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ABSTRACT
Emerging inter-datacenter applications require massive loads of

data transfer which makes them sensitive to packet drops, high latency,
and fair resource sharing. However, current congestion control (CC)
protocols do not guarantee the optimal outcome of these metrics.
In this paper, we introduce a new CC technique, Machine Learning
Aided Congestion Control (MLACC), that combines heuristics and
machine learning (ML) to improve these three network metrics.
The proposed technique achieves a high level of fairness, minimum
latency, and minimum drop rate. ML is utilized to estimate the ratio
of the available bandwidth of the bottleneck link while the heuristic
uses this ratio to enable end-points to cooperatively limit the shared
bottleneck link utilization under a predefined threshold in order to
minimize latency and drop rate. The key to achieving the desired
fairness is using the gradient of the link utilization to control the
sending rate. We compared MLACC to BBR (which is at least on
par with the state-of-the-art ML-based techniques) as a base case
in different network settings. The results show that MLACC can
achieve lower and more stable end-to-end latency (25% to 52%
latency saving). It also significantly reduces packet drop rates while
attaining a higher fairness level. The only cost for these advantages
is a small throughput reduction of less than 3.5%.
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1 INTRODUCTION
With the increase in accessibility and popularity of the Internet,

the demand for the quality and efficiency of Internet services grows
as well. Technological advancements have led to the widespread
execution of parallel computing applications within and between
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datacenters. These applications such as distributed training [17],
SPark [21], and MapReduce [6] work by continuously alternating
between communication and computation phases. During the com-
munication phase, the data required to execute parallel tasks are
transferred over the network to other machines or other datacenters.
The computation phase can only start after completing the transfer
of all the required data. Applications using such parallel computing
paradigms are oversensitive to three communication metrics: latency,
packet drops, and fairness among different data transfer connections.
For instance, if a data transfer connection for a sub-task experiences
a high packet loss rate, the whole task will be blocked waiting for
the sub-task to be completed. The same situation will also occur
if the end-to-end latency for a sub-task is significantly longer than
others. As a result, these communication metrics can significantly
increase the task completion times, resulting in an overall degra-
dation of the parallel application performance. In addition to these
new inter-datacenter services, traditional applications such as hy-
pertext transfer protocol (HTTP), file transfer protocol (FTP), and
real-time communications (RTC) are also significantly affected by
these metrics, and their performance can be substantially improved
by optimizing these factors.

Congestion control (CC) techniques aim to improve network
performance by preventing or mitigating congestion if it occurs.
CC is an important component in data and network communication
that determines the three aforementioned major parameters: latency,
packet drop rate, and fairness, in addition to throughput. However,
none of the current TCP congestion control algorithms can satisfy all
these requirements. For instance, bottleneck bandwidth and round-
trip time (BBR) congestion control algorithm [12] (which is the
state-of-the-industry (SOTI)), tries to minimize the average latency
and achieve maximum link utilization. However, several studies show
that while BBR works quite well for a single flow at a bottleneck link,
it suffers several limitations in different scenarios [4, 10]. Through
extensive experimental evaluation, the authors in [10] concluded that
BBR leads to a sustained overload of the bottleneck, which results in
the increase of in-flight messages and longer queuing times at the
bottleneck buffer, subsequently leading to increased queuing delays
in case of large buffers as well as a massive amount of packet loss.
This experimental evaluation of BBR also showed that it has no
mechanism to converge to a fair share of the bottleneck link among
different BBR flows. Moreover, the authors in [23] demonstrated that
BBR incurs a round trip time (RTT) fairness problem where a longer
RTT flow would dominate a competing flow with shorter RTT.

Motivated by the aforementioned emerging technologies and the
limitations of the SOTI, we propose a novel congestion control
technique, MLACC, that combines heuristics with machine learning
(ML) to take advantage of the successes in the ML field while
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avoiding problems like low generalization that ML can bring. The
goals of this CC technique are: 1) to minimize the queuing at the
bottleneck buffers (consequently minimizing the queuing delay and
packet drops) and 2) simultaneously achieving a fair share of the
bottleneck’s resources. The key to achieve these goals is twofold.

