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ABSTRACT
Knowing indoor occupancy states is crucial for energy optimization
in buildings.While neural networks can effectively be used to detect
occupancy based on carbon dioxide measurements, their applica-
tion is impeded by the need for sufficient labeled training data. In
this study, we analyze the prediction performance of three different
transfer learning (TL) methods leveraging target room data jointly
with data from other rooms. The methods include (1) pretraining
and fine-tuning, (2) layer freezing, and (3) domain-adversarial learn-
ing. Using data from five real-world rooms and one simulated room,
including multiple room types, we provide the most extensive evalu-
ation of TL in the field of occupancy prediction from environmental
variables to date. This work’s contribution further includes the ar-
chitecture and hyperparameters of a deep CNN-LSTM model for
CO2-based occupancy detection. Our results indicate that TL effec-
tively reduces the required amount of target room data. Moreover,
while previous literature was focused on pretraining with related
real-world data, we show that similar performance can be achieved
by the more practical approach of leveraging simulated data.
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1 INTRODUCTION
Data on building occupancy enables various use cases in terms
of building energy performance simulation or building automa-
tion [7, 22]. This can have a high impact in the current fight against
climate change. As stated by the International Energy Agency (IEA),
the buildings sector is responsible for 30% of global energy con-
sumption, with CO2 emissions annually increasing over the past
decade [19]. Moreover, the COVID-19 pandemic has shifted of-
fice occupancy away from standardized schedules, which further
increases the need for optimization. Integration of occupancy in-
formation into heating, ventilation, and air-conditioning (HVAC)
systems was experimentally shown to result in energy savings
of 37% in [22] and up to 48% in [7]. However, since manual data
collection is impractical, especially at the room level, occupancy
should be predicted automatically. In [38], the authors outline how
occupancy information inferred from environmental sensors can
be used for automatic heating set point scheduling. We differentiate
between two prediction problems: occupancy detection, which is
a binary prediction of presence in general, and occupancy estima-
tion (or counting), the prediction of the number of occupants. In
this study, we address the problem of occupancy detection. For
the majority of room types, including offices or residential spaces,
utilization is limited to a few occupants, and, with respect to energy
optimization, exact occupant count information has little advantage
over binary states. As the vast majority of today’s buildings are not
equipped with any dedicated sensing technology, there is a growing
branch of research on how to use available technologies or integrate
further technology [29, 30]. Technologies explored in the literature
include [29], among others, optical or thermal cameras, climate sen-
sors, passive-infrared (PIR) motion sensors, sound sensors, or smart
meters to measure energy consumption [11]. Rinta-Homi et al. [27],
for example, analyzed occupancy detection based on low-resolution
thermal sensors, and in association with this, the trade-off between
prediction ability and costs in terms of privacy and deployment. De-
spite being less accurate than approaches based on camera images,
environmental sensing of factors such as carbon dioxide, temper-
ature, or humidity has gained considerable research interest due
to its low-cost implementation and low privacy-intrusive nature.
Therefore, various machine learning approaches [8, 9, 15, 21, 40],
including deep learning [12], have been proposed to infer occu-
pancy from indoor climate. However, scarce data was identified
as one of the key challenges for accurate data-driven occupancy
prediction [25, 29]. CO2 rates or other indoor climate factors show
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different behavior depending on various factors such as room di-
mensions, infiltration rate, ventilation, or presence of humans or
plants. Collecting room-specific labeled training data over large
time periods is not applicable in practice. An approach to tackle
the impediment of data scarcity is transfer learning (TL). After its
huge success in the fields of computer vision and natural language
processing, TL has recently made its way into the domain of time
series data [33]. In this study, we adopt the definition of TL accord-
ing to Pan et al. [26]: "Given a source domain 𝐷𝑆 and learning task
𝑇𝑆 , a target domain 𝐷𝑇 and learning task 𝑇𝑇 , transfer learning aims
to help improve the learning of the target predictive function 𝑓𝑇 (·) in
𝐷𝑇 using the knowledge in 𝐷𝑆 and 𝑇𝑆 , where 𝐷𝑆 ≠ 𝐷𝑇 , or 𝑇𝑆 ≠ 𝑇𝑇 ."
We assume that the detection task remains unchanged (𝑇𝑆 = 𝑇𝑇 ),
while 𝐷𝑆 and 𝐷𝑇 may refer to different rooms, as in [3, 31], or
𝐷𝑆 may involve simulated data [34, 35]. Recent literature stud-
ies [14, 30] reviewing the application of TL methods for occupancy
estimation show that, to date, only a few TL-related studies exist for
environmental sensing. Moreover, previous works in this context
mainly propose a single transfer method and often evaluate it in one
specific scenario. This leaves a research gap regarding empirical
comparisons of transfer methods on different datasets, which this
paper aims to fill. Our contributions include:

• architecture and hyperparameters for a CO2-based deep
learning occupancy detection model found via an extensive
hyperparameter tuning run with data from five rooms,

• the evaluation of three transfer methods, namely pretrain-
ing and fine-tuning, layer freezing, and domain-adversarial
learning, with six different datasets,

• a comparison between the transfer from similar rooms and
a sim-to-real transfer from simulated CO2 data, and

• the provision of a preprocessed collection of datasets that
can be reused in further works on occupancy detection.

