝑛0 − 𝑘 number of nodes. □

When failures happen across several pipelines, multiple
pipelines can have less than 𝑛0 nodes. Oobleck repeatedly
merges two pipelines until a new pipeline has enough num-
ber of nodes. Assume we merged𝑚 pipelines to get enough
number of nodes, i.e.,

∑𝑚
𝑖=0 𝑛𝑝𝑖 ≥ 𝑛0. It means merging𝑚 − 1

pipelines was not enough to get 𝑛0 nodes, i.e.,
∑𝑚−1

𝑖=0 𝑛𝑝𝑖 < 𝑛0.
With𝑛𝑝𝑚 ≤ 𝑛0, we have an inequality𝑛0 ≤

∑𝑚−1
𝑖=0 𝑛𝑝𝑖 +𝑛𝑝𝑚 <

2𝑛0. It has already been proved by Theorem B.1 that we have
a pipeline template for all numbers in the range.

C Throughput of All Models in Spot
Instances

Figure 12 shows throughput of unpresented models in the
paper due to lack of space, running on Amazon EC2 P3 spot
instances andGoogle a2-highgpu-1g spot instances. Varuna
could avoid fallback overhead by successfully checkpointing
ahead of preemption in small models, (e.g., BERT-large, GPT-
2, and GPT-3 medium), thus Varuna throughput matches
Oobleck on average. However, in large models, Oobleck out-
performs it. Note that lines are smoothed for visibility and do
not precisely represent throughput. Varuna has more spikes
down to 0 throughput in reality thus has less throughput.
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