The first objective is achieved by allowing the rate controller of
the proposed CC algorithm to estimate the available bandwidth ratio
(𝑎𝑡 ) of the bottleneck using a ML model. Then, the heuristic controls
the sending rate based on the bottleneck link utilization 𝑢𝑡 = 1 − 𝑎𝑡
obtained from the estimation. The bottleneck link utilization can
be considered as a common signal from the network to different
senders sharing the same bottleneck. Based on this signal, those
senders can coordinate to change their rates in such a way that
avoids overloading the bottleneck link. In some scenarios, such as
in-datacenter networking, the ML model can be replaced by in-band
network telemetry (INT) [18] if all nodes are INT capable. However,
that is not guaranteed over the Internet. In this paper, we focus on
using ML since it can work in all scenarios and does not require any
network hardware changes.

The second objective is fulfilled by using the gradient of the
available bandwidth ratio (𝑎𝑡 ) with respect to the sending rate to
adjust the rate and the congestion window (CW). Using this gradient
enables different senders sharing the same bottleneck to converge
and obtain a fair share of the available bandwidth of the bottleneck
link. The contributions of this paper are:
• We propose a new congestion control technique that aims to

minimize the queuing delay and drop rates at the bottleneck
link and increase the fairness among different connections
sharing the same bottleneck.
• We develop a long short-term-memory deep neural network

model and train it on simulated data to estimate the ratio of
the available bandwidth at the bottleneck link. This estimation
is used by the heuristic to adjust the CW.
• The proposed algorithm is developed in NS3 [9] platform and

evaluated against TCP-BBR in different scenarios. We select
BBR as a benchmark since it is on par with the state-of-the-art
(SOTA) ML-based techniques [19].

The rest of the paper is organized as follows. Section 2 provides an
overview of the different congestion control techniques and outlines
their advantages and limitations. Then, in Section 3, we explain the
proposed framework including the heuristic and the different ways
to obtain the bottleneck utilization. It also provides the details of the
ML model as well as the prediction accuracy results. The comparison
with BBR is introduced in Section 4 along with discussions of our
findings, followed by the final conclusion and future extensions in
Section 5.

2 RELATED WORK
End-to-end CC systems are typically classified into loss-based,

delay-based, and hybrid techniques. Traditional loss-based approaches
such as Reno[11] and CUBIC [15] use losses as congestion signals
and are based on additive-increase/multiplicative-decrease. These
approaches aim to achieve high throughput by constantly filling the
link buffer, in which case, buffer bloat can occur if bottleneck buffers
are large. It can also result in lower throughput in the case of smaller
buffers as the increase in loss may be interpreted as congestion. This

causes long delays, making it unsuitable or ideal for delay-sensitive
applications.

Delay-based CC methods such as TCP BBR [5] and TCP Vegas
[3] utilize measured transmission delays to regulate the sending rate.
They are better suited for high-speed and dynamic networks, like
wireless networks, since they are not influenced by random packet
loss. However, accurately measuring the transmission delay still
poses a significant challenge [14] along with the other problems
mentioned in Section 1 regarding fairness, link overutilization, and
significant packet loss [16].

Other heuristics, outside the hard-wired mappings in traditional
heuristics, address specific network scenarios based on the environ-
ment’s characteristics. For instance, Sprout [20] concentrated on
cellular networks, whereas load proportional differentiation (LPD)
[22] and datacenter TCP (DCTCP) [1] targeted datacentre networks.
Such traditional CC techniques may work well in certain scenarios,
but they cannot guarantee high performance in all network scenar-
ios and changing traffic patterns can also affect their performance.
Therefore, an intelligent CC approach such as ML-based algorithms
needs to be considered.