2 RELATEDWORK
Over the last years, several publications have addressed the esti-
mation or binary detection of occupancy based on indoor climate
factors including CO2. While some works directly analyze physical
dependencies and propose to infer occupancy, for instance, based on
the mass balance equation [8], the majority of relevant literature is
focused on machine learning (ML) solutions [3, 9, 10, 21], including
numerous works leveraging neural networks [12, 18, 40]. ML seems
more appropriate in this context since explicit modeling is difficult
due to the complexity of indoor CO2 dynamics and other climate
factors. Recently, some works have come up that apply TL in the
addressed research area in order to improve adaptability to differ-
ent rooms. Table 1 gives an overview of these. AriefAng et al. [3]
initially used a seasonal decomposition model to show that data
from an only slightly related domain, in terms of an academic office,
can be used to improve prediction performance for a cinema hall.
In [2], the authors extended their evaluation by further domains,
including classrooms and study zones. Zhang and Ardakanian [39]
proposed a transfer between similar rooms in a building using
a long short-term memory (LSTM) network. Despite being more
generalizable than [2, 3], the approach involves a weighting step
relying on domain knowledge. Weber et al. [34, 35] and Stjelja et
al. [31] recently applied a deep learning model from [12] to conduct
transfer via pretraining and fine-tuning, allowing more generaliz-
ability. While [31] focused on similar rooms in a building, [34, 35]
proposed the utilization of simulated data to improve predictions
for a real-world target office. Another work, by Khalil et al. [23], ap-
plied pretraining and fine-tuning with a multi-layer perceptron and
a stacked LSTM. With respect to their experimental results on the
transfer between offices in a university building, the authors again
pointed out the usefulness of TL for occupancy prediction [23]. As
well as most of the previous literature, they focus on transfer from
similar real-world rooms and do not consider the potential of a

Table 1: Literature on transfer learning for occupancy prediction from CO2 and other environmental factors

Publication Problem Factors Model Method Dataset Room
Type

Dataset
Size

Data
Rate

Stjelja et al.
2022 [31] Both CO2, Temp. Deep NN [12] Fine-Tuning,

Layer Freezing own1 2 Meeting Rooms 19 days,
64 days 3 min

Khalil et al.
2021 [23] Detect.

CO2, Temp.,
Humidity,
Motion

Deep NN
(MLP and
stacked LSTM)

Fine-Tuning own1 3 Offices
27 months,
3 months,
3 months

5 min

Weber et al.
2020 [34, 35] Detect. CO2 Deep NN [12] Fine-Tuning own1 1 Office,

1 Simulated Office
7 days,
500 days

5 sec2,
1 sec2

Zhang &
Ardakanian
2019 [39]

Est. CO2,
Air Flow LSTM, NN Fine-Tuning

with Reweighting
[1],
own1

2 Study Zones,
2 Classrooms,
3 Meeting Rooms

15 days,

1 year

1 min,
10 min

AriefAng
et al.
2018, 2017
[2, 3]

Both CO2

Seasonal
Decompo-
sition

Domain-
Specific

own1,
[1, 37]

1 Office Room,
1 Cinema Hall,
2 Study Zones,
2 Classrooms

2 months,
45 days,
15 days

5 min,
30 sec,
1 min

Detect.: occupancy detection. Est.: occupancy estimation or counting. Temp.: temperature.
NN: neural network. MLP: multilayer perceptron. LSTM: long short-term memory.
1 Data unpublished. 2 Downsampled to 1 min for model training.
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sim-to-real transfer using purely synthetic data from a dedicated
simulation. We assume that this can further reduce the need for
real-world data. A recent study by Rotem et al. [28] indicates that
even pretraining on randomly generated synthetic time series can
lead to improvements in time series classification.