The advancements in ML and artificial intelligence (AI) inspired
the research community to utilize these technologies in congestion
control such as [2, 8, 13, 24]. The SOTA ML-based CC is Aurora,
which depends completely on a deep reinforcement learning (DRL)
model. The agent in Aurora uses statistics about latency and the
ratio of packets sent to those acknowledged as states and actions,
respectively. It has been demonstrated that Aurora outperforms one
of the most popular TCP variants, CUBIC, while being on par with
BBR. Another example of ML-based CC is presented in [2], which is
a hybrid bandwidth predictor for RTC. It utilizes an initial heuristic-
based approach, then switches to a full RL-based model that attempts
to learn from network statistics such as receiving rate, packet loss,
and packet delay. However, it is only tested for RTC since it uses the
statistics generated by the RTC receiver.

Compared to SOTA CC techniques such as [2, 13], our proposed
technique does not depend completely on ML to avoid the ML
problems such as the lack of generalization in the offline trained
models as well as exploration problems of online DRL-based models.
Instead, our proposed technique integrates heuristics with ML, where
the ML model assists the heuristic by estimating the available ratio
of the bottleneck bandwidth. The heuristic, which is designed based
on network fundamentals, can be generalized to a wide range of
network settings.

3 THE PROPOSED FRAMEWORK
This section explains the proposed framework and its components.

It starts by discussing the idea behind the algorithm and then detailing
the operation of different components.

3.1 Background
The first question we asked when addressing this problem was,

"Why would smart CC algorithms like BBR and CUBIC cause
packet drop and experience a queuing delay in some scenarios?".
The main cause of these issues is that they try to achieve high
bandwidth utilization. For instance, BBR in its bandwidth probing
phase, aggressively increases its rate to achieve the highest possible
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rate, which can overwhelm the bottleneck, resulting in longer queuing
delay and possibly packet loss [10].

To solve this problem, MLACC defines a bandwidth utilization
threshold 𝑢𝑡ℎ𝑟 and tries to maintain the bottleneck utilization around
it with a tolerance factor 𝛾 . The advantage of this method is that
packet drop and queuing delay will be minimized since both are
exponentially increasing with the link utilization. It periodically
(every 50𝑚𝑠 in our setting) estimates the average utilization 𝑢𝑡 of the
bottleneck over the last interval using the ML model. If𝑢𝑡 > 𝑢𝑡ℎ𝑟 +𝛾 ,
the link is overutilized and the sender tries to decrease its rate, and
vice versa for the underutilization state. If (𝑢𝑡ℎ𝑟 +𝛾 > 𝑢𝑡 > 𝑢𝑡ℎ𝑟 −𝛾),
the link utilization is in an acceptable range. In this case, the sender
tries to carefully increase its rate to respond quickly to any change in
network conditions. Figure 1 compares the operating points of BBR
to the proposed model, which shows how we sacrifice a small ratio
of the throughput to achieve our CC design objectives.

Figure 1: The Operation of MLACC vs. BBR.

There are two challenges facing this idea. The first is how the
sender, which resides in the end-node, can obtain the bottleneck
link utilization. The second challenge is that even if the sender can
accurately obtain the bottleneck link utilization for its path, it does not
know the varying number of traffic flows using the same bottleneck.

In our approach, the first challenge is solved by using an ML
model to estimate the link utilization from the connection history.
In particular, we developed a long short-term memory (LSTM)
deep neural network (DNN) model that uses the connection history
statistics such as latency and packet loss rate to estimate the available
ratio of the bandwidth (𝑎𝑡 ). This ratio is the complement of the link
utilization. Details of the model will be explained in Section 3.4. To
solve the second challenge, we developed a heuristic that uses the
estimated available ratio of the bottleneck bandwidth to adjust the
rate and congestion window based on the gradient of 𝑎𝑡 with respect
to the sending rate.

3.2 How to increase the rate without overwhelming
the bottleneck?

The main idea behind using the available bandwidth ratio 𝑎𝑡 to
update the rate is illustrated in Algorithm 1. In this algorithm, the
sender assumes the worst case in order to avoid overloading the
bottleneck. To understand the worst case, we can imagine a sender
receiving 𝑎𝑡 for the bottleneck in the current time step. There are
two extreme cases: 1) there are multiple senders (i.e., 𝑛) using this
bottleneck, or 2) this sender is the only one using the bottleneck. In
the first case, the sender contributes to the link load, on average, by
1
𝑛 × 𝐿𝑡 (where 𝐿𝑡 is the current link load). If it increases its rate by
factor 𝑓 , it will increase the load on the bottleneck by the ratio of
𝑓
𝑛 , on average. It is clear that a smaller 𝑛 means a higher impact of

Figure 2: The state machine and bottleneck utilization.

the sender on the link load. Therefore, from the sender’s perspective,
𝑛 = 1 (i.e., only itself is using the bottleneck) is the worst case since it
will increase the load on the link by the same factor 𝑓 . In order to avoid
overloading the bottleneck link, the sender updates the rate based on
this worst-case assumption. Using this assumption, the available BW
can be calculated as 𝑏𝑤 =

𝑟𝑡
1−𝑎𝑡 =

𝑟𝑡
𝑢𝑡

, where 𝑟𝑡 is the current sending
rate. As shown in Algorithm 1, the sender checks if the current link
utilization is far from the target utilization with a predefined distance
𝛾 = 0.05. It will calculate the available bandwidth (based on the
worst-case assumption) and increase the rate by a factor 𝑓𝑡 of the
available bandwidth, i.e., 𝑟𝑡+1 = 𝑟𝑡 + 𝑓𝑡 × (𝑏𝑤𝑡ℎ𝑟 −𝑟𝑡 ). Subsection 3.3
explains the heuristic and how it calculates 𝑓𝑡 to reflect the sender’s
impact using the gradient of the available bandwidth ratio.

3.3 The Congestion Control Heuristic
The heuristic in our CC algorithm defines a utilization threshold

𝑢𝑡ℎ𝑟 as mentioned above. Figure 2 shows the state machine of the
proposed CC heuristic. The connection starts in the "Initial" state
where it applies an exponential increase (the CW doubles every
RTT). This state also generates historical data for the ML model to
estimate the available ratio of the bandwidth. It continues in this
state for a predefined time interval os 1 second or until the RTT
becomes significantly high (i.e., 𝑅𝑇𝑇 > 3 × 𝑅𝑇𝑇𝑚𝑖𝑛 ) or a packet
drop is detected. Then, it will use the collected history and the ML
model to estimate 𝑎𝑡 at this time. Based on the value of 𝑎𝑡 , it will
enter one of the three states as shown in Figure 2. For each of the
three states (over utilized, under utilized, and in-range), the heuristic
utilizes an algorithm to update the sending rate and the CW. It is
intuitive to increase the CW in the under utilized state (UUS) and
decrease it in the over utilized state (OUS). However, the question is
how much the increase or decrease should be.

Algorithm 1 Update CW
Input:(𝑎𝑡 ,𝑟𝑡 , 𝑢𝑡ℎ𝑟 , 𝛾, 𝑟𝑡𝑡, 𝑓𝑡 )

1: procedure ⊲ (update the sending rate and CW using the
increase factor 𝑓𝑡 )

2: if |𝑢𝑡 − 𝑢𝑡ℎ𝑟 | > 𝛾 then ⊲ as long as the current utilization is
far from the target.

3: 𝑏𝑤 ← 𝑟𝑡
1−𝑎𝑡 =

𝑟𝑡
𝑢𝑡

⊲ Estimate the available BW
assuming the worst case.

4: 𝑏𝑤𝑡ℎ𝑟 ← 𝑢𝑡ℎ𝑟 × 𝑏𝑤
5: 𝑟𝑡+1 ← 𝑟𝑡 + 𝑓𝑡 × (𝑏𝑤𝑡ℎ𝑟 − 𝑟𝑡 )
6: 𝑟𝑡+1 ←𝑚𝑎𝑥 (𝑟𝑡+1, 𝑟𝑚𝑖𝑛)
7: 𝐶𝑊 ← 𝑟𝑡+1/𝑟𝑡𝑡
8: end if
9: return 𝐶𝑊 ⊲ Return the new sending rate.