While part of the literature on occupancy prediction combines
several climate factors [9, 12, 23], such as CO2, temperature, humid-
ity, and air pressure, other works include only CO2 [8, 18, 20, 21,
36, 40], which was, for instance, identified as the most informative
factor in [10]. The CO2 rate is closely related to human occupancy
and generally shows patterns that can clearly be attributed to pres-
ence or absence of individuals in a room. Using more input factors
can potentially help the model in inconclusive situations but does
not necessarily lead to improved overall prediction performance.
To the best of our knowledge, there is no broad evaluation showing
a clear advantage of using multiple climate factors over using CO2
only. Kraipeerapun et al. [24] even reported a higher accuracy when
using CO2, compared to the combination of CO2 and temperature.
In addition to this, even if the same or a slightly higher accuracy
could be achieved, temperature is strongly seasonal. This makes an
evaluation more difficult, as models trained during the winter sea-
son, for instance, may not perform the same on data from a warmer
time of the year. Other factors may be more useful. Banihashemi
et al. [5] reported a prediction improvement when combining CO2
with sound pressure level and illuminance. However, while CO2
sensors are already available in many modern buildings and can be
used to optimize ventilation as well, these factors require dedicated
sensors. In practice, additional sensor equipment on a room level
produces high costs. Aiming at a lower model complexity and better
applicability in practice, we use CO2 time series as single model
input. In this setting, TL is particularly important, as it was shown
in [5] that, compared to the combination with sound pressure level
or illuminance, training only with CO2 requires larger amounts of
training data until substantial results are reached.

3 METHODOLOGY
This section introduces the datasets used in this study, the applied
deep learning model and transfer methods, as well as the evaluation
metrics and the hyperparameter tuning process.

3.1 Datasets
In this study, we use CO2 and occupancy data from multiple real-
world datasets of different room types and scenarios, as well as a
dataset obtained from simulation.

Table 2: Overview of datasets

ID Name Room Type Days Occ.1 PR2

A Office A office 80 0-2 0.32
B Office B office 20 0-2 0.26
C Home living & sleeping 50 0-2 0.75
D Candanedo office 8 0-2 0.35
E Stjelja meeting room 26 0-12 0.11
F Simulated hypothetical office 100 0-1 0.26

1Occ.: typical number of occupants, 2PR: presence rate.
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Figure 1: Layout of the residential room for dataset C.

To ensure comparability, each dataset was resampled to a com-
mon 1-min resolution, and occupancy values were binarized to
represent presence (1) or absence (0). Incomplete or unoccupied
days were removed. Five of the prepared datasets are made publicly
available on GitHub.1 All datasets are summarized in Table 2.

A) Office A: These data were collected at 80 working days be-
tween September 2021 and June 2022 in an office room of a univer-
sity building with about 24 m2, located in Munich, Germany. The
data were collected through a sensory device and previously used
for occupancy detection in a study by Banihashemi et al. [5]. The
device consists of multiple sensors to capture indoor environmental
qualities (IEQ), including ambient light, sound pressure level, air
temperature, indoor air quality, relative humidity, and CO2. The
data were published under [4]. In this study, we only use the CO2
data, measured with a Sensirion SCD30 sensor, and the occupancy
ground truth, documented by additional manual recording. The
room is a two-person office but was predominantly used by a single
person due to Covid-19 restrictions.

B) Office B: Dataset B contains 20 working days from a second
office room in another part of the same building used for dataset A.
The two rooms have similar dimensions and measurement was
conducted equally. The data were as well published under [4].

C) Home (Living & Sleeping): For the Home dataset, we col-
lected data from 50 days of occupation in a residential building in
Munich, Germany, within the period between 30 April 2020 and
05 July 2020. Due to the Covid-19 lockdown regulations, the room
was occupied most of the time and used for working, living, and
sleeping. Therefore, this dataset reflects an untypical occupation
behavior and contrasts the office datasets with lower occupation
rates. The room is located on the ground floor and measures approx-
imately 16 m2. CO2 levels were measured with a Sensirion SCD30
sensor in intervals of 1 sec and later downsampled to a 1-min reso-
lution by averaging. The sensor was placed on top of a bookshelf
at a height of approximately 2 m. The room was regularly occupied
by two occupants who manually documented their occupancy via
button clicking. Figure 1 shows the layout of the room.

1https://github.com/CCWI/transfer_learning_for_occupancy_detection/
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D) Candanedo et al. 2016 (Office): Dataset D contains data
measured by Candanedo et al. [9], which were previously used
for occupancy detection. It was collected in a two-person office of
approximately 20 m2 within the period between 2nd and 18th of
February 2015. CO2 rates were measured with a Telaire 6613 sensor
multiple times per minute and downsampled to a 1-min resolution
by averaging. Ground truth was manually inferred from camera
pictures. As some days within the data were either not measured
completely or fully unoccupied, we selected a subsample of eight
complete days. We prepared two further subsamples, in which we
additionally removed (D.1) unexpected sensor behavior during non-
office hours, and (D.2) the same as (D.1) plus slowly falling CO2
values during occupation due to opening of the office door.