10: end procedure
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To decide how much the rate should increase/decrease, the sender
should consider two factors. The first is the current sending rate 𝑟𝑡 ,
where the higher the sending rate the lower the increase (and the
higher the decrease), and vice versa. The second is how much this
rate contributes to the bottleneck load i.e.,𝑚𝑡 =

𝑟𝑡
𝑙𝑡

, where 𝑙𝑡 is the
load on the bottleneck link and𝑚𝑡 is the contribution ratio. Again,
the higher the flow contribution the lower the increase and the higher
the decrease. The following subsections describe how each state
changes the sending rate.

3.3.1 Under Utilized State . In this state, each sender tries to
increase its rate based on the gradient of 𝑎𝑡 with respect to its rate
changes. Every RTT, the sender calculates the factor 𝑓𝑡 at this time
and then calls Algorithm 1 to calculate the rate and CW, as shown in
Algorithm 2.

To calculate 𝑓𝑡 , the gradient 𝑔𝑎 is used as a measure for the impact
of this flow on the bottleneck link. The higher this impact, the higher
the contribution of this flow to the link utilization, consequently the
lower the rate increment. Since 𝑔𝑡 ∈ [−∞,∞], the sigmoid of the
gradient 𝑆𝑔 is used. Figure 3 illustrates the meaning of 𝑆𝑔 as a measure
of impact. On the right side of the graph, 𝑔𝑎 > 0 means that the sender
has increased the rate and the available bandwidth ratio has also
increased (the link utilization decreased) in the previous RTT. This
indicates that either the sending rate is very small compared to the
other senders, or the other flows on this link have stopped or decreased
their rates. In both cases, the sender can safely increase its rate. On
the other hand, when 𝑔𝑡 < 0, this means the available bandwidth 𝑎𝑡
changed proportionally to the rate change in the previous interval,
which indicates that this flow has a significant impact on the link
utilization and the sender should increase the rate inversely with this
impact (i.e., if the sender rate is a significant portion of the link load,
the rate should be increased slowly to avoid congestion). The factor
𝑓𝑡 is calculated as 𝑓𝑡 = 𝑓 × 𝑆𝑔 for this situation. In this Algorithm, 𝑓
is the aggressiveness parameter which is set to 1.25.

3.3.2 Over Utilized State . If the bottleneck utilization𝑢𝑡 > 𝑢𝑡ℎ𝑟 +𝛾
then there is a high risk of overwhelming the bottleneck and its queue,
which will increase the queuing delay and packet drop. In this state,
the sender reduces its sending rate and congestion window. To do that,
the sender uses the same Algorithm 2. The only difference between
the under utilized and the over utilized states is in Line 9 and Line
12 in Algorithm 2. In the OUS, the aggressiveness of the decrease
should be inversely proportional to 𝑆𝑔, i.e., 𝑓𝑡 = 𝑓 × (1 − 𝑆𝑔). For
instance, if the normalized gradient 𝑆𝑔 → 1, this sender has a very
low contribution to the bottleneck load and the sender should slowly

Figure 3: The gradient as a measure of impact.

Algorithm 2 Calculate the factor 𝑓𝑡 and Update CW
Input:(𝑎𝑡 , 𝑎𝑡−1,𝑟𝑡 , 𝑟𝑡−1, 𝑆)

1: procedure ⊲ (Use the connection statistics (𝑎𝑡 , 𝑎𝑡−1,𝑟𝑡 , 𝑟𝑡−1)
and the current state 𝑆 to calculate 𝑓𝑡 and update the CW )

2: 𝑓 ← 1.25 ⊲ Set the aggressiveness parameter 𝑓
3: 𝛿𝑅 ← 𝑟𝑡−𝑟𝑡−1

𝑟𝑡

4: 𝑔𝑎 ← 𝑎𝑡−𝑎𝑡−1
𝛿𝑅

⊲ Calculate the gradient of 𝑎𝑡
5: 𝑆𝑔 ← 1

1+𝑒−𝑔𝑎 ⊲ Calculate the gradient sigmoid 𝑆𝑔
6: if 𝑆𝑔 ≤ 0.5 then ⊲ If this flow has impact
7: 𝑆𝑔 ← 2 × 𝑆𝑔 ⊲ Normalize 𝑆𝑔
8: if 𝑆 is Under Utilize then
9: 𝑓𝑡 ← 𝑓 × 𝑆𝑔 ⊲ Update 𝑓𝑡

10: end if
11: if 𝑆 is Over Utilize then
12: 𝑓𝑡 ← 𝑓 × (1 − 𝑆𝑔) ⊲ Update 𝑓𝑡
13: end if
14: end if
15: Call Alg. 1 with 𝑓𝑡 ⊲ Call Alg. 1 and pass 𝑓𝑡
16: end procedure

decrease its rate; consequently, 𝑓𝑡 should be close to zero which will
be multiplied by a negative value (𝑏𝑤𝑡ℎ𝑟 − 𝑟𝑡 ) in Algorithm 2.

3.3.3 In Range State . In this state, each sender tries to increase
its rate as a kind of probing for available bandwidth. If all senders
increase their rates by the same amount, the sender with the highest
rate will dominate the bandwidth. To achieve a fair bandwidth
share among different senders, each sender increases its rate while
considering two factors. The first is the current sending rate 𝑟𝑡 , where
the increase should be inversely proportional to its current rate. The
second factor is the impact of the current rate on link utilization,
similar to the UUS and OUS.

The first factor is considered by calculating 𝑆𝑟 which is the
sigmoid of the current rate divided by 𝛽, the rate impact parameter,
and normalizing it (since 𝑆𝑟 ∈ [0.5, 1]) as in Equation 1. The rate is
then increased by a factor of 1 − 𝑆𝑟 as in Equation 2. This way, the
senders with high rates will increase their rates very slowly while
senders with low rates can quickly increase their rates.

𝑆𝑟 = 2 × ( 1

1 + 𝑒−
𝑟𝑡
𝛽

− 0.5) (1)

𝑟𝑡+1 = 𝑟𝑡 + (1 − 𝑆𝑟 ) (2)

where 𝛽 = 1 is the rate impact parameter. This parameter can also be
used to control how aggressively the sending rate changes. Increasing
𝛽 can lead to a faster convergence but with that comes a risk of rate
and delay fluctuation.

To consider the sender’s impact, which can be measured by the
gradient, the sender applies the UUS procedure. Doing this allows the
algorithm to address very extreme cases such as low link capacities,
in which even small rates may have a significant impact.

3.4 The Prediction Model
Estimating the ratio of the bottleneck link utilization is an im-

portant component of the proposed MLACC. In this section, we
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introduce our ML prediction model that takes in historical network
statistics and outputs the available bandwidth ratio in the network.

3.4.1 The Available Bandwidth vs. Its Ratio. Theoretically, it may
be easier for the CC algorithm to adjust its sending rates with
an available bandwidth prediction rather than the bandwidth ratio.
However, the prediction of the absolute available bandwidth is
dependent on the total link capacity and the current load(s) on the
link. This makes training a model extremely challenging since it
would require more features than those we can obtain from connection
statistics. Moreover, the prediction accuracy will be significantly
lower due to the weak relationship between the connection statistics
and the actual value of the total link capacity. On the other hand,
the ratio of the available bandwidth to the total link capacity can be
directly translated to the link utilization, which is highly correlated
to the end-to-end latency (or queuing delay) and packet drop rates,
making the prediction of the available bandwidth ratio easier and
more accurate.

3.4.2 Data Collection. Acquiring a ground truth bandwidth ratio
is among the most critical and challenging factors in producing
an accurate bandwidth ratio prediction. It is extremely difficult to
measure the available bandwidth within real networks along with
end-point statistics. To gather accurate data for training the ML model,
NS3 [9] is used. Employing a simulator gives the flexibility of creating
different network environments and conditions whilst collecting
statistics from both network devices (to obtain the bottleneck link
utilization) and end nodes (for input features such ad RTT and packet
drops). The setup for data collection is as follows.