E) Stjelja et al. 2022 (Meeting Room): Dataset E contains data
measured by Stjelja et al. [31], which were previously used for oc-
cupancy detection. It was collected in a meeting room of a hospital
building in Finland. The room measures 21 m2 and is designed for
up to 12 occupants. The measurement was conducted in March
and April of 2021. Ground truth was documented in the form of a
binary occupation state using an infrared people-counting camera.
The authors collected further data, which we did not use, as the
room was not operated with constant airflow anymore. From the
data collected in [31], we selected a total of 26 occupied days under
constant airflow. As the data was available at a 3-min resolution,
we applied linear interpolation to obtain 1-min records.

F) Simulated (Hypothetical Office): Dataset F contains simu-
lated data for a hypothetical one-person office room with the same
dimensions as the room used for dataset A. The data was previ-
ously used for occupancy detection by Weber et al. in [34, 35]. First,
occupancy was simulated by considering typical office hours for
basic status transitions as well as a Markov chain to model random
movement. A second Markov chain was used to model the window
opening behavior. Afterward, CO2 rates were determined for each
time step based on mass balance calculations. Further details on the
simulation can be found in [35]. We selected 100 simulated working
days into dataset F.

3.2 Deep Learning Model
The deep learning model used in this study is inspired by the con-
volutional deep bidirectional long short-term memory (CDBLSTM)
proposed by Chen et al. [12]. It was introduced for occupancy es-
timation based on environmental factors outperforming various
previous approaches. Moreover, it has been successfully applied for
TL in the context of occupancy prediction [31, 34, 35]. As depicted
in Fig. 2, the model combines a one-dimensional convolutional
neural network (CNN), for the extraction of local features, and a
bidirected long short-term memory (BLSTM), that takes temporal
dependencies between these features into account. Subsequently,
a feed-forward network of fully connected (FC) layers is used for
final classification, with a layer-wise dropout for regularization
purposes. The combination of CNN and long short-term memory
(LSTM) is a typical approach that is widely applied in TL studies
on other time series prediction problems as well [33].

In contrast to [12], we focus on binary occupancy detection,
hence, we use sigmoid activation in the output layer instead of soft-
max. In addition, we treat the number of layers in each of the three
model parts as hyperparameters as we assume that the optimal layer
numbers depend on the problem setting, including input factors
and binary versus multi-class classification. After hyperparameter
tuning (see section 3.5), our model consists of two convolutions
with 200 and 50 filters, and with kernel sizes of 5 and 3 in the two
1D convolutional layers. Each of the two is followed by a max pool-
ing layer with a pooling size of 2. The convolutional network is
connected to three subsequent BLSTM layers with 50 cells per layer.
While a stateful BLSTM shows advanced performance if input se-
quences are not shuffled, we apply a stateless BLSTM and shuffling
to avoid overfitting. This is especially required for the domain-
adversarial model introduced in Sec. 3 to ensure that the domain
classifier receives sequences from both domains alternately. The
final FC classifier consists of one dropout layer with a dropout rate
of 0.5 and one FC layer with 100 neurons. The model is trained with
a batch size of 128 and Adam optimizer. We use input sequences of
30 minutes, generated by a sliding window technique on the origi-
nal time series. To avoid data leakage, we apply sliding windows
separately to distinct days in the dataset and use sequences from
the same day exclusively for either training or testing.

3.3 Evaluation Metrics
For model evaluation, we use two metrics. One is the accuracy (𝑎𝑐𝑐)
as it is the most widely used evaluation metric in similar studies.
It measures the percentage of correct predictions and is given by
Eq. 1, where 𝑡𝑝 , 𝑡𝑛, 𝑓 𝑝 , and 𝑓 𝑛 refer to true positive, true negative,
false positive, and false negative predictions.

𝑎𝑐𝑐 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓 𝑝 + 𝑡𝑛 + 𝑓 𝑛
(1)

Since the accuracy is of limited informative value for imbalanced
class distributions, it is not well suited, as most rooms, for instance,
office rooms, strongly tend to vacancy, especially during the night.
Hence, we use Cohen’s kappa [13] as a second, more informative
metric. Cohen’s kappa coefficient (𝜅) traditionally measures the
agreement between two annotators and can be interpreted as the
extent to which a model performs superior over a random classifier.
It is calculated according to Eq. 2, where 𝑝𝑒 is the expected accuracy
by chance, calculated by 𝑝 and 𝑛, predicted positives and negatives,
as well as 𝑝∗ and 𝑛∗, positives and negatives in the ground truth.