On the NS3 simulation platform, we created a network topology
shown in Figure 5. The capacity of the bottleneck link and its queue
size are changed to model different real-world network environments
with queuing delay and packet loss. Using a simulated environment
also greatly reduces the data generation time compared to an em-
ulation approach, which gives us the opportunity to produce data
with link capacities ranging from 5Mbps to 50Mbps. Over this topol-
ogy, a client is configured to send background traffic to the server
with normally distributed packet size and random exponentially
distributed packet inter-arrival time to mimic background traffic in a
real network. The added randomness in the packets helps prepare
the model for uncertainty in a real network. Simultaneously another
client sends probing data to measure the connection parameters by
recording packet sending/receiving times and sequence numbers to
calculate the average and standard deviation of latency, its first and
second-order derivatives, and packet loss. These parameters are the
input features used in the bandwidth ratio estimation. The features
are smoothed using sliding window to reduce the effects of random
sudden fluctuations in the individual measurements. The ground truth
bandwidth ratio is calculated by dividing the available bandwidth by
the link capacity. Both the input features and the ground truth are
then time-matched and sorted as time-series data in preparation to
be processed by the ML model.

3.4.3 Model Architecture. The architecture is a LSTM model
composed of multiple layers of LSTM units each containing a
memory cell and three gates: input gate, forget gate, and output gate.
The memory cell, or cell state, carries information through the model
which can be added or removed from the cell by the gates. These

(a) Predicted vs. Actual Values (b) Prediction Error Distribution

Figure 4: The prediction results.

gates control what the model memorizes, and this is done with the
help of sigmoid and tanh activation functions [7].

The input to our LSTM model is packet-level historical network
statistics with a resolution of 0.1 seconds. We use the 𝑛 most recent
time-steps as our input window [𝑡 − 𝑛, 𝑡], and the next 𝑡-th time-
steps as our output prediction window where 𝑡 = {𝑛, 𝑛 + 1, 𝑛 + 2, ...}.
The historical data is represented by 𝑋 = [𝑥𝑡−𝑛, ..., 𝑥𝑡−1] such that
𝑥 ∈ R𝑚×𝑛 where 𝑚 is the number of features. Since the LSTM
functions by remembering patterns of the input data, a historical
length of 10 time steps is set to give enough past information to
the LSTM while still maintaining its adaptability to fluctuations in
the network. The architecture of our model includes one input layer,
three hidden layers with 10 LSTM units each, and one output layer.
The internal parameters of the model used to map the input features
to the output prediction are updated during the training stage and a
grid search is conducted to select the best model hyperparameters.

3.4.4 Model Prediction Results. Once the simulated data has been
sorted into a time-matched data format for each link capacity, each
individual set of data is then divided using an 80/10/10 split into
three groups: train, validation, and test. The divide is done randomly
so that the model is not always training and tuning its parameters
on data of the same pattern and overfitting. The data sets are then
normalized before input to the model.

After training and parameter tuning using validation data, the
performance of the model is evaluated on unseen test data. The main
metric used to quantify the test prediction results is the mean absolute
percentage error (MAPE).

Our model was able to achieve an overall 4.15% MAPE and as
can be seen in Figure 4a, it is able to differentiate the bandwidth
ratios across 5 different link capacities. Aside from the mean error
value, the distribution of the absolute percent error was also taken
into consideration (Figure 4b). By calculating the error percentiles,
it was found that almost 65% of our predictions lie within the 5%
MAPE range, and only less than 4% are above a 20% error rate.

Figure 5: Evaluation Topology
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(a) Sending Rates (C=5Mbps) (b) Sending Rates (C=10Mbps) (c) Sending Rates (C=15Mbps)

(d) E2E Latency (C=5Mbps) (e) E2E Latency (C=10Mbps) (f) E2E Latency (C=15Mbps)

Figure 6: BBR vs MLACC

4 RESULTS AND EVALUATION
To evaluate the proposed CC framework, we implemented it in the

NS3 simulator [9]. We use the topology in Figure 5 to compare the
performance of the proposed CC technique to that of TCP BBR with
different clients sending data to the server. We elected to compare
with BBR because it has been implemented in several operating
systems and it is on par with the SOTA techniques [19]. The access
links (between R1 and the clients and between R2 and the server)
are configured with 1𝐺𝑏𝑝𝑠 speed and 5𝑚𝑠 latency. The latency of
the bottleneck link is set to 10𝑚𝑠, while its capacity𝐶 takes different
values [5Mbps, 10Mbps, 15Mbps] to study different scenarios. In all
of the experiments performed, 𝑢𝑡ℎ𝑟 = 0.95 and 𝛾 = 0.05.