𝜅 =
𝑎𝑐𝑐 − 𝑝𝑒

1 − 𝑝𝑒
, 𝑝𝑒 =

𝑝 · 𝑝∗ + 𝑛 · 𝑛∗

(𝑝 + 𝑛)2
(2)

3.4 Transfer Learning Methods
In this paper, we apply the following transfer methods, representing
the three most widely adopted approaches for model-based time
series TL [33].

Pretraining and Fine-Tuning: A neural network is pretrained
on data from the source domain D𝑆 , and the trained model parame-
ters are reused to initialize a model for consecutive training, called
fine-tuning, with data from the target domain D𝑇 .
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Figure 2: Deep learning model architecture for occupancy detection.

While fine-tuning may include a modification of the training
procedure, in this paper, we retrain with training parameters re-
maining unchanged. We use the last 20% of the source dataset for
validation during pretraining. For validation, during fine-tuning,
we use one additional target day and apply two variants: In the first,
we use only target data, which we call vanilla fine-tuning. In the
second, we add an equal amount of source validation data already
seen during pretraining.

Layer freezing: A common variation of pretraining and fine-
tuning is layer freezing [33]. In this method, fine-tuning on target
data only applies to a subset of 𝑘 out of𝑚 model layers 𝑙𝑖 . We fine-
tune the last 𝑘 layers. Previous layers {𝑙1, ..., 𝑙𝑛} ⊂ {𝑙1, 𝑙2, ..., 𝑙𝑚}
with 𝑛 =𝑚 − 𝑘 are frozen, which means their parameters remain
unchanged during retraining. We apply two variants, (1) freezing
the layers of the CNN part of the model, and (2) freezing both CNN
and BLSTM.

Domain-Adversarial Learning: This method was introduced
by Ganin et al. [17] and uses two competing classifiers, the task
classifier (TC) and an additional domain classifier (DC). Both receive
features from a preceding feature generator as depicted in Fig. 3.
We calculate two loss functions, L𝑡 and L𝑑 , for TC and DC. In both
cases, we apply the binary cross-entropy. A gradient reversal layer
(GRL) [17] negates the loss from the domain classification branch.
This leads to the following aggregated loss for the feature generator,
where 𝜆 is a weighting factor that we set to 𝜆 = 1 in this study:

Lagg = L𝑡 − 𝜆L𝑑 (3)

Since the DC tries to discriminate between target and source sam-
ples, gradient reversal forces the feature generator to extract domain-
invariant feature representations. We apply two variants, placing
the DC (1) after the CNN or (2) after the BLSTM.

BLSTMCNN

FeedforwardInput Samples 
from Domains

FeedforwardPosi�on 1
Posi�on 2

Feature Generator

Task Classifier

Domain Classifier

GRL

Predic�on Loss

Domain Loss

Figure 3: Domain-Adversarial Architecture. GRL: Gradient
Reversal Layer.

3.5 Hyperparameter Tuning
To find the model architecture and training parameters described
in Sec. 3.2, we conducted a hyperparameter tuning process di-
vided into two phases: In phase 1, the task classifier, i.e., the base
CDBLSTM, was tuned. In phase 2, the domain classifier of the
domain-adversarial model was tuned, reusing task classifier param-
eters from phase 1.

Table 3: Hyperparameters, cardinality (#), and search values

Hyperparameter # Search Values
A. Training Parameters:
Batch Size 3 [32, 64, 128]
Window Size 3 [15, 30, 60]
Optimizer 4 [SGD, RMSprop,

Adam, Adadelta]
B. Number of Layers:
Number of Convolutions 2 [1, 2]
Number of BLSTM Layers 4 [1, 2, 3, 4]
Number of Dense Layers 4 [1, 2, 3, 4]
Number of Layers in DC3 3 [0, 1, 2]

C. Further Hyperparamters:
Stateful BLSTM 2 [True, False]
Convolutional Filters1 4 [50, 100, 150, 200]
Convolution Kernel Size1 2 [3, 5]
Number of BLSTM Cells1 2 10 [50, 100, 150, ..., 500]
Number of Dense Neurons1 2 5 [100, 200, ..., 500]
Number of Neurons in DC1 2 3 50 [10, 20, ..., 500]
Dropout Rates1 2 3 [0.1, 0.3, 0.5]
Dropout Rates in DC1 2 3 3 [0.1, 0.3, 0.5]

1 May exist multiple times, depending on the selected number of
layers (B.), with possibly different values each.

2 The listed values apply to the first layer. Consecutive layers are
restricted to have the same or half the value of the previous