We started the evaluation using a simple scenario where one client
sends a stream of data to the server for 10 seconds. The average total
throughput and the average end-to-end (E2E) latency over the 10 𝑠𝑒𝑐
are calculated and presented in Table 1 which shows the significant
reduction in the E2E latency. It also illustrates that the throughput
of MLACC is reduced by a small ratio. However, this reduction
becomes insignificant as the capacity increases. The throughput
of the proposed technique can be improved by increasing the link
utilization threshold 𝑢𝑡ℎ𝑟 , however, this will increase the risk of
packet drop and increase the latency.

To study how different connections impact the bottleneck, we ran
an experiment in which two clients send data to the server. The first
client starts at time zero and the other starts after 1 second. Figure 6
compares the sending rates and the E2E latency for three scenarios of
the bottleneck capacity. It shows that the E2E latency is reduced by
a range between 50% to 75% compared to BBR, as shown in Figure
6d, 6e, 6f. This also means that the packet drop is reduced because of
the shorter queuing delay. Figure 6 also demonstrates the fair sharing
of the link capacity in the case of MLACC, as this is an important

Table 1: BBR vs. MLACC for one client connection

5Mbps 10Mbps 15Mbps
Av. Av. Av. Av. Av. Av.

Rate Lat. Rate Lat. Rate Lat.
BBR 4.82 30.34 9.04 44.94 13.60 36.07
MLACC 4.67 22.51 9.14 21.49 13.65 21.82
Saving % -3.19 25.80 -1.12 52.17 -0.31 39.50

design objective. These benefits are achieved by sacrificing a small
portion of link utilization less than 3.5% in the worst case. Although
there are times, especially in lower bandwidth scenarios, where the
latency of MLACC becomes higher than BBR (Figure 6d), further
investigation demonstrated that the reason is the prediction error,
which is inevitable with ML approaches. Even with this prediction
error, MLACC continues to outperform the BBR algorithm. The
effect of the prediction error also becomes negligible in cases of
higher network capacities.

Figure 6c shows an important shortcoming in MLACC where its
convergence becomes slow as link bandwidth increases. Although
BBR has a slight advantage in convergence time, a fair share can not
be guaranteed between different BBR connections while MLACC
can achieve this goal. The proposed model uses two factors to control
the convergence, namely the aggressiveness factor 𝑓 = 1.25 and the
rate impact factor 𝛽 = 1. The results are based on these values. We
can increase these factors to achieve faster convergence, but this
may increase the sending rate fluctuation, especially in cases of low
bandwidth which is a well-known trade-off between convergence
and stability.
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5 CONCLUSION
In this paper, we present a new congestion control algorithm,

MLACC, that combines heuristics with a ML model and aims to
minimize the queuing delay and packet loss rates at the bottleneck
link while maintaining fairness across different connections that are
sharing the bottleneck. The proposed solution utilizes a ML model to
estimate the link utilization. The heuristic uses it to adjust the sending
rate. The proposed CC algorithm achieves high fairness as well as
low and stable end-to-end latency and drop rates by sacrificing less
than 3.5% of the throughput. This paper presents a first step toward
an efficient and fair CC algorithm that can satisfy the requirements
of emerging inter-cloud parallel applications. However, there are
several extensions to this paper that can be conducted based on
this step. An important extension is to mathematically optimize the
parameters used by the heuristic (the aggressiveness factor 𝑓 and the
rate impact factor 𝛽), or utilize another machine learning technique
to optimize them such as DRL. We also intend to compare MLACC
to alternative techniques that employ a similar approach and perform
extensive analysis for a wider range of network settings. Moreover,
we plan to study the performance of inter-cloud parallel computation
applications under the proposed congestion control technique.
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