(rounded up to the next listed discrete value), or the minimum.
3 Refers to the domain classifier (DC) tuned separately in phase 2.
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Phase 1:Basemodel tuningwas conducted by applying a Bayesian
optimization (BO). BO is an informed, sequential optimization strat-
egy based on the Bayes theorem that selects promising parameter
combinations according to previous evaluations. It is well-suited
for computationally expensive evaluations and outperforms unin-
formed strategies such as grid search or random search [32]. We
conducted 1000 iterations of BO to approximate the optimal hyper-
parameter setting within the search space, and used all real-world
datasets (A-E) for the tuning procedure. For each dataset, we re-
served the first 80% of the data for hyperparameter tuning, the
remaining 20% were held out for testing purposes. Among the first
80%, we randomly selected 5 consecutive days of data for training
and the following 3 days for validation. We decided on a training
data amount of 5 days, as our preliminary examinations showed
this to be the minimum amount of data needed for the untuned
deep learning model to produce solid results. By keeping the train-
ing data amount small, we ensure fast training times and allow a
large number of parameter settings to be searched in the tuning
procedure. Table 3 lists all parameters and their considered values
included in the hyperparameter search. We included (A) parameters
related to the training process and input data, i.e., different batch
sizes and optimizers, as well as input window sizes of either 15-,
30-, or 60-minute CO2 sequences, (B) different numbers of layers
for all model components, and (C) further hyperparameters such
as the number of neurons, filters, and BLSTM cells. In the case of
multiple layers per model component, we reduced the complexity
of the search space by constraining the number of neurons or cells
in consecutive layers to either (1) the minimum allowed value, (2)
the same as the preceding layer, or (3) half of the preceding layer’s
value rounded up to the next allowed value.

Phase 2: In phase 2, we tuned the number of layers and neurons
as well as dropout rates in the domain classifier branched from
the base model for domain-adversarial learning. We applied a BO
with 100 iterations. Within each iteration, we tested each of 20

possible source-to-target combinations within the set of datasets
A-E, with 5 repetitions each, and calculated the average Cohen’s
kappa accordingly. While again using five days of training data
from the source dataset, we used one additional day from the target
dataset for training and three target days for validation.

3.6 Experimental Setup
We applied a min-max normalization separately to each training,
validation, or test split. Model training and interference were con-
ducted on an Nvidia GeForce Tesla V100 SXM2. Keras and Tensor-
flow were used for implementation. All training procedures were
run with early stopping after five epochs without loss improvement.
The source code used for the experiments is made publicly available
on GitHub.2

4 RESULTS
To analyze transfer performance, we conducted multiple experi-
ments applying each of the transfer methods introduced in Sec. 3.4
to each possible combination of source datasets within A-F and
distinct target datasets within A-E. Simulated data (F) was not used
as target, as this would not represent any real-world use case. Each
experiment was repeated 20 times to increase reliability.

Fig. 4 shows the results for an exemplary selection of experi-
ments where two days of target data were used. The results indicate
that depending on the specific data, different transfer methods re-
sult in remarkable differences in prediction performance. While
pretraining and fine-tuning, for instance, performs best for combi-
nations 3 and 5, domain-adversarial learning shows superior results
in case 4 (Stjelja to Candanedo) and layer-freezing in case 1 (office
B to A). In addition to this, there are also differences in reliability.
Especially layer-freezing often shows large standard deviations.

2https://github.com/CCWI/transfer_learning_for_occupancy_detection/

Figure 4: Mean and standard deviation of Cohen’s kappa and accuracy by transfer method for five selected experiments with
two days of target data. The highest mean values are highlighted in red. t: target-only training (no transfer), PF: pretraining
and vanilla fine-tuning, PF2: pretraining and fine-tuning with source and target data, LF: layer freezing (frozen CNN), LF2:
layer freezing (frozen CNN-BLSTM), DA1/DA2: domain-adversarial training variant 1 or 2.
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In our experiments, the best transfer method almost always per-
forms superior to non-transfer, regardless of the source dataset,
except for some exceptions targeting the meeting room dataset
(E) by Stjelja et al. Combinations with dataset E suffer the most
from negative transfer. This may be due to the data interpolation
from 3-min to 1-min resolution, which was only necessary for this
dataset, or to the room type being the most dissimilar compared
to the other datasets. All other rooms are regularly used by 1-2
occupants, whereas for E, the room is mostly unoccupied and there
are up to 12 occupants. Also, transfer to E shows low benefit, as
the model can already reach substantial results with scarce training
data only. When using two days of data from E, for example, in
comparison with training from scratch, pretraining on A only in-
creases Cohen’s kappa from 0.648 to 0.659 and accuracy from 0.938
to 0.939. For other target datasets, however, training a model from
scratch with such scarce data is not possible, which can be seen
from accuracies around 0.6 and kappa values close to zero. This
offers large potential for TL.

4.1 Analysis of Transfer Methods

Figure 5:MeanCohen’s kappa and accuracy by target training
days and transfer method over all source-to-target combina-
tions between sources A-F and targets A-D.

Fig. 5 shows the mean performances over all source-to-target
combinations with target datasets A-D. It can be seen that domain-
adversarial learning shows remarkable performance in terms of
Cohen’s kappa in cases with extremely scarce data of only one
target day. In comparison to the other methods, however, it appears
to fail in making use of more target data. In our evaluation, for mul-
tiple training days, the mean accuracy remains close to the baseline
accuracy without transfer learning, and below the accuracy of other
transfer methods. Pretraining and fine-tuning stands out as the best
method when averaging over the experiments. Especially when
fine-tuning is conducted jointly with data from target and source
domain, there is a further performance advantage. The approach
intends to reduce catastrophic forgetting during fine-tuning with
scarce data by repeatedly training with data previously seen during
pretraining. Regarding the results shown in Fig. 5, it seems that
this is particularly useful in cases with extremely scarce target
data. With three target days or more, the performance of vanilla
fine-tuning approaches a similar level, although still performing
weaker. It shall be noted that target performance also depends on
the selected source data. A comparison of source datasets is ad-
dressed in subsection 4.2. For specific sources, methods can reach
a higher or lower performance than the mean values reported in
Fig. 5. To show this, Fig. 6 provides a more detailed overview show-
ing the mean Cohen’s kappa values of the methods for each source
dataset for one and five target training days respectively. Even with
extremely scarce target data of only one day, most of the method-
source combinations show significantly higher performance than
the baseline without transfer, which is close to zero and cannot
be regarded as a useful model. With five days, performance fur-
ther increases in most cases. The top performance is reached on
source dataset C by pretraining and fine-tuning with source and
target data. Negative transfer can be observed in some cases, mostly
with datasets D or E and with layer freezing or domain-adversarial
learning. Hence, these methods seem less advisable when datasets
are too diverse. Pretraining and fine-tuning appears more flexible.
With five target training days, it shows positive transfer for each of
the sources. This can be explained by the necessity of early layers
being retrained when there are massive pattern changes, which is
omitted in the layer freezing method.

4.2 Analysis of Transfer Sources
Fig. 7 shows the mean Cohen’s kappa and accuracy values grouped
by the source datasets for 1-5 days of target training data. Dataset E
was excluded as target dataset in this evaluation to avoid negative
transfer affecting the results. For each source, values are reported
for the best transfer method, as we suggest that in each case the best
method would be applied in practice. A more detailed overview re-
garding the combination of sources and methods is shown in Fig. 6.
The results show a clear dominance of transfer learning over target-
only training for all source datasets. Datasets D and E perform
weaker than other sources. This may again be due to major dis-
similarities to the other datasets. The two offices A and B perform
similarly. For more than one target day, the simulated data show
similar results. This indicates that it is possible to successfully ap-
ply TL even without extensive real-world data collected from other
rooms.
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Figure 6: Mean Cohen’s kappa over target datasets A-D by source dataset and transfer method for 1 day (left) or 5 days (right) of
target data used for training. t: target-only training (no transfer), PF: pretraining and vanilla fine-tuning, PF2: pretraining and
fine-tuning with source and target data, LF: layer freezing (frozen CNN), LF2: layer freezing (frozen CNN-BLSTM), DA1/DA2:
domain-adversarial training variant 1 or 2.

Figure 7: Mean Cohen’s kappa and accuracy by target train-
ing days and source dataset for the best transfer method in
each source-to-target combination between sources A-F and
targets A-D.

Figure 8: Mean Cohen’s kappa by target training days and
source dataset for the best transfer method in each experi-
ment with sources B-F and office A as the target. Results for
two selected subsets of D are shown in dashed lines.
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The home dataset (C) stands out as the best source by average.
With its high presence rate of 75% and dataset size of 50 days,
it provides the most instances from the positive class. However,
regarding a specific target room and with little target data, other
sources may be more suitable, as can be seen in Fig. 8.

Fig. 8 shows the kappa values for different sources when office A
is the target dataset. As expected, the most similar room, office B,
appears to be the most suitable real-world source. However, with
more than two target days, the simulated dataset F performs on par
with office B.

Dataset D shows noticeable poor performance in transfer to A,
although it was measured in a two-person office as well. Closer
investigation showed some peculiar CO2 measurements during
non-office hours that, according to the authors, cannot be attrib-
uted to any known real-world phenomenon. Removing these from
the data increases performance to some extent (see D.1). A further
regular scenario that differs from the other datasets involves slowly
decaying CO2 values despite occupancy. The authors explain this by
opening of the office door to let fresh air in. In dataset A, however,
ventilation took place by window opening. This causes a fast drop
of CO2 that is more distinctive from vacancy. Removing also these
unique decay scenarios (see D.2), performance becomes more com-
parable to other sources. This indicates that, besides the similarity
of rooms, also the particularities of their usage are relevant regard-
ing transfer capabilities. Despite these difficulties, the transfer from
dataset D to A, just as from all other source datasets, improves
the results to an important degree compared to training without
transfer learning.

5 DISCUSSION
Our results show that TL broadly benefits occupancy detection
based on CO2 in many different scenarios. While this study is
focused on the problem of scarce data and, hence, reports results
for up to five working days in the target room, we observed further
prediction improvements with larger amounts of target data as well.
For instance, when using 40 working days from dataset A for target
training, we still observed a slight advantage when using a model
pretrained on 40 days of the simulated dataset D, with a Cohen’s
kappa of 0.8879 compared to 0.8808. This may motivate the use
of TL even in cases where data scarcity is not a major problem,
although it can be assumed that the performance advantage of TL
tends towards zero with increasing target dataset size.

However, since data is often scarce in practice, TL may play a
key role in making the approach applicable. A remaining difficulty
is the observed performance variance depending on the concrete
source dataset being used. Dissimilarities between source and target
domain may appear due to differences in

1. properties of the room (size, ventilation type, etc.), or
2. occupant behavior (e.g., door or window opening behavior).

Indoor climate, for example, fundamentally differs between rooms
with air-conditioning versus natural ventilation. While the applied
methods are transferable, in this study, we focused on naturally ven-
tilated rooms. A dissimilarity caused by occupant behavior found
in this study was due to occupants using the office door instead of
the window to ventilate the room.

Dissimilarities leading to negative transfer should be prevented
in practice, which is why selecting the right source dataset and
transfer method is crucial. Approaches on how to prevent negative
transfer may be:

1. Selecting appropriate sources, either by actually testing the
prediction performance or based on estimation. Regarding
TL for time series classification in general, Fawaz et al. [16]
suggested calculating a dynamic time warping (DTW) dis-
tance as a proxy for dataset similarity.

2. Selecting a transfer method that reduces the risk of nega-
tive transfer. In our evaluation, pretraining and fine-tuning
showed less tendency to negative transfer. In contrast, freez-
ing layers during retraining carries the risk that parameters
representing patterns deviating from the target domain can-
not be overwritten.

3. Multi-source training: Leveraging multiple source datasets
at once, in order to train a more general model, that is less
overfitting to a specific source room or occupant behavior.

Regarding multi-source training, however, it is a challenge to
collect sufficient source data, as public datasets are rare. To avoid
the restriction of limited real-world data being available, we pro-
pose leveraging simulated data instead. As shown in our evaluation,
there is no discernable discrepancy between simulated source data
and real-world source data. When transferring from the simulated
dataset with more than two days of target data, we observed perfor-
mances similar to the top-performing real-world datasets (cf. Fig. 7
and Fig. 8). Hence, we point out that the application of simulations
in occupancy detection modeling needs to be further addressed
in future research. Two alternative ideas were introduced in [34],
which are (1) to replicate the conditions in the target room as closely
as possible or (2) to simulate under a broad variety of conditions to
generate data for multi-source training. The first option requires
a large amount of manual work, including the tasks of room mod-
eling, simulating, data preprocessing, and two phases of model
training, whereas the latter may allow the preparation of a more
general base model that can quickly be applied by fine-tuning on
any given real-world data. This further reduces human involvement
compared to collecting suitable real-world datasets for TL. As an
alternative future research direction, we suggest to also compare
the approach to unsupervised learning algorithms as, for instance,
investigated in the context of energy consumption data in [6].

6 CONCLUSIONS
In this paper, we proposed a model architecture and configura-
tion for the task of building occupancy detection from CO2, based
on an existing deep learning approach. We evaluated the model’s
capability of transfer learning, comparing three different transfer
methods on a variety of datasets. The results suggest that pretrain-
ing and fine-tuning is generally a good choice in the addressed
domain of application, even though it is not necessarily the best
method in all cases. According to our experiments, its performance
can be increased by fine-tuning jointly with data from target and
source domain. In addition, in experiments with sufficient fine-
tuning, pretraining with simulated data performed on par with
using real-world data from a similar room. This finding underlines
the usefulness of simulations in practice, as it allows us to train
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models with minimal data collection. In future work, we intend to
pretrain an off-the-shelf model based on a variety of simulations.
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